1
|
Peng Z, Lin Y, Deng S, Liu Z, Xia Y, Ou YP, Zhang J, Hua Liu S. Molecular engineering of thiophene- and pyrrole-fused core arylamine systems: Tuning redox properties, NIR spectral responsiveness and bacterial imaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124704. [PMID: 38936208 DOI: 10.1016/j.saa.2024.124704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The thiophene- and pyrrole-fused heterocyclic compounds have garnered significant interest for their distinctive electron-rich characteristics and notable optoelectronic properties. However, the construction of high-performance systems within this class is of great challenge. Herein, we develop a series of novel dithieno[3,2-b:2',3'-d] pyrrole (DTP) and tetrathieno[3,2-b:2',3'-d] pyrrole (TTP) bridged arylamine compounds (DTP-C4, DTP-C12, DTP-C4-Fc, TTP-C4-OMe, TTP-C4, and TTP-C12) with varying carbon chain lengths. The pertinent experimental results reveal that this series of compounds undergo completely reversible multistep redox processes. Notably, TTP-bridged compounds TTP-C4 and TTP-C12 exhibit impressive multistep near-infrared (NIR) absorption alterations with notable color changes and electroluminescent behaviors, which are mainly attributed to the charge transfer transitions from terminal arylamine units to central bridges, as supported by theoretical calculations. Additionally, compound DTP-C4 demonstrates the ability to visually identify gram-positive and gram-negative bacteria. Therefore, this work suggests the promising electroresponsive nature of compounds TTP-C4 and TTP-C12, positioning them as excellent materials for various applications. It also provides a facile approach to constructing high-performance multifunctional luminescent materials, particularly those with strong and long-wavelength NIR absorption capabilities.
Collapse
Affiliation(s)
- Zhen Peng
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China
| | - Yiling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuangling Deng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenji Liu
- College of Chemistry and Material Science, Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Hengyang Normal University, Hengyang 421008, China
| | - Yonglin Xia
- Hengyang Normal University Nanyue College, Hengyang, Hunan 421001, China
| | - Ya-Ping Ou
- College of Chemistry and Material Science, Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Hengyang Normal University, Hengyang 421008, China; Hengyang Normal University Nanyue College, Hengyang, Hunan 421001, China.
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Yang X, Liu W, Ren Y, Hou X, Li J. Highly Sensitive Fluorescent Sensing for Nitrobenzene of Cd II Complexes Based on Three Isomers and a Bis-Imidazole Ligand. Molecules 2024; 29:2475. [PMID: 38893353 PMCID: PMC11173416 DOI: 10.3390/molecules29112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Detection of nitro pollutants is an important topic in environmental protection. A total of 3 Cd (II) complexes (1-3) based on 3 soft organic isomers, n-(3,5-dicarboxylato benzyloxy) benzoic acid (n = 2, 3 or 4-H3DBB), and a linear N-donor ligand, 3-bis(imidazole-l-ylmethyl) benzene (3-bibz), have been synthesized hydrothermally. Structural diversity of Complexes 1-3 displays the architectural 2D or 3D change: Complex 1 exhibits a 2D network featuring tri-nuclear metal units, Complex 2 is a 3D framework based on similar tri-nuclear metal units, and Complex 3 shows a 3D network with binuclear units. Fluorescent sensing properties exhibited in all these complexes have been discovered to detect nitrobenzene (NB) selectively and sensitively. In particular, Complex 3 possesses high sensitivity for NB with the lowest detection limit of 1.15 × 10-10 M. The results of the theoretical calculation verified the fluorescence detection mechanism of NB by these Cd-based complexes. Therefore, these Cd-based complexes might be used as excellent luminescent sensors for NB.
Collapse
Affiliation(s)
| | | | - Yixia Ren
- Laboratory of New Energy and New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (X.Y.); (W.L.); (X.H.); (J.L.)
| | | | | |
Collapse
|
3
|
Chen Z, Wang JC, Du JQ, Kan X, Sun T, Kan JL, Dong YB. Construction of Multifunctional Covalent Organic Frameworks for Photocatalysis. Chemistry 2024; 30:e202303497. [PMID: 38017237 DOI: 10.1002/chem.202303497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Covalent organic frameworks (COFs) have recently drawn intense attention due to their potential applications in photocatalysis. Herein, we report a multifunctional COF which consists of triphenylamine (TPA) and 2,2'-bipyridine (2, 2'-bipy) entities. The obtained TAPA-BPy-COF is a heterogeneous photocatalyst and can efficiently catalyze the oxidative coupling of thiols to disulfides. In addition, TAPA-BPy-COF can be further metalated by Pd(II) via 2,2'-bipy-metal coordination. The generated Pd@TAPA-BPy-COF can highly promote photocatalytic synthesis of 3-cyanopyridines via cascade addition/cyclization of arylboronic acids with γ-ketodinitriles in heterogeneous way. This work has demonstrated the way for the rational design and preparation of more efficient photoactive COFs for photocatalysis.
