1
|
Jin J, Nguyen LTG, Wassef A, Sadek R, Schmitt TM, Guo GL, Rasmussen TP, Zhong XB. Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism. Drug Metab Dispos 2024; 52:1345-1355. [PMID: 39168525 DOI: 10.1124/dmd.124.001873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism. SIGNIFICANCE STATEMENT: This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Le Tra Giang Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Andrew Wassef
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Ragui Sadek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Timothy M Schmitt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Grace L Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
| |
Collapse
|
2
|
Zakutansky PM, Ku L, Zhang G, Shi L, Li Y, Yao B, Bassell GJ, Read RD, Feng Y. Isoform balance of the long noncoding RNA NEAT1 is regulated by the RNA-binding protein QKI, governs the glioma transcriptome, and impacts cell migration. J Biol Chem 2024; 300:107595. [PMID: 39032650 PMCID: PMC11367543 DOI: 10.1016/j.jbc.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in a variety of human cancers. Two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, are produced through mutually exclusive alternative 3' end formation. Previous studies extensively investigated NEAT1 dysregulation in tumors, but often failed to achieve distinct quantification of the two NEAT1 isoforms. Moreover, molecular mechanisms governing the biogenesis of NEAT1 isoforms and the functional impacts of their dysregulation in tumorigenesis remain poorly understood. In this study, we employed an isoform-specific quantification assay and found differential dysregulation of NEAT1 isoforms in patient-derived glioblastoma multiforme cells. We further showed usage of the NEAT1 proximal polyadenylation site (PAS) is a critical mechanism that controls glioma NEAT1 isoform production. CRISPR-Cas9-mediated PAS deletion reduced NEAT1_1 and reciprocally increased NEAT1_2, which enhanced nuclear paraspeckle formation in human glioma cells. Moreover, the utilization of the NEAT1 PAS is facilitated by the RNA-binding protein quaking (QKI), which binds to the proximal QKI recognition elements. Functionally, we identified transcriptomic changes and altered biological pathways caused by NEAT1 isoform imbalance in glioma cells, including the pathway for the regulation of cell migration. Finally, we demonstrated the forced increase of NEAT1_2 upon NEAT1 PAS deletion is responsible for driving glioma cell migration and promoting the expression of genes implicated in the regulation of cell migration. Together, our studies uncovered a novel mechanism that regulates NEAT1 isoforms and their functional impacts on the glioma transcriptome, which affects pathological pathways of glioma, represented by migration.
Collapse
Affiliation(s)
- Paul M Zakutansky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guannan Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Shi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
3
|
Shojaporian S, Mahmoudian-Sani MR, Khodadadi A, Dehcheshmeh MG, Amari A. Effect of Priming With Toll-Like Receptor 3 Agonist on Expression of Long Noncoding RNAs in Human Wharton Jelly Mesenchymal Stem Cells. EXP CLIN TRANSPLANT 2024; 22:551-558. [PMID: 39223813 DOI: 10.6002/ect.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Mesenchymal stem cells are gaining attention in medicine because of their anti-inflammatory and immunosuppressive properties. Inflammatory conditions can modulate immune responses in mesenchymal stem cells.We investigated the expression of long noncoding RNAs (RMRP, MALT1, NKILA,THRIL, and Linc-MAF-4) in humanWharton jelly mesenchymal stem cells primed with polyinosinicpolycytidylic acid. MATERIALS AND METHODS Mesenchymal stem cells were isolated from human Wharton jelly by the explant method. To determine the stem nature of the cells, we performed a differentiation test on bone and fat cells. We used flow cytometry analysis to determine surface markers. Umbilical cord mesenchymal stem cells (1 × 105) were cultured in T75 culture flasks in Dulbecco's modified Eagle medium containing 10% fetal bovine serum. After cells reached approximately 80% confluency, cells were exposed to 50 µg/mL of polyinosinic-polycytidylic acid, a Toll-like receptor 3 ligand, for 24, 48, and 72 hours. The control group were cells not exposed to polyinosinic-polycytidylic acid. Real-time polymerase chain reaction evaluated RMRP, MALAT1, NKILA, THRIL, and Linc-MAF-4 long noncoding RNAs. RESULTS We observed significantly increased expression of NKILA inWharton jelly mesenchymal stem cells stimulated with polyinosinic-polycytidylic acid at 72 hours compared with expression level in the control group (P < .001). CONCLUSIONS Results indicated that a potential mechanism by which the Toll-like receptor 3 ligand improves immunosuppression of mesenchymal stem cells can be attributed to the regulatory role of long noncoding RNAs, possibly through increased expression of anti-inflammatory long noncoding RNAs such as NKILA.
Collapse
Affiliation(s)
- Samira Shojaporian
- >From the Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | | | |
Collapse
|
4
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. Genes Dev 2024; 38:294-307. [PMID: 38688681 PMCID: PMC11146593 DOI: 10.1101/gad.351557.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA;
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578240. [PMID: 38352368 PMCID: PMC10862813 DOI: 10.1101/2024.02.01.578240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic function is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear non-coding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 from neurons stimulated expression of particular pre- and post- synaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized to both axons and dendrites in puncta that co-stain with Staufen1 protein, similar to neuronal granules formed by locally translated mRNAs. Ribosome profiling of mouse cortical neurons identified ribosome footprints within a region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP coding sequence in mouse ES cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wildtype neurons, and showed enhancement of M1 expression after synaptic stimulation with KCL. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
6
|
Chen Z, Guan D, Zhu Q, Wang Z, Han F, Zhou W. Biological Roles and Pathogenic Mechanisms of LncRNA MIR4435-2HG in Cancer: A Comprehensive Review. Curr Issues Mol Biol 2023; 45:8864-8881. [PMID: 37998733 PMCID: PMC10670187 DOI: 10.3390/cimb45110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The long non-coding RNA MIR4435-2HG has been confirmed to play a crucial regulatory role in various types of tumors. As a novel type of non-coding RNA, MIR4435-2HG plays a key role in regulating the expression of tumor-related genes, interfering with cellular signaling pathways, and affecting tumor immune evasion. Its unique structure allows it to regulate the expression of various tumor-related genes through different pathways, participating in the regulation of tumor signaling pathways, such as regulating the expression of oncogenes and tumor suppressor genes, influencing the biological behaviors of proliferation, metastasis, and apoptosis in tumors. Numerous studies have found a high expression of MIR4435-2HG in various tumor tissues, closely related to the clinical pathological characteristics of tumors, such as staging, lymph node metastasis and prognosis. Some studies have discovered that MIR4435-2HG can regulate the sensitivity of tumor cells to chemotherapy drugs, affecting tumor cell drug resistance. This provides new insights into overcoming tumor drug resistance by regulating MIR4435-2HG. Therefore, studying its molecular mechanisms, expression regulation, and its relationship with the clinical features of tumors is of great significance for revealing the mechanisms of tumor occurrence and developing new therapeutic targets.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Defeng Guan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiangping Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Zhengfeng Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
7
|
Adewunmi O, Shen Y, Zhang XHF, Rosen JM. Targeted Inhibition of lncRNA Malat1 Alters the Tumor Immune Microenvironment in Preclinical Syngeneic Mouse Models of Triple-Negative Breast Cancer. Cancer Immunol Res 2023; 11:1462-1479. [PMID: 37603945 PMCID: PMC10618655 DOI: 10.1158/2326-6066.cir-23-0045] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/18/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Long noncoding RNAs (lncRNA) play an important role in gene regulation in both normal tissues and cancer. Targeting lncRNAs is a promising therapeutic approach that has become feasible through the development of gapmer antisense oligonucleotides (ASO). Metastasis-associated lung adenocarcinoma transcript (Malat1) is an abundant lncRNA whose expression is upregulated in several cancers. Although Malat1 increases the migratory and invasive properties of tumor cells, its role in the tumor microenvironment (TME) is still not well defined. We explored the connection between Malat1 and the tumor immune microenvironment (TIME) using several immune-competent preclinical syngeneic Tp53-null triple-negative breast cancer (TNBC) mouse models that mimic the heterogeneity and immunosuppressive TME found in human breast cancer. Using a Malat1 ASO, we were able to knockdown Malat1 RNA expression resulting in a delay in primary tumor growth, decreased proliferation, and increased apoptosis. In addition, immunophenotyping of tumor-infiltrating lymphocytes revealed that Malat1 inhibition altered the TIME, with a decrease in immunosuppressive tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) as well as an increase in cytotoxic CD8+ T cells. Malat1 depletion in tumor cells, TAMs, and MDSCs decreased immunosuppressive cytokine/chemokine secretion whereas Malat1 inhibition in T cells increased inflammatory secretions and T-cell proliferation. Combination of a Malat1 ASO with chemotherapy or immune checkpoint blockade (ICB) improved the treatment responses in a preclinical model. These studies highlight the immunostimulatory effects of Malat1 inhibition in TNBC, the benefit of a Malat1 ASO therapeutic, and its potential use in combination with chemotherapies and immunotherapies.
Collapse
Affiliation(s)
- Oluwatoyosi Adewunmi
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas
| | - Yichao Shen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Li J, Liu Y, Liu J. A review of research progress on mechanisms of peritoneal fibrosis related to peritoneal dialysis. Front Physiol 2023; 14:1220450. [PMID: 37817984 PMCID: PMC10560738 DOI: 10.3389/fphys.2023.1220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective alternative treatment for patients with end-stage renal disease (ESRD) and is increasingly being adopted and promoted worldwide. However, as the duration of peritoneal dialysis extends, it can expose problems with dialysis inadequacy and ultrafiltration failure. The exact mechanism and aetiology of ultrafiltration failure have been of great concern, with triggers such as biological incompatibility of peritoneal dialysis solutions, uraemia toxins, and recurrent intraperitoneal inflammation initiating multiple pathways that regulate the release of various cytokines, promote the transcription of fibrosis-related genes, and deposit extracellular matrix. As a result, peritoneal fibrosis occurs. Exploring the pathogenic factors and molecular mechanisms can help us prevent peritoneal fibrosis and prolong the duration of Peritoneal dialysis.
