1
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024. [PMID: 39505711 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
2
|
Zimmer B, Havenith RWA, Klein JEMN, Koszinowski K. Reductive Elimination From Tetra-Alkyl Cuprates [Me nCu(CF 3) 4-n] - (n=0-4): Beyond Simple Oxidation States. Angew Chem Int Ed Engl 2024; 63:e202409315. [PMID: 39072869 DOI: 10.1002/anie.202409315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the electronic structures of organocuprates in general and the complex [Cu(CF3)4]- in particular have attracted significant interest. A possible key indicator in this context is the reactivity of these species. Nonetheless, this aspect has received only limited attention. Here, we systematically study the series of tetra-alkyl cuprates [MenCu(CF3)4-n]- and their unimolecular reactivity in the gas phase, which includes concerted formal reductive eliminations as well as radical losses. Through computational studies, we characterize the electronic structures of the complexes and show how these are connected to their reactivity. We find that all [MenCu(CF3)4-n]- ions feature inverted ligand fields and that the distinct reactivity patterns of the individual complexes arise from the interplay of different effects.
Collapse
Affiliation(s)
- Bastian Zimmer
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Remco W A Havenith
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
- Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000, Gent, Belgium
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Motornov V, Ackermann L. Well-Defined Highly-Coordinated Copper(III) Iodide and Pincer Tris(trifluoromethyl)copper Complexes. Chemistry 2024; 30:e202401791. [PMID: 38976449 DOI: 10.1002/chem.202401791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Copper(III) iodide and bromide complexes representing a unique combination of highly-coordinated metal and soft polarizable anions were synthesized and fully characterized, including X-ray crystallography. Ligand substitution in well-defined highly-coordinated copper complex PyCu(CF3)3 with pincer ligands was achieved to give formally octahedral copper(III) complexes.
Collapse
Affiliation(s)
- Vladimir Motornov
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen, 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen, 37077, Germany
| |
Collapse
|
4
|
Yan W, Poore AT, Yin L, Carter S, Ho YS, Wang C, Yachuw SC, Cheng YH, Krause JA, Cheng MJ, Zhang S, Tian S, Liu W. Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition. J Am Chem Soc 2024; 146:15176-15185. [PMID: 38770641 DOI: 10.1021/jacs.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Stephen C Yachuw
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu-Ho Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
5
|
Wu X, Song X, Xia Y. High-Valent Copper Catalysis Enables Regioselective Fluoroarylation of Gem-Difluorinated Cyclopropanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401243. [PMID: 38460153 PMCID: PMC11095216 DOI: 10.1002/advs.202401243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Transition-metal (TM) catalyzed reaction of gem-difluorinated cyclopropanes (gem-DFCPs) has drawn much attention recently. The reaction generally occurs via the activation of the distal C─C bond in gem-DFCPs by a low-valent TM through oxidative addition, eventually producing mono-fluoro olefins as the coupling products. However, achieving regioselective activation of the proximal C─C bond in gem-DFCPs that overcomes the intrinsic reactivity via TM catalysis remains elusive. Here, a new reaction mode of gem-DFCPs enabled by high-valent copper catalysis, which allows exclusive activation of the congested proximal C─C bond is presented. The reaction that achieves fluoroarylation of gem-DFCPs uses NFSI (N-fluorobenzenesulfonimide) as electrophilic fluoro reagent and arenes as the C─H nucleophiles, enabling the synthesis of diverse CF3-containing scaffolds. It is proposed that a high-valent copper species plays an important role in the regioselective activation of the proximal C─C bond possibly via a σ-bond metathesis.
