1
|
Kong W, Hara M, Tokunaga Y, Okumura K, Hirano Y, Miao J, Takenoshita Y, Hashimoto M, Sasaki H, Fujimori T, Wakabayashi Y, Fukagawa T. CENP-C-Mis12 complex establishes a regulatory loop through Aurora B for chromosome segregation. Life Sci Alliance 2025; 8:e202402927. [PMID: 39433344 PMCID: PMC11494776 DOI: 10.26508/lsa.202402927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood. Here, we demonstrate a regulatory loop between the kinetochore protein CENP-C and Aurora B kinase, which is critical for the error correction of kinetochore-microtubule attachment. This regulatory loop is mediated through the binding of CENP-C to the outer kinetochore Mis12 complex (Mis12C). Although the Mis12C-binding region of CENP-C is dispensable for mouse development and proliferation in human RPE-1 cells, those cells lacking this region display increased mitotic defects. The CENP-C-Mis12C interaction facilitates the centromeric recruitment of Aurora B and the mitotic error correction in human cells. Given that Aurora B reinforces the CENP-C-Mis12C interaction, our findings reveal a positive regulatory loop between Aurora B recruitment and the CENP-C-Mis12C interaction, which ensures chromosome biorientation for accurate chromosome segregation.
Collapse
Affiliation(s)
- Weixia Kong
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yurika Tokunaga
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kazuhiro Okumura
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuhiro Hirano
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jiahang Miao
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yusuke Takenoshita
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masakazu Hashimoto
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Sasaki
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yuichi Wakabayashi
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Ballmer D, Lou HJ, Ishii M, Turk BE, Akiyoshi B. Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes. J Cell Biol 2024; 223:e202401169. [PMID: 39196069 PMCID: PMC11354203 DOI: 10.1083/jcb.202401169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Kinetochores form the interface between chromosomes and spindle microtubules and are thus under tight control by a complex regulatory circuitry. The Aurora B kinase plays a central role within this circuitry by destabilizing improper kinetochore-microtubule attachments and relaying the attachment status to the spindle assembly checkpoint. Intriguingly, Aurora B is conserved even in kinetoplastids, a group of early-branching eukaryotes which possess a unique set of kinetochore proteins. It remains unclear how their kinetochores are regulated to ensure faithful chromosome segregation. Here, we show in Trypanosoma brucei that Aurora B activity controls the metaphase-to-anaphase transition through phosphorylation of the divergent Bub1-like protein KKT14. Depletion of KKT14 overrides the metaphase arrest resulting from Aurora B inhibition, while expression of non-phosphorylatable KKT14 delays anaphase onset. Finally, we demonstrate that re-targeting Aurora B to the outer kinetochore suffices to promote mitotic exit but causes extensive chromosome missegregation in anaphase. Our results indicate that Aurora B and KKT14 are involved in an unconventional circuitry controlling cell cycle progression in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Sayan M, Tuac Y, Akgul M, Kucukcolak S, Tjio E, Akbulut D, Chen LW, Yang DD, Moningi S, Leeman JE, Orio PF, Nguyen PL, D’Amico AV, Aktan C. Molecular Alterations Associated with Histologically Overt Stromal Response in Patients with Prostate Cancer. Int J Mol Sci 2024; 25:8913. [PMID: 39201599 PMCID: PMC11354361 DOI: 10.3390/ijms25168913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Prostate cancer has substantial heterogeneity in clinical outcomes and therapeutic responses, posing challenges in predicting disease progression and tailoring treatment strategies. Recent studies have highlighted the potential prognostic value of evaluating the tumor microenvironment, including the presence of a histologically overt stromal response (HOST-response) characterized by peri-glandular stromal changes and architectural distortions. This retrospective study examined patient records from The Cancer Genome Atlas database to identify genomic alterations associated with the HOST-response in prostate cancer. Among 348 patients who underwent radical prostatectomy, 160 (45.98%) were identified as having a HOST-response. A gene expression analysis revealed 1263 genes with significantly higher expression in patients with a HOST-response. A protein-protein interaction network analysis identified seven hub genes (KIF2C, CENPA, CDC20, UBE2C, ESPL1, KIF23, and PLK1) highly interconnected in the network. A functional enrichment analysis revealed alterations in the cell division, cytoskeletal organization, cytokinesis, and interleukin-16 signaling pathways in patients with a HOST-response, suggesting dysregulated proliferation and inflammation. The distinct molecular signature associated with the HOST-response provides insights into the tumor-stroma interactions driving adverse outcomes and potential targets for tailored therapeutic interventions in this subset of patients with prostate cancer.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yetkin Tuac
- Department of Statistics, Ankara University, Ankara 06100, Türkiye
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Samet Kucukcolak
- Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, NJ 07102, USA
| | - Elza Tjio
- Histopathology Department, Harrogate District Hospital, Harrogate HG2 7SX, UK
| | - Dilara Akbulut
- Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luke W. Chen
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David D. Yang
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shalini Moningi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan E. Leeman
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Peter F. Orio
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Paul L. Nguyen
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cagdas Aktan
- Department of Medical Biology, Faculty of Medicine, Bandirma Onyedi Eylul University, Balikesir 10250, Türkiye
| |
Collapse
|
4
|
Balachandra V, Shrestha RL, Hammond CM, Lin S, Hendriks IA, Sethi SC, Chen L, Sevilla S, Caplen NJ, Chari R, Karpova TS, McKinnon K, Todd MA, Koparde V, Cheng KCC, Nielsen ML, Groth A, Basrai MA. DNAJC9 prevents CENP-A mislocalization and chromosomal instability by maintaining the fidelity of histone supply chains. EMBO J 2024; 43:2166-2197. [PMID: 38600242 PMCID: PMC11148058 DOI: 10.1038/s44318-024-00093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.
Collapse
Grants
- 75N91019D00024 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- ZIA BC 010822 HHS | NIH | NCI | Center for Cancer Research (CCR)
- ZIA BC 011704 HHS | NIH | NCI | Center for Cancer Research (CCR)
- 75N91019D00024 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- 0135-00096B and 8020-00220B,EPIC-XS-823839,R146-A9159-16-S2 Independent Research Fund Denmark, European Union's Horizon 2020 research and innovation program, Danish Cancer Society
- ERC CoG 724436,R198-2015-269 and R313-2019-448,7016-00042B,NNF21OC0067425,NNF14CC0001 European Research Council, Lund-beck Foundation, Independent Research Fund Denmark, Novo Nordisk Foundation
- HHS | NIH | National Cancer Institute (NCI)
- Independent Research Fund Denmark, European Union’s Horizon 2020 research and innovation program, Danish Cancer Society
- NIH Intramural Research Program, Intramural Research Program of the National Center for Advancing Translational Sciences (NCATS)
Collapse
Affiliation(s)
- Vinutha Balachandra
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roshan L Shrestha
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Shinjen Lin
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Subhash Chandra Sethi
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lu Chen
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core (GMC), Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Tatiana S Karpova
- Optical Microscopy Core, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine McKinnon
- Flow Cytometry Core, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Am Todd
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ken Chih-Chien Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Munira A Basrai
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Ballmer D, Akiyoshi B. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 2024; 13:RP93522. [PMID: 38564240 PMCID: PMC10987093 DOI: 10.7554/elife.93522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| | - Bungo Akiyoshi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| |
Collapse
|
6
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
7
|
Cao J, Hori T, Ariyoshi M, Fukagawa T. Artificial tethering of constitutive centromere-associated network proteins induces CENP-A deposition without Knl2 in DT40 cells. J Cell Sci 2024; 137:jcs261639. [PMID: 38319136 DOI: 10.1242/jcs.261639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
The kinetochore is an essential structure for chromosome segregation. Although the kinetochore is usually formed on a centromere locus, it can be artificially formed at a non-centromere locus by protein tethering. An artificial kinetochore can be formed by tethering of CENP-C or CENP-I, members of the constitutive centromere-associated network (CCAN). However, how CENP-C or CENP-I recruit the centromere-specific histone CENP-A to form an artificial kinetochore remains unclear. In this study, we analyzed this issue using the tethering assay combined with an auxin-inducible degron (AID)-based knockout method in chicken DT40 cells. We found that tethering of CENP-C or CENP-I induced CENP-A incorporation at the non-centromeric locus in the absence of Knl2 (or MIS18BP1), a component of the Mis18 complex, and that Knl2 tethering recruited CENP-A in the absence of CENP-C. We also showed that CENP-C coimmunoprecipitated with HJURP, independently of Knl2. Considering these results, we propose that CENP-C recruits CENP-A by HJURP binding to form an artificial kinetochore. Our results suggest that CENP-C or CENP-I exert CENP-A recruitment activity, independently of Knl2, for artificial kinetochore formation in chicken DT40 cells. This gives us a new insight into mechanisms for CENP-A incorporation.
