1
|
Choi MG, Han JM, Lim H, Ahn S, Chang SK. Colorimetric pH-sensing of artificial gastric fluid using naphthalimide-based CH acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125166. [PMID: 39342719 DOI: 10.1016/j.saa.2024.125166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this study, we introduce novel colorimetric pH-sensing probes based on naphthalimide malonate derivatives. These probes were synthesized by reacting 4-bromo-1,8-naphthalimide with various malonates, including malononitrile, ethyl cyanoacetate, and diethyl malonate. Each derivative exhibited distinct pH-sensing characteristics due to their differing CH acidities. The malononitrile-based probe, NPI-N2, demonstrated pronounced chromogenic pH-signaling behavior, transitioning from colorless to red-violet, accompanied by a decrease in fluorescence intensity. Notably, NPI-N2 retained its pH-sensing capability in the presence of common metal ions, anions, and pepsin, a key component of gastric fluid. The pKa of NPI-N2 was determined to be 3.08 through pH-dependent absorbance curve fitting. To modulate the pH-sensing range, ester-nitrile (NPI-EN) and diethyl ester (NPI-E2) subunits were incorporated into the naphthalimide framework, resulting in increased pKa values of 6.73 and 10.76, respectively. The pH-signaling mechanism of NPI-N2 was elucidated by 1H and 13C NMR spectroscopy, revealing deprotonation of the malononitrile moiety and subsequent resonance extension through the naphthalimide structure. To facilitate practical pH determination, NPI-N2 was integrated into a paper-based test strip, enabling convenient and reliable pH measurement of artificial gastric fluid.
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Han
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeona Lim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Suk-Kyu Chang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Fan C, Ma K, Chi W, LiMeng Y, Dong Q, Gao Y, Zeng C, Meng W, Shu W, Zeng C. An innovative fluorescent probe for monitoring of ONOO - in multiple liver-injury models. Talanta 2025; 283:127194. [PMID: 39541717 DOI: 10.1016/j.talanta.2024.127194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The liver plays a pivotal role in numerous critical physiological processes, functioning as the body's metabolic and detoxification center. Chronic liver disease can precipitate more severe health complications. The onset and progression of liver disease are often characterized by abnormal concentrations of ONOO-, a highly reactive species whose direct capture and detection in physiological environments pose significant challenges. This work presents an innovative fluorescent probe NAP-ONOO derived from 1,8-naphthalimide, specifically engineered to dynamically monitor fluctuations of ONOO- levels during liver injury. Due to its high biocompatibility, NAP-ONOO enabled to observe varying degrees of ONOO- up-regulation across models of liver inflammatory injury, alcohol-induced damage, and drug-induced hepatotoxicity in cellular systems as well as in zebrafish and mice models. These findings highlight the potential of NAP-ONOO for identifying and detecting the liver injury biomarker ONOO-. Furthermore, NAP-ONOO serves as potent tool for the identification of liver injuries, drug screening, and cellular imaging analyses, thereby promising avenues for future research endeavors.
Collapse
Affiliation(s)
- Cailing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, PR China
| | - Kaifu Ma
- School of Medical Laboratory, Qilu Medical University, Zibo, 255000, PR China; School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, PR China
| | - Yongwei LiMeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, PR China
| | - Qinxi Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, PR China
| | - Yanan Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, PR China
| | - Chaokun Zeng
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571626, PR China.
| | - Wenshu Meng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, PR China; Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Hainan Academy of Inspection and Testing, Haikou, 571626, PR China.
| |
Collapse
|
3
|
Lv J, Wei Q, Gong X, Du E, Zhang S. Simultaneously monitoring ATP and neutrophil elastase to assess inflammation progression. SENSORS AND ACTUATORS B: CHEMICAL 2025; 422:136676. [DOI: 10.1016/j.snb.2024.136676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Rubio V, McInchak N, Fernandez G, Benavides D, Herrera D, Jimenez C, Mesa H, Meade J, Zhang Q, Stawikowski MJ. Development and characterization of fluorescent cholesteryl probes with enhanced solvatochromic and pH-sensitive properties for live-cell imaging. Sci Rep 2024; 14:30777. [PMID: 39730504 DOI: 10.1038/s41598-024-80958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes. Molecular dynamics simulations and lipid partitioning using giant unilamellar vesicles showed how these analogs behave in model membranes compared to cholesterol. Live-cell imaging demonstrated distinct staining patterns and cellular uptake behaviors, further validating the utility of these probes in biological systems. We compared the empirical results with those of BODIPY-cholesterol, a well-regarded fluorescent cholesterol analog. The internalization efficiency of fluorescent CND probes varies in different cell types and is affected mainly by the head groups. Our results demonstrate that the modular design significantly simplifies the creation of fluorescent cholesteryl probes bearing distinct spectral, biophysical, and cellular targeting features. It is a valuable toolkit for imaging in live cells, measuring cellular membrane dynamics, and studying cholesterol-related processes.
Collapse
Affiliation(s)
- Vicente Rubio
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Nicholas McInchak
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Genesis Fernandez
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Dana Benavides
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Diana Herrera
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Catherine Jimenez
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Haylee Mesa
- Stiles-Nicholson Brain Institute, Florida Atlantic University, 5353 Parkside Dr, Jupiter, FL, 33458, USA
| | - Jonathan Meade
- Stiles-Nicholson Brain Institute, Florida Atlantic University, 5353 Parkside Dr, Jupiter, FL, 33458, USA
| | - Qi Zhang
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, 5353 Parkside Dr, Jupiter, FL, 33458, USA
| | - Maciej J Stawikowski
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
| |
Collapse
|
5
|
Liao Y, Yi T, Tan K, Su X, Chen S, Lu M, Yang Y, Huang X, Zhao Y, Huang H, Jiang N, Yan Z, Wei C. A mitochondria-targeted NIR fluorescence/photoacoustic dual-modality probe for highly sensitive and selective imaging of HClO in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125680. [PMID: 39746254 DOI: 10.1016/j.saa.2024.125680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Hypochlorous acid (HClO) represents a typical endogenous reactive oxygen species primarily generated within mitochondria, with excessive levels intimately linked to numerous pathological conditions. Consequently, the detection of mitochondrial HClO in vivo holds significant importance in the biomedical realm. Near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-modality imaging techniques offer enhanced accuracy in biological imaging. Herein, a novel mitochondria-targeted NIRF/PA dual-modality probe (MB-ClO) has been designed and synthesized. MB-ClO exhibits remarkable selectivity, ultra-sensitivity (LOD = 5.1 nM) towards HClO, coupled with a swift fluorescence response (<10 s). MB-ClO possesses low toxicity and excellent water solubility, making it suitable for biological applications. Moreover, MB-ClO is capable of targeting mitochondria. MB-ClO has been successfully utilized to detect HClO in biological systems. In addition, MB-ClO has been utilized for NIRF/PA dual-modality imaging in a mouse model of rheumatoid arthritis, demonstrating its extensive application potential and value in biomedical research.
Collapse
Affiliation(s)
- Yonghe Liao
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China; Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi, PR China
| | - Kangyi Tan
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China; Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaoyan Su
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China; Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Shuixiu Chen
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China; Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Mingyue Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Yanchun Yang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xianxian Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Yiheng Zhao
- Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi, PR China
| | - Hong Huang
- Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi, PR China
| | - Neng Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Zhiming Yan
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Changhong Wei
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China.
| |
Collapse
|
6
|
Dandić A, Samardžić M, Budetić M, Panić ID, Drenjančević I, Kolobarić N, Mikle G, Kovács B, Széchenyi A. Design and Characterization of Novel Naphthalimide Fluorescent Probe for H 2S Detection in Human Serum. J Fluoresc 2024:10.1007/s10895-024-04071-3. [PMID: 39714555 DOI: 10.1007/s10895-024-04071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
In this work, a novel fluorescent probe (compound 2) based on the Intramolecular charge transfer (ICT) mechanism was designed and successfully applied to determine H2S in human serum. Fluorophore 1,8-naphthalimide was chosen, while the azide group was the recognition group for H2S determination. By introducing p-toluidine moiety on the imide part of the molecule, a donor-acceptor (D-A) conjugated system was formed. Prepared compound 2 was characterized using 1H, 13C NMR spectroscopy, and elemental analysis. Fluorescence spectra measurements were carried out, and several influences on fluorescence intensity were investigated, including pH, time dependence, selective response, and influence of H2S concentration. Conducted experiments, including the calculated detection limit of the prepared fluorescent probe, which was found to be 0.085 µmol·L- 1, showing that compound 2 could be applied for H2S detection in human serum and could detect low micromolar concentrations of H2S. Finally, compound 2 was successfully applied to detect H2S in a human serum sample, whereby the concentration of H2S was 17.2 µmol·L- 1. The accuracy of the H2S determination was confirmed with the standard addition method.