Collapse
Affiliation(s)
- Zhi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jia-Qi Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Xuan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Ting Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, No.88 East Wenhua Road, Lixia District, Ji'nan, 250014, P. R. China
| |
Collapse
|
4
|
Wang C, Ren G, Tan Q, Che G, Luo J, Li M, Zhou Q, Guo DY, Pan Q. Detection of organic arsenic based on acid-base stable coordination polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122812. [PMID: 37167746 DOI: 10.1016/j.saa.2023.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Organic arsenic, usually found in animal feed and livestock farm wastewater, is a carcinogenic and life-threatening substance. Hence, for the rapid and sensitive detection of organic arsenic, the development of new fluorescent sensors is quite essential. Here, an acid-base stable coordination polymer (HNU-62) was constructed by the introduction of hydrophobic fluorescence ligand, which can be used as a highly selective sensor for the detection of roxarsone (ROX) in water. The limit of detection (LOD) of HNU-62 for ROX was 4.5 × 10-6 M. Furthermore, HNU-62 also exhibits good anti-interference and recyclability, which can be used in detecting ROX in real samples of pig feed. This work provides an alternative approach for the construction of water-stable coordination polymer-based fluorescence sensors.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Guojian Ren
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China.
| | - Qinyue Tan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China
| | - Guang Che
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Jian Luo
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Qi Zhou
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd, Xiamen, China.
| | - Qinhe Pan
- Key Laboratory of Advanced Metarials of Tropical Island Resources, Ministry of Education, School of Science, Hainan University, Haikou 570228, China; School of Chemical Engineering and Technology Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
5
|
Zhu J, Hua L, Zhang Y, Wu H, Zheng F, Shen H, Gong H, Yang L, Jiang A. A 2D Dy-based metal-organic framework derived from benzothiadiazole: structure and photocatalytic properties. Dalton Trans 2023; 52:4058-4062. [PMID: 36880436 DOI: 10.1039/d2dt03606a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A 2D Dy(III) metal-organic layer (MOL 1) was synthesized under solvothermal conditions. Structural analysis suggests that the Dy(III) ions in each one-dimensional (1D) arrangement are evenly arranged in the form of broken lines. The 1D chains are linked to one another via ligands to form a 2D layer that generates a 2D surface with elongated apertures. The photocatalytic activity study suggests that MOL 1 exhibits good catalytic activity in flavonoids by the formation of an O2˙- radical as an intermediate. This is the first reported method of synthesizing flavonoids using chalcones.
Collapse
Affiliation(s)
- Jing Zhu
- Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Lin Hua
- Institute of Chemistry Co. Ltd Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| | - Yumeng Zhang
- Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| | - Hongying Wu
- Institute of Chemistry Co. Ltd Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| | - Fuwei Zheng
- Institute of Chemistry Co. Ltd Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| | - Hongyan Shen
- Institute of Chemistry Co. Ltd Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| | - Haiyan Gong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Liu Yang
- Institute of Chemistry Co. Ltd Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| | - Aiyun Jiang
- Huanghe Science and Technology College, Zhengzhou, Henan 450063, China.
| |
Collapse
|
6
|
Syntheses, crystal structure, luminescent properties and Hirshfeld surface of a set of triazole-based salts. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Xu DD, Dong WW, Li MK, Han HM, Zhao J, Li DS, Zhang Q. Encapsulating Organic Dyes in Metal-Organic Frameworks for Color-Tunable and High-Efficiency White-Light-Emitting Properties. Inorg Chem 2022; 61:21107-21114. [PMID: 36524898 DOI: 10.1021/acs.inorgchem.2c03736] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of white-light phosphor is highly desirable for practical applications in SSL (solid-state lighting) and its related fields. Dye-loaded metal-organic frameworks (MOFs) have been widely demonstrated as one type of promising down conversion materials for WLEDs (white-light-emitting diodes), but two issues (dye leakage and inadequate quantum efficiency) require to be addressed before possible applications. Here, a series of single-phase dyes@In-MOF phosphors have been prepared in two different ways: the in-situ process and soaking method. The study of these dyes@In-MOF phosphors confirms the importance of this in-situ process that could effectively increase dye loading and quantum efficiency and greatly decrease dye leakage. As a result, a perfect WLED, fabricated using the in-situ-synthesized (AF/RhB@In-MOF)-3 (AF: Acriflavine; RhB: Rhodamine B) and 450 nm blue LED chip, exhibited a very high quantum yield (QY, up to 42.27%), a high luminous efficacy (LE) of 50.75 lm/W, a high color rendering index (CRI) of 91.2, and nearly identical Commission International ed'Eclairage (CIE) coordinates (0.33,0.31), indicating the potential application of the dye-loaded MOFs with good color quality in smart white LEDs.