Collapse
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Ying Xia
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| |
Collapse
|
6
|
Joven-Sancho D, Echeverri A, Saffon-Merceron N, Contreras-García J, Nebra N. An Organocopper(III) Fluoride Triggering C-CF 3 Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202319412. [PMID: 38147576 DOI: 10.1002/anie.202319412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Copper(III) fluorides are catalytically competent, yet elusive, intermediates in cross-coupling. The synthesis of [PPh4 ][CuIII (CF3 )3 F] (2), the first stable (isolable) CuIII -F, was accomplished via chloride addition to [CuIII (CF3 )3 (py)] (1) yielding [PPh4 ][CuIII (CF3 )3 Cl(py)] (1⋅Cl), followed by treatment with AgF. The CuIII halides 1⋅Cl and 2 were fully characterized using nuclear magnetic resonance (NMR) spectroscopy, single crystal X-ray diffraction (Sc-XRD) and elemental analysis (EA). Complex 2 proved capable of forging C-CF3 bonds from silyl-capped alkynes. In-depth mechanistic studies combining probes, theoretical calculations, trapping of intermediate 4a ([PPh4 ][CuIII (CF3 )3 (C≡CPh)]) and radical tests unveil the key role of the CuIII acetylides that undergo facile 2e- reductive elimination furnishing the trifluoromethylated alkynes (RC≡CCF3 ), which are industrially relevant synthons in drug discovery, pharma and agrochemistry.
Collapse
Affiliation(s)
- Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andrea Echeverri
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Julia Contreras-García
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
7
|
Takeyama T, Shimazaki Y. Diversity of oxidation state in copper complexes with phenolate ligands. Dalton Trans 2024; 53:3911-3929. [PMID: 38319292 DOI: 10.1039/d3dt04230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The phenoxyl radical binding copper complexes have been widely developed and their detailed geometric and electronic structures have been clarified. While many one-electron oxidized CuII-phenolate complexes have been reported previously, recent studies of the Cu-phenolate complexes proceed toward elucidation of the complexes with other oxidation states, such as the phenoxyl radical binding CuI complexes and CuIV-phenolate complexes in the formal oxidation state. This Perspective focuses on new aspects of the properties and reactivities of various Cu-phenolate and Cu-phenoxyl radical complexes with emphasis on the relationship between geometric and electronic structures.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, 756-0884 Yamaguchi, Japan.
| | - Yuichi Shimazaki
- College of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan.
| |
Collapse
|
8
|
Xue JH, Li Y, Liu Y, Li Q, Wang H. Site-Specific Deaminative Trifluoromethylation of Aliphatic Primary Amines. Angew Chem Int Ed Engl 2024; 63:e202319030. [PMID: 38179851 DOI: 10.1002/anie.202319030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The introduction of trifluoromethyl groups into organic molecules is of paramount importance in modern synthetic chemistry and medicinal chemistry. While methods for constructing C(sp2 )-CF3 bonds have been well established, the advancement of practical and comprehensive approaches for forming C(sp3 )-CF3 bonds remains considerably restricted. In this work, we describe an efficient and site-specific deaminative trifluoromethylation reaction of aliphatic primary amines to afford the corresponding alkyl trifluoromethyl compounds. The reaction proceeds at room temperature with readily accessible N-anomeric amide (Levin's reagent) and bench-stable bpyCu(CF3 )3 (Grushin's reagent, bpy=2,2'-bipyridine) under blue light. The protocol features mild reaction conditions, good functional group tolerance, and moderate to good yields. Remarkably, the method can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules. Experimental mechanistic studies were conducted, and a radical mechanism is proposed, wherein the dual roles of Grushin's reagent have been elucidated.
Collapse
Affiliation(s)
- Jiang-Hao Xue
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuan Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
9
|
Yin L, Liu W. Stable oganocopper(III) complexes generated via oxidative addition. Sci Bull (Beijing) 2024; 69:288-289. [PMID: 38105160 DOI: 10.1016/j.scib.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati OH 45221, USA
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati OH 45221, USA.