Collapse
Affiliation(s)
- JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Ballmer D, Lou HJ, Ishii M, Turk BE, Akiyoshi B. An unconventional regulatory circuitry involving Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576407. [PMID: 38293145 PMCID: PMC10827227 DOI: 10.1101/2024.01.20.576407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Accurate chromosome segregation during mitosis requires that all chromosomes establish stable bi-oriented attachments with the spindle apparatus. Kinetochores form the interface between chromosomes and spindle microtubules and as such are under tight control by complex regulatory circuitry. As part of the chromosomal passenger complex (CPC), the Aurora B kinase plays a central role within this circuitry by destabilizing improper kinetochore-microtubule attachments and relaying the attachment status to the spindle assembly checkpoint, a feedback control system that delays the onset of anaphase by inhibiting the anaphase-promoting complex/cyclosome. Intriguingly, Aurora B is conserved even in kinetoplastids, an evolutionarily divergent group of eukaryotes, whose kinetochores are composed of a unique set of structural and regulatory proteins. Kinetoplastids do not have a canonical spindle checkpoint and it remains unclear how their kinetochores are regulated to ensure the fidelity and timing of chromosome segregation. Here, we show in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness, that inhibition of Aurora B using an analogue-sensitive approach arrests cells in metaphase, with a reduction in properly bi-oriented kinetochores. Aurora B phosphorylates several kinetochore proteins in vitro, including the N-terminal region of the divergent Bub1-like protein KKT14. Depletion of KKT14 partially overrides the cell cycle arrest caused by Aurora B inhibition, while overexpression of a non-phosphorylatable KKT14 protein results in a prominent delay in the metaphase-to-anaphase transition. Finally, we demonstrate using a nanobody-based system that re-targeting the catalytic module of the CPC to the outer kinetochore is sufficient to promote mitotic exit but causes massive chromosome mis-segregation in anaphase. Our results indicate that the CPC and KKT14 are involved in an unconventional pathway controlling mitotic exit and error-free chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent Edinburgh, EH9 3BF, United Kingdom
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent Edinburgh, EH9 3BF, United Kingdom
| |
Collapse
|
9
|
Mihók E, Polgári D, Lenykó-Thegze A, Makai D, Fábián A, Ali M, Kis A, Sepsi A, Sági L. Plasticity of parental CENH3 incorporation into the centromeres in wheat × barley F1 hybrids. FRONTIERS IN PLANT SCIENCE 2024; 15:1324817. [PMID: 38313805 PMCID: PMC10834757 DOI: 10.3389/fpls.2024.1324817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Incorporating the centromere-specific histone H3 protein CENH3 into the centromeric nucleosomes is indispensable for accurate centromere function and balanced chromosome segregation in most eukaryotes, including higher plants. In the cell nuclei of interspecific hybrids, divergent centromeric DNAs cohabit and lead the corresponding parental chromosomes through the mitotic and meiotic cell divisions. Depending on the transmission of the parental chromosomes carrying the CENH3-encoding genes, CENH3 proteins from one or both parents may be present in these hybrids. The incorporation of parental CENH3 proteins into the divergent centromeres and their role in the chromosome elimination process in interspecific hybrids is still poorly understood. Here, we produced wheat × barley F1 hybrids that carried different combinations of barley chromosomes with genes encoding for either one (αCENH3) or both barley CENH3 protein variants (α- and βCENH3). We generated specific antibodies distinguishing between the wheat CENH3 proteins and barley αCENH3 and applied them together with FISH probes to detect the precise pattern of parental CENH3 deposition into the wheat and barley centromeric nucleosomes. Analysis of somatic and meiotic nuclei of the wheat × barley hybrids revealed the plasticity of the maternal (wheat) CENH3 proteins to become incorporated into the paternal (barley) centromeric nucleosomes. However, no evidence for paternal CENH3 plasticity was detected in this study. The significance of the unilateral centromere plasticity and possible patterns of CENH3 incorporation into centromeres in interspecific hybrids are discussed.
Collapse
Affiliation(s)
- Edit Mihók
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Dávid Polgári
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, Hungary
| | - Andrea Lenykó-Thegze
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - Diána Makai
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Attila Fábián
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - Mohammad Ali
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - András Kis
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Adél Sepsi
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
| | - László Sági
- Centre for Agricultural Research, Hungarian Research Network, Martonvásár, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
10
|
Ariyoshi M, Fukagawa T. An updated view of the kinetochore architecture. Trends Genet 2023; 39:941-953. [PMID: 37775394 DOI: 10.1016/j.tig.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
The kinetochore is a supramolecular complex that facilitates faithful chromosome segregation by bridging the centromere and spindle microtubules. Recent functional and structural studies on the inner kinetochore subcomplex, constitutive centromere-associated network (CCAN) have updated our understanding of kinetochore architecture. While the CCAN core establishes a stable interface with centromeric chromatin, CCAN organization is dynamically altered and coupled with cell cycle progression. Furthermore, the CCAN components, centromere protein (CENP)-C and CENP-T, mediate higher-order assembly of multiple kinetochore units on the regional centromeres of vertebrates. This review highlights new insights into kinetochore rigidity, plasticity, and clustering, which are key to understanding temporal and spatial regulatory mechanisms of chromosome segregation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Hara M, Ariyoshi M, Sano T, Nozawa RS, Shinkai S, Onami S, Jansen I, Hirota T, Fukagawa T. Centromere/kinetochore is assembled through CENP-C oligomerization. Mol Cell 2023:S1097-2765(23)00379-9. [PMID: 37295434 DOI: 10.1016/j.molcel.2023.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Sano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Soya Shinkai
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Rodrigues A, MacQuarrie KL, Freeman E, Lin A, Willis AB, Xu Z, Alvarez AA, Ma Y, White BEP, Foltz DR, Huang S. Nucleoli and the nucleoli-centromere association are dynamic during normal development and in cancer. Mol Biol Cell 2023; 34:br5. [PMID: 36753381 PMCID: PMC10092642 DOI: 10.1091/mbc.e22-06-0237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Centromeres are known to cluster around nucleoli in Drosophila and mammalian cells, but the significance of the nucleoli-centromere interaction remains underexplored. To determine whether the interaction is dynamic under different physiological and pathological conditions, we examined nucleolar structure and centromeres at various differentiation stages using cell culture models and the results showed dynamic changes in nucleolar characteristics and nucleoli-centromere interactions through differentiation and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which is clustered with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the centromere association decreases. In terminally differentiated cells, including myotubes, neurons, and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may play a role in facilitating malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation reduces the nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.
