1
|
Lometto S, Sparvoli D, Malengo G, Heimerl T, Hochberg GKA. The mitochondrial citrate synthase from Tetrahymena thermophila does not form an intermediate filament. Eur J Protistol 2024; 96:126121. [PMID: 39432950 DOI: 10.1016/j.ejop.2024.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The mitochondrial citrate synthase (mCS) purified from the ciliate Tetrahymena thermophila has been reported to form intermediate-filament-like structures during conjugation and to self-assemble into fibers when recombinantly expressed. This would represent a rare example of a tractable and recent origin of a novel cytoskeletal element. In an attempt to investigate the evolutionary emergence of this behavior, we re-investigated the ability of Tetrahymena's mCS to form filaments in vivo. Using strep-tagged mCS in Tetrahymena and monoclonal antibodies, we found no evidence of filamentous structures during conjugation or starvation. Extensive biochemical characterization of mCS revealed that the self-assembly of recombinant protein is triggered by a specific chemical moiety shared by MES and HEPES buffers used in previous studies. The absence of indicative phenotypes in fiber-deficient GFP-tagged mutants indicates that Tetrahymena mCS did not evolve a structural role in sexual reproduction or metabolic regulation.
Collapse
Affiliation(s)
- Stefano Lometto
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions, UMR5294, Université de Montpellier, INSERM, CNRS, Montpellier, Pl E. Bataillon Bat. 24 2et, CC107, Montpellier 34095, France
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany; Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.
| |
Collapse
|
2
|
Köster PC, Lapuente J, Cruz I, Carmena D, Ponce-Gordo F. Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations? Vet Sci 2022; 9:356. [PMID: 35878373 PMCID: PMC9323791 DOI: 10.3390/vetsci9070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Climate change and anthropic activities are the two main factors explaining wild great ape habitat reduction and population decline. The extent to which human-borne infectious diseases are contributing to this trend is still poorly understood. This is due to insufficient or fragmented knowledge on the abundance and distribution of current wild great ape populations, the difficulty obtaining optimal biological samples for diagnostic testing, and the scarcity of pathogen typing data of sufficient quality. This review summarises current information on the most clinically relevant pathogens of viral, bacterial, parasitic, and fungal nature for which transmission from humans to wild great apes is suspected. After appraising the robustness of available epidemiological and/or molecular typing evidence, we attempt to categorise each pathogen according to its likelihood of truly being of human origin. We further discuss those agents for which anthroponotic transmission is more likely. These include two viral (Human Metapneumovirus and Respiratory Syncytial Virus), one bacterial (diarrhoeagenic Escherichia coli), and two parasitic (Cryptosporidium spp. and Giardia duodenalis) pathogens. Finally, we identify the main drawbacks impairing research on anthroponotic pathogen transmission in wild great apes and propose research lines that may contribute to bridging current knowledge gaps.
Collapse
Affiliation(s)
- Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Juan Lapuente
- Comoé Chimpanzee Conservation Project (CCCP) Comoé N.P., Kakpin, Côte d’Ivoire;
| | - Israel Cruz
- National School of Public Health, Health Institute Carlos III, 28029 Madrid, Spain;
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain;
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Francisco Ponce-Gordo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Bosch DE, Jeck WR, Siderovski DP. Self-activating G protein α subunits engage seven-transmembrane Regulator of G protein Signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri. J Biol Chem 2022; 298:102167. [PMID: 35738399 PMCID: PMC9283941 DOI: 10.1016/j.jbc.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The free-living amoeba Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis and is highly resistant to current therapies, resulting in mortality rates >97%. As many therapeutics target G protein-centered signal transduction pathways, further understanding the functional significance of G protein signaling within N. fowleri should aid future drug discovery against this pathogen. Here, we report that the N. fowleri genome encodes numerous transcribed G protein signaling components, including G protein-coupled receptors (GPCRs), heterotrimeric G protein subunits, Regulator of G protein Signaling (RGS) proteins, and candidate Gα effector proteins. We found N. fowleri Gα subunits have diverse nucleotide cycling kinetics; Nf Gα5 and Gα7 exhibit more rapid nucleotide exchange than GTP hydrolysis (i.e. "self-activating" behavior). A crystal structure of Nf Gα7 highlights the stability of its nucleotide-free state, consistent with its rapid nucleotide exchange. Variations in the phosphate binding loop (P-loop) also contribute to nucleotide cycling differences among Gα subunits. Similar to plant G protein signaling pathways, N. fowleri Gα subunits selectively engage members of a large seven-transmembrane RGS protein family, resulting in acceleration of GTP hydrolysis. We show Nf Gα2 and Gα3 directly interact with a candidate Gα effector protein, RGS-RhoGEF, similar to mammalian Gα12/13 signaling pathways. We demonstrate Nf Gα2 and Gα3 each engage RGS-RhoGEF through a canonical Gα/RGS domain interface, suggesting a shared evolutionary origin with G protein signaling in the enteric pathogen Entamoeba histolytica. These findings further illuminate the evolution of G protein signaling and identify potential targets of pharmacological manipulation in Naegleria fowleri.