Collapse
Affiliation(s)
- Jin’e Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinghong Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
10
|
Chang MW, Yang JH, Tsitsipatis D, Yang X, Martindale J, Munk R, Pandey P, Banskota N, Romero B, Batish M, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Wilson G, Gorospe M. Enhanced myogenesis through lncFAM-mediated recruitment of HNRNPL to the MYBPC2 promoter. Nucleic Acids Res 2022; 50:13026-13044. [PMID: 36533518 PMCID: PMC9825165 DOI: 10.1093/nar/gkac1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.
Collapse
Affiliation(s)
- Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
Wei J, Meng X, Wei X, Zhu K, Du L, Wang H. Down-regulated lncRNA ROR in tumor-educated platelets as a liquid-biopsy biomarker for nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04350-1. [DOI: 10.1007/s00432-022-04350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Purposes
To evaluate the diagnostic value of tumor-educated platelets (TEP) lncRNA ROR for nasopharyngeal carcinoma (NPC).
Methods
Quantitative real-time PCR was used to determine the expression level of TEP lncRNA ROR in NPC patients (n = 50) as compared to normal subjects (n = 33). The ROC curve analysis was performed to assess the diagnostic value of TEP lncRNA ROR for NPC. Correlations between TEP lncRNA ROR and clinical parameters were further analyzed.
Results
The median of TEP lncRNA ROR was significantly lower in NPC patients than that in normal subjects (0.0209 vs 0.0610, p = 0.0019), while no significant difference was found in plasma lncRNA ROR. ROC analysis showed that TEP lncRNA ROR had a sensitivity of 60%, specificity of 70%, and accuracy of 63.9% in diagnosing NPC, and the area under ROC curve (AUC) was 0.70. The expression level of TEP lncRNA ROR in NPC showed no significant difference among different TNM stages. However, low level of TEP lncRNA ROR correlated well with positive Epstein–Barr virus (EBV) DNA (kappa value = 0.314, p = 0.06), TEP lncRNA ROR and EBV DNA had similar diagnostic positive rate (58.3%) for NPC, and the combination of TEP lncRNA ROR and EBV DNA increased the positive rate to 74%.
Conclusion
The expression level of TEP lncRNA ROR was down-regulated in NPC and the diagnostic value of TEP lncRNA ROR was similar to EBV DNA. Our study indicated that TEP lncRNA ROR might serve as a novel type of liquid biopsy biomarker in diagnosis of NPC patients.
Collapse
|
12
|
Jiang L, Zhou B, Fu D, Cheng B. lncRNA TUG1 promotes the development of oral squamous cell carcinoma by regulating the MAPK signaling pathway by sponging miR-593-3p. Cell Cycle 2022; 21:1856-1866. [PMID: 35604743 DOI: 10.1080/15384101.2022.2074624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of non-coding RNAs (ncRNAs) has been proved to play important roles in oral squamous cell carcinoma (OSCC). This study aimed to determine the combined role of lncRNA TUG1, miR-593-3p, and MAPK signaling in oral squamous cell carcinoma (OSCC) development. Here, we found that TUG1 was up-regulated in OSCC tissues and cell lines. Silencing TUG1 suppressed proliferation migration, invasion and promoted apoptosis of OSCC cells. We also validated that knockdown of TUG1 suppressed MAPK signaling pathway and inhibited EMT process in OSCC cells. Then, a novel LncRNA TUG1/ miR-593-3p/MAPK axis was verified to rescue cell viability in OSCC cells. Mechanistically, miR-593-3p bound to lncRNA TUG1, and lncRNA TUG1 positively regulated MAPK related proteins through acting as RNA sponger for miR-593-3p. Further gain- and loss-of-function experiments evidenced that the protective effects of lncRNA TUG1 knock-down on OSCC cells were abrogated by silencing miRNA-593-3p. The OSCC nude mice model experiments demonstrated that depletion of TUG1 further inhibited tumor growth. In conclusion, appropriate diagnostic biomarkers and therapies for OSCC can be identified by targeting the TUG1/miR-593-3p/MAPK axis.
Collapse
Affiliation(s)
- Lei Jiang
- Department School of Stomatology, Central South Hospital, Wuhan University, Wuhan, Hubei, China.,Hanyang Outpatient Department, Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Bing Zhou
- Heping Avenue Outpatient Department, Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Dongjie Fu
- Department of Stomatology, People's Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Cheng
- Department School of Stomatology, Central South Hospital, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
A novel LncRNA PTH-AS upregulates interferon-related DNA damage resistance signature genes and promotes metastasis in human breast cancer xenografts. J Biol Chem 2022; 298:102065. [PMID: 35618021 PMCID: PMC9198338 DOI: 10.1016/j.jbc.2022.102065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important tissue-specific regulators of gene expression, and their dysregulation can induce aberrant gene expression leading to various pathological conditions, including cancer. Although many lncRNAs have been discovered by computational analysis, most of these are as yet unannotated. Herein, we describe the nature and function of a novel lncRNA detected downstream of the human parathyroid hormone (PTH) gene in both extremely rare ectopic PTH-producing retroperitoneal malignant fibrous histiocytoma and parathyroid tumors with PTH overproduction. This novel lncRNA, which we have named "PTH-AS," has never been registered in a public database, and here, we investigated for the first time its exact locus, length, transcription direction, polyadenylation, and nuclear localization. Microarray and Gene Ontology analyses demonstrated that forced expression of PTH-AS in PTH-nonexpressing human breast cancer T47D cells did not induce the ectopic expression of the nearby PTH gene but did significantly upregulate Janus kinase-signal transducer and activator of transcription pathway-related genes such as cancer-promoting interferon-related DNA damage resistance signature (IRDS) genes. Importantly, we show that PTH-AS expression not only enhanced T47D cell invasion and resistance to the DNA-damaging drug doxorubicin but also promoted lung metastasis rather than tumor growth in a mouse xenograft model. In addition, PTH-AS-expressing T47D tumors showed increased macrophage infiltration that promoted angiogenesis, similar to IRDS-associated cancer characteristics. Although the detailed molecular mechanism remains imperfectly understood, we conclude that PTH-AS may contribute to tumor development, possibly through IRDS gene upregulation.
Collapse
|
14
|
Wang S, Zhang J, Ding Y, Zhang H, Wu X, Huang L, He J, Zhou J, Liu XM. Dynamic Transcriptome Profiling Reveals LncRNA-Centred Regulatory Networks in the Modulation of Pluripotency. Front Cell Dev Biol 2022; 10:880674. [PMID: 35646895 PMCID: PMC9130768 DOI: 10.3389/fcell.2022.880674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as vital regulators of gene expression during embryonic stem cell (ESC) self-renewal and differentiation. Here, we systemically analyzed the differentially regulated lncRNAs during ESC-derived cardiomyocyte (CM) differentiation. We established a perspicuous profile of lncRNA expression at four critical developmental stages and found that the differentially expressed lncRNAs were grouped into six distinct clusters. The cluster with specific expression in ESC enriches the largest number of lncRNAs. Investigation of lncRNA-protein interaction network revealed that they are not only controlled by classic key transcription factors, but also modulated by epigenetic and epitranscriptomic factors including N6-methyladenosine (m6A) effector machineries. A detailed inspection revealed that 28 out of 385 lncRNAs were modified by methylation as well as directly recruited by the nuclear m6A reader protein Ythdc1. Unlike other 27 non-coding transcripts, the ESC-specific lncRNA Gm2379, located in both nucleus and cytoplasm, becomes dramatically upregulated in response to the depletion of m6A or Ythdc1. Consistent with the role of m6A in cell fate regulation, depletion of Gm2379 results in dysregulated expressions of pluripotent genes and crucial genes required for the formation of three germ layers. Collectively, our study provides a foundation for understanding the dynamic regulation of lncRNA transcriptomes during ESC differentiation and identifies the interplay between epitranscriptomic modification and key lncRNAs in the regulation of cell fate decision.
Collapse
Affiliation(s)
- Shen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu’an Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haotian Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingci Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Junjie He
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing, China
| |
Collapse
|
15
|
Moure UAE, Tan T, Sha L, Lu X, Shao Z, Yang G, Wang Y, Cui H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front Immunol 2022; 13:856457. [PMID: 35464405 PMCID: PMC9020863 DOI: 10.3389/fimmu.2022.856457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Insects are by far the most abundant and diverse living organisms on earth and are frequently prone to microbial attacks. In other to counteract and overcome microbial invasions, insects have in an evolutionary way conserved and developed immune defense mechanisms such as Toll, immune deficiency (Imd), and JAK/STAT signaling pathways leading to the expression of antimicrobial peptides. These pathways have accessory immune effector mechanisms, such as phagocytosis, encapsulation, melanization, nodulation, RNA interference (RNAi), lysis, autophagy, and apoptosis. However, pathogens evolved strategies that circumvent host immune response following infections, which may have helped insects further sophisticate their immune response mechanisms. The involvement of ncRNAs in insect immunity is undeniable, and several excellent studies or reviews have investigated and described their roles in various insects. However, the functional analyses of ncRNAs in insects upon pathogen attacks are not exhaustive as novel ncRNAs are being increasingly discovered in those organisms. This article gives an overview of the main insect signaling pathways and effector mechanisms activated by pathogen invaders and summarizes the latest findings of the immune modulation role of both insect- and pathogen-encoded ncRNAs, especially miRNAs and lncRNAs during insect–pathogen crosstalk.