Collapse
Affiliation(s)
- Dong-Dong Xu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Wen-Wen Dong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Meng-Ke Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Hui-Min Han
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jun Zhao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
8
|
Structure, Magnetic Properties and Luminescence Sensing of Co(II) Metal–Organic Framework Based on Tris(3′-F-4′-carboxybiphenyl)amine and 9,10-Di(4-pyridyl)anthracene. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhang XN, Chen BC, Zhang JL, Zhang JL, Liu SJ, Wen HR. Anionic lanthanide metal-organic frameworks with magnetic, fluorescence, and proton conductivity properties and selective adsorption of a cationic dye. Dalton Trans 2022; 51:15762-15770. [PMID: 36178291 DOI: 10.1039/d2dt02347d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel microporous anionic lanthanide metal-organic frameworks (Ln-MOFs), namely {[(CH3)2NH2][Ln(bptc)]·2H2O}n (Ln = Gd (1) and Dy (2), H4bptc = biphenyl-3,3',5,5'-tetracarboxylic acid) with a new 4,8-connected topology have been synthesized and structurally characterized. Ln-MOF 1 shows a significant magnetocaloric effect with -ΔSmaxm = 26.37 J kg-1 K-1 at 2 K for ΔH = 7 T, and a high proton conductivity of 1.02 × 10-4 S cm-1 at 323 K and 90% RH. Moreover, Ln-MOF 1 shows specific selective adsorption of the cationic dye Rhodamine B. Ln-MOF 2 exhibits field-induced slow magnetic relaxation with an energy barrier (Ueff) of 48.19 K, characteristic emission of Dy3+, and selective adsorption of Rhodamine B. Therefore, 2 is a multifunctional Ln-MOF with magnetic, fluorescence and selective adsorption properties.
Collapse
Affiliation(s)
- Xiao-Nuan Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Bo-Chen Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jia-Li Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jia-Lin Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
10
|
Li JH, Jiang XF, Wei Q, Xue ZZ, Wang GM, Yang GY. Dual-Ligand-Oriented Design of Noncentrosymmetric Complexes with Nonlinear-Optical Activity. Inorg Chem 2022; 61:16509-16514. [PMID: 36179365 DOI: 10.1021/acs.inorgchem.2c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When the N- and O-donor ligands are combined as coligands, two noncentrosymmetric (NCS) complexes of [Ni(p-bdc)(tipa)(H2O)2]2·H2O (1) and Ni(npdc)(tipa)H2O (2) [tipa = tris[4-(1H-imidazol-1-yl)phenyl]amine, p-H2bdc = 1,4-benzenedicarboxylic acid, and H2npdc = 2,6-naphthalenedicarboxylic acid] were achieved under solvothermal conditions. For both structures, N-donor ligands are responsible for the generation of a layered structure, while the O-donor ligands are hung on the layers and are responsible for enhancing the polarity, giving rise to the NCS structures. Because of the different connection modes between the metal centers and different carboxylate ligands (p-bdc2- in 1 and npdc2- in 2), 1 and 2 show some structural differences. The p-bdc2- ligands in 1 are suspended on the upper and lower sides of the [Ni(tipa)]n layers, while all of the npdc2- ligands in 2 hang on one side of the [Ni(tipa)]n layers and point in the same direction, which makes the two NCS complexes show phase-matchable behavior with different second-harmonic-generation (SHG) responses of about 0.9 and 1.5 times that of KH2PO4 (KDP), respectively. Theoretical studies reveal that charge transfers between Ni2+ and carboxylate ligands make the dominant contribution to the optical properties. It is expected that a dual-ligand strategy may guide the design of novel superior-performing NCS complexes.
Collapse
Affiliation(s)
- Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xiao-Fan Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Yu Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.,MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
11
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Gupta RK, Riaz M, Ashafaq M, Gao ZY, Varma RS, Li DC, Cui P, Tung CH, Sun D. Adenine-incorporated metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhu Y, Cai J, Xu L, Li G, Liu Y. Two Robust Isoreticular Metal–Organic Frameworks with Different Interpenetration Degrees Exhibiting Disparate Breathing Behaviors. Inorg Chem 2022; 61:10957-10964. [DOI: 10.1021/acs.inorgchem.2c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yueying Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jun Cai
- Beijing Institute of Applied Meteorology, Beijing 100029, P. R. China
| | - Liren Xu
- Beijing Institute of Applied Meteorology, Beijing 100029, P. R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Li CH, Liu YN, Zhang H, Shi Z. Treatment effect of Co(II)-coordination polymers on postpartum depression by regulating 5-HT content. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Chen T, Zhao P, Li J, Sun Z, Huang W. Construction of a novel Co-based coordination polymer and its study of non-enzymatic glucose sensors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Synthesis, characterization and dye adsorption properties of a 3-fold interpenetrated cobalt(II)-metal organic framework based on (E)-5,5'-(but-2-ene-1,4-diylbis(oxy))diisophthalate and 1,4-bis(imidazole-1-yl)butane ligands. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Zhang D, Zou XN, Wang XG, Su J, Luan TX, Fan W, Li PZ, Zhao Y. Highly Effective Photocatalytic Radical Reactions Triggered by a Photoactive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23518-23526. [PMID: 35537034 DOI: 10.1021/acsami.2c04331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On account of their inherent reactive properties, radical reactions play an important role in organic syntheses. The booming photochemistry provides a feasible approach to trigger the generation of radical intermediates in organic reaction processes. Thus, developing effective photocatalysts becomes the key step in radical reactions. In this work, the triphenylamine moiety with photoactivity is successfully embedded in a highly porous and stable metal-organic framework (MOF), and the obtained MOF, namely, Zr-TCA, naturally displays a photoactive property derived from the triphenylamine-based ligand. In photocatalytic studies, the triphenylamine-based Zr-TCA not only exhibits a high catalytic activity on the aerobic oxidation of sulfides via the generation of the superoxide radical anion (O2•-) under light irradiation but also shows good efficiency in the trifluoromethylation of arenes and heteroarenes by the formation of the trifluoromethyl radical (CF3•) as an intermediate. Moreover, the high performance of Zr-TCA can be well maintained over a wide range of substrates in these radical reactions, and the recycled Zr-TCA still retains its excellent photocatalytic activity. The high recyclability and catalytic efficiency to various substrates make the constructed triphenylamine-based Zr-TCA a promising photocatalyst in diverse radical reactions.