Collapse
Affiliation(s)
- Aaron Rodrigues
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kyle L. MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Emma Freeman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alicia Lin
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alexander B. Willis
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhaofa Xu
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - Angel A. Alvarez
- Stem Cell Core and Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yongchao Ma
- Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - Bethany E. Perez White
- Department of Dermatology and Skin Biology and Diseases Resource-based Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
13
|
Jiang H, Ariyoshi M, Hori T, Watanabe R, Makino F, Namba K, Fukagawa T. The cryo-EM structure of the CENP-A nucleosome in complex with ggKNL2. EMBO J 2023; 42:e111965. [PMID: 36744604 PMCID: PMC10015371 DOI: 10.15252/embj.2022111965] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.
Collapse
Affiliation(s)
- Honghui Jiang
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Mariko Ariyoshi
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tetsuya Hori
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Reito Watanabe
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Fumiaki Makino
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- JEOL Ltd.AkishimaJapan
| | - Keiichi Namba
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- RIKEN Center for Biosystems Dynamics Research and SPring‐8 CenterSuitaJapan
- JEOL YOKOGUSHI Research Alliance LaboratoriesOsaka UniversitySuitaJapan
| | - Tatsuo Fukagawa
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
14
|
Ujiie R, Kawamura K, Yamashita S, Mitsutake N, Suzuki K. Anti-CENP-C Antibody-Based Immunofluorescence Dicentric Assay: Radiation Dose-Response, Validation Studies, and Radiation Dose-Dependency on Sister Centromere Fluorescence. Radiat Res 2023; 199:74-82. [PMID: 36442049 DOI: 10.1667/rade-22-00050.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Dicentric chromosome assay (DCA) is the most accepted cytological technique for the purpose of biological dosimetry in radiological and nuclear accidents, however, it is not always easy to evaluate dicentric chromosomes because of the technical difficulty in identifying dicentric chromosomes on Giemsa-stained metaphase chromosome samples. Here, we applied an antibody recognizing centromere protein (CENP) C, CENP-C, whose antigenicity is resistant to the fixation with Carnoy's solution. Normal human diploid cells were irradiated with various doses of 137Cs γ rays at 1 Gy/ min, treated with hypotonic solution, fixed with Carnoy's fixative, and metaphase chromosome spreads were stained with anti-CENP-C antibody. Dose-dependent induction of dicentric chromosomes was confirmed between 1 and 10 Gy of γ rays, and the results were compatible with those obtained by the conventional Giemsa-stained chromosome samples. The CENP-C assay also uncovered the difference in the fluorescence from the sister centromeres on the same chromosome, which was more pronounced after radiation exposure. Although the underlying mechanism is still to be determined, the result suggests a novel effect of radiation on centromeres. The innovative protocol for CENP-C-based DCA, which enables ideal visualization of centromeres, is simple, effective and reliable. It does not require skilled examiners, so that it may be an alternative method, avoiding uneasiness of the current DCA using Giemsa-stained metaphase chromosome samples.
Collapse
Affiliation(s)
- Risa Ujiie
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kasumi Kawamura
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima 960-1295, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
15
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Allipra S, Anirudhan K, Shivanandan S, Raghunathan A, Maruthachalam R. The kinetochore protein NNF1 has a moonlighting role in the vegetative development of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1064-1085. [PMID: 34850467 DOI: 10.1111/tpj.15614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The kinetochore is a supramolecular protein complex assembled on the chromosomes, essential for faithful segregation of the genome during cell divisions. More than 100 proteins are known to constitute the eukaryotic kinetochore architecture, primarily identified using non-plant organisms. A majority of them are fast evolving and are under positive selection. Thus, functional characterization of the plant kinetochore proteins is limited as only a few conserved orthologs sharing sequence similarity with their animal counterparts have been examined. Here, we report the functional characterization of the Arabidopsis thaliana homolog of the yeast NNF1/human PMF1 outer kinetochore protein and show that it has both kinetochore and non-kinetochore functions in plant growth and development. Knockout of NNF1 causes embryo lethality implying its essential role in cell division. AtNNF1 interacts with MIS12 in Y2H and co-immunoprecipitation assays, confirming it is one of the constituents of the plant MIS12 complex. GFP-NNF1 localizes to the kinetochore, rescuing the embryo lethal nnf1-1-/- phenotype, but the rescued plants (GFP-NNF1nnf1-/- ) are dwarf, displaying hypomorphic phenotypes with no evidence of mitotic or meiotic segregation defects. GFP-NNF1nnf1-/- dwarf plants have reduced levels of endogenous polyamines, which are partially rescued to wild-type levels upon exogenous application of polyamines. Mutations in the putative leucine zipper-like binding motif of NNF1 gave rise to a dominant-negative tall plant phenotype reminiscent of constitutive gibberellic acid (GA) action. These contrasting hypomorphic dwarf and antimorphic tall phenotypes facilitated us to attribute a moonlighting role to Arabidopsis NNF1 affecting polyamine and GA metabolism apart from its primary role in kinetochores.
Collapse
Affiliation(s)
- Sreejith Allipra
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Krishnapriya Anirudhan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Siddharth Shivanandan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Abhishek Raghunathan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
17
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
18
|
Deng DJ, Xia QC, Jia GS, Suo F, Chen JL, Sun L, Wang JQ, Wang SM, Du LL, Wang Y, Jin QW. Perturbation of kinetochore function using GFP-binding protein in fission yeast. G3 GENES|GENOMES|GENETICS 2021; 11:6353032. [PMID: 34849791 PMCID: PMC8527488 DOI: 10.1093/g3journal/jkab290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Using genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Single-domain camelid antibodies generated against GFP have been engineered as nanobodies or GFP-binding proteins (GBPs) that can bind GFP as well as some GFP variants with high affinity and selectivity. In this study, we have used GBP-mCherry fusion protein as a tool to perturb the natural functions of a few kinetochore proteins in the fission yeast Schizosaccharomyces pombe. We found that cells simultaneously expressing GBP-mCherry and the GFP-tagged inner kinetochore protein Cnp1 are sensitive to high temperature and microtubule drug thiabendazole (TBZ). In addition, kinetochore-targeted GBP-mCherry by a few major kinetochore proteins with GFP tags causes defects in faithful chromosome segregation. Thus, this setting compromises the functions of kinetochores and renders cells to behave like conditional mutants. Our study highlights the potential of using GBP as a general tool to perturb the function of some GFP-tagged proteins in vivo with the objective of understanding their functional relevance to certain physiological processes, not only in yeasts, but also potentially in other model systems.
Collapse
Affiliation(s)
- Da-Jie Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qian-Cheng Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jia-Li Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jin-Qing Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuang-Min Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
19
|
Kuznetsova VG, Gavrilov-Zimin IA, Grozeva SM, Golub NV. Comparative analysis of chromosome numbers and sex chromosome systems in Paraneoptera (Insecta). COMPARATIVE CYTOGENETICS 2021; 15:279-327. [PMID: 34616525 PMCID: PMC8490342 DOI: 10.3897/compcytogen.v15.i3.71866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
This article is part (the 4th article) of the themed issue (a monograph) "Aberrant cytogenetic and reproductive patterns in the evolution of Paraneoptera". The purpose of this article is to consider chromosome structure and evolution, chromosome numbers and sex chromosome systems, which all together constitute the chromosomal basis of reproduction and are essential for reproductive success. We are based on our own observations and literature data available for all major lineages of Paraneoptera including Zoraptera (angel insects), Copeognatha (=Psocoptera; bark lice), Parasita (=Phthiraptera s. str; true lice), Thysanoptera (thrips), Homoptera (scale insects, aphids, jumping plant-lice, whiteflies, and true hoppers), Heteroptera (true bugs), and Coleorrhyncha (moss bugs). Terminology, nomenclature, classification, and the study methods are given in the first paper of the issue (Gavrilov-Zimin et al. 2021).