Collapse
Affiliation(s)
- Ulrich Aymard Ekomi Moure
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| | - Tingshan Tan
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lin Sha
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoqin Lu
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Zhi Shao
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Department of Gastrointestinal Surgery, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Huo X, Wang L, Shao J, Zhou C, Ying X, Zhao J, Jin X. LINC00667 regulates MPP
+
‐induced neuronal injury in Parkinson’s disease. Ann Clin Transl Neurol 2022; 9:707-721. [PMID: 35426258 PMCID: PMC9082386 DOI: 10.1002/acn3.51480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Parkinson’s disease (PD), also known as paralysis tremor, is a chronic disease of the central nervous system. It has been reported that hepatocyte nuclear factor 4 alpha (HNF4A) is upregulated in PD, but its specific function has not been well explored. Methods We established an in vitro PD model in SH‐SY5Y cells stimulated with 1‐methyl‐4‐phenylpyridinium (MPP+). Meanwhile, the effect of HNF4A on MPP+‐treated SH‐SY5Y cell behavior was monitored by functional assays. Mechanism assays were conducted to verify the relationship among LINC00667/miR‐34c‐5p/HNF4A. Rescue experiments validated the regulatory mechanism in PD model. Results The results revealed that depletion of HNF4A suppressed cell cytotoxicity and apoptosis caused by MPP+. Knockdown of HNF4A recovered MPP+‐stimulated oxidative stress and neuroinflammation. Mechanically, HNF4A was targeted and inhibited by miR‐34c‐5p. Furthermore, we found that LINC00667 positively modulated HNF4A expression via sequestering miR‐34c‐5p in MPP+‐stimulated SH‐SY5Y cells. Interestingly, the data indicated that HNF4A could transcriptionally activate LINC00667 expression. Rescue experiments presented that miR‐34c‐5p interference or HNF4A overexpression could mitigate the effects of LINC00667 knockdown on cell viability, cytotoxicity, cell apoptosis, oxidative stress, and neuroinflammation in MPP+‐treated SH‐SY5Y cells. Conclusion Our study first proved LINC00667, miR‐34c‐5p, and HNF4A constructed a positive feedback loop in MPP+‐treated SH‐SY5Y cells, enriching our understanding of PD.
Collapse
Affiliation(s)
- Xinlong Huo
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Lisong Wang
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Jiahui Shao
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Chenhang Zhou
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Xiaowei Ying
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| | - Jinhua Zhao
- Department of Neurosurgery The First People’s Hospital of Xianyang Xianyang Shaanxi 712000 China
| | - Xinchun Jin
- Department of Neurology The First People’s Hospital of Wenling Wenling Zhejiang 317500 China
| |
Collapse
|
17
|
Zhu X, Shi C, Hou C. AFAP1-AS1/Hsa-miR-15a-5p/Bcl-2 Axis is a Potential Regulator of Cancer Cell Proliferation and Apoptosis in Gallbladder Carcinoma. Nutr Cancer 2022; 74:3363-3374. [PMID: 35404727 DOI: 10.1080/01635581.2022.2059090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xianhai Zhu
- Department of Interventional Radiology Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changgao Shi
- Department of Interventional Radiology Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changlong Hou
- Department of Interventional Radiology Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Cao H, Kapranov P. Methods to Analyze the Non-Coding RNA Interactome—Recent Advances and Challenges. Front Genet 2022; 13:857759. [PMID: 35368711 PMCID: PMC8969105 DOI: 10.3389/fgene.2022.857759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Most of the human genome is transcribed to generate a multitude of non-coding RNAs. However, while these transcripts have generated an immense amount of scientific interest, their biological function remains a subject of an intense debate. Understanding mechanisms of action of non-coding RNAs is a key to addressing the issue of biological relevance of these transcripts. Based on some well-understood non-coding RNAs that function inside the cell by interacting with other molecules, it is generally believed many other non-coding transcripts could also function in a similar fashion. Therefore, development of methods that can map RNA interactome is the key to understanding functionality of the extensive cellular non-coding transcriptome. Here, we review the vast progress that has been made in the past decade in technologies that can map RNA interactions with different sites in DNA, proteins or other RNA molecules; the general approaches used to validate the existence of novel interactions; and the challenges posed by interpreting the data obtained using the interactome mapping methods.
Collapse
|
19
|
Nan S, Zhang S, Jin R, Wang J. LINC00665 up-regulates SIN3A expression to modulate the progression of colorectal cancer via sponging miR-138-5p. Cancer Cell Int 2022; 22:51. [PMID: 35101035 PMCID: PMC8802510 DOI: 10.1186/s12935-021-02176-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is a malignant tumor affecting people worldwide. Long noncoding RNAs (lncRNAs) is a crucial factor modulating various cancer progression, including CRC. Long intergenic non-protein coding RNA 665 (LINC00665) has been proven as an oncogene in several cancers, but its function in CRC is still unclear. Methods QRT-PCR was performed for RNA quantification. Functional assays were designed and carried to test cell phenotype while mechanism experiments were adopted for detecting the interaction of LINC00665, microRNA-138-5p (miR-138-5p) and SIN3 transcription regulator family member A (SIN3A). In vivo experiments were conducted to test LINC00665 function on modulating CRC tumor progression. Results LINC00665 displayed high expression in CRC tissues and cells, and promoted tumor progression in vivo. MiR-138-5p displayed abnormally low expression in CRC, and was verified to be sponged by LINC00665. Furthermore, SIN3A, as the downstream mRNA of miR-138-5p, exerted promoting impacts on CRC cells. Rescue experiments certified that overexpressed SIN3A or silenced miR-138-5p could offset the repressed function of LINC00665 knockdown on CRC progression. Conclusions LINC00665 could sponge miR-138-5p to up-regulate SIN3A expression, thus accelerating CRC progression. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02176-4.
Collapse
Affiliation(s)
- Shoushan Nan
- Department of Gastroenterology, Tianjin Fifth Center Hospital, No. 41 Zhejiang Road, Binhai New District, Tianjin, 300450, China.
| | - Shuangxia Zhang
- Department of Gastroenterology, Tianjin First Center Hospital, Tianjin, 300384, China
| | - Rong Jin
- Department of Gynaecology and Obstetrics, Tianjin Fifth Center Hospital, Tianjin, 300450, China
| | - Juelei Wang
- Department of Gastroenterology, Tianjin Fifth Center Hospital, No. 41 Zhejiang Road, Binhai New District, Tianjin, 300450, China
| |
Collapse
|
20
|
The Cohesin Complex and Its Interplay with Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040067. [PMID: 34707078 PMCID: PMC8552073 DOI: 10.3390/ncrna7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.
Collapse
|
21
|
Ma W, Gao Y, Zhang J, Yao X, Jia L, Xu Q. Long noncoding RNA LINC01410 promotes tumorigenesis of osteosarcoma cells via miR-497-5p/HMGA2 axis. J Biochem Mol Toxicol 2021; 35:e22921. [PMID: 34605103 DOI: 10.1002/jbt.22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
LINC01410 is a tumor promoter that is upregulated in some cancer types, such as osteosarcoma (OS). Nonetheless, its role in OS and the underlying molecular mechanism have not been fully understood. Hence, we sought to elucidate it. We performed reverse-transcription quantitative polymerase chain reaction for examining LINC01410, miR-497-5p and HMGA2 levels. Additionally, we carried out the cell counting kit-8 and Transwell assays for detecting cell proliferation and invasion/migration. Bioinformatics predicted that there was a miR-497-5p binding site in LINC01410 or HMGA2; meanwhile, miR-497-5p was found to interact with HMGA2 and LINC01410 through dual-luciferase reporter assay. LINC01410 and HMGA2 were high, and miR-497-5p showed low expression in OS tissues and cells. Cell function assay demonstrated that LINC01410 or HMGA2 knockdown or miR-497-5p overexpression obviously restrained OS proliferation, invasion, and migration. Oppositely, inhibiting miR-497-5p had the opposite effects. Functionally, miR-497-5p bound with LINC01410 3'-untranslated region and HMGA2 was found to be the miR-497-5p target gene. Lastly, LINC01410 enhanced OS cell growth, invasion, and migration via decreasing miR-497-5p expression, whereas increasing that of HMGA2. We have demonstrated that LINC01410 promoted OS development partly by miR-497-5p/HMGA2 signal transduction pathway and this provides a reference for studying the mechanism of LINC01410 in OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Lina Jia
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Su F, Duan J, Zhu J, Fu H, Zheng X, Ge C. Long non‑coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation‑induced pyroptosis via microRNA‑448/gasdermin E in colorectal cancer cells. Int J Oncol 2021; 59:79. [PMID: 34476497 PMCID: PMC8448542 DOI: 10.3892/ijo.2021.5259] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is mediated by gasdermins and serves a critical role in ionizing radiation (IR)-induced damage in normal tissues, but its role in cancer radiotherapy and underlying mechanisms remains unclear. Long non-coding (lnc) RNAs serve important roles in regulating the radiosensitivity of cancer cells. The present study aimed to investigate the mechanistic involvement of lncRNAs in IR-induced pyroptosis in human colorectal cancer HCT116 cells. LncRNA, microRNA (miR)-448 and gasdermin E (GSDME) levels were evaluated using reverse transcription-quantitative polymerase chain reaction. Protein expression and activation of gasdermins were measured using western blotting. The binding association between miR-448 and GSDME was assessed using the dual-luciferase reporter assay. Pyroptosis was examined using phase-contrast microscopy, flow cytometry, Cell Counting Kit-8 assay and lactate dehydrogenase release assay. IR dose-dependently induced GSDME-mediated pyroptosis in HCT116 cells. GSDME was identified as a downstream target of miR-448. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) was upregulated in response to IR and enhanced GSDME expression by negatively regulating miR-448 expression. Notably, NEAT1 knockdown suppressed IR-induced pyroptosis, full-length GSDME expression and GSDME cleavage compared with that in irradiated cells. In addition, NEAT1 knockdown rescued the IR-induced decrease in cell viability in HCT116 cells. The findings of the present study indicated that lncRNA NEAT1 modulates IR-induced pyroptosis and viability in HCT116 cells via miR-448 by regulating the expression, but not activation of GSDME. The present study provides crucial mechanistic insight into the potential role of lncRNA NEAT1 in IR-induced pyroptosis.