Collapse
Affiliation(s)
- Andrea Dandić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Izabella Doris Panić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek,, J. J. Strossmayer University of Osijek, J. Huttlera 4, Osijek, 31000, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek,, J. J. Strossmayer University of Osijek, J. Huttlera 4, Osijek, 31000, Croatia
| | - Gábor Mikle
- Department of General and Inorganic Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Research Group for Selective Chemical Syntheses, HUN-REN-PTE, Ifjúság útja 6., H-7624, Pécs, Hungary
| | - Barna Kovács
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rokus utca 4, Pécs, 7624, Hungary
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, Osijek, 31000, Croatia.
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, 7624, Hungary.
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Rokus utca 4, Pécs, 7624, Hungary.
| |
Collapse
|
7
|
Dyatlov AL, Filatova EA, Pozharskii AF, Marchenko SS, Demidov OP, Chernyshev AV, Metelitsa AV, Brig SS, Medvedev MG, Bekmansurov DR, Morozov PG, Gulevskaya AV. 6-Aryl- and 6,7-diaryl-1,3-dimethyl-1 H-perimidin-2(3 H)-ones: synthesis, conformational stability, crystal structure and optical properties. Org Biomol Chem 2024. [PMID: 39665578 DOI: 10.1039/d4ob01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
6-Bromo- and 6,7-dibromo-1,3-dimethyl-1H-perimidin-2(3H)-ones were arylated with arylboronic acids under Suzuki-Miyaura reaction conditions to afford 6-aryl-, 6-bromo-7-aryl- and 6,7-diaryl-1,3-dimethyl-1H-perimidin-2(3H)-ones. A comparison of the X-ray structural parameters of peri-diaryl derivatives of 1,3-dimethyl-1H-perimidin-2(3H)-one, naphthalene and 1,8-bis(dimethylamino)naphthalene (proton sponge) was performed. Based on the data of dynamic 1H NMR spectroscopy and quantum-chemical calculations, barriers to syn/anti-isomerization of 6,7-diaryl-1,3-dimethyl-1H-perimidin-2(3H)-ones were estimated. The optical properties of 6-aryl- and 6,7-diaryl-1,3-dimethyl-1H-perimidin-2(3H)-ones as structural analogs of fluorophoric 6-aryl- and 6,7-diaryl-1,8-naphthalimides were studied.
Collapse
Affiliation(s)
- Andrey L Dyatlov
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Ekaterina A Filatova
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Alexander F Pozharskii
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Sergey S Marchenko
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Oleg P Demidov
- Department of Chemistry and Pharmacy, North Caucasus Federal University, Pushkin str. 1a, 355017 Stavropol, Russian Federation
| | - Anatoly V Chernyshev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don 344090, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don 344090, Russian Federation
| | - Sergei S Brig
- Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky Prosp., 47, Moscow, Russian Federation
| | - Michael G Medvedev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky Prosp., 47, Moscow, Russian Federation
| | - Danis R Bekmansurov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Leninsky Prosp., 47, Moscow, Russian Federation
| | - Pavel G Morozov
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| | - Anna V Gulevskaya
- Department of Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation.
| |
Collapse
|
8
|
Tacke E, Estaque L, Hoang MD, Durand P, Clavier G, Pieters G, Chevalier A. Synthesis and Photophysical Properties of 4'-5' Disubstituted CinNapht Dyes Accessible through Double SNAr Late-Stage Functionalization. Chemistry 2024:e202403684. [PMID: 39539212 DOI: 10.1002/chem.202403684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
This article describes the synthesis of a difluorinated CinNapht derivative in the 4' and 5' positions allowing the easy access to two new families of fluorophores by late-stage functionalization using SNAr. The first one comprises derivatives incorporating hindered aromatic amines in the 4' and 5' positions, which show red-emission in apolar solvents. The second one is obtained through the use of dinucleophiles. Among them, Tetrahydroquinoxaline (THQ) and tetrahydrobenzodiazepine (THB) compounds show strongly redshifted emission. The photophysical properties of all the fluorophores in these two families are studied and rationalized by DFT and TDDFT calculations. The most promising compounds have been used to image living cells by confocal microscopy.
Collapse
Affiliation(s)
- Eléonore Tacke
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Lilian Estaque
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Minh-Duc Hoang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Philippe Durand
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Lee CC, Chang CH, Huang YC, Shih TL. Novel 1,8-Naphthalimide Derivatives Inhibit Growth and Induce Apoptosis in Human Glioblastoma. Int J Mol Sci 2024; 25:11593. [PMID: 39519145 PMCID: PMC11546702 DOI: 10.3390/ijms252111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Given the rapid advancement of functional 1,8-Naphthalimide derivatives in anticancer research, we synthesized these two novel naphthalimide derivatives with diverse substituents and investigated the effect on glioblastoma multiforme (GBM) cells. Cytotoxicity, apoptosis, cell cycle, topoisomerase II and Western blotting assays were evaluated for these compounds against GBM in vitro. A human GBM xenograft mouse model established by subcutaneously injecting U87-MG cells and the treatment responses were assessed. Both compounds 3 and 4 exhibited significant antiproliferative activities, inducing apoptosis and cell death. Only compound 3 notably induced G2/M phase cell cycle arrest in the U87-MG GBM cells. Both compounds inhibited DNA topoisomerase II activity, resulting in DNA damage. The in vivo antiproliferative potential of compound 3 was further validated in a U87-MG GBM xenograft mouse model, without any discernible loss of body weight or kidney toxicity noted. This study presents novel findings demonstrating that 1,8-Naphthalimide derivatives exhibited significant GBM cell suppression in vitro and in vivo without causing adverse effects on body weight or kidney function. Further experiments, including investigations into mechanisms and pathways, as well as preclinical studies on the pharmacokinetics and pharmacodynamics, may be instrumental to the development of a new anti-GBM compound.
Collapse
Affiliation(s)
- Cheng-Chi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Tzenge-Lien Shih
- Department of Chemistry, Tamkang University, Tamsui Dist., New Taipei City 251301, Taiwan
| |
Collapse
|
10
|
Ji X, Zhang ZH, Sun SB, Wang JY. Modification of an AIE Fluorescent Probe for Monitoring the Polarity of Lipid Droplets Based on a Series of Synthesized Aryl Naphthalizes. Chemistry 2024; 30:e202401763. [PMID: 39105366 DOI: 10.1002/chem.202401763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that are dynamic and play a central role in energy homeostasis and lipid metabolism. They also contribute to the transport and maturation of cellular proteins and are closely associated with several diseases. The important role of the cellular microenvironment in maintaining cellular homeostasis. Changes in cell polarity, particularly in organelles, have been found to be strongly linked to inflammation, Alzheimer's disease, cancer, and other illnesses. It is essential to check the polarity of the LDs. A series of arylated naphthalimide derivatives were synthesized using the Suzuki reaction. Modification of synthesized aryl naphthalimides using oligomeric PEG based on intramolecular charge transfer (ICT) mechanism. A series of fluorescent probes were designed to target LDs and detect their polarity. Nap-TPA-PEG3 probe exhibited high sensitivity to polarity. The addition of oligomeric polyethylene glycol (PEG) to the probe not only significantly improved its solubility in water, but also effectively reduced its cytotoxicity. In addition, the probe exhibited excellent aggregation-induced luminescence (AIE) properties and solvent discolouration effects. Nap-TPA-PEG3 probe exhibited high Pearson correlation coefficient (0.957163) in lipid droplet co-localization in cells. Nap-TPA-PEG3 could be used as an effective hand tool to monitor cell polarity.