Collapse
Affiliation(s)
- Dustin E Bosch
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | - William R Jeck
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David P Siderovski
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
4
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Steele-Ogus MC, Obenaus AM, Sniadecki NJ, Paredez AR. Disc and Actin Associated Protein 1 influences attachment in the intestinal parasite Giardia lamblia. PLoS Pathog 2022; 18:e1010433. [PMID: 35333908 PMCID: PMC8986099 DOI: 10.1371/journal.ppat.1010433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The deep-branching eukaryote Giardia lamblia is an extracellular parasite that attaches to the host intestine via a microtubule-based structure called the ventral disc. Control of attachment is mediated in part by the movement of two regions of the ventral disc that either permit or exclude the passage of fluid under the disc. Several known disc-associated proteins (DAPs) contribute to disc structure and function, but no force-generating protein has been identified among them. We recently identified several Giardia actin (GlActin) interacting proteins at the ventral disc, which could potentially employ actin polymerization for force generation and disc conformational changes. One of these proteins, Disc and Actin Associated Protein 1 (DAAP1), is highly enriched at the two regions of the disc previously shown to be important for fluid flow during attachment. In this study, we investigate the role of both GlActin and DAAP1 in ventral disc morphology and function. We confirmed interaction between GlActin and DAAP1 through coimmunoprecipitation, and used immunofluorescence to localize both proteins throughout the cell cycle and during trophozoite attachment. Similar to other DAPs, the association of DAAP1 with the disc is stable, except during cell division when the disc disassembles. Depletion of GlActin by translation-blocking antisense morpholinos resulted in both impaired attachment and defects in the ventral disc, indicating that GlActin contributes to disc-mediated attachment. Depletion of DAAP1 through CRISPR interference resulted in intact discs but impaired attachment, gating, and flow under the disc. As attachment is essential for infection, elucidation of these and other molecular mediators is a promising area for development of new therapeutics against a ubiquitous parasite.
Collapse
Affiliation(s)
- Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ava M. Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Novel Cytoskeleton-Associated Proteins in Trypanosoma brucei Are Essential for Cell Morphogenesis and Cytokinesis. Microorganisms 2021; 9:microorganisms9112234. [PMID: 34835360 PMCID: PMC8625193 DOI: 10.3390/microorganisms9112234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Trypanosome brucei, the causative agent of African sleeping sickness, harbours a highly ordered, subpellicular microtubule cytoskeleton that defines many aspects of morphology, motility and virulence. This array of microtubules is associated with a large number of proteins involved in its regulation. Employing proximity-dependent biotinylation assay (BioID) using the well characterised cytoskeleton-associated protein CAP5.5 as a probe, we identified CAP50 (Tb927.11.2610). This protein colocalises with the subpellicular cytoskeleton microtubules but not with the flagellum. Depletion by RNAi results in defects in cytokinesis, morphology and partial disorganisation of microtubule arrays. Published proteomics data indicate a possible association of CAP50 with two other, yet uncharacterised, cytoskeletal proteins, CAP52 (Tb927.6.5070) and CAP42 (Tb927.4.1300), which were therefore included in our analysis. We show that their depletion causes phenotypes similar to those described for CAP50 and that they are essential for cellular integrity.