Collapse
Affiliation(s)
- Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Ilya A. Gavrilov-Zimin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| | - Snejana M. Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Blvd Tsar Osvoboditel 1, Sofia 1000, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Natalia V. Golub
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg, 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
| |
Collapse
|
20
|
Centromere assembly and non-random sister chromatid segregation in stem cells. Essays Biochem 2021; 64:223-232. [PMID: 32406510 DOI: 10.1042/ebc20190066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023]
Abstract
Asymmetric cell division (ACD) produces daughter cells with separate distinct cell fates and is critical for the development and regulation of multicellular organisms. Epigenetic mechanisms are key players in cell fate determination. Centromeres, epigenetically specified loci defined by the presence of the histone H3-variant, centromere protein A (CENP-A), are essential for chromosome segregation at cell division. ACDs in stem cells and in oocyte meiosis have been proposed to be reliant on centromere integrity for the regulation of the non-random segregation of chromosomes. It has recently been shown that CENP-A is asymmetrically distributed between the centromeres of sister chromatids in male and female Drosophila germline stem cells (GSCs), with more CENP-A on sister chromatids to be segregated to the GSC. This imbalance in centromere strength correlates with the temporal and asymmetric assembly of the mitotic spindle and potentially orientates the cell to allow for biased sister chromatid retention in stem cells. In this essay, we discuss the recent evidence for asymmetric sister centromeres in stem cells. Thereafter, we discuss mechanistic avenues to establish this sister centromere asymmetry and how it ultimately might influence cell fate.
Collapse
|
21
|
Immunization with CENP-C Causes Aberrant Chromosome Segregation during Oocyte Meiosis in Mice. J Immunol Res 2021; 2021:4610494. [PMID: 33604391 PMCID: PMC7868151 DOI: 10.1155/2021/4610494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/18/2022] Open
Abstract
Anticentromere antibodies (ACA) were associated with lower oocyte maturation rates and cleavage rates, while the mechanism was not clear. Aims of this study were to examine whether active immunization with centromere protein C could elicit the CENP-C autoantibody in mice and the impacts of the CENP-C autoantibody on oocyte meiosis. Mice were divided into two groups, one was the experimental group immunized with human centromere protein C and Freund's adjuvant (CFA), and the other was the control group injected with CFA only. Serum and oocytes of BALB/c mice immunized with human centromere protein C (CENP-C) in complete Freund's adjuvant (CFA) or injected with only CFA were studied for the development of the CENP-C antibody. Rates of germinal vesicle breakdown (GVBD), first polar body (Pb1) extrusion, abnormal spindle morphology, and chromosome misalignment were compared between the experimental group and the control group. The CENP-C antibody was only observed in serum and oocytes of mice immunized with the centromere protein C antigen. The first polar body (Pb1) extrusion rate was lower in the experimental group (P < 0.01). A higher percentage of spindle defects and chromosome congression failure were also detected in the experimental group (spindle defects: 64.67 ± 1.16% vs. 9.27 ± 2.28% control; chromosome misalignment: 50.80 ± 2.40% vs. 8.30 ± 1.16% control; P < 0.01 for both). Oocyte meiosis was severely impaired by the CENP-C antibody, which may be the main mechanism of adverse reproductive outcomes for ACA-positive women who have no clinical symptoms of any autoimmune diseases.
Collapse
|
22
|
Ariyoshi M, Makino F, Watanabe R, Nakagawa R, Kato T, Namba K, Arimura Y, Fujita R, Kurumizaka H, Okumura EI, Hara M, Fukagawa T. Cryo-EM structure of the CENP-A nucleosome in complex with phosphorylated CENP-C. EMBO J 2021; 40:e105671. [PMID: 33463726 DOI: 10.15252/embj.2020105671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,JEOL Ltd., Akishima, Tokyo, Japan
| | - Reito Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Institute of Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR) and SPring-8 Center, and JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ei-Ichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
23
|
Zhang M, Zheng F, Xiong Y, Shao C, Wang C, Wu M, Niu X, Dong F, Zhang X, Fu C, Zang J. Centromere targeting of Mis18 requires the interaction with DNA and H2A-H2B in fission yeast. Cell Mol Life Sci 2021; 78:373-384. [PMID: 32318758 PMCID: PMC11073290 DOI: 10.1007/s00018-020-03502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 11/26/2022]
Abstract
Faithful chromosome segregation during mitosis requires the correct assembly of kinetochore on the centromere. CENP-A is a variant of histone H3, which specializes the centromere region on chromatin and mediates the kinetochore assembly. The Mis18 complex plays a critical role in initiating the centromere loading of the newly-synthesized CENP-A. However, it remains unclear how Mis18 complex (spMis18, spMis16 and spMis19) is located to the centromere to license the recruitment of Cnp1CENP-A in Schizosaccharomyces pombe. We found that spMis18 directly binds to nucleosomal DNA through its extreme C-terminus and interacts with H2A-H2B dimer via the acidic region on the surface of its Yippee-like domain. Live-cell imaging confirmed that mutation of the acidic region and deletion of the extreme C-terminus significantly impairs the localization of spMis18 and Cnp1 to the centromere and delays chromosome segregation during mitosis. Our findings illustrate that the interaction of spMis18 with histone H2A-H2B and DNA plays important roles in the recruitment of spMis18 and Cnp1 to the centromere in fission yeast.
Collapse
Affiliation(s)
- Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Fan Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Chen Shao
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Chengliang Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Minhao Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Xiaojia Niu
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Fenfen Dong
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China.
| | - Chuanhai Fu
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China.
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, CAS Center for Excellence in Biomacromolecules, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China.
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, 230026, Anhui, China.
| |
Collapse
|
24
|
Hori T, Cao J, Nishimura K, Ariyoshi M, Arimura Y, Kurumizaka H, Fukagawa T. Essentiality of CENP-A Depends on Its Binding Mode to HJURP. Cell Rep 2020; 33:108388. [PMID: 33207191 DOI: 10.1016/j.celrep.2020.108388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
CENP-A incorporation is critical for centromere specification and is mediated by the chaperone HJURP. The CENP-A-targeting domain (CATD) of CENP-A specifically binds to HJURP, and this binding is conserved. However, the binding interface of CENP-A-HJURP is yet to be understood. Here, we identify the critical residues for chicken CENP-A or HJURP. The A59Q mutation in the α1-helix of chicken CENP-A causes CENP-A mis-incorporation and subsequent cell death, whereas the corresponding mutation in human CENP-A does not. We also find that W53 of HJURP, which is a contact site of A59 in CENP-A, is also essential in chicken cells. Our comprehensive analyses reveal that the affinities of HJURP to CATD differ between chickens and humans. However, the introduction of two arginine residues to the chicken HJURP αA-helix suppresses CENP-A mis-incorporation in chicken cells expressing CENP-AA59Q. Our data explain the mechanisms and evolution of CENP-A essentiality by the CENP-A-HJURP interaction.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
25
|
Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int J Mol Sci 2020; 21:ijms21218062. [PMID: 33137955 PMCID: PMC7662960 DOI: 10.3390/ijms21218062] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Through various pathways of cell death, degradation, and regulated extrusion, partial or complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses and microbes) are continuously shed into human body fluids in the form of segmented cell-free DNA (cfDNA) molecules. While the genetic complexity of total cfDNA is vast, the development of progressively efficient extraction, high-throughput sequencing, characterization via bioinformatics procedures, and detection have resulted in increasingly accurate partitioning and profiling of cfDNA subtypes. Not surprisingly, cfDNA analysis is emerging as a powerful clinical tool in many branches of medicine. In addition, the low invasiveness of longitudinal cfDNA sampling provides unprecedented access to study temporal genomic changes in a variety of contexts. However, the genetic diversity of cfDNA is also a great source of ambiguity and poses significant experimental and analytical challenges. For example, the cfDNA population in the bloodstream is heterogeneous and also fluctuates dynamically, differs between individuals, and exhibits numerous overlapping features despite often originating from different sources and processes. Therefore, a deeper understanding of the determining variables that impact the properties of cfDNA is crucial, however, thus far, is largely lacking. In this work we review recent and historical research on active vs. passive release mechanisms and estimate the significance and extent of their contribution to the composition of cfDNA.
