1
|
Li H, Ding J, Song Z, Ding S, Liu X, Wang F, Shi X, Zhang C. Highly sensitive volatile organic compounds monitoring enabling by silver-nanowire@metal-organic frameworks core-shell heterostructure. Talanta 2024; 280:126713. [PMID: 39167936 DOI: 10.1016/j.talanta.2024.126713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) hold great promise as advanced chemical sensing materials due to their high surface area and tunable surface chemistry. However, due to the inherent conductivity, building a highly sensitive MOFs-based gas sensor for real-time monitoring hazardous gas operated at room temperature (RT) is still a huge challenge. Herein, an in-situ anchoring strategy is proposed to construct a 1D-0D core-shell heterostructure by integrating silver nanowires (AgNWs) with highly conductivity and Zn-MOF with high specific surface area. The incorporation of AgNWs establishes a highly conductive network architecture to facilitate rapid charge transport while preventing the Zn-MOF nanoparticles from agglomeration, ensuring an effective transmission highway for target gas molecules. Meanwhile, the Zn-MOF nanoparticles induce remarkable absorption capacity and contribute high gas response. By strategically amalgamating the inherent distinctive virtues of the individual components and capitalizing on the synergistic benefits arising from the composite, the sensors hinged upon the refined AgNWs@Zn-MOF (A@Z) heterostructure unveiled remarkable response value of 27 to 20 ppm ethanol at RT, accompanied by a low detection limit of 1 ppm. Moreover, the A@Z sensor further showcases superior selectivity and repeatability. This work offers a fresh standpoint for the fabrication of MOF-based heterostructures, fostering advancements in diverse applications.
Collapse
Affiliation(s)
- Hongpeng Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Jiabao Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zihao Song
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Shumei Ding
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xue Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Feihong Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China.
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
2
|
Han S, Xu L, Fang Y, Dong S. A two-dimensional coordination polymer with high laccase-like activity for sensitive colorimetric detection of thiram. Chem Commun (Camb) 2024; 60:12738-12741. [PMID: 39397734 DOI: 10.1039/d4cc04305g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In contrast to natural enzymes, nanozymes show promising advantages of low cost and high stability for analytical applications. The simple mix of L-phenylalanine (F) and Cu2+ produces two-dimensional nanosheets of a coordination polymer with a high surface area ratio and rich exposed active sites as a novel catalyst. As the mimetic of natural laccase, this nanozyme (F-Cu) can catalyze the oxidative coupling reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP) to produce a distinct red product, thus establishing an intuitive and simple method for the detection of thiram. In the range of 0-7.5 μM, the absorbance intensity was linearly related to the concentration of thiram, and the detection limit was 0.0845 μM. The F-Cu nanozyme was successfully applied to the colorimetric detection of thiram in real samples.
Collapse
Affiliation(s)
- Songxue Han
- College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shaojun Dong
- College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Kekana MTM, Mosuang TE, Ntsendwana B, Sikhwivhilu LM, Mahladisa MA. Notable synthesis, properties and chemical gas sensing trends on molybdenum disulphides and diselenides two-dimensional nanostructures: A critical review. CHEMOSPHERE 2024; 366:143497. [PMID: 39389376 DOI: 10.1016/j.chemosphere.2024.143497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Evaluation of synthesis methods, notable properties, and chemical gas sensing properties of molybdenum disulphides and diselenides two-dimensional nanosheets is unfold. This is motivated by the fact that the two dichalcogenides have good sensitivity and selectivity to different harmful gases at ambient temperatures. Synthesis methods explored include exceptional top-down and bottom-up approaches, which consider physical and chemical compositional inceptions. Mechanical exfoliation in both molybdenum disulphides and diselenides nanosheets demonstrate good crystalline purity with structural alterations under varying stacking conditions. These chalcogenides exhibit low energy band gaps of ±1.80 eV for MoS2 and ±1.60 eV for MoSe2, which reduces with introduction of impurities. Thus, upon doping with other metal elements, a transformation from either n-type or p-type semiconductors is normally observed, leading to tuneable electronic properties. Thus, different gases such as methane, ethanol, toluene, ammonia, nitrogen oxide have been systematically detected using molybdenum disulphide and diselenide based thin films as sensing platforms. This review highlights structural, electronic and morphological characteristics of the two dichalcogenides which influences the sensitivity and selectivity ability for a couple of gases at ambient temperatures. The strategies for enhancing the selectivity by introducing defects, impurities and interfacing with other composites expanding the choice of these gases wider is also discussed in details. The review also provides overviews of challenges and limitations that open new research avenues to further enriching both chalcogenides as flexible, stable and cost effective state-of-the-art chemical gas sensors.