Collapse
Affiliation(s)
- Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Xiao-Ge Wang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100 Shandong Province, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237 Shandong Province, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
18
|
Gangu KK, Maddila S, Jonnalagadda SB. The pioneering role of metal-organic framework-5 in ever-growing contemporary applications - a review. RSC Adv 2022; 12:14282-14298. [PMID: 35702657 PMCID: PMC9097495 DOI: 10.1039/d2ra01505f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
MOF-5 with a Zn(ii) cluster and terephthalic acid is a distinctive porous material among the metal–organic frameworks (MOFs), with unique physical, chemical and mechanical properties. MOF-5 based composites possess ample applications in modern chemistry. Huge surface area, suitable pore dimensions and scope of tunability make MOF-5 noteworthy in advanced materials. The extensive features of MOF-5 provided an opportunity for researchers to explore atomic/molecular scale materials. Various MOF-5 based composites have been designed with revamped properties appropriate to the application by altering and fabricating MOF-5 in situ or using a post-synthetic approach. Surface modification via the dispersion and impregnation of active substances into the pores of MOF-5 enhances its applicability. The boundless topologies and morphologies of MOF-5 combined with other chemical entities has provided opportunities in various fields, including catalysis, gas storage and sensors. The present review illuminates the leading role of MOF-5 and its composites in contemporary applications based on the current literature in heterogeneous catalysis, H2 and CO2 storage and sensors. MOF-5 with a Zn(ii) cluster and terephthalic acid is a distinctive porous material among the metal–organic frameworks (MOFs), with unique physical, chemical and mechanical properties.![]()
Collapse
Affiliation(s)
- Kranthi Kumar Gangu
- Department of Chemistry, Vignan's Institute of Information Technology Duvvada Visakhapatnam-530049 India.,School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa +27 31 2603091 +27 31 2607325
| | - Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa +27 31 2603091 +27 31 2607325.,Department of Chemistry, GITAM Institute of Science, GITAM University Visakhapatnam 530045 Andhra Pradesh India
| | - Sreekantha B Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa +27 31 2603091 +27 31 2607325
| |
Collapse
|
19
|
Wang C, Chen C, Ma M, Feng Z, Du Y. In‐situ grown metal organic framework synergistic system for the enantioseparation of three drugs in open tubular capillary electrochromatography. J Sep Sci 2022; 45:2708-2716. [DOI: 10.1002/jssc.202100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) China Pharmaceutical University Nanjing 210009 P. R. China
- State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
20
|
A New Mn(II) Complex: Magnetic Property and Application Values in Foot and Ankle Arthritis. INT J POLYM SCI 2022. [DOI: 10.1155/2022/4609960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The solvothermal reactions of C3-symmerical 4,4
,4
-nitrilotribenzoic acid and MnCl2 afforded a novel Mn(II) compound, and its formula is [Mn3(TCA)2(e-urea)2(DMA)2]n·n(urea)·n(DMA) (1, H3TCA=4,4
,4
-nitrilotribenzoic acid, e-urea=2-imidazaolidone, DMA=N,N
-dimethylacetamide). Magnetic property investigation of 1 indicates weak antiferromagnetic mutual effects exist between neighboring Mn(II) ions. Serial biological tests were adopted to discover new compound activity. Firstly, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the content of inflammatory cytokines released into the synovial fluid. In addition, we also studied adenosine 5
-monophosphate- (AMP-) activated protein kinase (AMPK) inflammatory signaling pathway activation through real-time reverse transcription-polymerase chain reaction (RT-PCR).