Collapse
Affiliation(s)
- Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Junzhao Duan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
23
|
Meyer T, Sand M, Schmitz L, Stockfleth E. The Role of Circular RNAs in Keratinocyte Carcinomas. Cancers (Basel) 2021; 13:cancers13164240. [PMID: 34439394 PMCID: PMC8392367 DOI: 10.3390/cancers13164240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Keratinocyte carcinomas (KC) include basal cell carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC) and represents the most common cancer in Europe and North America. Both entities are characterized by a very high mutational burden, mainly UV signature mutations. Predominately mutated genes in BCC belong to the sonic hedgehog pathway, whereas, in cSCC, TP53, CDKN2A, NOTCH1/2 and others are most frequently mutated. In addition, the dysregulation of factors associated with epithelial to mesenchymal transition (EMT) was shown in invasive cSCC. The expression of factors associated with tumorigenesis can be controlled in several ways and include non-coding RNA molecules, such as micro RNAs (miRNA) long noncoding RNAs (lncRNA) and circular RNAs (circRNA). To update findings on circRNA in KC, we reviewed 13 papers published since 2016, identified in a PubMed search. In both BCC and cSCC, numerous circRNAs were identified that were differently expressed compared to healthy skin. Some of them were shown to target miRNAs that are also dysregulated in KC. Moreover, some studies confirmed the biological functions of individual circRNAs involved in cancer development. Thus, circRNAs may be used as biomarkers of disease and disease progression and represent potential targets of new therapeutic approaches for KC.
Collapse
Affiliation(s)
- Thomas Meyer
- Department of Dermatology St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
- Correspondence: ; Tel.: +49-234-5096014
| | - Michael Sand
- Department of Plastic and Reconstructive Surgery, St. Josef-Hospital, Heidbergweg 22–24, 45257 Essen, Germany;
| | - Lutz Schmitz
- Institute of Dermatopathology, MVZ Corius DermPath Bonn, GmbH, Trierer Strasse 70–72, 53115 Bonn, Germany;
| | - Eggert Stockfleth
- Department of Dermatology St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| |
Collapse
|
24
|
Wang X, Song B, Zang M, Ji H, Yang H, Jiang S, Yang X. LOC100996425 acts as a promoter in prostate cancer by mediating hepatocyte nuclear factor 4A and the AMPK/mTOR pathway. J Cell Mol Med 2021; 25:8174-8186. [PMID: 34309216 PMCID: PMC8419185 DOI: 10.1111/jcmm.16657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
The involvement of long non-coding RNAs (lncRNAs), differentially expressed genes and signals in prostate cancer (PCa) continues to be a subject of investigation. This study determined effects of LOC100996425 on human PCa by targeting hepatocyte nuclear factor 4A (HNF4A) via the AMPK/mTOR pathway. PCa and adjacent normal tissues were obtained to characterize expression pattern of LOC100996425, HNF4A and the AMPK/mTOR pathway-related genes. Then, the target gene of LOC100996425 was determined with lncRNA target prediction website and further verification was obtained through luciferase assay and ribonucleoprotein immunoprecipitation. After that, PCa cells were introduced with LOC100996425, HNF4A, siLOC100996425 or siHNF4A to explore the specific significance of LOC100996425 and HNF4A in PCa. The mechanism associated with AMPK/mTOR pathway was investigated using AMPK inhibitor or activator. LOC100996425 was up-regulated, while HNF4A was down-regulated in the PCa tissues. HNF4A was a target gene of LOC100996425. PCa cells transfected with either siLOC100996425 or HNF4A displayed reduced rates of PCa cell proliferation and migration while elevating cell apoptosis. HNF4A overexpression reversed the promotive effect of LOC100996425 overexpression on PCa. The activation of AMPK pathway involved in the cancer progression mediated by LOC100996425. Down-regulation of LOC100996425 retards progression of PCa through HNF4A-mediated AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Xiuyan Wang
- Department of Urology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Song
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| | - Mingcui Zang
- Department of Hepatobiliary and Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
| | - He Ji
- Department of Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Jiang
- Department of Urology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Hu C, Liu K, Wang B, Xu W, Lin Y, Yuan C. DLX6-AS1: An Indispensable Cancer-related Long Non-coding RNA. Curr Pharm Des 2021; 27:1211-1218. [PMID: 33121401 DOI: 10.2174/1381612826666201029100151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is increasing evidence that lncRNA, a type of transcript that is over 200 nucleotides in length and may serve as oncogenes or suppressor genes, is implicated in the pathophysiology of human diseases. In particular, tumorigenesis and progress are closely correlated with its abnormal expression. In addition, it may become a promising target for many oncology biotherapies. Abnormal DLX6-AS1 expression affects different cellular processes such as proliferation, aggression and metastasis. This review aims to probe into the pathophysiological functions and molecular mechanisms of DLX6-AS1 in various cancers. METHODS By retrieving the literature, this review summarizes the biological function and mechanism of LncRNA DLX6-AS1 in tumor occurrence. RESULTS The lncRNA DLX6-AS1 is a new tumor-related RNA that has recently been found to be aberrantly expressed in diverse cancers, such as pancreatic cancer, osteosarcoma, non-small cell lung cancer, gastric carcinoma, glioma, hepatocellular cancer, colorectal carcinoma, renal carcinoma, esophageal squamous cell cancer, ovarian cancer, Ewing sarcoma, cervical cancer, breast cancer, thyroid cancer, neuroblastoma, pulmonary adenocarcinoma, nasopharyngeal carcinoma, squamous laryngeal cancer and bladder cancer, etc. Meanwhile, it is identified that DLX6-AS1 regulates the aggression, translocation and proliferation of diverse cancers. CONCLUSION LncRNA DLX6-AS1 may be viable markers in tumors or a potential therapeutic target for multiple tumors.
Collapse
Affiliation(s)
- Chengyu Hu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Kai Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Wen Xu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yexiang Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
26
|
Cao H, Xu D, Cai Y, Han X, Tang L, Gao F, Qi Y, Cai D, Wang H, Ri M, Antonets D, Vyatkin Y, Chen Y, You X, Wang F, Nicolas E, Kapranov P. Very long intergenic non-coding (vlinc) RNAs directly regulate multiple genes in cis and trans. BMC Biol 2021; 19:108. [PMID: 34016118 PMCID: PMC8139166 DOI: 10.1186/s12915-021-01044-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The majority of the human genome is transcribed in the form of long non-coding (lnc) RNAs. While these transcripts have attracted considerable interest, their molecular mechanisms of function and biological significance remain controversial. One of the main reasons behind this lies in the significant challenges posed by lncRNAs requiring the development of novel methods and concepts to unravel their functionality. Existing methods often lack cross-validation and independent confirmation by different methodologies and therefore leave significant ambiguity as to the authenticity of the outcomes. Nonetheless, despite all the caveats, it appears that lncRNAs may function, at least in part, by regulating other genes via chromatin interactions. Therefore, the function of a lncRNA could be inferred from the function of genes it regulates. In this work, we present a genome-wide functional annotation strategy for lncRNAs based on identification of their regulatory networks via the integration of three distinct types of approaches: co-expression analysis, mapping of lncRNA-chromatin interactions, and assaying molecular effects of lncRNA knockdowns obtained using an inducible and highly specific CRISPR/Cas13 system. RESULTS We applied the strategy to annotate 407 very long intergenic non-coding (vlinc) RNAs belonging to a novel widespread subclass of lncRNAs. We show that vlincRNAs indeed appear to regulate multiple genes encoding proteins predominantly involved in RNA- and development-related functions, cell cycle, and cellular adhesion via a mechanism involving proximity between vlincRNAs and their targets in the nucleus. A typical vlincRNAs can be both a positive and negative regulator and regulate multiple genes both in trans and cis. Finally, we show vlincRNAs and their regulatory networks potentially represent novel components of DNA damage response and are functionally important for the ability of cancer cells to survive genotoxic stress. CONCLUSIONS This study provides strong evidence for the regulatory role of the vlincRNA class of lncRNAs and a potentially important role played by these transcripts in the hidden layer of RNA-based regulation in complex biological systems.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Ye Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Xueer Han
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Fan Gao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Yao Qi
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - DingDing Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Huifang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Maxim Ri
- AcademGene Ltd., 6, Acad. Lavrentjev ave, Novosibirsk, 630090, Russia
| | - Denis Antonets
- AcademGene Ltd., 6, Acad. Lavrentjev ave, Novosibirsk, 630090, Russia
- SRC VB "Vector" Rospotrebnadzor, Novosibirsk, Koltsovo, 630559, Russia
| | - Yuri Vyatkin
- AcademGene Ltd., 6, Acad. Lavrentjev ave, Novosibirsk, 630090, Russia
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Xiang You
- School of Medicine, Xiamen University, Xiang'an Southern Road, Xiamen, 361102, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Estelle Nicolas
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
27
|
Zhang J, Ding T, Zhang H. Insight Into Chromatin-Enriched RNA: A Key Chromatin Regulator in Tumors. Front Cell Dev Biol 2021; 9:649605. [PMID: 33937246 PMCID: PMC8079759 DOI: 10.3389/fcell.2021.649605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
Chromatin-enriched RNAs (cheRNAs) constitute a special class of long noncoding RNAs (lncRNAs) that are enriched around chromatin and function to activate neighboring or distal gene transcription. Recent studies have shown that cheRNAs affect chromatin structure and gene expression by recruiting chromatin modifiers or acting as bridges between distal enhancers and promoters. The abnormal transcription of cheRNAs plays an important role in the occurrence of many diseases, particularly tumors. The critical effect of cancer stem cells (CSCs) on the formation and development of tumors is well known, but the function of cheRNAs in tumorigenesis, especially in CSC proliferation and stemness maintenance, is not yet fully understood. This review focuses on the mechanisms of cheRNAs in epigenetic regulation and chromatin conformation and discusses the way cheRNAs function in CSCs to deepen the understanding of tumorigenesis and provide novel insight to advance tumor-targeting therapy.