Collapse
Affiliation(s)
- M T M Kekana
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa; Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - T E Mosuang
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa.
| | - B Ntsendwana
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - L M Sikhwivhilu
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa; Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| | - M A Mahladisa
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa
| |
Collapse
|
4
|
Haldar T, Shiu JW, Yang RX, Wang WQ, Wu HT, Mao HI, Chen CW, Yu CH. Exploring MOF-Derived CuO/rGO Heterostructures for Highly Efficient Room Temperature CO 2 Sensors. ACS Sens 2024. [PMID: 39291653 DOI: 10.1021/acssensors.4c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In response to the urgent need for advanced climate change mitigation tools, this study introduces an innovative CO2 gas sensor based on p-p-type heterostructures designed for effective operation at room temperature. This sensor represents a significant step forward, utilizing the synergistic effects of p-p heterojunctions to enhance the effective interfacial area, thereby improving sensitivity. The incorporation of CuO nanoparticles and rGO sheets also optimizes gas transport channels, enhancing the sensor's performance. Our CuO/rGO heterostructures, with 5 wt % rGO, have shown a notable maximum response of 39.6-500 ppm of CO2 at 25 °C, and a low detection limit of 2 ppm, indicating their potential as high-performance, room-temperature CO2 sensors. The prepared sensor demonstrates long-term stability, maintaining 98% of its initial performance over a 30-day period when tested at 1-day intervals. Additionally, the sensor remains stable under conditions of over 40% relative humidity. Furthermore, a first-principles study provides insights into the interaction mechanisms with CO2 molecules, enhancing our understanding of the sensor's operation. This research contributes to the development of CO2 monitoring solutions, offering a practical and cost-effective approach to environmental monitoring in the context of global climate change efforts.
Collapse
Affiliation(s)
- Toton Haldar
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
| | - Jia-Wei Shiu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Ren-Xuan Yang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wei-Qi Wang
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Hsin-Ting Wu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Hsu-I Mao
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Chi-Hua Yu
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
5
|
Garg N, Deep A, Sharma AL. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Crit Rev Anal Chem 2024; 54:1121-1145. [PMID: 35968634 DOI: 10.1080/10408347.2022.2106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the expansion and advancement in agricultural and chemical industries, various toxic heavy metals such as lead, cadmium, mercury, zinc, copper, arsenic etc. are continuously released into the environment. Intake of sources contaminated with such toxic metals leads to various health issues. Keeping the serious effects of these toxic metal ions in view, various organic-inorganic nanomaterials based sensors have been exploited for their detection via optical, electrochemical and colorimetric approaches. Since a chemical sensor works on the principle of interaction between the sensing layer and the analytes, a sensor material with large surface area is required to enable the largest possible interaction with the target molecules and hence the sensitivity of the chemical sensor. However, commonly employed materials such as metal oxides and conducting polymers tend to feature relatively low surface areas, and hence resulting in low sensitivity of the sensor. Metal-Organic Frameworks (MOFs) nanostructures are another category of organic-inorganic materials endowed with large surface area, ultra-high and tunable porosity, post-synthesis modification features, readily available active sites, catalytic activity, and chemical/thermal stability. These properties provide high sensitivity to the MOF based sensors due to the adsorption of large number of target analytes. The current review article focuses on MOFs based optical and electrochemical sensors for the detection of heavy metals.