Collapse
|
21
|
Hou L, Jing X, Huang H, Duan C. Merging Charge Transfer into Metal-Organic Frameworks to Achieve High Reduction Potentials via Multiphoton Excitation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15307-15316. [PMID: 35344330 DOI: 10.1021/acsami.2c01595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Utilization of multiphotons to achieve high reduction potentials is a highly demanding but still challenging task for reductive cleavage of inert bonds. Herein, we report a new charge transfer approach that simultaneously excites the electron-rich dye and the radical anionic of the electron-deficient one for photocatalytic activation of aryl chlorides with high reduction potentials (Ered ≈ -1.9 to -2.9 V). Interactions between the tetraphenylbenzene-1,4,-diamine dyes in the large pores of metal-organic frameworks and the adsorbed 9,10-dicyanoanthracene partly endows charge transfer in the ground state. The first photoexcitation led to the formation charge separation pairs containing both radical cation and anion for second photon excitation. The possibility of modifying each absorption band of the two dyes independently innovated the resultant aryl radicals applied in various useful transformations, expanding multiphoton manifolds on both the dye scopes and reaction versions. A comparison of the catalytic performance between different structural patterns of metal-organic frameworks with the same ligand demonstrated that the incorporating of the organic dyes within the pores of the frameworks was essential to form charge-transfer species and accelerate the interesting chemical conversion.
Collapse
Affiliation(s)
- Leixin Hou
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
22
|
Hu Z, Chen Z, Chen X, Wang J. Advances in the adsorption/enrichment of proteins/peptides by metal-organic frameworks-affinity adsorbents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Meng T, Lu Y, Lei P, Li S, Deng K, Xiao X, Ogino K, Zeng Q. Self-Assembly of Triphenylamine Macrocycles and Co-assembly with Guest Molecules at the Liquid-Solid Interface Studied by STM: Influence of Different Side Chains on Host-Guest Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3568-3574. [PMID: 35276043 DOI: 10.1021/acs.langmuir.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The side chains of macrocyclic molecules have a non-negligible effect on the two-dimensional (2D) supramolecular networks at the liquid-solid interface. In this study, we investigate the self-assembly behaviors of two conjugated triphenylamine macrocycles modified with different alkyl chains and construct the host-guest supramolecular nanopatterns on the highly oriented pyrolytic graphite with a scanning tunneling microscope. In combination with density functional theory calculations, how different side chains affect the host-guest interaction is discussed. This work provides insights into constructing a 2D host-guest dynamic co-assembly on the surface.
Collapse
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Yingbo Lu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunwen Xiao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Therapeutic Effect of Cu(II) Complex with Photocatalytic Property on Gastric Cancer by Inhibiting the Proliferation of Tumor Cells. J CHEM-NY 2022. [DOI: 10.1155/2022/5349278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In situ hydrolysis of 1,4,5,8-naphthalenetetracarboxylic dianhydride (L) and simultaneous self-assembly with Cu(II) ions afforded a new Cu(II) compound formulated as [Cu(L) (4,4′-bpy)0.5(H2O)]n (1), which is structurally determined by a series of characterization techniques, such as powder X-ray diffraction (PXRD), thermogravimetric Analysis (TGA), and elemental analysis. It is noteworthy that compound 1 can catalyze the degradation of methylene blue (MB) in aqueous solution under UV irradiation. This paper also investigated and evaluated its application value and research mechanism in gastric cancer. However, we also used real-time reverse transcription-polymerase chain reaction (RT-PCR) to detect the activation of vascular endothelial growth factor (VEGF) signaling pathway, and Cell Counting Kit-8 (CCK-8) method was used to calculate the inhibition activity of 1 on gastric cancer cell viability.
Collapse
|
25
|
Yan XF, Sun YQ, Li QW. Two new supramolecular Ag(I) coordination polymers: luminescent properties and treatment activity on glioblastoma. Des Monomers Polym 2022; 25:47-54. [PMID: 35250361 PMCID: PMC8890539 DOI: 10.1080/15685551.2022.2041785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Two new Ag(I) coordination polymers, namely [Ag(bpp)]·0.5 n(1,5-NDSA)·n(H2O) (1) and [Ag2(bpp)2]n·n(2,7-NDSA)·2 n(H2O)·n(CH3CN) (2) (Na2(1,5-NDSA) = sodium 1,5-naphthalenedisulfonate dibasic, Na2(2,7-NDSA) = sodium 1,5-naphthalenedisulfonate dibasic, bpp is 1,3-bis(4-pyridyl)propane), were generated via the solution evaporation method under room temperature. Moreover, the solids of these two compounds display strong luminescence emission at RT. And the application values of the compounds against the glioblastoma treatment were determined, and the corresponding mechanism was simultaneously tested. The analysis of CCK-8 was first implemented and the glioblastoma viability was measured. The real-time RT-PCR was next performed, and the signaling pathway activation of VEGF in glioblastoma cells was tested after treating by the above compound.
Collapse
Affiliation(s)
- Xiao-Feng Yan
- Department of Clinical Laboratory, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Yu-Qiang Sun
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Qing-Wei Li
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Four new cobalt(II)/zinc(II) complexes derived from the naphthalene-bridging bis(pyridyl)-bis(amide) ligand: Fluorescence sensing Fe3+ ions and CrO42− anions, photocatalytic degrading dyes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Karmakar A, Hazra S, Pombeiro AJ. Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Jing C, Yi YP, Tao L, Lu XL, Li LM. Construction of two new photoluminescent 3D heterometallic complexes and their nursing application values on ICU infection. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Wan X, Zhang Y, Wang H, Lu J, Li D, Dou J, Li Y, Wang S. One amino-functionalized luminescence sensor demonstrating high sensitivity and selectivity for detecting Al3+ and Cu2+ as well as its luminescent mixed matrix membranes and test papers. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Jia S, Yuan H, Hu R. Design and Structural Regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Biomater Sci 2022; 10:4443-4457. [DOI: 10.1039/d2bm00864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, photodynamic therapy (PDT) has become one of the important therapeutic methods for treating cancer. Aggregation-induced emission (AIE) photosensitizers (PSs) overcome the aggregation-caused quenching (ACQ) effects of conventional...