Collapse
|
26
|
Jang SM, Redon CE, Thakur BL, Bahta MK, Aladjem MI. Regulation of cell cycle drivers by Cullin-RING ubiquitin ligases. Exp Mol Med 2020; 52:1637-1651. [PMID: 33005013 PMCID: PMC8080560 DOI: 10.1038/s12276-020-00508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Meriam K Bahta
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
27
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small-Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020; 59:10327-10331. [PMID: 32163217 PMCID: PMC7318220 DOI: 10.1002/anie.201916718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Indexed: 01/12/2023]
Abstract
The chromosome periphery (CP) is a complex network that covers the outer surface of chromosomes. It acts as a carrier of nucleolar components, helps maintain chromosome structure, and plays an important role in mitosis. Current methods for fluorescence imaging of CP largely rely on immunostaining. We herein report a small-molecule fluorescent probe, ID-IQ, which possesses aggregation-induced emission (AIE) property, for CP imaging. By labelling the CP, ID-IQ sharply highlighted the chromosome boundaries, which enabled rapid segmentation of touching and overlapping chromosomes, direct identification of the centromere, and clear visualization of chromosome morphology. ID-IQ staining was also compatible with fluorescence in situ hybridization and could assist the precise location of the gene in designated chromosome. Altogether, this study provides a versatile cytogenetic tool for improved chromosome analysis, which greatly benefits the clinical diagnostic testing and genomic research.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Li Liu
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and GynaecologyQueen Mary HospitalHong KongChina
- Prenatal Diagnostic LaboratoryTsan Yuk HospitalHong KongChina
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| | - Shun Feng
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
28
|
Demirdizen E, Spiller-Becker M, Förtsch A, Wilhelm A, Corless S, Bade D, Bergner A, Hessling B, Erhardt S. Localization of Drosophila CENP-A to non-centromeric sites depends on the NuRD complex. Nucleic Acids Res 2020; 47:11589-11608. [PMID: 31713634 PMCID: PMC7145711 DOI: 10.1093/nar/gkz962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Centromere function requires the presence of the histone H3 variant CENP-A in most eukaryotes. The precise localization and protein amount of CENP-A are crucial for correct chromosome segregation, and misregulation can lead to aneuploidy. To characterize the loading of CENP-A to non-centromeric chromatin, we utilized different truncation- and localization-deficient CENP-A mutant constructs in Drosophila melanogaster cultured cells, and show that the N-terminus of Drosophila melanogaster CENP-A is required for nuclear localization and protein stability, and that CENP-A associated proteins, rather than CENP-A itself, determine its localization. Co-expression of mutant CENP-A with its loading factor CAL1 leads to exclusive centromere loading of CENP-A whereas co-expression with the histone-binding protein RbAp48 leads to exclusive non-centromeric CENP-A incorporation. Mass spectrometry analysis of non-centromeric CENP-A interacting partners identified the RbAp48-containing NuRD chromatin remodeling complex. Further analysis confirmed that NuRD is required for ectopic CENP-A incorporation, and RbAp48 and MTA1-like subunits of NuRD together with the N-terminal tail of CENP-A mediate the interaction. In summary, our data show that Drosophila CENP-A has no intrinsic specificity for centromeric chromatin and utilizes separate loading mechanisms for its incorporation into centromeric and ectopic sites. This suggests that the specific association and availability of CENP-A interacting factors are the major determinants of CENP-A loading specificity.
Collapse
Affiliation(s)
- Engin Demirdizen
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Spiller-Becker
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Arion Förtsch
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Alexander Wilhelm
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Samuel Corless
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Debora Bade
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Andrea Bergner
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bernd Hessling
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sylvia Erhardt
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- To whom correspondence should be addressed. Tel: +49 6221 54 6898; Fax: +49 6221 54 5892;
| |
Collapse
|
29
|
Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036079. [PMID: 31712221 DOI: 10.1101/cshperspect.a036079] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Collapse
Affiliation(s)
- Jason Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward S Cruise
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
30
|
Zhao Q, Coughlan KA, Zou MH, Song P. Loss of AMPKalpha1 Triggers Centrosome Amplification via PLK4 Upregulation in Mouse Embryonic Fibroblasts. Int J Mol Sci 2020; 21:ijms21082772. [PMID: 32316320 PMCID: PMC7216113 DOI: 10.3390/ijms21082772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Recent evidence indicates that activation of adenosine monophosphate-activated protein kinase (AMPK), a highly conserved sensor and modulator of cellular energy and redox, regulates cell mitosis. However, the underlying molecular mechanisms for AMPKα subunit regulation of chromosome segregation remain poorly understood. This study aimed to ascertain if AMPKα1 deletion contributes to chromosome missegregation by elevating Polo-like kinase 4 (PLK4) expression. Centrosome proteins and aneuploidy were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J) or AMPKα1 homozygous deficient (AMPKα1−/−) mice by Western blotting and metaphase chromosome spread. Deletion of AMPKα1, the predominant AMPKα isoform in immortalized MEFs, led to centrosome amplification and chromosome missegregation, as well as the consequent aneuploidy (34–66%) and micronucleus. Furthermore, AMPKα1 null cells exhibited a significant induction of PLK4. Knockdown of nuclear factor kappa B2/p52 ameliorated the PLK4 elevation in AMPKα1-deleted MEFs. Finally, PLK4 inhibition by Centrinone reversed centrosome amplification of AMPKα1-deleted MEFs. Taken together, our results suggest that AMPKα1 plays a fundamental role in the maintenance of chromosomal integrity through the control of p52-mediated transcription of PLK4, a trigger of centriole biogenesis.
Collapse
Affiliation(s)
- Qiang Zhao
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA; (Q.Z.); (M.-H.Z.)