Collapse
Affiliation(s)
- Naini Garg
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Materials Science & Sensor Applications (MSSA) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit L Sharma
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Li T, Ning T, Liu X, Zhao C, Shi X, Xu G. Dihydroxyl modified UiO-66 as dispersive solid-phase extraction sorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry for detection of neonicotinoid insecticides. J Chromatogr A 2024; 1727:464970. [PMID: 38744187 DOI: 10.1016/j.chroma.2024.464970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The extensive usage of neonicotinoid insecticides (NIs) has raised many concerns about their potential harm to environment and human health. Thus, it is of great importance to develop an efficient and reliable method to determine NIs in food samples. In this work, three Zr4+-based metal-organic frameworks functionalized with various numbers of hydroxyl groups were fabricated with a facile one-pot solvothermal method. Among them, dihydroxy modified UiO-66 (UiO-66-(OH)2) exhibited best adsorption performance towards five target NIs. Then, a sensitive and efficient method for detection of NIs from vegetable and fruit samples was established based on dispersive solid phase extraction (dSPE) with UiO-66-(OH)2 as adsorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Key parameters affecting the dSPE procedure including amounts of adsorbent, adsorption time, eluent solvents and desorption time were investigated. Under the optimal conditions, rapid adsorption of NIs within five minutes was achieved due to the high affinity of UiO-66-(OH)2 towards NIs. The developed method exhibited high sensitivity with limits of detection (LODs) varied from 0.003 to 0.03 ng/mL and wide linearity range over 3-4 orders of magnitude from 0.01 to 500 ng/mL. Furthermore, the established method was applied for determining trace NIs from complex matrices with recoveries ranging from 74.6 to 99.6 % and 77.0-106.8 % for pear and tomato samples, respectively. The results indicate the potential of UiO-66-(OH)2 for efficient enrichment of trace NIs from complex matrices.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry, Dalian University of Technology, Dalian 116024, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Ning
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| | - Guowang Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| |
Collapse
|
7
|
Xu R, Sun B, Ji W, Sun J, Li P, Ren Z, Jing L. Construction of a CoNiHHTP MOF/PHI Z-Scheme Heterojunction for ppb Level NO 2 Photoelectric Sensing with 405 nm Irradiation at RT. ACS Sens 2024; 9:3187-3197. [PMID: 38809143 DOI: 10.1021/acssensors.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Ultrasensitive photoelectric detection of nitrogen dioxide (NO2) with PHI under visible light irradiation at room temperature (RT) remains an ongoing challenge due to the low charge separation and scarce adsorption sites. In this work, a dimensionally matched ultrathin CoNiHHTP MOF/PHI Z-scheme heterojunction is successfully constructed by taking advantage of the π-π interactions existing between the CoNiHHTP MOF and PHI. The amount-optimized heterojunction possesses a record detection limit of 1 ppb (response = 15.6%) for NO2 under 405 nm irradiation at RT, with reduced responsive (3.6 min) and recovery (2.7 min) times, good selectivity and reversibility, and long-time stability (150 days) compared with PHI, even superior to others reported at RT. Based on the time-resolved photoluminescence spectra, in situ X-ray photoelectron spectra, and diffuse reflectance infrared Fourier transform spectroscopy results, the resulting sensing performance is attributed to the favorable Z-scheme charge transfer and separation. Moreover, the Ni nodes favorably present in adjacent metal sites between the lamellae contribute to charge transfer and redistribution, whereas Co nodes could act as selective centers for promoted adsorption of NO2. Interestingly, it is confirmed that the CoNiHHTP MOF/PHI heterojunction could effectively reduce the influence of O2 in the gas-sensitive reaction due to their unique bimetallic (Co and Ni) nodes, which is also favorable for the improved sensing performances for NO2. This work provides a feasible strategy to develop promising PHI-based optoelectronic gas sensors at RT.
Collapse
Affiliation(s)
- Rongping Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Baihe Sun
- School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Wenting Ji
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Jianhui Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Peng Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
- College of Physical Science and Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Zhiyu Ren
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
8
|
Zhang C, Xu K, Liu K, Xu J, Zheng Z. Metal oxide resistive sensors for carbon dioxide detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
|
10
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [PMID: 35880235 PMCID: PMC9307687 DOI: 10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022] Open
Abstract
Metal-organic frameworks (MOFs) have garnered multidisciplinary attention due to their structural tailorability, controlled pore size, and physicochemical functions, and their inherent properties can be exploited by applying them as precursors and/or templates for fabricating derived hollow porous nanomaterials. The fascinating, functional properties and applications of MOF-derived hollow porous materials primarily lie in their chemical composition, hollow character, and unique porous structure. Herein, a comprehensive overview of the synthetic strategies and emerging applications of hollow porous materials derived from MOF-based templates and/or precursors is given. Based on the role of MOFs in the preparation of hollow porous materials, the synthetic strategies are described in detail, including (1) MOFs as removable templates, (2) MOF nanocrystals as both self-sacrificing templates and precursors, (3) MOF@secondary-component core-shell composites as precursors, and (4) hollow MOF nanocrystals and their composites as precursors. Subsequently, the applications of these hollow porous materials for chemical catalysis, electrocatalysis, energy storage and conversion, and environmental management are presented. Finally, a perspective on the research challenges and future opportunities and prospects for MOF-derived hollow materials is provided. MOFs have garnered multi-disciplinary attention due to their unique inherent properties Various synthetic strategies of MOFs-derived hollow porous materials are summarized Emerging applications of MOFs-derived hollow porous materials are reviewed
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, TX 76201, USA
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.,School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| |
Collapse
|
11
|
Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (N Y) 2022; 3:100281. [DOI: doi.org/10.1016/j.xinn.2022.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
|
12
|
Liu X, Zheng W, Kumar R, Kumar M, Zhang J. Conducting polymer-based nanostructures for gas sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Computational investigation on interaction mechanism of sulfur mustard adsorption by zeolitic imidazolate frameworks ZIF-8 and ZIF-67: Insights from periodic and cluster DFT calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
|