Collapse
|
31
|
An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
|
33
|
The substituent effect on the luminescent properties of a set of 4-amino-4-1,2,4-triazole: Syntheses, crystal structures and Hirshfeld analyses. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Fu H, Jiang Y, Wang F, Zhang J. The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2791. [PMID: 34835554 PMCID: PMC8618028 DOI: 10.3390/nano11112791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Metal-Organic Frameworks (MOFs) as a class of crystalline materials are constructed using metal nodes and organic spacers. Polydentate N-donor ligands play a mainstay-type role in the construction of metal-organic frameworks, especially cationic MOFs. Highly stable cationic MOFs with high porosity and open channels exhibit distinct advantages, they can act as a powerful ion exchange platform for the capture of toxic heavy-metal oxoanions through a Single-Crystal to Single-Crystal (SC-SC) pattern. Porous luminescent MOFs can act as nano-sized containers to encapsulate guest emitters and construct multi-emitter materials for chemical sensing. This feature article reviews the synthesis and application of porous Metal-Organic Frameworks based on tridentate ligand tris (4-(1H-imidazol-1-yl) phenyl) amine (TIPA) and focuses on design strategies for the synthesis of TIPA-dominated Metal-Organic Frameworks with high porosity and stability. The design strategies are integrated into four types: small organic molecule as auxiliaries, inorganic oxyanion as auxiliaries, small organic molecule as secondary linkers, and metal clusters as nodes. The applications of ratiometric sensing, the adsorption of oxyanions contaminants from water, and small molecule gas storage are summarized. We hope to provide experience and inspiration in the design and construction of highly porous MOFs base on polydentate N-donor ligands.
Collapse
Affiliation(s)
- Hongru Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Yuying Jiang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China;
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| |
Collapse
|
35
|
Kumar B, Das T, Das S, Maniukiewicz W, Nesterov DS, Kirillov AM, Das S. Coupling 6-chloro-3-methyluracil with copper: structural features, theoretical analysis, and biofunctional properties. Dalton Trans 2021; 50:13533-13542. [PMID: 34505590 DOI: 10.1039/d1dt02018h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As nucleobases in RNA and DNA, uracil and 5-methyluracil represent a recognized class of bioactive molecules and versatile ligands for coordination compounds with various biofunctional properties. In this study, 6-chloro-3-methyluracil (Hcmu) was used as an unexplored building block for the self-assembly generation of a new bioactive copper(II) complex, [Cu(cmu)2(H2O)2]·4H2O (1). This compound was isolated as a stable crystalline solid and fully characterized in solution and solid state by a variety of spectroscopic methods (UV-vis, EPR, fluorescence spectroscopy), cyclic voltammetry, X-ray diffraction, and DFT calculations. The structural, topological, H-bonding, and Hirshfeld surface features of 1 were also analyzed in detail. The compound 1 shows a distorted octahedral {CuN2O4} coordination environment with two trans cmu- ligands adopting a bidentate N,O-coordination mode. The monocopper(II) molecular units participate in strong H-bonding interactions with water molecules of crystallization, leading to structural 0D → 3D extension into a 3D H-bonded network with a tfz-d topology. Molecular docking and ADME analysis as well as antibacterial and antioxidant activity studies were performed to assess the bioactivity of 1. In particular, this compound exhibits a prominent antibacterial effect against Gram negative (E. coli, P. aeruginosa) and positive (S. aureus, B. cereus) bacteria. The obtained copper(II) complex also represents the first structurally characterized coordination compound derived from 6-chloro-3-methyluracil, thus introducing this bioactive building block into a family of uracil metal complexes with notable biofunctional properties.