Collapse
Affiliation(s)
- Jixing Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| | - Tianyi Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| | - He Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Research Center for Stem Cells, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The Functional Role of Long Non-coding RNA UCA1 in Human Multiple Cancers: a Review Study. Curr Mol Med 2021; 21:96-110. [PMID: 32560605 DOI: 10.2174/1566524020666200619124543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
In various cancers, high-grade tumor and poor survival rate in patients with upregulated lncRNAs UCA1 have been confirmed. Urothelial carcinoma associated 1 (UCA1) is an oncogenic non-coding RNA with a length of more than 200 nucleotides. The UCA1 regulate critical biological processes that are involved in cancer progression, including cancer cell growth, invasion, migration, metastasis, and angiogenesis. So It should not surprise that UCA1 overexpresses in variety of cancers type, including pancreatic cancer, ovarian cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, endometrial cancer, cervical cancer, bladder cancer, adrenal cancer, hypopharyngeal cancer, oral cancer, gallbladder cancer, nasopharyngeal cancer, laryngeal cancer, osteosarcoma, esophageal squamous cell carcinoma, renal cell carcinoma, cholangiocarcinoma, leukemia, glioma, thyroid cancer, medulloblastoma, hepatocellular carcinoma and multiple myeloma. In this article, we review the biological function and regulatory mechanism of UCA1 in several cancers and also, we will discuss the potential of its as cancer biomarker and cancer treatment.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
29
|
Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA 2021; 7:16. [PMID: 33672592 PMCID: PMC8005997 DOI: 10.3390/ncrna7010016] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein coding RNAs with lengths of more than 200 nucleotides, exert their effects by binding to DNA, mRNA, microRNA, and proteins and regulate gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Depending on cellular location, lncRNAs are involved in a wide range of cellular functions, including chromatin modification, transcriptional activation, transcriptional interference, scaffolding and regulation of translational machinery. This review highlights recent studies on lncRNAs in the regulation of protein translation by modulating the translational factors (i.e, eIF4E, eIF4G, eIF4A, 4E-BP1, eEF5A) and signaling pathways involved in this process as wells as their potential roles as tumor suppressors or tumor promoters.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul 34010, Turkey;
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Long non-coding RNA AGAP2-AS1 promotes proliferation and metastasis in papillary thyroid cancer by miR-628-5p/KLF12 axis. J Bioenerg Biomembr 2021; 53:235-245. [PMID: 33604734 DOI: 10.1007/s10863-021-09879-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Long non-coding RNA (lncRNA) AGAP2-AS1 acts as an oncogene in several types of cancers. However, the role and mechanism of AGAP2-AS1 in papillary thyroid carcinoma (PTC) remain unclear. Thus, in this study, we aimed to explore the role of AGAP2-AS1 in PTC. Our results showed that AGAP2-AS1 was significantly upregulated in PTC tissues. Knockdown of AGAP2-AS1 inhibited the proliferation, migration and invasion of PTC cells. In vivo experiment showed that AGAP2-AS1 knockdown inhibited the tumorigenesis of PTC. MiR-628-5p was found to act as a target miRNA of AGAP2-AS1 in PTC. The expression level of miR-628-5p in PTC tissues was negatively associated with that of AGAP2-AS1. Inhibition of miR-628-5p attenuated the effects of AGAP2-AS1 knockdown on PTC. Moreover, miR-628-5p directly bound to the 3'UTR of KLF12 and inhibited the expression of KLF12. Knockdown of KLF12 enhanced the inhibitory effects of miR-628-5p on PTC cell proliferation and metastasis. In conclusion, these findings indicated that AGAP2-AS1 exerted an oncogenic role in PTC progression and metastasis. The effects of AGAP2-AS1 might be mediated by the regulation of miR-628-5p/KLF12 axis.
Collapse
|
31
|
Su K, Wang N, Shao Q, Liu H, Zhao B, Ma S. The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed Pharmacother 2021; 137:111389. [PMID: 33601150 DOI: 10.1016/j.biopha.2021.111389] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
As a type of non-coding RNA of more than 200 nucleotides, long non-coding RNAs(lncRNAs) lack protein coding ability and can regulate gene expression. MicroRNAs(miRNAs), which are also non-coding RNAs, are short single-stranded RNAs, usually composed of 18-23 nucleotides. MiRNAs inhibits gene expression by specifically binding to the 3'-UTR of downstream target mRNAs and can function as oncogenes or suppressor oncogenes to regulate the occurrence and development of cancer. LncRNAs can function as competitive endogenous RNAs that bind to miRNAs, resulting in the recovery of downstream mRNA expression and activity. The regulatory network existing between lncRNAs, miRNAs and mRNAs regulates a variety of biological processes, including cell proliferation, apoptosis, migration and invasion as well as cell-cycle arrest. Disruption of the ceRNA network affects cell growth and development and often leads to various diseases, especially cancer. The lncRNA MALAT1, which is located on chromosome 11q13, contains more than 8000 nucleotides and is implicated in the occurrence and development of many cancers. Here, we review the impact of the ceRNA network and the lncRNA MALAT1 in cancer.
Collapse
Affiliation(s)
- Kai Su
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China.
| | - Nannan Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China.
| | - Qianqian Shao
- Scientific Research Office of Bengbu Medical College, Bengbu, Anhui 233004, China.
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui 233004, China.
| | - Bao Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China.
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China.
| |
Collapse
|
32
|
Zhao X, Zeng H, Lei L, Tong X, Yang L, Yang Y, Li S, Zhou Y, Luo L, Huang J, Xiao R, Chen J, Zeng Q. Tight junctions and their regulation by non-coding RNAs. Int J Biol Sci 2021; 17:712-727. [PMID: 33767583 PMCID: PMC7975691 DOI: 10.7150/ijbs.45885] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Tight junction (TJ) is a “zippering up” junction structure located at the uppermost portion of adjacent epithelial/endothelial cells in organs and tissues. TJs maintain the relative stability of intracellular substances and functions by closing or opening intercellular pathways, coordinating the entry and exit of molecules of different sizes and charges, and regulating the permeability of paracellular barrier. TJs also prevent microbial invasion, maintain epithelial/endothelial cell polarity, and regulate cell proliferation. TJs are widely present in the skin and mucosal epithelial barriers, intestinal epithelial barrier, glomerular filtration barrier, bladder epithelial barrier, blood-brain barrier, brain-blood tumor barrier, and blood-testis barrier. TJ dysfunction in different organs can lead to a variety of diseases. In addition to signal pathways, transcription factors, DNA methylation, histone modification, TJ proteins can also be regulated by a variety of non-coding RNAs, such as micro-RNAs, long-noncoding RNAs, and circular RNAs, directly or indirectly. This review summarizes the structure of TJs and introduces the functions and regulatory mechanisms of TJs in different organs and tissues. The roles and mechanisms of non-coding RNAs in the regulation of TJs are also highlighted in this review.