- Correspondence: ; Tel.: +1-404-413-6636
| |
Collapse
|
31
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small‐Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Li Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology Queen Mary Hospital Hong Kong China
- Prenatal Diagnostic Laboratory Tsan Yuk Hospital Hong Kong China
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Shun Feng
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| |
Collapse
|
32
|
Li B, Li Z, Lu C, Chang L, Zhao D, Shen G, Kusakabe T, Xia Q, Zhao P. Heat Shock Cognate 70 Functions as A Chaperone for the Stability of Kinetochore Protein CENP-N in Holocentric Insect Silkworms. Int J Mol Sci 2019; 20:ijms20235823. [PMID: 31756960 PMCID: PMC6929194 DOI: 10.3390/ijms20235823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
The centromere, in which kinetochore proteins are assembled, plays an important role in the accurate congression and segregation of chromosomes during cell mitosis. Although the function of the centromere and kinetochore is conserved from monocentric to holocentric, the DNA sequences of the centromere and components of the kinetochore are varied among different species. Given the lack of core centromere protein A (CENP-A) and CENP-C in the lepidopteran silkworm Bombyx mori, which possesses holocentric chromosomes, here we investigated the role of CENP-N, another important member of the centromere protein family essential for kinetochore assembly. For the first time, cellular localization and RNA interference against CENP-N have confirmed its kinetochore function in silkworms. To gain further insights into the regulation of CENP-N in the centromere, we analyzed the affinity-purified complex of CENP-N by mass spectrometry and identified 142 interacting proteins. Among these factors, we found that the chaperone protein heat shock cognate 70 (HSC70) is able to regulate the stability of CENP-N by prohibiting ubiquitin-proteasome pathway, indicating that HSC70 could control cell cycle-regulated degradation of CENP-N at centromeres. Altogether, the present work will provide a novel clue to understand the regulatory mechanism for the kinetochore activity of CENP-N during the cell cycle.
Collapse
Affiliation(s)
- Bingqian Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- Correspondence:
| | - Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
33
|
Watanabe R, Hara M, Okumura EI, Hervé S, Fachinetti D, Ariyoshi M, Fukagawa T. CDK1-mediated CENP-C phosphorylation modulates CENP-A binding and mitotic kinetochore localization. J Cell Biol 2019; 218:4042-4062. [PMID: 31676716 PMCID: PMC6891089 DOI: 10.1083/jcb.201907006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Kinetochore localization of CENP-C, which is a key and conserved kinetochore component, is regulated during cell cycle progression. Watanabe et al. demonstrate that CDK1-mediated CENP-C phosphorylation regulates mitotic kinetochore localization via binding of CENP-C to the CENP-A nucleosome. The kinetochore is essential for faithful chromosome segregation during mitosis. To form a functional kinetochore, constitutive centromere-associated network (CCAN) proteins are assembled on the centromere chromatin that contains the centromere-specific histone CENP-A. CENP-C, a CCAN protein, directly interacts with the CENP-A nucleosome to nucleate the kinetochore structure. As CENP-C is a hub protein for kinetochore assembly, it is critical to address how the CENP-A–CENP-C interaction is regulated during cell cycle progression. To address this question, we investigated the CENP-C C-terminal region, including a conserved CENP-A–binding motif, in both chicken and human cells and found that CDK1-mediated phosphorylation of CENP-C facilitates its binding to CENP-A in vitro and in vivo. We observed that CENP-A binding is involved in CENP-C kinetochore localization during mitosis. We also demonstrate that the CENP-A–CENP-C interaction is critical for long-term viability in human RPE-1 cells. These results provide deeper insights into protein-interaction network plasticity in centromere proteins during cell cycle progression.
Collapse
Affiliation(s)
- Reito Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ei-Ichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Solène Hervé
- Institute Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique, UMR 144, Paris, France
| | - Daniele Fachinetti
- Institute Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique, UMR 144, Paris, France
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
34
|
Remnant L, Booth DG, Vargiu G, Spanos C, Kerr ARW, Earnshaw WC. In vitro BioID: mapping the CENP-A microenvironment with high temporal and spatial resolution. Mol Biol Cell 2019; 30:1314-1325. [PMID: 30892990 PMCID: PMC6724601 DOI: 10.1091/mbc.e18-12-0799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The centromere is located at the primary constriction of condensed chromosomes where it acts as a platform regulating chromosome segregation. The histone H3 variant CENP-A is the foundation for kinetochore formation. CENP-A directs the formation of a highly dynamic molecular neighborhood whose temporal characterization during mitosis remains a challenge due to limitations in available techniques. BioID is a method that exploits a “promiscuous” biotin ligase (BirA118R or BirA*) to identify proteins within close proximity to a fusion protein of interest. As originally described, cells expressing BirA* fusions were exposed to high biotin concentrations for 24 h during which the ligase transferred activated biotin (BioAmp) to other proteins within the immediate vicinity. The protein neighborhood could then be characterized by streptavidin-based purification and mass spectrometry. Here we describe a further development to this technique, allowing CENP-A interactors to be characterized within only a few minutes, in an in vitro reaction in lysed cells whose physiological progression is “frozen.” This approach, termed in vitro BioID (ivBioID), has the potential to study the molecular neighborhood of any structural protein whose interactions change either during the cell cycle or in response to other changes in cell physiology.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Daniel G Booth
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and.,Centre for Brain Discovery Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Alastair R W Kerr
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | | |
Collapse
|
35
|
Bouwman BAM, Crosetto N. Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methods for Genome-Wide Profiling. Genes (Basel) 2018; 9:E632. [PMID: 30558210 PMCID: PMC6316733 DOI: 10.3390/genes9120632] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) jeopardize genome integrity and can-when repaired unfaithfully-give rise to structural rearrangements associated with cancer. Exogenous agents such as ionizing radiation or chemotherapy can invoke DSBs, but a vast amount of breakage arises during vital endogenous DNA transactions, such as replication and transcription. Additionally, chromatin looping involved in 3D genome organization and gene regulation is increasingly recognized as a possible contributor to DSB events. In this review, we first discuss insights into the mechanisms of endogenous DSB formation, showcasing the trade-off between essential DNA transactions and the intrinsic challenges that these processes impose on genomic integrity. In the second part, we highlight emerging methods for genome-wide profiling of DSBs, and discuss future directions of research that will help advance our understanding of genome-wide DSB formation and repair.
Collapse
Affiliation(s)
- Britta A M Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| |
Collapse
|
36
|
Multiple phosphorylations control recruitment of the KMN network onto kinetochores. Nat Cell Biol 2018; 20:1378-1388. [PMID: 30420662 DOI: 10.1038/s41556-018-0230-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022]
Abstract
To establish a functional kinetochore, the constitutive centromere-associated network (CCAN) forms a foundation on the centromere and recruits the KMN network, which directly binds to spindle microtubules. The CENP-C and CENP-T pathways in the CCAN recruit the KMN network to kinetochores, independently. The CENP-C pathway has been considered the major scaffold for the KMN network in vertebrate CCAN. However, we demonstrate that it is mainly the CENP-T pathway that recruits the KMN network onto the kinetochores and that CENP-T-KMN interactions are essential in chicken DT40 cells. By contrast, less Ndc80 binds to the CENP-C pathway in mitosis and the Mis12-CENP-C association is decreased during mitotic progression, which is consistent with the finding that the Mis12 complex-CENP-C binding is dispensable for cell viability. Furthermore, we find that multiple phosphoregulations of CENP-T and the Mis12 complex make the CENP-T pathway dominant. These results provide key insights into kinetochore dynamics during mitotic progression.