Collapse
|
7
|
Steele-Ogus MC, Johnson RS, MacCoss MJ, Paredez AR. Identification of Actin Filament-Associated Proteins in Giardia lamblia. Microbiol Spectr 2021; 9:e0055821. [PMID: 34287056 PMCID: PMC8552679 DOI: 10.1128/spectrum.00558-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of noncanonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin) rather than with filamentous actin (F-actin). To identify F-actin interactors, we used a chemical cross-linker to preserve native interactions followed by an anti-GlActin antibody, protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched under the conditions favoring F-actin. Data are available via ProteomeXchange with identifier PXD026067. None of the proteins identified contain known actin-interacting motifs, and many lacked conserved domains. Each potential interactor was then tagged with the fluorescent protein mNeonGreen and visualized in live cells. We categorized the proteins based on their primary localization; localizations included ventral disc, marginal plate, nuclei, flagella, plasma membrane, and internal membranes. One protein from each of the six categories was colocalized with GlActin using immunofluorescence microscopy. We also co-immunoprecipitated one protein from each category and confirmed three of the six potential interactions. Most of the localization patterns are consistent with previously demonstrated GlActin functions, but the ventral disc represents a new category of actin interactor localization. These results suggest a role for GlActin in ventral disc function, which has previously been controversial. IMPORTANCE Giardia lamblia is an intestinal parasite that colonizes the small intestine and causes diarrhea, which can lead to dehydration and malnutrition. Giardia actin (GlActin) has a conserved role in Giardia cells, despite being a highly divergent protein with none of the conserved regulators found in model organisms. Here, we identify and localize 46 interactors of polymerized actin. These putative interactors localize to a number of places in the cell, underlining GlActin's importance in multiple cellular processes. Surprisingly, eight of these proteins localize to the ventral disc, Giardia's host attachment organelle. Since host attachment is required for infection, proteins involved in this process are an appealing target for new drugs. While treatments for Giardia exist, drug resistance is becoming more common, resulting in a need for new treatments. Giardia and human systems are highly dissimilar, thus drugs specifically tailored to Giardia proteins would be less likely to have side effects.
Collapse
Affiliation(s)
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
8
|
Jentzsch J, Sabri A, Speckner K, Lallinger-Kube G, Weiss M, Ersfeld K. Microtubule polyglutamylation is important for regulating cytoskeletal architecture and motility in Trypanosoma brucei. J Cell Sci 2020; 133:jcs248047. [PMID: 32843576 DOI: 10.1242/jcs.248047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
The shape of kinetoplastids, such as Trypanosoma brucei, is precisely defined during the stages of the life cycle and governed by a stable subpellicular microtubule cytoskeleton. During the cell cycle and transitions between life cycle stages, this stability has to transiently give way to a dynamic behaviour to enable cell division and morphological rearrangements. How these opposing requirements of the cytoskeleton are regulated is poorly understood. Two possible levels of regulation are activities of cytoskeleton-associated proteins and microtubule post-translational modifications (PTMs). Here, we investigate the functions of two putative tubulin polyglutamylases in T. brucei, TTLL6A and TTLL12B. Depletion of both proteins leads to a reduction in tubulin polyglutamylation in situ and is associated with disintegration of the posterior cell pole, loss of the microtubule plus-end-binding protein EB1 and alterations of microtubule dynamics. We also observe a reduced polyglutamylation of the flagellar axoneme. Quantitative motility analysis reveals that the PTM imbalance correlates with a transition from directional to diffusive cell movement. These data show that microtubule polyglutamylation has an important role in regulating cytoskeletal architecture and motility in the parasite T. bruceiThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Adal Sabri
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Konstantin Speckner
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Gertrud Lallinger-Kube
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
9
|
Nosala C, Hagen KD, Hilton N, Chase TM, Jones K, Loudermilk R, Nguyen K, Dawson SC. Disc-associated proteins mediate the unusual hyperstability of the ventral disc in Giardia lamblia. J Cell Sci 2020; 133:jcs.227355. [PMID: 32661087 DOI: 10.1242/jcs.227355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Giardia lamblia, a widespread parasitic protozoan, attaches to the host gastrointestinal epithelium by using the ventral disc, a complex microtubule (MT) organelle. The 'cup-like' disc is formed by a spiral MT array that scaffolds numerous disc-associated proteins (DAPs) and higher-order protein complexes. In interphase, the disc is hyperstable and has limited MT dynamics; however, it remains unclear how DAPs confer these properties. To investigate mechanisms of hyperstability, we confirmed the disc-specific localization of over 50 new DAPs identified by using both a disc proteome and an ongoing GFP localization screen. DAPs localize to specific disc regions and many lack similarity to known proteins. By screening 14 CRISPRi-mediated DAP knockdown (KD) strains for defects in hyperstability and MT dynamics, we identified two strains - DAP5188KD and DAP6751KD -with discs that dissociate following high-salt fractionation. Discs in the DAP5188KD strain were also sensitive to treatment with the MT-polymerization inhibitor nocodazole. Thus, we confirm here that at least two of the 87 known DAPs confer hyperstable properties to the disc MTs, and we anticipate that other DAPs contribute to disc MT stability, nucleation and assembly.