Collapse
Affiliation(s)
- Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Yan Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Ying Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
33
|
Liu W, Yao D, Huang B. LncRNA PVT1 promotes cervical cancer progression by sponging miR-503 to upregulate ARL2 expression. Open Life Sci 2021; 16:1-13. [PMID: 33817293 PMCID: PMC7874532 DOI: 10.1515/biol-2021-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/23/2023] Open
Abstract
Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Bo Huang
- Department of Gynaecology and Obstetrics, Hubei General Hospital, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei, 430060, China
| |
Collapse
|
34
|
Xie Y, Zhang S, Lv Z, Long T, Luo Y, Li Z. SOX21-AS1 modulates neuronal injury of MMP +-treated SH-SY5Y cells via targeting miR-7-5p and inhibiting IRS2. Neurosci Lett 2021; 746:135602. [PMID: 33421490 DOI: 10.1016/j.neulet.2020.135602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD), caused by the decreased number of dopaminergic neurons in the substantia nigra, is identified as the second most familiar age-dependent neurodegenerative disease to the public. Long non-coding RNAs (lncRNAs) have been reported to participate in the development of PD. In our research, the expression of lncRNA SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) was up-regulated in 1-methyl-4-phenylpyridinium (MMP+)-treated SH-SY5Y cells. In addition, SOX21-AS1 depletion weakened the cell injury induced by MMP+. Moreover, SOX21-AS1 knockdown decreased Reactive Oxygen Species (ROS) generation and levels of TNF-α, IL-1β and IL-6, but increased SOD activity. However, SOX21-AS1 up-regulation led to opposite results. Further, SOX21-AS1 could bind with miR-7-5p, whose overexpression relieved MMP+-induced cell injury. Additionally, insulin receptor substrate 2 (IRS2) served as the target gene of miR-7-5p, and its expression was positively modulated by SOX21-AS1. Similarly, IRS2 knockdown also had alleviative effects on cell injury stimulated by MMP+ treatment. In sum up, our study demonstrated a new regulatory network consisted of SOX21-AS1, miR-7-5p and IRS2 in SH-SY5Y cells, supplying with a better comprehension about the pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Yang Xie
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Shujiang Zhang
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Zhiyu Lv
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Ting Long
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Ying Luo
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China
| | - Zuoxiao Li
- Department of Neurology, Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
35
|
Chen S, Luo L, Chen H, He C. The Current State of Research Regarding the Role of Non-Coding RNAs in Cutaneous Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:13151-13158. [PMID: 33380805 PMCID: PMC7767711 DOI: 10.2147/ott.s271346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Skin cancers, including those of both both melanoma and non-melanoma subtypes, remain among the most common forms of human cancer. Non-melanoma skin cancers are typically further differentiated into the basal cell carcinoma and cutaneous squamous cell carcinoma (cSCC) categories. Current approaches to diagnosing and treating cSCC remain unsatisfactory, and the prognosis for patients with this disease is relatively poor. Recent advances in high-throughput sequencing have led to an increasingly robust understanding of the diversity of non-coding RNAs (ncRNAs) expressed in both physiological and pathological contexts. These ncRNAs include microRNAs, long ncRNAs, and circular RNAs, all of which have been found to play key functional roles and/or to have value as diagnostic biomarkers or therapeutic targets in a range of different disease contexts. The number of ncRNAs associated with cSCC continues to rise, and as such, there is clear value in comprehensively reviewing the functional roles of these molecules in this form of cancer in order to highlight future avenues for research and clinical development.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| | - Limin Luo
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Hongduo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| | - Chundi He
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
36
|
Chang KC, Diermeier SD, Yu AT, Brine LD, Russo S, Bhatia S, Alsudani H, Kostroff K, Bhuiya T, Brogi E, Pappin DJ, Bennett CF, Rigo F, Spector DL. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat Commun 2020; 11:6438. [PMID: 33353933 PMCID: PMC7755919 DOI: 10.1038/s41467-020-20207-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022] Open
Abstract
Misregulation of long non-coding RNA (lncRNA) genes has been linked to a wide variety of cancer types. Here we report on Mammary Tumor Associated RNA 25 (MaTAR25), a nuclear enriched and chromatin associated lncRNA that plays a role in mammary tumor cell proliferation, migration, and invasion, both in vitro and in vivo. MaTAR25 functions by interacting with purine rich element binding protein B (PURB), and associating with a major downstream target gene Tensin1 (Tns1) to regulate its expression in trans. The Tns1 protein product is a critical component of focal adhesions linking signaling between the extracellular matrix and the actin cytoskeleton. Knockout of MaTAR25 results in down-regulation of Tns1 leading to a reorganization of the actin cytoskeleton, and a reduction of focal adhesions and microvilli. We identify LINC01271 as the human ortholog of MaTAR25, and importantly, increased expression of LINC01271 is associated with poor patient prognosis and metastasis. Our findings demonstrate that LINC01271 represents a potential therapeutic target to alter breast cancer progression.
Collapse
Affiliation(s)
- Kung-Chi Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Allen T Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Genetics Program, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lily D Brine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Suzanne Russo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Sonam Bhatia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Karen Kostroff
- Department of Surgical Oncology, Northwell Health, Lake Success, NY, 11042, USA
| | - Tawfiqul Bhuiya
- Department of Pathology, Northwell Health, Lake Success, NY, 11042, USA
| | - Edi Brogi
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA.
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, 11794, USA.
- Genetics Program, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
37
|
Zhang Z, Sun X, Zhao G, Ma Y, Zeng G. LncRNA embryonic stem cells expressed 1 (Lncenc1) is identified as a novel regulator in neuropathic pain by interacting with EZH2 and downregulating the expression of Bai1 in mouse microglia. Exp Cell Res 2020; 399:112435. [PMID: 33340495 DOI: 10.1016/j.yexcr.2020.112435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
LncRNA embryonic stem cells expressed 1 (Lncenc1), named after its high expression in naïve embryonic stem cells (nESCs), has been rarely studied in almost all pathological processes. Evidences suggest that Lncenc1 is likely to work in the form of RNA-protein complex. Here, we found that Lncenc1 in dorsal root ganglion (DRG) was significantly upregulated in response to mouse nerve injury caused by partial sciatic nerve ligation (pSNL). Overexpression of Lncenc1 mediated by adenoviral expression vector promoted the activation of microglia and the production of inflammatory cytokines including TNF-α, IL-1β and MCP-1. In contrast, knockdown of Lncenc1 suppressed activation of microglia and production of inflammatory cytokines. In the mechanism exploration, we found that Lncenc1 could bind with the RNA binding protein (RBP) enhancer of zeste homologue 2 (EZH2), an identified contributor in microglial activation and neuropathic pain. Lncenc1 interacted with EZH2 and downregulated the expression of brain-specific angiogenesis inhibitor 1 (BAI1). Either inhibition of EZH2 or overexpression of BAI1 could reverse the effects of Lncenc1 overexpression on microglial activation and neuroinflammation. Finally, the Lncenc1-siRNA was intrathecally injected into pSNL mice, and its effects on neuropathic pain were evaluated. Knockdown of Lncenc1 attenuated the development and maintenance of mechanical and thermal hyperalgesia of pSNL mice, accompanied by an increase in BAI1 expression and decrease in inflammatory cytokines. In conclusion, Lncenc1 contributes to neuropathic pain by interacting with EZH2 and downregulating the BAI1 gene in mouse microglia.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Department of Pain, Henan Province Hospital of TCM, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xiufang Sun
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Guoquan Zhao
- Department of Orthopedics, Luzhou People's Hospital, Luzhou, 646000, China
| | - Yingcun Ma
- Department of Pain, Henan Province Hospital of TCM, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Guoli Zeng
- Department of Neurology, Luzhou People's Hospital, Luzhou, 646000, China.
| |
Collapse
|
38
|
Critical roles of the lncRNA CASC11 in tumor progression and cancer metastasis: The biomarker and therapeutic target potential. Genes Dis 2020; 9:325-333. [PMID: 35224149 PMCID: PMC8843879 DOI: 10.1016/j.gendis.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The frequency of human suffering from cancer is increasing annually across the globe. This has fueled numerous investigations aimed at the prevention and cure of various cancers. Long non-coding RNA (lncRNA) are known to play a crucial role in cancer. For instance, cancer susceptibility candidate 11 (CASC11), as one of the long non-coding RNAs, has been reported to be overexpressed in various tumors. This review elucidates the mechanism by which lncRNA CASC11 regulates tumors' biological processes and affirms its value as a therapeutic target for tumors. Through systematic analysis and review of relevant articles in PubMed, we revealed the pathophysiological mechanism of CASC11 on the tumor by regulating the biological processes of tumor such as proliferation, autophagy, apoptosis, thereby promoting tumor metastasis. We also revealed the regulatory pathways of CASC11 in different tumors, for instance by acting on a variety of microRNAs, oncogenic proteins, carcinogens, and transcription factors. Consequently, CASC11 regulates cancer proliferation, apoptosis, and invasion by altering the WNT/β-catenin signaling pathway and epithelial–mesenchymal transition (EMT). Furthermore, CASC11 expression has a high pertinence with clinical prognosis, suggesting that it is a potential marker for malignant tumors or a clinical adjuvant therapy in the future.
Collapse
|
39
|
Song C, Zhang J, Zhao Z, Yang Y, Meng D, Wang J, Guo C, Yuan C. DLEU1: A Functional Long Noncoding RNA in Tumorigenesis. Curr Pharm Des 2020; 26:1742-1748. [PMID: 31969095 DOI: 10.2174/1381612826666200122145305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND LncRNA DLEU1 participates in various biological processes, playing an indispensable role in the pathophysiology of human diseases, especially in tumorigenesis and other processes. Besides, it may represent a promising target for biotherapy in numerous tumors. The aim of this review was to reveal the pathophysiological functions and mechanisms of lncRNA DLEU1 in different types of cancer. METHODS In this review, current studies concerning the biological functions and mechanisms of DLEU1 in tumor development are summarized and analyzed; the related researches are collected through a systematic retrieval of PubMed. RESULTS DLEU1 is a novel cancer-associated lncRNA that has been proved to be abnormally elevated in various malignancies, containing osteosarcoma, glioma, glioblastoma multiforme, hepatocellular carcinoma, bladder cancer, cervical cancer, non-small cell lung cancer, pancreatic ductal adenocarcinoma, colorectal cancer, oral squamous cell carcinoma, endometrial cancer, gastric cancer, Burkitt lymphoma and ovarian carcinoma. Besides, lncRNA LDEU1 has been demonstrated involving in the procession of proliferation, migration, invasion and inhibition of apoptosis of cancer cells. CONCLUSION Long non-coding RNA DLEU1 is likely to represent an available biomarker or a potential therapeutic target in multiple tumors.