Collapse
|
37
|
Bronkhorst AJ, Wentzel JF, Ungerer V, Peters DL, Aucamp J, de Villiers EP, Holdenrieder S, Pretorius PJ. Sequence analysis of cell-free DNA derived from cultured human bone osteosarcoma (143B) cells. Tumour Biol 2018; 40:1010428318801190. [PMID: 30261820 DOI: 10.1177/1010428318801190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The true importance of cell-free DNA in human biology, together with the potential scale of its clinical utility, is tarnished by a lack of understanding of its composition and origin. In investigating the cell-free DNA present in the growth medium of cultured 143B cells, we previously demonstrated that the majority of cell-free DNA is neither a product of apoptosis nor necrosis. In the present study, we investigated the composition and origin of this cell-free DNA population using next-generation sequencing. We found that the cell-free DNA comprises mainly of repetitive DNA, including α-satellite DNA, mini satellites, and transposons that are currently active or exhibit the capacity to become reactivated. A significant portion of these cell-free DNA fragments originates from specific chromosomes, especially chromosomes 1 and 9. In healthy adult somatic cells, the centromeric and pericentromeric regions of these chromosomes are normally densely methylated. However, in many cancer types, these regions are preferentially hypomethylated. This can lead to double-stranded DNA breaks or it can directly impair the formation of proper kinetochore structures. This type of chromosomal instability is a precursor to the formation of nuclear anomalies, including lagging chromosomes and anaphase bridges. DNA fragments derived from these structures can recruit their own nuclear envelope and form secondary nuclear structures known as micronuclei, which can localize to the nuclear periphery and bud out from the membrane. We postulate that the majority of cell-free DNA present in the growth medium of cultured 143B cells originates from these micronuclei.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Johannes F Wentzel
- 2 Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, South Africa
| | - Vida Ungerer
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Dimetrie L Peters
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- 4 Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Stefan Holdenrieder
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Piet J Pretorius
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| |
Collapse
|
38
|
Agarwal S, Smith KP, Zhou Y, Suzuki A, McKenney RJ, Varma D. Cdt1 stabilizes kinetochore-microtubule attachments via an Aurora B kinase-dependent mechanism. J Cell Biol 2018; 217:3446-3463. [PMID: 30154187 PMCID: PMC6168275 DOI: 10.1083/jcb.201705127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 02/06/2018] [Accepted: 07/17/2018] [Indexed: 12/03/2022] Open
Abstract
Robust kinetochore-microtubule (kMT) attachment is critical for accurate chromosome segregation. G2/M-specific depletion of human Cdt1 that localizes to kinetochores in an Ndc80 complex-dependent manner leads to abnormal kMT attachments and mitotic arrest. This indicates an independent mitotic role for Cdt1 in addition to its prototypic function in DNA replication origin licensing. Here, we show that Cdt1 directly binds to microtubules (MTs). Endogenous or transiently expressed Cdt1 localizes to both mitotic spindle MTs and kinetochores. Deletion mapping of Cdt1 revealed that the regions comprising the middle and C-terminal winged-helix domains but lacking the N-terminal unstructured region were required for efficient MT binding. Mitotic kinase Aurora B interacts with and phosphorylates Cdt1. Aurora B-phosphomimetic Cdt1 exhibited attenuated MT binding, and its cellular expression induced defective kMT attachments with a concomitant delay in mitotic progression. Thus we provide mechanistic insight into how Cdt1 affects overall kMT stability in an Aurora B kinase phosphorylation-dependent manner; which is envisioned to augment the MT-binding of the Ndc80 complex.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kyle Paul Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yizhuo Zhou
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Aussie Suzuki
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
39
|
Reconstitution of a 26-Subunit Human Kinetochore Reveals Cooperative Microtubule Binding by CENP-OPQUR and NDC80. Mol Cell 2018; 71:923-939.e10. [PMID: 30174292 PMCID: PMC6162344 DOI: 10.1016/j.molcel.2018.07.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore’s microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex. The kinetochore CENP-OPQUR complex is reconstituted and functionally dissected A kinetochore particle with 26 subunits and defined stoichiometry is reconstituted EM structure of an 11-subunit inner kinetochore complex reveals globular shape CENP-Q and the Ndc80 complex bind microtubules cooperatively
Collapse
|
40
|
Yuan Z, Zhou T, Bao L, Liu S, Shi H, Yang Y, Gao D, Dunham R, Waldbieser G, Liu Z. The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus). PLoS One 2018; 13:e0197371. [PMID: 29763462 PMCID: PMC5953449 DOI: 10.1371/journal.pone.0197371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Dongya Gao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, Mississippi, United States of America
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hoischen C, Yavas S, Wohland T, Diekmann S. CENP-C/H/I/K/M/T/W/N/L and hMis12 but not CENP-S/X participate in complex formation in the nucleoplasm of living human interphase cells outside centromeres. PLoS One 2018; 13:e0192572. [PMID: 29509805 PMCID: PMC5839545 DOI: 10.1371/journal.pone.0192572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
Abstract
Kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. Here, we measured the co-migration between protein pairs of the constitutive centromere associated network (CCAN) and hMis12 complexes by fluorescence cross-correlation spectroscopy (FCCS) in the nucleoplasm outside centromeres in living human interphase cells. FCCS is a method that can tell if in living cells two differently fluorescently labelled molecules migrate independently, or co-migrate and thus are part of one and the same soluble complex. We also determined the apparent dissociation constants (Kd) of the hetero-dimers CENP-T/W and CENP-S/X. We measured co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, a large fraction of the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Our FCCS analysis of the Mis12 complex showed that hMis12, Nsl1, Dsn1 and Nnf1 also form a complex outside centromeres of which at least hMis12 associated with the CENP-C/H/I/K/M/T/W/N/L complex.
Collapse
Affiliation(s)
- Christian Hoischen
- Molecular Biology, Leibniz Institute on Aging-Friz-Lipmann-Institute (FLI), Jena, Germany
| | - Sibel Yavas
- Departments of Biological Sciences and Chemistry and Centre of Bioimaging Sciences, Lee Wee Kheng Buildung, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry and Centre of Bioimaging Sciences, Lee Wee Kheng Buildung, National University of Singapore, Singapore, Singapore
| | - Stephan Diekmann
- Molecular Biology, Leibniz Institute on Aging-Friz-Lipmann-Institute (FLI), Jena, Germany
| |
Collapse
|
42
|
Zhang W, Karpen GH, Zhang Q. Exploring the role of CENP-A Ser18 phosphorylation in CIN and Tumorigenesis. Cell Cycle 2017; 16:2323-2325. [PMID: 28980868 DOI: 10.1080/15384101.2017.1387698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chromosome instability (CIN) contributes to the development of many cancer. In this paper, we summarize our recent finding that a novel pathway by which FBW7 loss promotes Centromere Protein A (CENP-A) phosphorylation on Serine 18 through Cyclin E1/CDK2, therefore promoting CIN and tumorigenesis. Our finding demonstrates the importance of CENP-A post-translational modification on modulating centromere and mitotic functions in cancer.
Collapse
Affiliation(s)
- Weiguo Zhang
- a Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Gary H Karpen
- a Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Department of Molecular and Cell Biology , University of California , Berkeley , CA , USA
| | - Qing Zhang
- b Department of Pathology and Laboratory Medicine , Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
43
|
Taxonomically Restricted Genes with Essential Functions Frequently Play Roles in Chromosome Segregation in Caenorhabditis elegans and Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3337-3347. [PMID: 28839119 PMCID: PMC5633384 DOI: 10.1534/g3.117.300193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genes encoding essential components of core cellular processes are typically highly conserved across eukaryotes. However, a small proportion of essential genes are highly taxonomically restricted; there appear to be no similar genes outside the genomes of highly related species. What are the functions of these poorly characterized taxonomically restricted genes (TRGs)? Systematic screens in Saccharomyces cerevisiae and Caenorhabditis elegans previously identified yeast or nematode TRGs that are essential for viability and we find that these genes share many molecular features, despite having no significant sequence similarity. Specifically, we find that those TRGs with essential phenotypes have an expression profile more similar to highly conserved genes, they have more protein–protein interactions and more protein disorder. Surprisingly, many TRGs play central roles in chromosome segregation; a core eukaryotic process. We thus find that genes that appear to be highly evolutionarily restricted do not necessarily play roles in species-specific biological functions but frequently play essential roles in core eukaryotic processes.