| |
Collapse
|
10
|
Fu SY, Chang CH, Ivanov AS, Popovs I, Chen JL, Liao YF, Liu HK, Chirra S, Chiang YW, Lee JC, Liu WL, Kaveevivitchai W, Chen TH. Mixed-Valence Cu I /Cu III Metal-Organic Frameworks with Non-innocent Ligand for Multielectron Transfer. Angew Chem Int Ed Engl 2023; 62:e202312494. [PMID: 37703211 DOI: 10.1002/anie.202312494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
We report two novel three-dimensional copper-benzoquinoid metal-organic frameworks (MOFs), [Cu4 L3 ]n and [Cu4 L3 ⋅ Cu(iq)3 ]n (LH4 =1,4-dicyano-2,3,5,6-tetrahydroxybenzene, iq=isoquinoline). Spectroscopic techniques and computational studies reveal the unprecedented mixed valency in MOFs, formal Cu(I)/Cu(III). This is the first time that formally Cu(III) species are witnessed in metal-organic extended solids. The coordination between the mixed-valence metal and redox-non-innocent ligand L, which promotes through-bond charge transfer between Cu metal sites, allows better metal-ligand orbital overlap of the d-π conjugation, leading to strong long-range delocalization and semiconducting behavior. Our findings highlight the significance of the unique mixed valency between formal Cu(I) and highly-covalent Cu(III), non-innocent ligand, and pore environments of these bench stable Cu(III)-containing frameworks on multielectron transfer and electrochemical properties.
Collapse
Affiliation(s)
- Shang-Yuan Fu
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Cheng-Han Chang
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Suman Chirra
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300-044, Taiwan
| | - Jui-Chin Lee
- Core Facility Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Wei-Ling Liu
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Teng-Hao Chen
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan
| |
Collapse
|
11
|
Yan W, Carter S, Hsieh CT, Krause JA, Cheng MJ, Zhang S, Liu W. Copper-Carbon Homolysis Competes with Reductive Elimination in Well-Defined Copper(III) Complexes. J Am Chem Soc 2023; 145:26152-26159. [PMID: 37992224 DOI: 10.1021/jacs.3c08510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite the recent advancements of Cu catalysis for the cross-coupling of alkyl electrophiles and the frequently proposed involvement of alkyl-Cu(III) complexes in such reactions, little is known about the reactivity of these high-valent complexes. Specifically, although the reversible interconversion between an alkyl-CuIII complex and an alkyl radical/CuII pair has been frequently proposed in Cu catalysis, direct observation of such steps in well-defined CuIII complexes remains elusive. In this study, we report the synthesis and investigation of alkyl-CuIII complexes, which exclusively undergo a Cu-C homolysis pathway to generate alkyl radicals and CuII species. Kinetic studies suggest a bond dissociation energy of 28.6 kcal/mol for the CuIII-C bonds. Moreover, these four-coordinate complexes could be converted to a solvated alkyl-CuIII-(CF3)2, which undergoes highly efficient C-CF3 bond-forming reductive elimination even at low temperatures (-4 °C). These results provide strong support for the reversible recombination of alkyl radicals with CuII to form alkyl-CuIII species, an elusive step that has been proposed in Cu-catalyzed mechanisms. Furthermore, our work has demonstrated that the reactivity of CuIII complexes could be significantly influenced by subtle changes in the coordination environment. Lastly, the observation of the highly reactive neutral alkyl-CuIII-(CF3)2 species (or with weakly bound solvent molecules) suggests they might be the true intermediates in many Cu-catalyzed trifluoromethylation reactions.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
12
|
Chen DD, Zhang SL. Dual Oxidation of Epoxides with a High-Valent Cu(III)-CF 3 Compound and DMSO to Access 1,2-Diketones. J Org Chem 2023. [PMID: 38050841 DOI: 10.1021/acs.joc.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
This study reports sequential dehydrogenation and transfer oxygenation of 1,2-diarylepoxides by high-valent phenCu(III)(CF3)3 and DMSO to produce 1,2-diketones. The Cu(III)-CF3 compound serves as a CF3 radical source to abstract the hydrogen atom of the epoxide ring. The resulting ether α-carbon radical undergoes ring-opening rearrangement to give a ketone α-carbon radical intermediate, which is oxygenated by DMSO with the release of Me2S. The combination of a Cu(III)-CF3 compound and DMSO may be exploited to develop other novel oxidation reactions.