Collapse
Affiliation(s)
- Chaoying Song
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Jiali Zhang
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Zongyao Zhao
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Yuxia Yang
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Di Meng
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Jing Wang
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Chong Guo
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Chengfu Yuan
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| |
Collapse
|
40
|
Denkena J, Zaisser A, Merz B, Klinger B, Kuhl D, Blüthgen N, Hermey G. Neuronal activity regulates alternative exon usage. Mol Brain 2020; 13:148. [PMID: 33172478 PMCID: PMC7656758 DOI: 10.1186/s13041-020-00685-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Neuronal activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. A large number of genes regulated by different neuronal plasticity inducing pathways have been identified, but altered gene expression levels represent only part of the complexity of the activity-regulated transcriptional program. Alternative splicing, the differential inclusion and exclusion of exonic sequence in mRNA, is an additional mechanism that is thought to define the activity-dependent transcriptome. Here, we present a genome wide microarray-based survey to identify exons with increased expression levels at 1, 4 or 8 h following neuronal activity in the murine hippocampus provoked by generalized seizures. We used two different bioinformatics approaches to identify alternative activity-induced exon usage and to predict alternative splicing, ANOSVA (ANalysis Of Splicing VAriation) which we here adjusted to accommodate data from different time points and FIRMA (Finding Isoforms using Robust Multichip Analysis). RNA sequencing, in situ hybridization and reverse transcription PCR validate selected activity-dependent splicing events of previously described and so far undescribed activity-regulated transcripts, including Homer1a, Homer1d, Ania3, Errfi1, Inhba, Dclk1, Rcan1, Cda, Tpm1 and Krt75. Taken together, our survey significantly adds to the comprehensive understanding of the complex activity-dependent neuronal transcriptomic signature. In addition, we provide data sets that will serve as rich resources for future comparative expression analyses.
Collapse
Affiliation(s)
- Johanna Denkena
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Andrea Zaisser
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Barbara Merz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bertram Klinger
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology and Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany.,Integrative Research Institute Life Sciences, Humboldt Universität Berlin, 10115, Berlin, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
41
|
Greco S, Madè A, Gaetano C, Devaux Y, Emanueli C, Martelli F. Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. J Transl Med 2020; 18:408. [PMID: 33129318 PMCID: PMC7602761 DOI: 10.1186/s12967-020-02582-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022] Open
Abstract
COronaVIrus Disease 19 (COVID-19) is caused by the infection of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are respiratory, many patients also display acute myocardial injury and chronic damage to the cardiovascular system. Understanding both direct and indirect damage caused to the heart and the vascular system by SARS-CoV-2 infection is necessary to identify optimal clinical care strategies. The homeostasis of the cardiovascular system requires a tight regulation of the gene expression, which is controlled by multiple types of RNA molecules, including RNA encoding proteins (messenger RNAs) (mRNAs) and those lacking protein-coding potential, the noncoding-RNAs. In the last few years, dysregulation of noncoding-RNAs has emerged as a crucial component in the pathophysiology of virtually all cardiovascular diseases. Here we will discuss the potential role of noncoding RNAs in COVID-19 disease mechanisms and their possible use as biomarkers of clinical use.
Collapse
Affiliation(s)
- S Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - A Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy
| | - C Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Y Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - C Emanueli
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, London, W12 0NN, UK
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097, Milan, Italy.
| |
Collapse
|
42
|
Xu W, Wang B, Cai Y, Guo C, Liu K, Yuan C. DLEU2: A Meaningful Long Noncoding RNA in Oncogenesis. Curr Pharm Des 2020; 27:2337-2343. [PMID: 33106136 DOI: 10.2174/1381612826666201026150857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) with little or no coding ability has shown a variety of biological functions in cancer, including epigenetic regulation, DNA damage, regulation of microRNAs, and participation in signal transduction pathways. LncRNA can be used as an oncogene and tumor suppressor gene through transcriptional regulation in cancer. For example, the over-expressed lncRNA DLEU2 promotes the occurrence of laryngeal cancer, lung cancer, hepatocellular carcinoma, etc., and inhibits the progression of chronic lymphocytic leukemia. Deleted in Lymphocytic Leukemia 2 (DLEU2), as one of the long non-coding RNAs, was first found in chronic lymphoblastic leukemia and drawn into the progress of innumerable cancers. The molecular mechanism of DLEU2 in multiple tumors will be revealed. METHODS In this review, current studies on the biological functions and mechanisms of DLEU2 in tumors are summarized and analyzed; related researches are systematically retrieved and collected through PubMed. RESULTS DLEU2, a novel cancer-related lncRNA, has been demonstrated to be abnormally expressed in various malignant tumors, including leukemia, esophageal cancer, lung cancer, glioma, hepatocellular carcinoma, malignant pleural mesothelioma, bladder cancer, pancreatic cancer, pharynx and throat cancer, renal clear cell carcinoma, breast cancer, osteosarcoma. Besides, lncRNA DLEU2 has been shown to be involved in the process of proliferation, migration, invasion and inhibition of apoptosis of cancer cells. CONCLUSION Due to the biological functions and mechanisms involved in DLEU2, it may represent an available biomarker or potential therapeutic target in a variety of malignant tumors.
Collapse
Affiliation(s)
- Wen Xu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yuxuan Cai
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Kai Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
43
|
Lu J, Wu X, Wang L, Li T, Sun L. Long noncoding RNA LINC00467 facilitates the progression of acute myeloid leukemia by targeting the miR-339/SKI pathway. Leuk Lymphoma 2020; 62:428-437. [PMID: 33054480 DOI: 10.1080/10428194.2020.1832667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A growing body of evidence indicates that long non-coding RNA (lncRNA) is involved in the development and progression of many diseases. It has been reported that lncRNA LINC00467 is disregulated in multiple tumors, while its role in acute myeloid leukemia (AML) is still unknown. Here, we find that LINC00467 expression is significantly increased in AML specimens and cell lines. Further investigations show that knockdown of LINC00467 inhibits the malignant phenotypes of AML cells. Consistently, LINC00467 knockdown slows AML progression in immunodeficient mice. Interestingly, microRNA-339 (miR-339) is upregulated and its target gene SKI, an oncogene, is downregulated in AML cells after LINC00467 knockdown. More importantly, inhibition of miR-339 can largely abolish the effect of LINC00467 knockdown on AML cells. Collectively, our data demonstrate that LINC00467 plays an important role in the pathogenesis of AML by targeting the miR-339/SKI pathway, which provides a new sight for the subsequent treatment of AML.
Collapse
Affiliation(s)
- Jun Lu
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Xifeng Wu
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Lijuan Wang
- Department of Hematology, Qingdao Binhai University Affiliated Hospital, Qingdao, China
| | - Tantan Li
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Ling Sun
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| |
Collapse
|
44
|
LOC101928834, a novel lncRNA in Wnt/β-catenin signaling pathway, promotes cell proliferation and predicts poor clinical outcome in myelodysplastic syndromes. Clin Sci (Lond) 2020; 134:1279-1293. [PMID: 32463458 DOI: 10.1042/cs20200439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in hematological malignancies. We have previously identified several differentially expressed lncRNAs in myelodysplastic syndromes (MDS) by microarray analysis. In the present study, we explored the regulatory circuitry, potential functions, clinical and prognostic relevance of these lncRNAs in MDS by developing a lncRNA regulation network. We identified a novel lncRNA, LOC101928834, which was significantly up-regulated in the bone marrow of patients with MDS and acute myeloid leukemia (AML). We further evaluated the clinical relevance of LOC101928834 in 89 MDS and 110 AML patients and found that higher level of LOC101928834 expression was associated with higher white blood cell count, higher blast percentage, the subtype of refractory cytopenia with excess blasts (RAEB) and shorter overall survival in MDS patients. Receiver operating characteristic (ROC) curve analysis showed that LOC101928834 expression could discriminate MDS-RAEB patients from control with an area under the receiver-operating curve (AUC) of 0.9048. Moreover, functional analysis showed that LOC101928834 promoted cell proliferation and cell cycle progression, and activated Wnt/β-catenin signaling pathway in vitro. In conclusion, LOC101928834 expression is correlated with clinical and biological features of MDS and may serve as a novel diagnostic and prognostic biomarker.