Collapse
Affiliation(s)
- Xun Ji
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Zhi-Hao Zhang
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Shao-Bin Sun
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jian-Yong Wang
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
11
|
Michel L, Durand P, Chevalier A. A Naphthalimide Based "Turn-ON" Probe for Wash-Free Imaging of Lipid-Droplet in Living Cells With an Excellent Selectivity. Chembiochem 2024; 25:e202400270. [PMID: 38683177 DOI: 10.1002/cbic.202400270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
The impacts of dimethylation of 4-Amino-1,8-Naphthalimide (ANI) on its photophysical properties are reported. The resulting 4-DiMe-ANI displays completely different fluorescence properties, conferring it ability to selectively label lipid droplets in living cells. A comprehensive photophysical study revealed that this selectivity arises from an Internal Charge Transfer favored in lipophilic media to the detriment of a non-emissive TICT in more polar media. This results in a very high "LDs/Cytosol" signal ratio, enabling LDs to be imaged with an excellent signal-to-noise ratio, and positioning its performance above that of the BODIPY 493/503 commonly used to image LDs.
Collapse
Affiliation(s)
- Laurane Michel
- Université Paris-Saclay, CNRS, UPR 2301, Institut de Chimie des Substances Naturelles, Dpt Chemobiology, 91198, Gif-sur-Yvette, France
| | - Philippe Durand
- Université Paris-Saclay, CNRS, UPR 2301, Institut de Chimie des Substances Naturelles, Dpt Chemobiology, 91198, Gif-sur-Yvette, France
| | - Arnaud Chevalier
- Université Paris-Saclay, CNRS, UPR 2301, Institut de Chimie des Substances Naturelles, Dpt Chemobiology, 91198, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Jia D, Luo Q, Liu S, Hou C, Liu J. An Artificial Light-Harvesting System based on Supramolecular AIEgen Assembly. Chemistry 2024; 30:e202402438. [PMID: 39022852 DOI: 10.1002/chem.202402438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Photosynthesis is a complex multi-step process in which light collection is the initial step of photosynthesis and plays an important role in the utilization of solar energy. In order to improve the utilization of sunlight, researchers have developed a variety of artificial light-harvesting systems to simulate photosynthesis in nature. Here, we report a supramolecular artificial light-harvesting system in aqueous solution. Since β-cyclodextrin (β-CD) has a hydrophobic cavity and a hydrophilic outer surface, we adopt β-cyclodextrin (β-CD) as the host molecule and use adamantane as the guest molecule. At the same time, we modified β-CD with the donor molecule naphthalimide and adamantane with the tetraphenylethylene molecule which has aggregation-induced emission (AIE) effects. By using fluorescent molecules with AIE, the self-quenching effect caused by aggregation in aqueous solution can be effectively avoided. Due to the host-guest interaction of β-CD and adamantane, nanoparticles with stable structure and uniform size can be spontaneously assembled in water. Because of the close distance and strong spectral overlap between naphthalimide and tetraphenylethylene, Förster resonance energy transfer (FRET) was realized, and artificial light-harvesting system was successfully constructed in aqueous solution. Therefore, this study provides a new strategy for constructing artificial light-harvesting system, and the artificial light-harvesting system shows broad application prospects in aqueous solutions.
Collapse
Affiliation(s)
- Dan Jia
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Quan Luo
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Shicong Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Chunxi Hou
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
13
|
Wang Y, Li Y, Cao J, Yang X, Huang J, Huang M, Gu S. Research Progress of Fluorescent Probes for Detection of Glutathione (GSH): Fluorophore, Photophysical Properties, Biological Applications. Molecules 2024; 29:4333. [PMID: 39339330 PMCID: PMC11434280 DOI: 10.3390/molecules29184333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular biothiols, including cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), play a critical role in many physiological and pathological processes. Among them, GSH is the most abundant non-protein mercaptan (1-10 mM) in cells, and the change in GSH concentration level is closely related to the occurrence of many diseases, such as Parkinson's disease, Alzheimer's disease, and neurological diseases. Fluorescent probes have attracted much attention due to their advantages of high specificity, high sensitivity, high selectivity, low cost, and high quantum yield. Methods that use optical probes for selective detection of GSH in vitro and in vivo are in high demand. In this paper, we reviewed the most recent five years of research on fluorescence probes for the detection of GSH, including the specific detection of GSH, dual-channel identification of GSH and other substances, and the detection of GSH and other biothiols. According to the type of fluorophore, we classified GSH fluorescent probes into eight classes, including BODIPY, 1,8-Naphthalimide, coumarin, xanthene, rhodamine, cyanine, benzothiazoles, and others. In addition, we roundly discuss the synthesis, detection mechanism, photophysical properties, and biological applications of fluorescent probes. We hope that this review will inspire the exploration of new fluorescent probes for GSH and other related analyses.
Collapse
Affiliation(s)
- Yao Wang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Yanfei Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Jinbo Cao
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 511400, China
| | - Xiyan Yang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Jiaxiang Huang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Mingyue Huang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Shaobin Gu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| |
Collapse
|
14
|
Yoon SA, Hong SJ, Han J, Lee MH. Sensitive Cancer Hypoxia Detection via a Dual-Locking Fluorescence Response System Using Two Hypoxia Indicators. Anal Chem 2024. [PMID: 39258982 DOI: 10.1021/acs.analchem.4c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hypoxia is intricately associated with various diseases, including ischemia, vascular disorders, and cancer. Particularly in cancer cells, hypoxia promotes tumor growth, cell proliferation, migration, and invasion and enhances treatment resistance, making its detection crucial for cancer diagnosis and therapy. However, methods for detecting hypoxia are limited, often relying on single-detection systems. In this study, we developed a dual-lock-based fluorescent probe that selectively exhibits strong green fluorescence under hypoxic conditions due to simultaneous activity of nitroreductases (NTRs) and hydrogen sulfide (H2S), with a high signal-to-background ratio. The biocompatibility and photophysical properties of the probes were thoroughly investigated through both extracellular and intracellular experimental analyses. Among the synthesized naphthalimide-based probes, the dual-detection probe DNNC demonstrated excellent selectivity and sensitivity to the simultaneous activity of NTR/H2S compared to other single-detection probes. The performance of DNNC was applied to various organ-derived cancer cells and tumor tissue models such as HeLa cell sparoids, enabling spatiotemporal confocal fluorescence imaging and quantitative analysis of hypoxic levels in cancer. Our development of DNNC is expected to significantly advance cancer diagnosis and treatment by molecularly detecting hypoxia associated with cancer aggressiveness, therapy resistance, and unfavorable prognosis.