Collapse
Affiliation(s)
- Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nicholas Hilton
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tiffany M Chase
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kelci Jones
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Rita Loudermilk
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kristofer Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
10
|
Hagen KD, McInally SG, Hilton ND, Dawson SC. Microtubule organelles in Giardia. ADVANCES IN PARASITOLOGY 2020; 107:25-96. [PMID: 32122531 DOI: 10.1016/bs.apar.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Giardia lamblia is a widespread parasitic protist with a complex MT cytoskeleton that is critical for motility, attachment, mitosis and cell division, and transitions between its two life cycle stages-the infectious cyst and flagellated trophozoite. Giardia trophozoites have both highly dynamic and highly stable MT organelles, including the ventral disc, eight flagella, the median body and the funis. The ventral disc, an elaborate MT organelle, is essential for the parasite's attachment to the intestinal villi to avoid peristalsis. Giardia's four flagellar pairs enable swimming motility and may also promote attachment. They are maintained at different equilibrium lengths and are distinguished by their long cytoplasmic regions and novel extra-axonemal structures. The functions of the median body and funis, MT organelles unique to Giardia, remain less understood. In addition to conserved MT-associated proteins, the genome is enriched in ankyrins, NEKs, and novel hypothetical proteins that also associate with the MT cytoskeleton. High-resolution ultrastructural imaging and a current inventory of more than 300 proteins associated with Giardia's MT cytoskeleton lay the groundwork for future mechanistic analyses of parasite attachment to the host, motility, cell division, and encystation/excystation. Giardia's unique MT organelles exemplify the capacity of MT polymers to generate intricate structures that are diverse in both form and function. Thus, beyond its relevance to pathogenesis, the study of Giardia's MT cytoskeleton informs basic cytoskeletal biology and cellular evolution. With the availability of new molecular genetic tools to disrupt gene function, we anticipate a new era of cytoskeletal discovery in Giardia.
Collapse
Affiliation(s)
- Kari D Hagen
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Shane G McInally
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Nicholas D Hilton
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States.
| |
Collapse
|
11
|
Imhof S, Zhang J, Wang H, Bui KH, Nguyen H, Atanasov I, Hui WH, Yang SK, Zhou ZH, Hill KL. Cryo electron tomography with volta phase plate reveals novel structural foundations of the 96-nm axonemal repeat in the pathogen Trypanosoma brucei. eLife 2019; 8:e52058. [PMID: 31710293 PMCID: PMC6974359 DOI: 10.7554/elife.52058] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The 96-nm axonemal repeat includes dynein motors and accessory structures as the foundation for motility of eukaryotic flagella and cilia. However, high-resolution 3D axoneme structures are unavailable for organisms among the Excavates, which include pathogens of medical and economic importance. Here we report cryo electron tomography structures of the 96-nm repeat from Trypanosoma brucei, a protozoan parasite in the Excavate lineage that causes African trypanosomiasis. We examined bloodstream and procyclic life cycle stages, and a knockdown lacking DRC11/CMF22 of the nexin dynein regulatory complex (NDRC). Sub-tomogram averaging yields a resolution of 21.8 Å for the 96-nm repeat. We discovered several lineage-specific structures, including novel inter-doublet linkages and microtubule inner proteins (MIPs). We establish that DRC11/CMF22 is required for the NDRC proximal lobe that binds the adjacent doublet microtubule. We propose that lineage-specific elaboration of axoneme structure in T. brucei reflects adaptations to support unique motility needs in diverse host environments.