Collapse
|
45
|
Yang G, Zhou L, Xu Q, Meng F, Wan Y, Meng X, Wang L, Zhang L. LncRNA KCNQ1OT1 inhibits the radiosensitivity and promotes the tumorigenesis of hepatocellular carcinoma via the miR-146a-5p/ACER3 axis. Cell Cycle 2020; 19:2519-2529. [PMID: 32936716 PMCID: PMC7553536 DOI: 10.1080/15384101.2020.1809259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death, and radiotherapy is currently one of the main treatments. Long non-coding RNAs (lncRNAs) are associated with the radiosensitivity and tumorigenesis of HCC. However, the role and molecular mechanism of potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1) in HCC are still unclear. The relative expression of KCNQ1OT1, microRNA-146a-5p (miR-146a-5p) and alkaline ceramidase 3 (ACER3) was quantified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Clonogenic assay was used to assess the radiosensitivity of cells. Cell apoptosis and metastasis were evaluated by flow cytometry and transwell assays, respectively. The protein levels of apoptosis markers, metastasis markers and ACER3 were detected by western blot (WB) analysis. The relationship between miR-146a-5p and KCNQ1OT1 or ACER3 was determined by dual-luciferase reporter assay. Additionally, animal experiments were carried out to explore the effect of KCNQ1OT1 silencing on HCC tumor growth in vivo. KCNQ1OT1 was highly expressed in HCC, and its knockdown hindered the proliferation and metastasis, while increased the radiosensitivity and apoptosis of HCC cells. MiR-146a-5p could interact with KCNQ1OT1, and its inhibition reversed the effects of silenced-KCNQ1OT1 on the radiosensitivity and tumorigenesis of HCC cells. Besides, ACER3 was a target of miR-146a-5p, and its overexpression inversed the effects of miR-146a-5p mimic on the radiosensitivity and tumorigenesis of HCC cells. The expression of ACER3 was regulated by KCNQ1OT1 and miR-146a-5p. Furthermore, KCNQ1OT1 also could reduce the growth of HCC by regulating the miR-146a-5p/ACER3 axis in vivo. Our study suggested that KCNQ1OT1 improved ACER3 expression to regulate the radiosensitivity and tumorigenesis of HCC through sponging miR-146a-5p, indicating that KCNQ1OT1 might be a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lijing Zhou
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qinhong Xu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiankui Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,CONTACT Lin Wang ; Lei Zhang
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
46
|
Liu Q, Yu X, Yang M, Li X, Zhai X, Lian Y, Chen Z, Fan Q, Song L, Li W. A study of the mechanism of lncRNA-CR594175 in regulating proliferation and invasion of hepatocellular carcinoma cells in vivo and in vitro. Infect Agent Cancer 2020; 15:55. [PMID: 32983253 PMCID: PMC7510120 DOI: 10.1186/s13027-020-00321-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the cancers of highest incidence and mortality worldwide. The proliferation and invasion of tumor cells are the main reason for poor prognosis after HCC surgery. Long non-coding RNA (lncRNA) has been shown to play a key role in the progression of HCC. LncRNA-CR594175 is one of the highly expressed lncRNAs in HCC tumors and their metastatic tumors that we have obtained by the High-throughput screening method. Methods To elucidate the role of lncRNA-CR594175 in regulating the proliferation and invasion of human hepatoma cell line, HepG2, we operated through lncRNA-CR594175 silencing to inhibit the progression of HCC, either through in vitro or in vivo experiments. Results We found that lncRNA-CR594175 was lower in adjacent non-cancerous tissues than in primary HCC, and was lower in primary HCC than in its metastasis. Silencing of lncRNA-CR594175 inhibited the proliferation and invasion of HepG2 cells and growth of subcutaneous tumors. The results revealed that lncRNA-CR594175, as a RNA sponge, broke the negative regulation of hsa-miR-142-3p on Catenin, beta-1 (CTNNB1), and once lncRNA-CR594175 was silenced, the hsa-miR142-3p regained its negative regulation on CTNNB1 which can promote HCC progression by activating the wnt pathway. Conclusions Our present study demonstrated for the first time that lncRNA-CR594175 silencing suppressed proliferation and invasion of HCC cells in vivo and in vitro by restoring the negative regulation of hsa-miR-142-3p on CTNNB1, laying a solid theoretical base for using lncRNA-CR594175 as genetic target therapy for HCC and offering a reasonable explanation for inactivation of miRNA in different tumors or in the tumor at different stages.
Collapse
Affiliation(s)
- Quan Liu
- Department of Emergency, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xuxu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Minjie Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xuejia Zhai
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yujin Lian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Lijie Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
47
|
Gavrilov AA, Zharikova AA, Galitsyna AA, Luzhin A, Rubanova NM, Golov AK, Petrova NV, Logacheva M, Kantidze OL, Ulianov SV, Magnitov MD, Mironov AA, Razin SV. Studying RNA-DNA interactome by Red-C identifies noncoding RNAs associated with various chromatin types and reveals transcription dynamics. Nucleic Acids Res 2020; 48:6699-6714. [PMID: 32479626 PMCID: PMC7337940 DOI: 10.1093/nar/gkaa457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in various biological processes, including regulating transcription and sustaining genome 3D organization. Here, we present a method termed Red-C that exploits proximity ligation to identify contacts with the genome for all RNA molecules present in the nucleus. Using Red-C, we uncovered the RNA-DNA interactome of human K562 cells and identified hundreds of ncRNAs enriched in active or repressed chromatin, including previously undescribed RNAs. Analysis of the RNA-DNA interactome also allowed us to trace the kinetics of messenger RNA production. Our data support the model of co-transcriptional intron splicing, but not the hypothesis of the circularization of actively transcribed genes.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A Zharikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center for Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aleksandra A Galitsyna
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Artem V Luzhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Mental Health Research Center, Moscow, Russia
| | | | | | - Omar L Kantidze
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail D Magnitov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| | - Sergey V Razin
- To whom correspondence should be addressed. Tel: +7 499 135 3092; Fax: +7 499 135 4105;
| |
Collapse
|
48
|
Guo Y, Wang L, Gou R, Tang L, Liu P. Noncoding RNAs in peritoneal fibrosis: Background, Mechanism, and Therapeutic Approach. Biomed Pharmacother 2020; 129:110385. [PMID: 32768932 DOI: 10.1016/j.biopha.2020.110385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Peritoneal fibrosis (PF) is the main reason for patients to withdraw from peritoneal dialysis, while the mechanism underlying PF remains unclear. Increasing evidence has demonstrated the regulatory roles of different classes of noncoding RNAs (ncRNAs) in PF. MicroRNAs (miRNAs), which belong to a distinct class of ncRNAs, play crucial roles in the post-transcriptional regulation of gene expression. Studies have suggested that miRNAs play important roles in the pathogenesis of PF and have the potential to be used as diagnostic markers and therapeutic targets for PF in the future. Long noncoding RNAs (lncRNAs) have raised much attention in the recent years, which are involved in the pathophysiological processes of many diseases, including tumors, heart diseases and so on. Recently, some researchers have begun to notice the roles of lncRNAs in PF, and found that lncRNAs play certain roles in the pathogenesis of PF. Circular RNAs (circRNAs) have been proven to be participated in the pathogenesis of many diseases, including tumor metastasis, organ fibrosis and so on. However, studies on the correlation of circRNAs and PF are rather poor compared with miRNAs and lncRNAs. In this review, we will focus on the findings of ncRNAs in peritoneal dialysis therapy and discuss the rising interests in ncRNAs as diagnostic and therapeutic targets of PF.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Liuwei Wang
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Rong Gou
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lin Tang
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| | - Peipei Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
49
|
Lv P, Ye T, Yang X, Liu H, Ye Z. High expression of long noncoding RNA LUCAT1 correlates with a poor clinical outcome in solid tumors: A systematic review and meta-analysis. Pathol Res Pract 2020; 216:153047. [PMID: 32825932 DOI: 10.1016/j.prp.2020.153047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/25/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS Extensive studies have been performed to analyze the expression of long non-coding RNA the lung cancer associated transcript 1 (lncRNA LUCAT1) in various cancer types, and the predictive value of high or low lncRNA LUCAT1 level in survival time. We prepared to assess the association between the lncRNA LUCAT1 expression and the prognosis as well as clinical parameters in human cancers. METHODS We retrieved completely in some main databases, such as PubMed, Embase, Web of Science, China National Knowledge Internet (CNKI), and Wanfang database. Then we counted the pooled hazard ratio (HR) and odds ratio (OR) with 95 % confidence interval (CI) to investigate the clinical value of lncRNA LUCAT1. RESULTS We found that overexpression of lncRNA LUCAT1 was highly associated with shorter overall survival (HR = 1.91, 95 % CI: 1.59-2.31, P < 0.00001) through comprehensively analyzing eight of the total eleven eligible papers. Meanwhile, high lncRNA LUCAT1 expression was significantly related to deeper invasion depth (HR = 3.16, 95 % CI: 1.76-5.70, P = 0.0001), larger tumor size (HR = 2.10, 95 % CI: 1.54-2.86, P < 0.00001), advanced clinical stage (HR = 3.52, 95 % CI: 1.98-6.27, P < 0.0001), and more lymph node metastasis (HR = 2.99, 95 % CI: 1.36-6.57, P = 0.006), respectively. CONCLUSIONS Our outcomes suggest that upregulation of lncRNA LUCAT1 in patients with different cancers can predict a shorter survival time and act as an unfavorable prognostic molecular indicator.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Institute of Urology, Wuhan, 430030, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Institute of Urology, Wuhan, 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Institute of Urology, Wuhan, 430030, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Institute of Urology, Wuhan, 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Institute of Urology, Wuhan, 430030, China.
| |
Collapse
|
50
|
Satoh Y, Takei N, Kawamura S, Takahashi N, Kotani T, Kimura AP. A novel testis-specific long noncoding RNA, Tesra, activates the Prss42/Tessp-2 gene during mouse spermatogenesis†. Biol Reprod 2020; 100:833-848. [PMID: 30379984 PMCID: PMC6437258 DOI: 10.1093/biolre/ioy230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
The progression of spermatogenesis is precisely controlled by meiotic stage-specific genes, but the molecular mechanism for activation of such genes is still elusive. Here we found a novel testis-specific long noncoding RNA (lncRNA), Tesra, that was specifically expressed in the mouse testis at the Prss/Tessp gene cluster on chromosome 9. Tesra was transcribed downstream of Prss44/Tessp-4, starting within the gene, as a 4435-nucleotide transcript and developmentally activated at a stage similar to that for Prss/Tessp genes. By in situ hybridization, Tesra was found to be localized in and around germ cells and Leydig cells, being consistent with biochemical data showing its existence in cytoplasmic, nuclear, and extracellular fractions. Based on the finding of more signals in nuclei of pachytene spermatocytes, we explored the possibility that Tesra plays a role in transcriptional activation of Prss/Tessp genes. By a ChIRP assay, the Tesra transcript was found to bind to the Prss42/Tessp-2 promoter region in testicular germ cells, and transient overexpression of Tesra significantly activated endogenous Prss42/Tessp-2 expression and increased Prss42/Tessp-2 promoter activity in a reporter construct. These findings suggest that Tesra activates the Prss42/Tessp-2 gene by binding to the promoter. Finally, we investigated whether Tesra co-functioned with enhancers adjacent to another lncRNA, lncRNA-HSVIII. In the Tet-on system, Tesra transcription significantly increased activity of one enhancer, but Tesra and the enhancer were not interdependent. Collectively, our results proposed a potential function of an lncRNA, Tesra, in transcriptional activation and suggest a novel relationship between an lncRNA and an enhancer.
Collapse
Affiliation(s)
- Yui Satoh
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Natsumi Takei
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shohei Kawamura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Nobuhiko Takahashi
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Tomoya Kotani
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|