Collapse
Affiliation(s)
- Shin A Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - So Jin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Jiyou Han
- Department of Biomedical and Chemical Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Min Hee Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
15
|
Wang L, Wei YP, Liu XP, Chen J, Mao CJ, Jin B. Aggregation-Induced Enhanced Electrochemiluminescence Resonance Energy Transfer Biosensor for Ultrasensitive Detection of Carcinoembryonic Antigen Based on Donor-Acceptor Organic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39250229 DOI: 10.1021/acs.langmuir.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Aggregation-induced electrochemiluminescence (AIECL) combines the merits of aggregation-induced emission (AIE) and electrochemiluminescence (ECL), which has become a research hot spot in recent years. Therefore, we synthesized a novel AIE compound (Z)-3-(4-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)phenyl)-2-(4-(1,2,2-triphenylvinyl)phenyl)acrylonitrile (TPENI) with a donor-acceptor (D-A) structure, that is, a simple peripheral modification of 4-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl) benzaldehyde (NI-CHO) with AIE-active tetraphenylethylene (TPE) to achieve the transition of NI-CHO from aggregation-caused quenching (ACQ) to an AIE molecule. When TPENI was in the aggregated state, the luminescence intensity was significantly enhanced due to the TPE structural unit restricting the free rotation of the intramolecular benzene ring, as well as the π-π stacking interactions of the molecules, which was conducive to the preparation of TPENI NPs as ECL materials. Satisfactorily, we found that the ECL intensity of TPENI NPs was increased by about 4.8-fold compared with that of the molecules dispersed in organic solution, and the stability reached about 1000 s. Based on the excellent ECL properties of TPENI NPs, an "on-off-on" ECL biosensor with a wider detection range (1 fg/mL to 100 ng/mL) and a lower detection limit of 0.20 fg/mL (S/N = 3) was proposed for sensitive analysis of a carcinoembryonic antigen (CEA). Overall, this work provided a new approach to the realization of AIECL and laid the foundation for the application of naphthalimide derivatives in ECL.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yu-Ping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jingshuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Baokang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
16
|
Mante J, Groover KE, Pullen RM. Environmental community transcriptomics: strategies and struggles. Brief Funct Genomics 2024:elae033. [PMID: 39183066 DOI: 10.1093/bfgp/elae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Transcriptomics is the study of RNA transcripts, the portion of the genome that is transcribed, in a specific cell, tissue, or organism. Transcriptomics provides insight into gene expression patterns, regulation, and the underlying mechanisms of cellular processes. Community transcriptomics takes this a step further by studying the RNA transcripts from environmental assemblies of organisms, with the intention of better understanding the interactions between members of the community. Community transcriptomics requires successful extraction of RNA from a diverse set of organisms and subsequent analysis via mapping those reads to a reference genome or de novo assembly of the reads. Both, extraction protocols and the analysis steps can pose hurdles for community transcriptomics. This review covers advances in transcriptomic techniques and assesses the viability of applying them to community transcriptomics.
Collapse
Affiliation(s)
- Jeanet Mante
- Oak Ridge Associated Universities, Oak Ridge, 37831, TN, USA
| | - Kyra E Groover
- Department of Molecular Biosciences, University of Texas at Austin, Austin, 78705, TX, USA
| | - Randi M Pullen
- DEVCOM Army Research Laboratory, Adelphi, 20783, MD, USA
| |
Collapse
|
17
|
Wynne C, Elmes RBP. Utilising a 1,8-naphthalimide probe for the ratiometric fluorescent visualisation of caspase-3. Front Chem 2024; 12:1418378. [PMID: 39036660 PMCID: PMC11257929 DOI: 10.3389/fchem.2024.1418378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The development of selective and sensitive probes for monitoring caspase-3 activity-a critical enzyme involved in apoptosis-remains an area of significant interest in biomedical research. Herein, we report the synthesis and characterisation of a novel ratiometric fluorescent probe, Ac-DEVD-PABC-Naph, designed to detect caspase-3 activity. The probe utilises a 1,8-naphthalimide fluorophore covalently linked to a peptide sequence via a self-immolative p-aminobenzyl alcohol (PABA) linker. Upon enzymatic cleavage by caspase-3, the probe undergoes spontaneous degradation, releasing the free naphthalimide fluorophore, resulting in a ratiometric change in fluorescence emission. Spectroscopic studies revealed a time-dependent ratiometric fluorescent response, demonstrating the probe's ability to visualise caspase-3 activity with high sensitivity. Enzyme kinetics such as K m (Michaelis constant), k cat (turnover number), and LOD (Limit of Detection) were obtained, suggesting that the probe possesses comparable kinetic data to other probes in literature, but with the added benefits of ratiometric detection. Selectivity studies also demonstrated the probe's specificity for caspase-3 over other endogenous species and enzymes. Ac-DEVD-PABC-Naph may be a promising tool for the quantitative detection and fluorescent visualisation of caspase-3 activity in biological systems, with potential applications in apoptosis research and drug development.
Collapse
Affiliation(s)
- Conor Wynne
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Castletroy, Ireland
| | - Robert B. P. Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Ireland
- Synthesis and Solid-State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Castletroy, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
18
|
Rubio V, McInchak N, Fernandez G, Benavides D, Herrera D, Jimenez C, Mesa H, Meade J, Zhang Q, Stawikowski MJ. Modular Fluorescent Cholesterol Naphthalimide Probes And Their Application For Cholesterol Trafficking Studies In Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600118. [PMID: 38979187 PMCID: PMC11230193 DOI: 10.1101/2024.06.24.600118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Development of fluorescent cholesterol analogs to better understand subcellular cholesterol trafficking is of great interest for cell biology and medicine. Our approach utilizes a bifunctional 1,8-naphthalimide scaffold with a push-pull character, modified on one side with a head group and a linker on the other side connecting it to cholesterol via an ester bond. Through structure-function studies, we've explored how different substituents-linkers and head groups-affect the ability of these fluorescent cholesterol naphthalimide analogs (CNDs) to mimic natural cholesterol behavior at both molecular and cellular levels. We categorized the resulting analogs into three groups: neutral, charged, and those featuring a hydroxyl group. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes. Extensive all-atom molecular dynamics simulations helped us examine how these analogs perform in model membranes compared to cholesterol. Additionally, we investigated the partitioning of these fluorescent probes in phase-separated giant unilamellar vesicles. We evaluated the uptake and distribution of these probes within mouse fibroblast cells and astrocytes, for their subcellular distributions in lysosomes and compared that to BODIPY-cholesterol, a well-regarded fluorescent cholesterol analog. The internalization efficiency of the fluorescent probes varies in different cell types and is affected mainly by the head groups. Our results demonstrate that the modular design significantly simplifies the creation of fluorescent cholesterol probes bearing distinct spectral, biophysical, and cellular targeting features, which makes it a valuable toolkit for the investigation of subcellular distribution and trafficking of cholesterol and its derivatives.