Collapse
Affiliation(s)
- Simon Imhof
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Jiayan Zhang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Hoangkim Nguyen
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
| | - Ivo Atanasov
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Wong H Hui
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealUnited States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesUnited States
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUnited States
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
12
|
Militello G. Motility Control of Symbionts and Organelles by the Eukaryotic Cell: The Handling of the Motile Capacity of Individual Parts Forges a Collective Biological Identity. Front Psychol 2019; 10:2080. [PMID: 31551897 PMCID: PMC6747060 DOI: 10.3389/fpsyg.2019.02080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Motility occupies a decisive role in an organism's ability to autonomously interact with its environment. However, collective biological organizations exhibit individual parts, which have temporally or definitively lost their motor capacities, but still able to autonomously interact with their host. Indeed, although the flagella of bacterial symbionts of eukaryotic cells are usually inhibited or lost, they autonomously modify the environment provided by their host. Furthermore, the eukaryotic organelles of endosymbiotic origin (i.e., mitochondria and plastids) are no longer able to move autonomously; nonetheless, they make a cytoskeletal-driven motion that allows them to communicate with other eukaryotic cells and to perform a considerable number of physiological functions. The purpose of this article is twofold: first, to investigate how changes in the motile capacities of the parts of a nested biological organization affect their interactive autonomy; second, to examine how the modification of the interactive autonomy of the individual parts influences the constitutive autonomy of the collective association as a whole. The article argues that the emergence and maintenance of collective biological identities involves a strict control of the motile abilities of their constituting members. This entails a restriction, but not necessarily a complete loss, of the agential capacities of the individual parts.
Collapse
Affiliation(s)
- Guglielmo Militello
- Department of Logics and Philosophy of Science, IAS-Research Centre, University of the Basque Country, San Sebastián, Spain
| |
Collapse
|
13
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
14
|
Nosala C, Hagen KD, Dawson SC. 'Disc-o-Fever': Getting Down with Giardia's Groovy Microtubule Organelle. Trends Cell Biol 2017; 28:99-112. [PMID: 29153830 DOI: 10.1016/j.tcb.2017.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/14/2017] [Accepted: 10/25/2017] [Indexed: 11/29/2022]
Abstract
Protists have evolved a myriad of highly specialized cytoskeletal organelles that expand known functional capacities of microtubule (MT) polymers. One such innovation - the ventral disc - is a cup-shaped MT organelle that the parasite Giardia uses to attach to the small intestine of its host. The molecular mechanisms underlying the generation of suction-based forces by overall conformational changes of the disc remain unclear. The elaborate disc architecture is defined by novel proteins and complexes that decorate almost all disc MT protofilaments, and vary in composition and conformation along the length of the MTs. Future genetic, biochemical, and functional analyses of disc-associated proteins will be central toward understanding not only disc architecture and assembly, but also the overall disc conformational dynamics that promote attachment.
Collapse
Affiliation(s)
- Christopher Nosala
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA.
| |
Collapse
|
15
|
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia. mSphere 2017; 2:mSphere00248-17. [PMID: 28932813 PMCID: PMC5597967 DOI: 10.1128/msphere.00248-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023] Open
Abstract
The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia's sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3's association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3-actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCEGiardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia's sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes.
Collapse
|
16
|
Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A 2017; 114:E5854-E5863. [PMID: 28679631 DOI: 10.1073/pnas.1705096114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Devoid of all known canonical actin-binding proteins, the prevalent parasite Giardia lamblia uses an alternative mechanism for cytokinesis. Unique aspects of this mechanism can potentially be leveraged for therapeutic development. Here, live-cell imaging methods were developed for Giardia to establish division kinetics and the core division machinery. Surprisingly, Giardia cytokinesis occurred with a median time that is ∼60 times faster than mammalian cells. In contrast to cells that use a contractile ring, actin was not concentrated in the furrow and was not directly required for furrow progression. Live-cell imaging and morpholino depletion of axonemal Paralyzed Flagella 16 indicated that flagella-based forces initiated daughter cell separation and provided a source for membrane tension. Inhibition of membrane partitioning blocked furrow progression, indicating a requirement for membrane trafficking to support furrow advancement. Rab11 was found to load onto the intracytoplasmic axonemes late in mitosis and to accumulate near the ends of nascent axonemes. These developing axonemes were positioned to coordinate trafficking into the furrow and mark the center of the cell in lieu of a midbody/phragmoplast. We show that flagella motility, Rab11, and actin coordination are necessary for proper abscission. Organisms representing three of the five eukaryotic supergroups lack myosin II of the actomyosin contractile ring. These results support an emerging view that flagella play a central role in cell division among protists that lack myosin II and additionally implicate the broad use of membrane tension as a mechanism to drive abscission.