Collapse
Affiliation(s)
- Dou-Dou Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Cao E, Sun M. Spectral Physics of Stable Cu(III) Produced by Oxidative Addition of an Alkyl Halide. Int J Mol Sci 2023; 24:15694. [PMID: 37958679 PMCID: PMC10648560 DOI: 10.3390/ijms242115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds of products of Cu(III) complexes are visualized with the density of state (DOS) and orbital energy levels of HOMO and LUMO. The visually manifested static and dynamic polarizability as well as the first hyperpolarizability are employed to reveal the vibrational modes of the normal and resonance Raman spectra of two Cu(III) complexes. The nuclear magnetic resonance (NMR) spectra are not only used to identify the reactants and products but also to distinguish between two Cu(III) complexes. The charge difference density (CDD) reveals intramolecular charge transfer in electronic transitions in optical absorption spectra. The CDDs in fluorescence visually reveal electron-hole recombination. Our results promote a deeper understanding of the physical mechanism of stable Cu(III) produced by the oxidative addition of an alkyl halide.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
14
|
Luo Y, Li Y, Wu J, Xue XS, Hartwig JF, Shen Q. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 2023; 381:1072-1079. [PMID: 37676952 PMCID: PMC10658983 DOI: 10.1126/science.adg9232] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
The step that cleaves the carbon-halogen bond in copper-catalyzed cross-coupling reactions remains ill defined because of the multiple redox manifolds available to copper and the instability of the high-valent copper product formed. We report the oxidative addition of α-haloacetonitrile to ionic and neutral copper(I) complexes to form previously elusive but here fully characterized copper(III) complexes. The stability of these complexes stems from the strong Cu-CF3 bond and the high barrier for C(CF3)-C(CH2CN) bond-forming reductive elimination. The mechanistic studies we performed suggest that oxidative addition to ionic and neutral copper(I) complexes proceeds by means of two different pathways: an SN2-type substitution to the ionic complex and a halogen-atom transfer to the neutral complex. We observed a pronounced ligand acceleration of the oxidative addition, which correlates with that observed in the copper-catalyzed couplings of azoles, amines, or alkynes with alkyl electrophiles.
Collapse
Affiliation(s)
- Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yuli Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jian Wu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
15
|
Demonti L, Joven-Sancho D, Nebra N. Cross-Coupling Reactions Enabled by Well-Defined Ag(III) Compounds: Main Focus on Aromatic Fluorination and Trifluoromethylation. CHEM REC 2023; 23:e202300143. [PMID: 37338273 DOI: 10.1002/tcr.202300143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Indexed: 06/21/2023]
Abstract
AgIII compounds are considered strong oxidizers of difficult handling. Accordingly, the involvement of Ag catalysts in cross-coupling via 2e- redox sequences is frequently discarded. Nevertheless, organosilver(III) compounds have been authenticated using tetradentate macrocycles or perfluorinated groups as supporting ligands, and since 2014, first examples of cross-coupling enabled by AgI /AgIII redox cycles saw light. This review collects the most relevant contributions to this field, with main focus on aromatic fluorination/perfluoroalkylation and the identification of AgIII key intermediates. Pertinent comparison between the activity of AgIII RF compounds in aryl-F and aryl-CF3 couplings vs. the one shown by its CuIII RF and AuIII RF congeners is herein disclosed, thus providing a more profound picture on the scope of these transformations and the pathways commonly associated to C-RF bond formations enabled by coinage metals.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| |
Collapse
|
16
|
Hall CGJ, Sneddon HF, Pogány P, Lindsay DM, Kerr WJ. Experimental and computational insights into the mechanism of the copper(i)-catalysed sulfonylative Suzuki-Miyaura reaction. Chem Sci 2023; 14:6738-6755. [PMID: 37350817 PMCID: PMC10284122 DOI: 10.1039/d3sc01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
A mechanistic study into the copper(i)-catalysed sulfonylative Suzuki-Miyaura reaction, incorporating sulfur dioxide, is described. Utilising spectroscopic and computational techniques, an exploration into the individual components of the competing catalytic cycles is delineated, including identification of the resting state catalyst, transmetalation of arylboronic acid onto copper(i), the sulfur dioxide insertion process, and the oxidative addition of aryl halide to CuI. Studies also investigated prominent side-reactions which were uncovered, including a competing copper(ii)-catalysed mechanism. This led to an additional proposed and connected CuI/CuII/CuIII catalytic cycle to account for by-product formation.