Collapse
Affiliation(s)
- Brajesh Kumar
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| | - Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mallick Rd, Kolkata 700032, India
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź, Poland
| | - Dmytro S Nesterov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. .,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| |
Collapse
|
36
|
Pang JJ, Du RH, Lian X, Yao ZQ, Xu J, Bu XH. Selective sensing of CrVI and FeIII ions in aqueous solution by an exceptionally stable TbIII-organic framework with an AIE-active ligand. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Li J, Yi M, Zhang L, You Z, Liu X, Li* B. Energy related ion transports in coordination polymers. NANO SELECT 2021. [DOI: 10.1002/nano.202100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jinli Li
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Mao Yi
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Laiyu Zhang
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Zifeng You
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Xiongli Liu
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Baiyan Li*
- College of Materials Science and Engineering Nankai University Tianjin China
| |
Collapse
|
38
|
Wang ZQ, Luo HQ, Wang YL, Xu MY, He CT, Liu QY. Octanuclear Cobalt(II) Cluster-Based Metal-Organic Framework with Caged Structure Exhibiting the Selective Adsorption of Ethane over Ethylene. Inorg Chem 2021; 60:10596-10602. [PMID: 34176268 DOI: 10.1021/acs.inorgchem.1c01245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel metal-organic framework (MOF) of [Co8(OH)4(TCA)4(H2O)4]n (abbreviation: JXNU-9) based on the unique octanuclear Co8(μ3-OH)4 clusters linked by 4,4',4″-nitrilotribenzoate (TCA3-) ligands featuring small caged structures and one-dimensional channels was prepared and characterized. JXNU-9 shows a high C2H6 uptake capacity of 3.60 mmol g-1 (4.46 mmol cm-3) at 298 K and 1 atm with a small isosteric heat of adsorption (23.6 kJ mol-1) and a moderate C2H6/C2H4 adsorption selectivity of 1.7, resulting in excellent C2H6/C2H4 separation performance. The pore walls decorated by plenty of aromatic rings provide π-electron-cloud-surrounding environments to accommodate the large polarizable C2H6 molecules. The calculations demonstrate that the rich π-systems in JXNU-9 facilitate an adsorption affinity for large C2H6 molecules through multiple C-H···π interactions. Additionally, the open metal sites located in the concave pores with a close Co···Co separation (4.21 Å) in octanuclear Co8(μ3-OH)4 clusters make the open metal sites inaccessible for the C2H4 molecule with a kinetic diameter of 4.163 Å. Thus, the annihilation of open metal sites in this structure is achieved, which further facilitates the C2H6-selective C2H6/C2H4 separation.
Collapse
Affiliation(s)
- Zhi-Qin Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Han-Qi Luo
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Meng-Ye Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Chun-Ting He
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
39
|
Li JQ, Ke SW, Yan T, Li YY, Zhou Y, Kurmoo M, Su J, Zuo JL. Retention of a Four-Fold Interpenetrating Cadmium-Organic Framework through a Three-Step Single Crystal Transformation. Inorg Chem 2021; 60:8331-8338. [PMID: 34038101 DOI: 10.1021/acs.inorgchem.1c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled hydration leads to four derivatives of a metal-organic framework consisting of cadmium ions, N1,N1,N4,N4-tetrakis(4-(pyridin-4-yl)phenyl)benzene-1,4-diamine, and coordinated and free nitrates. The balance of water coordination and the multitude of bonding of the weakly coordinated nitrate lead to a progressive change in the coordination number of the Cd2+ ions from eight to seven to six without great perturbation to the 4-fold interpenetration three-dimensional framework.
Collapse
Affiliation(s)
- Jia-Qian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Tong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu-Yang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yan Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Zou XN, Zhang D, Luan TX, Li Q, Li L, Li PZ, Zhao Y. Incorporating Photochromic Triphenylamine into a Zirconium-Organic Framework for Highly Effective Photocatalytic Aerobic Oxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20137-20144. [PMID: 33886272 DOI: 10.1021/acsami.1c03083] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A zirconium-based metal-organic framework (MOF) was successfully constructed via solvothermal assembly of a triphenylamine-based tricarboxylate ligand and Zr(IV) salt, the structure simulation of which revealed that it possesses a two-dimensional layered framework with a relatively rare dodecnuclear Zr12 cluster as the inorganic building unit. The inherent photo-responsive property derived from the incorporated photochromic triphenylamine groups combined with its high stability makes the constructed MOF an efficient heterogeneous photocatalyst for the oxidation of sulfides, which is a fundamentally important reaction type in both environmental and pharmaceutical industries. The photocatalytic activity of the constructed MOF was first investigated under various conditions with thioanisole as a representative sulfide substrate. The MOF exhibited both high efficiency and selectivity on aerobic oxidation of thioanisole in methanol utilizing molecular oxygen in air as the oxidant under blue light irradiation for 10 h. Its high photocatalytic performance was also observed when extending the sulfide substrate to diverse thioanisole derivatives and even a sulfur-containing nerve agent simulant (2-chloroethyl ethyl sulfide). The high photocatalytic efficiency and selectivity to a broad set of sulfide substrates make the triphenylamine-incorporating zirconium-based MOF a highly promising heterogeneous photocatalyst.