Collapse
|
17
|
Abstract
Giardia lamblia, a major parasite, is an emerging model organism due to its compact genomic arrangement and composition. The most popular reverse genetic technique, RNAi, is ineffective in Giardia. In contrast, protein depletion by translation blocking morpholinos is suitable for most gene targets and provides up to 80% depletion of the target protein. The method is fast, reliable, and specific. After antisense morpholino oligomer delivery into Giardia trophozoites by electroporation, the cells can be used for many subsequent analyses 8-48 h after treatment. In this chapter, suitable gene tags, plasmids, and techniques necessary for proper morpholino targeting are described.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| | | |
Collapse
|
18
|
Preisner H, Karin EL, Poschmann G, Stühler K, Pupko T, Gould SB. The Cytoskeleton of Parabasalian Parasites Comprises Proteins that Share Properties Common to Intermediate Filament Proteins. Protist 2016; 167:526-543. [PMID: 27744090 DOI: 10.1016/j.protis.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023]
Abstract
Certain protist lineages bear cytoskeletal structures that are germane to them and define their individual group. Trichomonadida are excavate parasites united by a unique cytoskeletal framework, which includes tubulin-based structures such as the pelta and axostyle, but also other filaments such as the striated costa whose protein composition remains unknown. We determined the proteome of the detergent-resistant cytoskeleton of Tetratrichomonas gallinarum. 203 proteins with homology to Trichomonas vaginalis were identified, which contain significantly more long coiled-coil regions than control protein sets. Five candidates were shown to associate with previously described cytoskeletal structures including the costa and the expression of a single T. vaginalis protein in T. gallinarum induced the formation of accumulated, striated filaments. Our data suggests that filament-forming proteins of protists other than actin and tubulin share common structural properties with metazoan intermediate filament proteins, while not being homologous. These filament-forming proteins might have evolved many times independently in eukaryotes, or simultaneously in a common ancestor but with different evolutionary trajectories downstream in different phyla. The broad variety of filament-forming proteins uncovered, and with no homologs outside of the Trichomonadida, once more highlights the diverse nature of eukaryotic proteins with the ability to form unique cytoskeletal filaments.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), BMFZ, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
19
|
Mitosis, microtubule dynamics and the evolution of kinesins. Exp Cell Res 2015; 334:61-9. [PMID: 25708751 DOI: 10.1016/j.yexcr.2015.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
20
|
Kusdian G, Gould SB. The biology of Trichomonas vaginalis in the light of urogenital tract infection. Mol Biochem Parasitol 2015; 198:92-9. [PMID: 25677793 DOI: 10.1016/j.molbiopara.2015.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
The human pathogen Trichomonas vaginalis is a parasitic protist. It is a representative of the eukaryotic supergroup Excavata that includes a few other protist parasites such as Leishmania, Trypanosoma and Giardia. T. vaginalis is the agent of trichomoniasis and in the US alone, one in 30 women tests positive for this parasite. The disease is easily treated with metronidazole in most cases, but resistant strains are on the rise. The biology of Trichomonas is remarkable: it includes for example the biggest protist genome currently sequenced, the expression of about 30,000 protein-encoding genes (and thousands of lncRNAs and pseudogenes), anaerobic hydrogenosomes, rapid morphogenesis during infection, the secretion of exosomes, the manipulation of the vaginal microbiota through phagocytosis and a rich strain-dependent diversity. Here we provide an overview of Trichomonas biology with a focus on its relevance for pathogenicity and summarise the most recent advances. With some respect this parasite offers the opportunity to serve as a model system to study certain aspects of cell and genome biology, but tackling the complex biology of T. vaginalis is also important to better understand the effects that accompany infection and direct symptoms.
Collapse
Affiliation(s)
- Gary Kusdian
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Jékely G. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles. Cold Spring Harb Perspect Biol 2014; 6:a016030. [PMID: 25183829 DOI: 10.1101/cshperspect.a016030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| |
Collapse
|
22
|
Pánek T, Simpson AG, Hampl V, Čepička I. Creneis carolina gen. et sp. nov. (Heterolobosea), a Novel Marine Anaerobic Protist with Strikingly Derived Morphology and Life Cycle. Protist 2014; 165:542-67. [DOI: 10.1016/j.protis.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 11/29/2022]
|
23
|
Identification of obscure yet conserved actin-associated proteins in Giardia lamblia. EUKARYOTIC CELL 2014; 13:776-84. [PMID: 24728194 DOI: 10.1128/ec.00041-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton.
Collapse
|