Collapse
Affiliation(s)
- Callum G J Hall
- Medicines Design, GlaxoSmithKline Gunnels Wood Road, Stevenage SG1 2NY England UK
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street, Glasgow G1 1XL Scotland UK
| | - Helen F Sneddon
- Medicines Design, GlaxoSmithKline Gunnels Wood Road, Stevenage SG1 2NY England UK
| | - Peter Pogány
- Medicines Design, GlaxoSmithKline Gunnels Wood Road, Stevenage SG1 2NY England UK
| | - David M Lindsay
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street, Glasgow G1 1XL Scotland UK
| | - William J Kerr
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street, Glasgow G1 1XL Scotland UK
| |
Collapse
|
17
|
den Boer D, Konovalov AI, Siegler MA, Hetterscheid DGH. Unusual Water Oxidation Mechanism via a Redox-Active Copper Polypyridyl Complex. Inorg Chem 2023; 62:5303-5314. [PMID: 36989161 PMCID: PMC10091478 DOI: 10.1021/acs.inorgchem.3c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 03/30/2023]
Abstract
To improve Cu-based water oxidation (WO) catalysts, a proper mechanistic understanding of these systems is required. In contrast to other metals, high-oxidation-state metal-oxo species are unlikely intermediates in Cu-catalyzed WO because π donation from the oxo ligand to the Cu center is difficult due to the high number of d electrons of CuII and CuIII. As a consequence, an alternative WO mechanism must take place instead of the typical water nucleophilic attack and the inter- or intramolecular radical-oxo coupling pathways, which were previously proposed for Ru-based catalysts. [CuII(HL)(OTf)2] [HL = Hbbpya = N,N-bis(2,2'-bipyrid-6-yl)amine)] was investigated as a WO catalyst bearing the redox-active HL ligand. The Cu catalyst was found to be active as a WO catalyst at pH 11.5, at which the deprotonated complex [CuII(L-)(H2O)]+ is the predominant species in solution. The overall WO mechanism was found to be initiated by two proton-coupled electron-transfer steps. Kinetically, a first-order dependence in the catalyst, a zeroth-order dependence in the phosphate buffer, a kinetic isotope effect of 1.0, a ΔH⧧ value of 4.49 kcal·mol-1, a ΔS⧧ value of -42.6 cal·mol-1·K-1, and a ΔG⧧ value of 17.2 kcal·mol-1 were found. A computational study supported the formation of a Cu-oxyl intermediate, [CuII(L•)(O•)(H2O)]+. From this intermediate onward, formation of the O-O bond proceeds via a single-electron transfer from an approaching hydroxide ion to the ligand. Throughout the mechanism, the CuII center is proposed to be redox-inactive.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Andrey I. Konovalov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
18
|
Bera M, Kaur S, Keshari K, Santra A, Moonshiram D, Paria S. Structural and Spectroscopic Characterization of Copper(III) Complexes and Subsequent One-Electron Oxidation Reaction and Reactivity Studies. Inorg Chem 2023; 62:5387-5399. [PMID: 36972560 DOI: 10.1021/acs.inorgchem.2c04168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The formation of Cu(III) species are often invoked as the key intermediate in Cu-catalyzed organic transformation reactions. In this study, we synthesized Cu(II) (1) and Cu(III) (3) complexes supported by a bisamidate-bisalkoxide ligand consisting of an ortho-phenylenediamine (o-PDA) scaffold and characterized them through an array of spectroscopic techniques, including UV-visible, electron paramagnetic resonance, X-ray crystallography, and 1H nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy. The Cu-N/O bond distances in 3 are ∼0.1 Å reduced compared to 1, implying a significant increase in 3's overall effective nuclear charge. Further, a Cu(III) complex (4) of a bisamidate-bisalkoxide ligand containing a trans-cyclohexane-1,2-diamine moiety exhibits nearly identical Cu-N/O bond distances to that of 3, inferring that the redox-active o-PDA backbone is not oxidized upon one-electron oxidation of the Cu(II) complex (1). In addition, a considerable difference in the 1s → 4p and 1s → 3d transition energy was observed in the X-ray absorption near-edge structure data of 3 vs 1, which is typical for the metal-centered oxidation process. Electrochemical measurements of the Cu(II) complex (1) in acetonitrile exhibited two consecutive redox couples at -0.9 and 0.4 V vs the Fc+/Fc reference electrode. One-electron oxidation reaction of 3 further resulted in the formation of a ligand-oxidized Cu complex (3a), which was characterized in depth. Reactivity studies of species 3 and 3a were explored toward the activation of the C-H/O-H bonds. A bond dissociation free energy (BDFE) value of ∼69 kcal/mol was estimated for the O-H bond of the Cu(II) complex formed upon transfer of hydrogen atom to 3. The study represents a thorough spectroscopic characterization of high-valent Cu complexes and sheds light on the PCET reactivity studies of Cu(III) complexes.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