Collapse
Affiliation(s)
- Xin-Nan Zou
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Lei Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
41
|
Wu YL, Yang RR, Yan YT, Yang GP, Liang HH, He LZ, Su XL, He XH, Ma ZS, Wang YY. Ultra-high adsorption selectivity and affinity for CO2 over CH4, and luminescent properties of three new solvents induced Zn(II)-based metal-organic frameworks (MOFs). J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Chu Q, Zhang B, Yang Z, Zhou H, Mu H, Zhang W, Liu B, Wang YY. Stable Indium Pyridylcarboxylate Framework with Highly Selective Adsorption of Cationic Dyes and Effective Nitenpyram Detection. Inorg Chem 2021; 60:5232-5239. [PMID: 33677961 DOI: 10.1021/acs.inorgchem.1c00232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
On the basis of an undeveloped asymmetrical pyridylcarboxylate ligand, 2-(2-carboxypyridin-4-yl)terephthalic acid (H3CPTA), an indium pyridylcarboxylate framework, [(Me)2NH2]1.5[In1.5(CPTA)2]·5.5NMF·6H2O (1), is synthesized under solvent thermal conditions. 1 displays a 3D anionic framework with a large void space, which contains open square channels with a cross section of 14.6 Å and a pore surface decorated with carboxylic oxygen atoms. Depending on the anionic skeleton and high water stability, 1 exhibits high adsorption selectivity and capacity for cationic dyes in aqueous solution. Furthermore, the luminescence performance illustrates that 1 has selectivity and sensitivity to nitenpyram with good recyclability.
Collapse
Affiliation(s)
- Qianqian Chu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhipeng Yang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Huifang Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Haibo Mu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Wenyan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bo Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
43
|
Zhang WF, Du Y, Sun XY, Pan HM, Ma YY, Li DY, Wu S, Yan T, Jing ZH. Three-dimensional pillared-layer metal-organic framework based on single bifunctional organic ligand. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Zhang R, He X, Jiang JM, Li PP, Wang HY, Li L, Yang JX, Kong L. A computational and experimental investigation of donor-acceptor BODIPY based near-infrared fluorophore for in vivo imaging. Bioorg Chem 2021; 110:104789. [PMID: 33714760 DOI: 10.1016/j.bioorg.2021.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/28/2021] [Indexed: 12/27/2022]
Abstract
TD-DFT quantum calculation was performed to predict and/or illustrate the electronic transition, the related absorption and emission maxima of some pyrrole-difluoroboron derivatives with different electron donor-acceptor unit or π-conjugated degree. Upon the calculated results, a new near infrared (NIR) fluorophore (abbreviated as TPBD-BP) was designed and fabricated through linking triphenylamine and pyrrole-difluoroboron units to benzothiadiazole (BTD) backbone. The fluorescence of TPBD-BP in solid state centered at 932 nm, which was 985 nm for TPBD-BP nanoparticles (TPBD-BP dots) encapsulated in PEG-6000. The fluorescence of TPBD-BP in both solid state and dots exhibited off-peak tail emission to NIR-II region (extended to 1300 nm). The TPBD-BP dots showed excellent water solubility, biocompatibility and aggregation induced emission (AIE), which was suitable to be applied in vivo imaging. NIR-II emission signal of TPBD-BP dots can be observed in the reproductive organ of normal nude mice after tail vein injection. This attractive combination of computational and experimental investigation would help to develop new-typed small-molecular NIR fluorophores.
Collapse
Affiliation(s)
- Rui Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Xuan He
- Institutes of Physical Science and Information Technology, Anhui University, PR China
| | - Jia-Min Jiang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Pan-Pan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Hai-Yan Wang
- Institutes of Physical Science and Information Technology, Anhui University, PR China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Jia-Xiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China.
| |
Collapse
|
45
|
Wan YL, Xu YY, Peng B, Zhao LD, Gao QL, Jiang D. Two new coordination polymers: Magnetic properties and treatment activity on non-small cell lung cancer by reversing the resistance of the cancer cells. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Zhang L, Li H, He H, Yang Y, Cui Y, Qian G. Structural Variation and Switchable Nonlinear Optical Behavior of Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006649. [PMID: 33470526 DOI: 10.1002/smll.202006649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Two europium metal-organic frameworks (MOFs) based on the same ligand, named as ZJU-23-Eu and ZJU-24-Eu, are selectively synthesized by fine-tuning solvent contents to tailor the coordination modes. Eu atoms are eight-coordinated and nine-coordinated in ZJU-23-Eu and ZJU-24-Eu respectively, and their frameworks vary in both spatial connectivity and symmetry. The ligand not only has multiphoton response but also suitable triplet energy level (19 998 cm-1 ) to sensitize Eu3+ . Thus ZJU-23-Eu exhibits characteristic emission of Eu3+ peaking at 614 nm via the energy transfer from the two-/three-photon excited ligand to Eu3+ , with its bidimensional layered structure benefiting this process. In contrast, the changed spatial connectivity in tridimensional ZJU-24-Eu narrows the distances between adjacent Eu3+ ions and reduces the density, resulting in poor two-photon excited fluorescence. Besides, noncentrosymmetric ZJU-24-Eu shows second harmonic generation (SHG) response with an intensity of ≈6.2 times relative to KH2 PO4 (KDP) microcrystalline powder while centrosymmetric ZJU-23-Eu cannot. These results have established two nonlinear optical (NLO) models based on MOFs to synchronously analyze the effects of two structural variables on different NLO behaviors, and provide ingenious ways to design MOF-based NLO devices with function on demand.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongjun Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huajun He
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
47
|
Yang HR, Chen WY, Chen DM, Zheng YP, Fang SM. A pacs-type metal-organic framework based on [Cd3(OH)] clusters for effective C2H2/CO2 separation and fluorescent detection of TNP in water. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|