Collapse
|
44
|
Hori T, Shang WH, Hara M, Ariyoshi M, Arimura Y, Fujita R, Kurumizaka H, Fukagawa T. Association of M18BP1/KNL2 with CENP-A Nucleosome Is Essential for Centromere Formation in Non-mammalian Vertebrates. Dev Cell 2017; 42:181-189.e3. [PMID: 28743004 DOI: 10.1016/j.devcel.2017.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022]
Abstract
Centromeres are specified and maintained by sequence-independent epigenetic mechanisms through the incorporation of CENP-A into centromeres. Given that CENP-A incorporation requires the Mis18 complex to be in the centromere region, it is necessary to precisely understand how the Mis18 complex localizes to the centromere region. Here, we showed that centromere localization of the Mis18 complex depends on CENP-A, but not CENP-C or CENP-T, in chicken DT40 cells. Furthermore, we demonstrated that M18BP1/KNL2, a member of the Mis18 complex, contained the CENP-C-like motif in chicken and other vertebrates, which is essential for centromere localization and M18BP1/KNL2 function in DT40 cells. We also showed that in vitro reconstituted CENP-A nucleosome, but not H3 nucleosome, bound to the CENP-C-like motif containing M18BP1/KNL2. Based on these results, we conclude that M18BP1/KNL2 is essential for centromere formation through direct binding to CENP-A nucleosome in non-mammalian vertebrates. This explains how new CENP-A recognizes the centromere position.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Arimura
- Graduate School of Advanced Science & Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Risa Fujita
- Graduate School of Advanced Science & Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science & Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
45
|
Booth DG, Earnshaw WC. Ki-67 and the Chromosome Periphery Compartment in Mitosis. Trends Cell Biol 2017; 27:906-916. [PMID: 28838621 DOI: 10.1016/j.tcb.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
The chromosome periphery is a complex network of proteins and RNA molecules (many derived from nucleoli) that covers the outer surface of chromosomes and whose function remains mysterious. Although it was first described over 130 years ago, technological advances and the recent discovery that Ki-67 acts as an organiser of this region have allowed the chromosome periphery to be dissected in previously unattainable detail, leading to a revival of interest in this obscure chromosomal compartment. Here, we review the most recent advances into the composition, structure and function of the chromosome periphery, discuss possible roles of Ki-67 during mitosis and consider why this structure is likely to remain the focus of ongoing attention in the future.
Collapse
Affiliation(s)
- Daniel G Booth
- Centre For Neuroregeneration, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
46
|
Adikusuma F, Williams N, Grutzner F, Hughes J, Thomas P. Targeted Deletion of an Entire Chromosome Using CRISPR/Cas9. Mol Ther 2017; 25:1736-1738. [PMID: 28633863 PMCID: PMC5542798 DOI: 10.1016/j.ymthe.2017.05.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022] Open
Abstract
CRISPR/Cas9 genome editing can facilitate efficient deletion of genomic region, but it has not been used to delete an entire chromosome. Here, Adikusuma et al. show proof-of-concept for efficient CRISPR-mediated selective chromosome deletion by removing the centromere or shredding the chromosome arm in mouse embryonic stem cells and zygotes.
Collapse
Affiliation(s)
- Fatwa Adikusuma
- School of Biological Science, The University of Adelaide, Adelaide, SA 5005, Australia; Centre for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang 50271, Indonesia
| | - Nicole Williams
- School of Biological Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Frank Grutzner
- School of Biological Science, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - James Hughes
- School of Biological Science, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Thomas
- School of Biological Science, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| |
Collapse
|
47
|
van Hooff JJ, Tromer E, van Wijk LM, Snel B, Kops GJ. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep 2017. [PMID: 28642229 PMCID: PMC5579357 DOI: 10.15252/embr.201744102] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.
Collapse
Affiliation(s)
- Jolien Je van Hooff
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.,Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eelco Tromer
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Leny M van Wijk
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Geert Jpl Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands .,Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Cancer Genomics Netherlands, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Auckland P, Clarke NI, Royle SJ, McAinsh AD. Congressing kinetochores progressively load Ska complexes to prevent force-dependent detachment. J Cell Biol 2017; 216:1623-1639. [PMID: 28495837 PMCID: PMC5461014 DOI: 10.1083/jcb.201607096] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/09/2016] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Kinetochores mediate chromosome congression by either sliding along the lattice of spindle microtubules or forming end-on attachments to their depolymerizing plus-ends. By following the fates of individual kinetochores as they congress in live cells, we reveal that the Ska complex is required for a distinct substep of the depolymerization-coupled pulling mechanism. Ska depletion increases the frequency of naturally occurring, force-dependent P kinetochore detachment events, while being dispensable for the initial biorientation and movement of chromosomes. In unperturbed cells, these release events are followed by reattachment and successful congression, whereas in Ska-depleted cells, detached kinetochores remain in a futile reattachment/detachment cycle that prevents congression. We further find that Ska is progressively loaded onto bioriented kinetochore pairs as they congress. We thus propose a model in which kinetochores mature through Ska complex recruitment and that this is required for improved load-bearing capacity and silencing of the spindle assembly checkpoint.
Collapse
Affiliation(s)
- Philip Auckland
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| | - Nicholas I Clarke
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, England, UK
| |
Collapse
|
49
|
Lu G, Hou H, Lu X, Ke X, Wang X, Zhang D, Zhao Y, Zhang J, Ren M, He S. CENP-H regulates the cell growth of human hepatocellular carcinoma cells through the mitochondrial apoptotic pathway. Oncol Rep 2017; 37:3484-3492. [PMID: 28498417 DOI: 10.3892/or.2017.5602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022] Open
Abstract
The genomic alterations of hepatocellular carcinoma (HCC) are still unclear. Centromere protein-H (CENP-H) has been shown to be associated with many solid tumors. Our previous study found that CENP-H was upregulated in HCC and was related to patient prognosis. However, the biological functions of CENP-H in HCC and the possible underlying mechanisms have not been well elucidated. In the present study, we demonstrated that CENP-H knockdown inhibited the proliferation of Hep3B cells and decreased colony formation ability of single cells in vitro. Furthermore, CENP-H knockdown induced Hep3B cell apoptosis, and apoptotic bodies were observed using transmission electron microscopy. The protein expression of cleaved caspase-3 was upregulated in Hep3B cells after CENP-H knockdown. Additionally, a Bax/Bcl-2 ratio imbalance with a significant increase of Bax and a substantial decrease of Bcl-2 at both the mRNA and protein levels were determined in this study. In an animal experiment, CENP-H knockdown blocked the growth of Hep3B subcutaneous xenografts. Immunohistochemistry revealed that the protein expression of cleaved caspase-3 and Bax was increased, whereas the protein expression of Bcl-2 and Ki-67 was decreased in subcutaneous xenografts of the CENP-H-knockdown group. In summary, CENP-H may be involved in cell proliferation and apoptosis of HCC cells through the mitochondrial apoptotic pathway. Combined with previous studies, the data provide a new perspective on HCC development and progression.
Collapse
Affiliation(s)
- Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
50
|
Evolutionary Lessons from Species with Unique Kinetochores. CENTROMERES AND KINETOCHORES 2017; 56:111-138. [DOI: 10.1007/978-3-319-58592-5_5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|