19
|
Zeng X, Wang C, Yan W, Rong J, Song Y, Xiao Z, Cai A, Liang SH, Liu W. Aryl Radical Enabled, Copper-Catalyzed Sonogashira-Type Cross-Coupling of Alkynes with Alkyl Iodides. ACS Catal 2023; 13:2761-2770. [PMID: 37800120 PMCID: PMC10552849 DOI: 10.1021/acscatal.2c05901] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Despite the success of Sonogashira coupling for the synthesis of arylalkynes and conjugated enynes, the engagement of unactivated alkyl halides in such reactions remains historically challenging. We report herein a strategy that merges Cu-catalyzed alkyne transfer with the aryl radical activation of carbon-halide bonds to enable a general approach for the coupling of alkyl iodides with terminal alkynes. This unprecedented Sonogashira-type cross-coupling reaction tolerates a broad range of functional groups and has been applied to the late-stage cross-coupling of densely functionalized pharmaceutical agents as well as the synthesis of positron emission tomography tracers.
Collapse
Affiliation(s)
- Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Yanshan Song
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
20
|
Dai MS, Zheng ZM, Zhang SL. High-valent Cu(III)-CF 3 compound-mediated esterification reaction. Org Biomol Chem 2023; 21:935-939. [PMID: 36602103 DOI: 10.1039/d2ob02166h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cu(III)-CF3 compounds are reported herein as novel coupling reagents to mediate ester synthesis from carboxyl acids and alcohols/phenols. Carboxylic acids are transformed to trifluoromethyl ester and acyl fluoride activated species that interact with each other. The broad substrate scope and late-stage application of this method are demonstrated. This study opens up new opportunities to develop interesting reactions using Cu(III)-CF3 compounds without transferring a CF3 group to the products.
Collapse
Affiliation(s)
- Ming-Suo Dai
- School of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Zhen-Mei Zheng
- School of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Song-Lin Zhang
- School of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
21
|
Green and Ligand-free Gold Nanoparticles in Padina australis Extract for Colorimetric Detection of Cu2+ in Water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Zhang H, Feng C, Chen N, Zhang S. Direct Arene Trifluoromethylation Enabled by a High‐Valent Cu
III
−CF
3
Compound. Angew Chem Int Ed Engl 2022; 61:e202209029. [DOI: 10.1002/anie.202209029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hao‐Ran Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
| | - Cong‐Cong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
| | - Ning Chen
- School of Chemistry and Chemical Engineering Xinjiang Agricultural University 311 Nongda East Road Urumqi 830052, Xinjiang China
| | - Song‐Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi 214122, Jiangsu China
- School of Chemistry and Chemical Engineering Xinjiang Agricultural University 311 Nongda East Road Urumqi 830052, Xinjiang China
| |
Collapse
|
23
|
Zhang Q, Tong S, Wang MX. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles. Acc Chem Res 2022; 55:2796-2810. [PMID: 35994690 DOI: 10.1021/acs.accounts.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent decades have witnessed a resurgence of the study of copper-catalyzed organic reactions. As the surrogate of noble metal catalysts, copper salts have been shown to exhibit remarkable versatility in activating various C-H bonds enabling the construction of diverse carbon-carbon and carbon-heteroatom bonds. Advantageously, copper salts are also naturally abundant, inexpensive, and less toxic in comparison to precious metals. Despite significant developments in synthesis, the mechanism of copper catalysis remains elusive. Hypothetical pathways such as the two-electron Cu(III)/Cu(I) and Cu(II)/Cu(0) catalytic cycles and the one-electron Cu(II)/Cu(I) catalytic cycle have been invoked to diagram C-H bond transformations because