Collapse
|
19
|
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, Kotova O, Scanlan EM, Lewis SE, Li P, Tang B, James TD, Gunnlaugsson T. Fluorescent Probes for Disease Diagnosis. Chem Rev 2024; 124:7106-7164. [PMID: 38760012 PMCID: PMC11177268 DOI: 10.1021/acs.chemrev.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Xin Wang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qi Ding
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | | | - Luling Wu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Yuantao Mao
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Feida Che
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Oxana Kotova
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
| | - Eoin M. Scanlan
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Ping Li
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People’s Republic of China
- Laoshan
Laboratory, 168 Wenhai
Middle Road, Aoshanwei Jimo, Qingdao 266237, Shandong, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, People’s
Republic of China
| | - Thorfinnur Gunnlaugsson
- School
of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2 D02 R590, Ireland
- Advanced
Materials and BioEngineering Research (AMBER) Centre, Trinity College
Dublin, The University of Dublin, Dublin 2 D02 W9K7, Ireland
- Synthesis
and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2 , Ireland
| |
Collapse
|
20
|
Wang X, Shi G, Xu S, Sun Y, Qiu H, Wang Q, Han X, Zhang Q, Zhang T, Hu HY. Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging. Adv Healthc Mater 2024; 13:e2304223. [PMID: 38407490 DOI: 10.1002/adhm.202304223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuansheng Sun
- Flourescence Products, ISS, Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | - Hailin Qiu
- Department of Fluorescence Test Technology, Orient KOJI Ltd., Tianjin, 300122, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
21
|
Wang Q, Wang P, Xiao Y, Feng S, Zhang G, Gong YJ. An asymmetrical flavylium based probe with large Stokes shift and near infrared emission for highly sensitive detecting and visualizing cellular drug induced H 2S fluctuations. Talanta 2024; 271:125734. [PMID: 38309114 DOI: 10.1016/j.talanta.2024.125734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule in living systems, and is of great significance in many pathological and physiological processes. Misregulation of endogenous H2S is implicated in various diseases in the neuronal, gastrointestinal, circulatory, and endocrine systems. Fluorescent probe with large Stokes shift and near infrared emission, is ideal candidate for imaging applications to prevent excitation scattering, autofluorescence interference, matrix absorption caused signal loss, and sample destruction. In this study, a dual-side expansion approach was performed to develop spectra tunable hydroxyl functional flavylium derivative named HN8 with enlarged Stokes shift of 81 nm, lengthened emission of 671 nm, satisfied quantum yield of 0.23, and good fluorescence enhancement factor of 14.3-fold. Moreover, based on HN8, the screened probe HN8DNP displayed 225-fold fluorescence enhancement containing linear correlations to H2S from 0 to 50 μM with good limit of detection (LOD) of 0.31 μM. Therefore, HN8DNP was then applied for imaging exogenous H2S and drug induced enzymatic H2S generation in living cells with satisfied results, revealing the relationship between intracellular H2S levels and related enzyme activities. In a word, the present work provided a potential fluorescence probe for highly selective and sensitive detecting H2S in vitro and in living cells. And the promising dual-side expansion strategy for regulation optical feature of traditional fluorophore may meet the increasing requirements of sensing and imaging applications.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Panpan Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yang Xiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Yi Jun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
22
|
Yu X, Huang Y, Tao Y, Fan L, Zhang Y. Mitochondria-targetable small molecule fluorescent probes for the detection of cancer-associated biomarkers: A review. Anal Chim Acta 2024; 1289:342060. [PMID: 38245195 DOI: 10.1016/j.aca.2023.342060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024]
Abstract
Cancer represents a global threat to human health, and effective strategies for improved cancer early diagnosis and treatment are urgently needed. The detection of tumor biomarkers has been one of the important auxiliary means for tumor screening and diagnosis. Mitochondria are crucial subcellular organelles that produce most chemical energy used by cells, control metabolic processes, and maintain cell function. Evidence suggests the close involvement of mitochondria with cancer development. As a consequence, the identification of cancer-associated biomarker expression levels in mitochondria holds significant importance in the diagnosis of early-stage diseases and the monitoring of therapy efficacy. Small-molecule fluorescent probes are effective for the identification and visualization of bioactive entities within biological systems, owing to their heightened sensitivity, expeditious non-invasive analysis and real-time detection capacities. The design principles and sensing mechanisms of mitochondrial targeted fluorescent probes are summarized in this review. Additionally, the biomedical applications of these probes for detecting cancer-associated biomarkers are highlighted. The limitations and challenges of fluorescent probes in vivo are also considered and some future perspectives are provided. This review is expected to provide valuable insights for the future development of novel fluorescent probes for clinical imaging, thereby contributing to the advancement of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunqi Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China.
| |
Collapse
|
23
|
Michel L, Auvray M, Askenatzis L, Badet-Denisot MA, Bignon J, Durand P, Mahuteau-Betzer F, Chevalier A. Visualization of an Endogenous Mitochondrial Azoreductase Activity under Normoxic Conditions Using a Naphthalimide Azo-Based Fluorogenic Probe. Anal Chem 2024; 96:1774-1780. [PMID: 38230524 DOI: 10.1021/acs.analchem.3c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this paper, we demonstrate the existence of an endogenous mitochondrial azoreductase (AzoR) activity that can induce the cleavage of N═N double bonds of azobenzene compounds under normoxic conditions. To this end, 100% OFF-ON azo-based fluorogenic probes derived from 4-amino-1,8-naphthalimide fluorophores were synthesized and evaluated. The in vitro study conducted with other endogenous reducing agents of the cell, including reductases, demonstrated both the efficacy and the selectivity of the probe for AzoR. Confocal experiments with the probe revealed an AzoR activity in the mitochondria of living cells under normal oxygenation conditions, and we were able to demonstrate that this endogenous AzoR activity appears to be expressed at different levels across different cell lines. This discovery provides crucial information for our understanding of the biochemical processes occurring within the mitochondria. It thus contributes to a better understanding of its function, which is implicated in numerous pathologies.
Collapse
Affiliation(s)
- Laurane Michel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie Auvray
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Laurie Askenatzis
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie-Ange Badet-Denisot
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Jérôme Bignon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Philippe Durand
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Arnaud Chevalier
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Rode JE, Łyczko K, Kaczorek D, Kawęcki R, Dobrowolski JC. VCD spectra of chiral naphthalene-1-carboxamides in the solid-state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123939. [PMID: 38301569 DOI: 10.1016/j.saa.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The VCD spectra of chiral 2,3-dihydro-1H-benzo[de]isoquinolin-1-one (8-substituted naphthalene-1-carboxamide, BIQ) were studied in KBr pellets. The X-ray diffractometry revealed that the Me, Ph, and pClPh BIQs crystalize in the monoclinic P21, while nBu, pMePh, and oMeOPh BIQs in the orthorhombic P212121 space group. Only the Me-BIQ crystal exhibits the presence of cyclic amide dimers, while the others contain chains of the amid group hydrogen bonds. For all BIQs, except pMePh, the most intense IR band in the 1750-1550 cm-1 region is located at ca. 1680 cm-1 and is accompanied by two weak ones at ca. 1618 and 1590 cm-1. For the pMePh derivative, four almost equally intense IR bands at 1662, 1639, 1614, and 1588 cm-1 are observed. This region of the IR spectra of BIQs, but pMePh, is well reproduced by calculations based on BIQ monomers. On the other hand, the complex IR pattern of pMePh is computationally reproduced when larger crystal fragments, like octamers, are considered. Registration of the VCD spectra enabled recognizing the complexity of IR contours at ca. 1680 cm-1 by the corresponding VCD motives. For (i) Me, Ph and pClPh (R)-enantiomers, two (+)(-) bands were distinguished and for (ii) nBu and pMePh ones, one VCD band with right-side asymmetry was found. For (iii) oMeOPh the VCD pattern cannot be unambiguously assigned. Thus, the VCD spectra in the ν(C=O) range diverse the studied compounds. Among the set of molecules, pMePh has exceptional crystal geometry. Therefore, its most intense ν(C=O) band position and shape can be connected with the geometry of the hydrogen bonds, interactions, and crystal packing. Interpretation of the VCD spectra is based on linear and packed BIQ octamers. This cluster model can reproduce the main features of the solid-state VCD of BIQs.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland.
| | - Krzysztof Łyczko
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| | - Dorota Kaczorek
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Robert Kawęcki
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Jan Cz Dobrowolski
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| |
Collapse
|
25
|
Chang R, Chen CY, Gao L, Li Y, Lee ZH, Zhao H, Sue ACH, Chang KC. Highly selective Cu 2+ detection with a naphthalimide-functionalised pillar[5]arene fluorescent chemosensor. Org Biomol Chem 2024; 22:745-752. [PMID: 37982316 DOI: 10.1039/d3ob01558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Liya Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Yana Li
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Zui-Harng Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Hongxia Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| |
Collapse
|
26
|
Lu G, Yu S, Duan L, Meng S, Ding S, Dong T. New 1,8-naphthalimide-based colorimetric fluorescent probe for specific detection of hydrazine and its multi-functional applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123450. [PMID: 37776836 DOI: 10.1016/j.saa.2023.123450] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Detection of hydrazine is particularly important given its toxicity and extensive application in various industries. In the present paper, a colorimetric fluorescent probe NI-CIN based on 1,8-naphthalimide derivative was rationally designed and simply synthesized for specific detection of hydrazine based on the intramolecular charge transfer (ICT) mechanism. Upon the addition of hydrazine, a significant fluorescence enhancement at 556 nm could be observed within 4 min with a distinct color change from colorless to bright yellow, readily observed by naked eye. Except for HRMS and 1H NMR, density functional theory (DFT) calculations were also performed to support the sensing mechanism. In addition, eco-friendly paper test strips were easily prepared by NI-CIN for selective and real-time detection of hydrazine under aqueous and vapor phases. Furthermore, NI-CIN shows many potential applications for detecting hydrazine in real water and soil samples along with bio-imaging in HepG-2 cells and zebrafish.