of the formidable challenges to isolate and characterize transient high valent organocopper intermediates. In fact, organocopper chemistry has been dominated for a long time by the acknowledged nucleophilic organocopper(I) compounds. Since the beginning of the new millennium, we have been systematically studying the supramolecular chemistry of heteracalix[n]aromatics. Owing to the ease of their synthesis and selective functionalizations, self-tunable conformation and cavity structures resulting from the interplay of heteroatoms with aromatic subunits, and outstanding properties in molecular recognition and self-assembly, heteracalix[n]aromatics have become a class of privileged synthetic macrocyclic hosts. Our journey to the chemistry of high valent organocopper compounds started with a serendipitous discovery of the facile formation of a stable organocopper compound, which contains astonishingly a Ph-Cu(III) σ-bond under very mild aerobic conditions. When we examined routinely the effect of the macrocyclic structures on noncovalent complexation properties, titration of tetraazacalix[1]arene[3]pyridine with Cu(ClO4)2·6H2O resulted in the precipitation of dark-purple crystals of phenylcopper(III) diperchlorate. Our curiosity about the transformation of an arene C-H bond into an Ar-Cu(III) bond prompted us to conduct an in-depth investigation of the reaction of macrocyclic arenes with copper(II) salts, leading to the isolation of arylcopper(II) compounds which are unprecedented and the missing link in organocopper chemistry. With structurally well-defined organometallics in hand, we have explored extensively the reactivities of both arylcopper(II) and arylcopper(III) compounds, demonstrating their versatility and uniqueness in chemical synthesis. Novel and fascinating arene C-H transformations under copper catalysis have been developed. Using acquired high valent arylcopper compounds as molecular probes, and employing the functionalizations of tetraazacalix[1]arene[3]pyridines as model reactions, we have revealed the diverse mechanisms of copper-promoted arene C-H bond reactions. Elusive reaction pathways of some copper-catalyzed C-X bond activations have also been unraveled. In the meantime, we have also witnessed pleasingly the rapid development of field with the advent of new high valent organocopper compounds. Without any doubt, studies of the synthesis, reactivity, and catalysis of high valent organocopper compounds have been reshaping the field of organocopper chemistry. This Account summarizes our endeavors to explore the chemistry of structurally well-defined arylcopper(II) and arylcopper(III) compounds and the mechanisms of copper-catalyzed arene C-H and C-X bond transformations. We hope this Account will inspire chemists to study thoroughly the fundamentals and the cutting-edge catalysis of high valent organocopper compounds advancing and redefining the discipline of organocopper chemistry.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
24
|
Zhang HR, Feng CC, Chen N, Zhang SL. Direct Arene Trifluoromethylation Enabled by a High‐Valent Cu(III)‐CF3 Compound. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao-Ran Zhang
- Jiangnan University School of Chemical and Material Engineering 214122 Wuxi CHINA
| | - Cong-Cong Feng
- Jiangnan University School of Chemical and Material Engineering 214122 Wuxi CHINA
| | - Ning Chen
- Xinjiang Agricultural University School of Chemistry and Chemical Engineering Urumqi CHINA
| | - Song-Lin Zhang
- Jiangnan University School of Chemical and Material Engineering 1800 Lihu Road 214122 Wuxi CHINA
| |
Collapse
|
25
|
McKee ML. Exploring the Reaction Mechanism of C-H Oxidation by Copper-Salen Complexes. J Phys Chem A 2022; 126:4969-4980. [PMID: 35861503 DOI: 10.1021/acs.jpca.2c03344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of C-H oxidation of propylene (C3H6) and 1-phenyl-1-pentyne (C3H7-C≡C-Ph) by HOOR (R═Me, tBu) and 3O2 by a copper-salen complex was explored by computations. The most noteworthy step is the complexation of two Cu salens to the peroxide to form either the LCuOH/LCuOR pair or an OH-bridged complex LCu(μ-OH)CuL plus OR. The latter pathway involves an avoided crossing of two triplet electronic states. The LCuOH complex can abstract a hydrogen atom from C3H6 and the C3H5 radical plus 3O2 forms the complex LCuOOC3H5. Migration of a hydrogen to the proximal oxygen atom reforms LCuOH and acrolein HC(O)CH═CH2.