Collapse
Affiliation(s)
- Guifen Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Siyuan Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Luyao Duan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Suci Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Sihan Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
27
|
Song D, Ding T, Zhai W, Shao L, Guo N, Jiang L, Zhang W, Zhao F, Wang J, Wang J, Ma J, Yan L. Design, synthesis and biological evaluation of small molecule fluorescent probes targeting EGFR for tumor detection and treatment. Analyst 2023; 148:6325-6333. [PMID: 37947047 DOI: 10.1039/d3an01675g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor that plays a crucial role in cell differentiation and tumor progression, and its overexpression is closely associated with the development and metastasis of multiple cancers. The development of a fluorescent probe capable of targeting EGFR while simultaneously integrating diagnostic and therapeutic functions could have a profound impact on the treatment of related cancers. In this study, we developed a series of EGFR-targeting probes that consisted of an environment-sensitive 1,8-naphthalimide fluorophore, a linker unit and a targeting unit (gefitinib), using a coupling strategy. The synthesized probes were first evaluated for their spectroscopic properties and cytotoxicities against different cell lines, which were selected based on their intrinsic EGFR expression levels. Remarkably, among the probes tested, GP1 showed outstanding environmental sensitivity and exhibited a specific response to tumor cells that overexpress EGFR. Furthermore, the representative probe GP1 was evaluated for its EGFR-specific targeting ability in live-cell fluorescence imaging and in vivo xenograft imaging, as well as its in vivo anti-tumor activity. The results showed that the probe GP1 had excellent EGFR-specific targeting ability, exhibited competitive replacement behavior towards the EGFR inhibitor gefitinib, and demonstrated potent anti-tumor effects in a CT-26 tumor-bearing mouse model. Overall, as a turn-on EGFR targeting fluorescent ligand, GP1 holds immense promise as a valuable tool for tumor detection and treatment.
Collapse
Affiliation(s)
- Depu Song
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Tengli Ding
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Weibin Zhai
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Lulian Shao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Ning Guo
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Lei Jiang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Wei Zhang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Fenqin Zhao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard medical school, 125 Nushua St, Boston, MA, 02149, USA
| | - Jing Ma
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| | - Lin Yan
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan, 475004, China.
| |
Collapse
|
28
|
Tomczyk MD, Matczak K, Skonieczna M, Chulkin P, Denel-Bobrowska M, Różycka D, Rykowski S, Olejniczak AB, Walczak K. Synthesis and in vitro cytotoxic activity of dye-linker-macrocycle conjugates with variable linker length and components. Bioorg Chem 2023; 140:106782. [PMID: 37659149 DOI: 10.1016/j.bioorg.2023.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
The study investigated the structure-activity relationship of newly synthesized dye-linker-macrocycle (DLM) conjugates and the effect of each component on various biological properties, including cytotoxicity, cellular uptake, intracellular localization, interaction with DNA and photodynamic effects. The conjugates were synthesized by combining 1,8-naphthalimide and thioxanthone dyes with 1,4,7,10-tetraazacyclododecane (cyclen) and 1-aza-12-crown-4 (1A12C4) using alkyl linkers of different lengths. The results revealed significant differences in biological activity among the various series of conjugates. Particularly, 1A12C4 conjugates exhibited notably higher cytotoxicity compared to cyclen conjugates. Conjugation with 1A12C4 proved to be an effective strategy for increasing cellular uptake and cytotoxicity of small-molecule conjugates. In addition, the results highlighted the critical role of linker length in modulating the biological activity of DLM conjugates. It became clear that the choice of each component (dye, macrocycle and linker) could significantly alter the biological activity of the conjugates.
Collapse
Affiliation(s)
- Mateusz D Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland.
| | - Karolina Matczak
- Department of Medical Biophysics, University of Łódź, Pomorska 141/143, Łódź 90-236, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Pavel Chulkin
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, Gliwice 44-100, Poland
| | - Marta Denel-Bobrowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Daria Różycka
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Sebastian Rykowski
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Agnieszka B Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100, Poland
| |
Collapse
|
29
|
Wang H, Zhang H, Yu T, Zhao Y. Synthesis and Performance of Imide-Based Small Molecules Containing Carbazole Groups with AIE Properties. J Fluoresc 2023; 33:2503-2513. [PMID: 37162634 DOI: 10.1007/s10895-023-03249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Here, two novel naphthalimide derivatives SNI-Cz and SNI-DCz with AIE were designed and synthesized. The correctness of the two structures was characterized by NMR and HRMS. Their crystal structures, photophysical properties, electrochemical properties, thermal stabilities, fluorescence lifetime and yields have been characterized. Photoluminescence experiments revealed that SNI-DCz had superior properties due to the D-π-A-π-D structure and sliding away stacking of molecules. SNI-DCz exhibited weak fluorescence in pure DMF, with a significant AIE effect observed in the 40% water mixture and a sharp increase in fluorescence intensity was also observed. Cyclic voltammetry and thermogravimetric analysis indicated that SNI-DCz had good electron affinity and thermal stability. The excellent properties of SNI-DCz made it a promising emitter for optoelectronics.
Collapse
Affiliation(s)
- Haina Wang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou, 730070, China
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Dong Yang, 322118, China
| | - Hui Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Yuling Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
30
|
Chevalier A. The how and why of naphthalimide/heterocycle-fused hybrid dyes: an overview of the latest developments in the quest for dyes with innovative optical properties. Org Biomol Chem 2023; 21:7498-7510. [PMID: 37671498 DOI: 10.1039/d3ob01035j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In this review, a variety of hybrid structures fusing aromatic heterocycles of different natures to a naphthalimide backbone are discussed. This strategy constitutes an efficient approach to generate original structures displaying singular photophysical properties and thus offering new perspectives in the fields of fluorogenic detection, optoelectronics, and photodynamic therapy. In this review, different synthetic approaches and structures reported in the literature are discussed. A critical look at the design and the applications of these new fused hybrids allows us to evaluate the benefits and drawbacks of a fused hybrid strategy applied to naphthalimides.
Collapse
Affiliation(s)
- Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Tosolini M, Alberoni C, Outis M, Parola AJ, Milani B, Tecilla P, Avó J. Naphthalimide-Dyes Bearing Phosphine and Phosphorylamide Moieties: Synthesis and Optical Properties. Chemistry 2023; 29:e202301597. [PMID: 37377174 DOI: 10.1002/chem.202301597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
1,8-Naphthalimides (NIs) represent a class of organic dyes with interesting optical properties that has been extensively explored in the last decades in lighting devices, chemosensors, optical probes or medicinal chemistry. However, despite their remarkable potential, reports on organometallic dyes bearing NIs are scarce and virtually inexistent regarding palladium(II) complexes. Herein, we report the synthesis of NIs bearing phosphine and amine chelating moieties and the characterization of their optical properties both as single molecules and when complexed on Pd(II) ions. It is shown that the introduction of phosphine moieties in the naphthalimide core results in a marked increase in non-radiative processes, leading to a significant reduction of the emission efficiency and lifetime of these dyes, compared to amine-bearing counterparts. The complexation to Pd(II) sequesters the electronic contribution of chelating moieties, with complexes assuming an optical behavior similar to that of unsubstituted 1,8-naphthalimide. The complexation significantly increases the acidity of chelating secondary amines, giving rise to an unexpected intramolecular reaction that results in the formation of a novel 1,8-naphthalimide dye bearing a cyclic phosphorylamide moiety. The new dye exhibits good emission quantum yield, long fluorescence lifetime and sensitivity to basic media, evidencing potential for application in optical imaging and sensing scenarios.
Collapse
Affiliation(s)
- Massimo Tosolini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Alberoni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Mani Outis
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - António Jorge Parola
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Barbara Milani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127, Trieste, Italy
| | - João Avó
- LAQV-REQUIMTE, Department of Chemistry NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
- IBB-Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
32
|
Ghosh AK, Khan AH, Das PK. Naphthalimide-Based AIEgens for Sensing Protein Disulfide Isomerase through Thiol-Disulfide Redox Exchange. Anal Chem 2023; 95:13638-13648. [PMID: 37651212 DOI: 10.1021/acs.analchem.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aggregation-induced emission (AIE)-based fluorescent organic nanoparticles (FONPs) with distinctive characteristics are emerging as superior sensors due to their facile fabrication, high signal-to-noise ratio, and good biocompatibility. The present article delineates the detection and analysis of the redox behavior of the protein disulfide isomerase (PDI) enzyme by exploitation of the AIE of novel naphthalimide (NI) derivatives having thiol (-SH) and disulfide (-S-S-) moieties. Self-aggregated spherical-shaped organic nanoparticles were prepared by synthesized NI-based amphiphiles (NISH, NISS, NINSS, and TNINSH) through J-type aggregation in DMSO-water (fw = 99 vol %). Naphthyl residue containing NI-derived amphiphiles (NINSS and TNINSH) exhibited AIE (blue and yellow) at 470 and 550 nm, respectively, in DMSO-water (fw = 99 vol %). NINSS and TNINSH FONPs were suitably utilized in sensing PDI through their redox nature of thiol-disulfide exchange. Fluorescence quenching of NINSS FONPs was observed due to reduction of disulfide to thiol by PDI, whereas emission intensity was progressively red-shifted and enhanced ("Dual-AIE") for TNINSH (containing ER-targeting N-tosylethylenediamine), owing to oxidation of thiol to disulfide by PDI. NINSS and TNINSH FONPs were found to be highly efficient in sensing PDI through the AIE-based "fluorescence off/on" mechanism having limits of detection of ∼12.6-17.7 and ∼11.7-16.5 ng/mL, respectively. In vitro cell imaging for NIH3T3 (noncancer) and B16F10 (melanoma) cells with NINSS and TNINSH FONPs displayed excellent diagnosis of eukaryotic cells upon interaction with indigenous PDI. Notably, detection of cancer cells was more sensitive over the noncancerous cells by these FONPs due to overexpression of PDI within cancer cells.
Collapse
Affiliation(s)
- Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
33
|
Badran I, Riyaz NS. The mechanism of fluorescence quenching of naphthalimide A/C leak detector by copper (II). BMC Chem 2023; 17:69. [PMID: 37407990 DOI: 10.1186/s13065-023-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Fluorescence quenching is an interesting phenomenon with the potential to be applied across various fields. The mechanism is commonly used across analytical applications for monitoring the concentration of trace substances. Naphthalimide and its family of compounds are commonly used as fluorescent detectors. This work investigated an analytical technique through which naphthalimide-based dyes could be quantified. A commercial A/C leak detector was used as the dye and Cu2+ ions as the quencher. Experiments were also conducted to investigate the effect of temperature on quenching. To study the mechanism of quenching further, density functional theory (DFT) was used. RESULTS The method detection limit obtained in this work is 1.7 × 10-6 mol/L. The results from the quenching experiments demonstrated a pattern which fit a modified Stern-Volmer (SV) model, with an R2 value of 0.9886. From the experiments on the effect of temperature, a dynamic quenching behavior was observed given the emission spectra demonstrated an inverse relationship with temperature. CONCLUSIONS The quenching of the commercial A/C dye by Cu2+ ions can be used to develop a rapid and sensitive detection method for metal ions such as Cu2+, and for future fabrication of chemosensors for Cu2+.
Collapse
Affiliation(s)
- Ismail Badran
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus, Palestine.
| | | |
Collapse
|
34
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
35
|
Cha Y, Gopala L, Lee MH. A bio-friendly biotin-coupled and azide-functionalized naphthalimide for real-time endogenous hydrogen sulfide analysis in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122385. [PMID: 36696861 DOI: 10.1016/j.saa.2023.122385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is involved in various biological processes. Thereby, abnormal levels of H2S are reported to be related to various human diseases including cancer. Currently, many fluorescent probes are pioneered to detect H2S by taking advantages of naphthalimides' unique internal charge transfer (ICT) property. However, most probes often require a high content of organic solvents or surfactants, and are limited to the analysis of exogenous H2S treated externally in live cell studies, and have difficulties in analyzing endogenous H2S, thus limiting their practical use. In this study, we developed a bio-friendly biotin-coupled and azide-functionalized naphthalimide (1) as a fluorescent probe enabling real-time analysis of H2S in living system. Probe was able to provide a fluorescence at 545 nm via H2S-mediated azide reduction selectively without interference by biologically abundant constituents and pH effects. In a biological study using A549 cells, probe readily penetrated living cells without cytotoxicity, and unreacted probes showed almost no fluorescence, enabling real-time detection of H2S in living cells without requiring separate washing process. More importantly, under stimulation with various H2S inducers and inhibitors, probe was able to provide an effective fluorescence response against fluctuations in endogenous H2S, a key requirement for H2S studies. Probe 1 can be applied as a useful chemical tool and enables the analysis of H2S and the study of H2S-related cell functions in a variety of environments.
Collapse
Affiliation(s)
- Yujin Cha
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Lavanya Gopala
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
36
|
Fan Y, Wu Y, Hou J, Wang P, Peng X, Ge G. Coumarin-based near-infrared fluorogenic probes: Recent advances, challenges and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Tai S, Li S, Zheng R, Huang Y, Yang K, Zhang S, Xue J, Li B, Zhang K. A susceptible coordination hybrid based terbium sensibilization coupled ESIPT effects for pattern discrimination of analogues. Anal Chim Acta 2023; 1247:340899. [PMID: 36781252 DOI: 10.1016/j.aca.2023.340899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023]
Abstract
Multianalyte detection and analogue discrimination are extremely valuable frontier areas for their wide applications in environmental, medical, clinical and industrial analyses. Nowadays, researchers rack their brains on how to develop excellent multianalyte chemosensors that have presented huge challenges in designing high-efficient fluorescent sensing materials and constructing high-throughput detection methods. In this paper, we propose a novel strategy to utilize the dual-emission fluorescent detection platform as a lab-on-a-molecule, arising from the disalicylaldehyde-coordinated hybrid H2Qj3/Tb based terbium sensibilization coupled excited-state intramolecular proton transfer effects. Using the statistical analysis (PCA and HCA) for sensing signals of three fluorescence channels (431, 543 and 583 nm), we demonstrate this elaborate chemosensor with multianalyte detection of three species (solvents, anions and cations) and pattern discrimination of analogues. As a result, the H2Qj3/Tb shows great lab-on-a-molecule characters for each set of species, resulting in the easier identification of many critical analytes (e.g., H2O, NO2- and Fe3+) and discrimination of analogues. In addition, it is also proven to be able to provide reliable content determination for an analyte, especially the NO2- (LOD = 0.37 μM), and discrimination for mixed analogues. A combination of easy-to-implement preparation procedure and data analysis technique makes this work promising for not only designing similar lanthanide-based materials but also realizing more high-efficient multianalyte sensing systems towards various potential applications.
Collapse
Affiliation(s)
- Shengdi Tai
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Sichen Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Ruijie Zheng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yan Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kang Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shishen Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jiadan Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
38
|
Xie YQ, Han MM, Zhang YM, Chen H, Zhang HB, Ren CY, Li L, Wu R, Yao H, Shi XN, Lin Q, Wei TB. A novel fluorescent probe with high sensitivity for sequential detection of CN− and Al3+ in highly aqueous medium and its applications in living cell bioimaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Zhang C, Wang Y, Li X, Nie S, Liu C, Zhang Y, Guo J. A fluorescent probe based on phenothiazine for detection of ClO− with naked-eye color change properties. Anal Biochem 2023; 670:115131. [PMID: 37001597 DOI: 10.1016/j.ab.2023.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Hypochlorite (ClO-) plays a key role in life systems and it is necessary to develop an effective detection method. In view of the significant advantages of the fluorescent probe, we have synthesized a naked-eye recognition fluorescent probe NNCF for the detection of ClO- based on phenothiazine and naphthalimide. The probe NNCF is sensitive (LOD = 9.5 nM) and fast for ClO- (within 30 s), and its Stokes shift is as large as 161 nm. In addition, the probe NNCF has been successfully used for imaging detection of exogenous ClO- in MCF-7 cells with low toxicity.