Collapse
Affiliation(s)
- Michael L McKee
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
26
|
Wang G, Li M, Leng X, Xue X, Shen Q. Neutral Five‐Coordinate Arylated Copper(III) Complex: Key Intermediate in Copper‐Mediated Arene Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangyu Wang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engi‐neering, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Xuebing Leng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Xiaosong Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| |
Collapse
|
27
|
Abstract
The oxidation of hydrocarbons of different structures under the same conditions is an important stage in the study of the chemical properties of both the hydrocarbons themselves and the oxidation catalysts. In a 50% H2O2/Cu2Cl4·2DMG/CH3CN system, where DMG is dimethylglyoxime (Butane-2,3-dione dioxime), at 50 °C under the same or similar conditions, we oxidized eleven RH hydrocarbons of different structures: mono-, bi- and tri-cyclic, framework and aromatic. To compare the composition of the oxidation products of these hydrocarbons, we introduced a new quantitative characteristic, “distributive oxidation depth D(O), %” and showed the effectiveness of its application. The adiabatic ionization potentials (AIP) and the vertical ionization potentials (VIP) of the molecules of eleven oxidized and related hydrocarbons were calculated using the DFT method in the B3LYP/TZVPP level of theory for comparison with experimental values and correlation with D(O). The same calculations of AIP were made for the molecules of the oxidant, solvent, DMG, related compounds and products. It is shown that component X, which determines the mechanism of oxidation of hydrocarbons RH with AIP(Exp) ≥ AIP(X) = 8.55 ± 0.03 eV, is a trans-DMG molecule. Firstly theoretically estimated experimental values of AIP(trans-DMG) = 8.53 eV and AIP(cis-DMG) = 8.27 eV.
Collapse
|
28
|
Theoretical perspective on mononuclear copper-oxygen mediated C–H and O–H activations: A comparison between biological and synthetic systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63974-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Geoghegan BL, Liu Y, Peredkov S, Dechert S, Meyer F, DeBeer S, Cutsail GE. Combining Valence-to-Core X-ray Emission and Cu K-edge X-ray Absorption Spectroscopies to Experimentally Assess Oxidation State in Organometallic Cu(I)/(II)/(III) Complexes. J Am Chem Soc 2022; 144:2520-2534. [PMID: 35050605 PMCID: PMC8855422 DOI: 10.1021/jacs.1c09505] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A series of organometallic
copper complexes in formal oxidation
states ranging from +1 to +3 have been characterized by a combination
of Cu K-edge X-ray absorption (XAS) and Cu Kβ valence-to-core
X-ray emission spectroscopies (VtC XES). Each formal oxidation state
exhibits distinctly different XAS and VtC XES transition energies
due to the differences in the Cu Zeff, concomitant with
changes in physical oxidation state from +1 to +2 to +3. Herein, we
demonstrate the sensitivity of XAS and VtC XES to the physical oxidation
states of a series of N-heterocyclic carbene (NHC) ligated organocopper
complexes. We then extend these methods to the study of the [Cu(CF3)4]− ion. Complemented by computational
methods, the observed spectral transitions are correlated with the
electronic structure of the complexes and the Cu Zeff.
These calculations demonstrate that a contraction of the Cu 1s orbitals
to deeper binding energy upon oxidation of the Cu center manifests
spectroscopically as a stepped increase in the energy of both XAS
and Kβ2,5 emission features with increasing formal
oxidation state within the [Cun+(NHC2)]n+ series. The newly synthesized Cu(III) cation
[CuIII(NHC4)]3+ exhibits spectroscopic
features and an electronic structure remarkably similar to [Cu(CF3)4]−, supporting a physical oxidation
state assignment of low-spin d8 Cu(III) for [Cu(CF3)4]−. Combining XAS and VtC XES
further demonstrates the necessity of combining multiple spectroscopies
when investigating the electronic structures of highly covalent copper
complexes, providing a template for future investigations into both
synthetic and biological metal centers.
Collapse
Affiliation(s)
- Blaise L. Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| | - Yang Liu
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|