Collapse
Affiliation(s)
- Chenglu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China.
| | - Yiming Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Xiangling Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Shiru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| | - Jinghao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, 116029, China
| |
Collapse
|
40
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
41
|
Kannan S, Maayuri R, Shanmugaraju S. Terpyridine-4-amino-1,8-naphthalimide chemosensor for discriminative fluorescent sensing of divalent metal cations at ppb level of sensitivity. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
42
|
Yu L, Xu Y, Kim J, Lee J, Kim JS. A rational design of
AIE
‐active fluorophore for the fingerprint optical detection. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Le Yu
- Department of Chemistry Korea University Seoul South Korea
| | - Yunjie Xu
- Department of Chemistry Korea University Seoul South Korea
| | - Jungryun Kim
- Department of Chemistry Korea University Seoul South Korea
| | - Jieun Lee
- Department of Chemistry Korea University Seoul South Korea
| | - Jong Seung Kim
- Department of Chemistry Korea University Seoul South Korea
| |
Collapse
|
43
|
Jovaišaitė J, Baronas P, Jonusauskas G, Gudeika D, Gruodis A, Gražulevičius JV, Juršėnas S. TICT compounds by design: comparison of two naphthalimide-π-dimethylaniline conjugates of different lengths and ground state geometries. Phys Chem Chem Phys 2023; 25:2411-2419. [PMID: 36598166 DOI: 10.1039/d2cp04250a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two new twisted intramolecular charge transfer (TICT) donor-π-acceptor compounds were designed by combining a well-known electron acceptor naphthalimide unit with a classic electron donor dimethylaniline through two types of different rigid linkers. The combined steady-state and time-resolved spectroscopy of molecules in solvents of different polarities in comparison to solid-state solvation experiments of doped polymer matrixes of different polarities allowed distinguishing between solvation and conformation determined processes. The photophysical measurements revealed that non-polar solutions possess high fluorescence quantum yields of up to 70% which is a property of pre-twisted/planar molecules in the excited charge transfer (CT) states. The increase of polarity allows tuning the Stokes shift through all the visible wavelength range up to 8601 cm-1 which is accompanied by a three orders of magnitude drop of fluorescence quantum yields. This is a result of the emerged TICT states as dimethylaniline twists to a perpendicular position against the naphthalimide core. The TICT reaction of molecules enables an additional non-radiative excitation decay channel, which is not present if the twisting is forbidden in a rigid polymer matrix. Transient absorption spectroscopy was employed to visualize the excited state dynamics and to obtain the excited state reaction constants, revealing that TICT may occur from both the Franck-Condon region and the solvated pre-twisted/planar CT states. Both molecules undergo the same photophysical processes, however, a longer linker and thus a higher excited state dipole moment determines the faster excited state reactions.
Collapse
Affiliation(s)
- Justina Jovaišaitė
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Paulius Baronas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matiére d'Aquitaine, Bordeaux University, UMR CNRS 5798, 351 cours de la Libération, 33405 Talence, France
| | - Dalius Gudeika
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilėnų rd. 19, LT-50254 Kaunas, Lithuania
| | - Alytis Gruodis
- Institute of Chemical Physics, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Juozas V Gražulevičius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilėnų rd. 19, LT-50254 Kaunas, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
44
|
Said AI, Staneva D, Angelova S, Grabchev I. Self-Associated 1,8-Naphthalimide as a Selective Fluorescent Chemosensor for Detection of High pH in Aqueous Solutions and Their Hg 2+ Contamination. SENSORS (BASEL, SWITZERLAND) 2022; 23:399. [PMID: 36616999 PMCID: PMC9824833 DOI: 10.3390/s23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job's plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively.
Collapse
Affiliation(s)
- Awad I. Said
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Desislava Staneva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| |
Collapse
|
45
|
Gauci G, Magri DC. Solvent-polarity reconfigurable fluorescent 4-piperazino- N-aryl-1,8-naphthalimide crown ether logic gates. RSC Adv 2022; 12:35270-35278. [PMID: 36540226 PMCID: PMC9732761 DOI: 10.1039/d2ra07568g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 09/19/2023] Open
Abstract
Four compounds 1-4 were designed and synthesised, comprising a 4-amino-N-aryl-1,8-naphthalimide fluorophore, a piperazine receptor, and an aryl group, as fluorescent logic gates. At the imide position, the substituent is phenyl (1), 1,2-dimethoxyphenyl (2), benzo-15-crown-5 (3), or benzo-18-crown-6 (4). Molecules 1 and 2 are constructed according to a fluorophore-spacer-receptor format, while 3 and 4 are engineered according to a receptor1-spacer1-fluorophore-spacer2-receptor2 format based on photoinduced electron transfer and internal charge transfer mechanisms. The compounds were studied in water, water/methanol mixtures of different ratios, and methanol by UV-visible absorption and steady-state fluorescence spectroscopy, as a function of pH, metal ions and solvent polarity. The excited state of 1-4 is 8.4 ± 0.2 in water, 7.6 ± 0.1 in 1 : 1 (v/v) water/methanol, and 7.1 ± 0.3 in methanol. The of 3 in water is 0.92 and the and of 4 in water are 2.3 and 2.9. 1H NMR data in D2O and CD3OD confirm H+ interaction at the piperazine moiety, and Na+ and Ba2+ binding at the benzo-15-crown-5 and benzo-18-crown-6 moieties of 3 and 4. By altering the solvent polarity, the fluorescent logic gates can be reconfigured between TRANSFER logic and AND logic. Molecules with polarity reconfigurable logic could be useful tools for probing the microenvironment of cellular membranes and protein interfaces.
Collapse
Affiliation(s)
- Gabriel Gauci
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| | - David C Magri
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| |
Collapse
|
46
|
Muthamma K, Pallavi B, Sunil D, Kulkarni SD, Wagle S, Kekuda D. Water-based flexographic ink with tamper detection fluorescence for security printing applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Squaramide-Naphthalimide Conjugates – Exploiting Self-Aggregation Effects in Acetate Recognition. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Staneva D, Said AI, Vasileva-Tonkova E, Grabchev I. Enhanced Photodynamic Efficacy Using 1,8-Naphthalimides: Potential Application in Antibacterial Photodynamic Therapy. Molecules 2022; 27:molecules27185743. [PMID: 36144479 PMCID: PMC9504615 DOI: 10.3390/molecules27185743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
This study addresses the need for antibacterial medication that can overcome the current problems of antibiotics. It does so by suggesting two 1,8-naphthalimides (NI1 and NI2) containing a pyridinium nucleus become attached to the imide-nitrogen atom via a methylene spacer. Those fluorescent derivatives are covalently bonded to the surface of a chloroacetyl-chloride-modified cotton fabric. The iodometric method was used to study the generation of singlet oxygen (1O2) by irradiation of KI in the presence of monomeric 1,8-naphthalimides and the dyed textile material. Both compounds generated reactive singlet oxygen, and their activity was preserved even after they were deposited onto the cotton fabric. The antibacterial activity of NI1 and NI2 in solution and after their covalent bonding to the cotton fabric was investigated. In vitro tests were performed against the model gram-positive bacteria B. cereus and gram-negative P. aeruginosa bacteria in dark and under light iradiation. Compound NI2 showed higher antibacterial activity than compound NI1. The light irradiation enhanced the antimicrobial activity of the compounds, with a better effect achieved against B. cereus.
Collapse
Affiliation(s)
- Desislava Staneva
- Department of Textile, Leader and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Awad I. Said
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Department of Chemistry and Biochemistry, Physiology and Pathophysiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Evgenia Vasileva-Tonkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivo Grabchev
- Department of Chemistry and Biochemistry, Physiology and Pathophysiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
49
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Synthesis of naphthalimide derivatives bearing benzothiazole and thiazole moieties: In vitro anticancer and in silico ADMET study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|