1
|
Ahmed MR, Zheng C, Dunning JL, Ahmed MS, Ge C, Pair FS, Gurevich VV, Gurevich EV. Arrestin-3-assisted activation of JNK3 mediates dopaminergic behavioral sensitization. Cell Rep Med 2024; 5:101623. [PMID: 38936368 PMCID: PMC11293330 DOI: 10.1016/j.xcrm.2024.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
In rodents with unilateral ablation of neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA induces a progressive increase of behavioral responses, a process known as behavioral sensitization. This sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of these mice, we find that the restoration of arrestin-3 fully rescues behavioral sensitization, whereas its mutant defective in c-Jun N-terminal kinase (JNK) activation does not. A 25-residue arrestin-3-derived peptide that facilitates JNK3 activation in cells, expressed ubiquitously or selectively in direct pathway striatal neurons, also fully rescues sensitization, whereas an inactive homologous arrestin-2-derived peptide does not. Behavioral rescue is accompanied by the restoration of JNK3 activity, as reflected by JNK-dependent phosphorylation of the transcription factor c-Jun in the dopamine-depleted striatum. Thus, arrestin-3-assisted JNK3 activation in direct pathway neurons is a critical element of the molecular mechanism underlying sensitization upon dopamine depletion and chronic L-DOPA treatment.
Collapse
Affiliation(s)
- Mohamed R Ahmed
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA; University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; The University of Alabama at Birmingham, SHEL 121, 1825 University Boulevard, Birmingham, AL 35294-2182, USA
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Jeffery L Dunning
- Contet Laboratory, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Mohamed S Ahmed
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Connie Ge
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - F Sanders Pair
- The University of Alabama at Birmingham, SHEL 121, 1825 University Boulevard, Birmingham, AL 35294-2182, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
3
|
Castiglione GM, Chiu YLI, Gutierrez EDA, Van Nynatten A, Hauser FE, Preston M, Bhattacharyya N, Schott RK, Chang BSW. Convergent evolution of dim light vision in owls and deep-diving whales. Curr Biol 2023; 33:4733-4740.e4. [PMID: 37776863 DOI: 10.1016/j.cub.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Animals with enhanced dim-light sensitivity are at higher risk of light-induced retinal degeneration when exposed to bright light conditions.1,2,3,4 This trade-off is mediated by the rod photoreceptor sensory protein, rhodopsin (RHO), and its toxic vitamin A chromophore by-product, all-trans retinal.5,6,7,8 Rod arrestin (Arr-1) binds to RHO and promotes sequestration of excess all-trans retinal,9,10 which has recently been suggested as a protective mechanism against photoreceptor cell death.2,11 We investigated Arr-1 evolution in animals at high risk of retinal damage due to periodic bright-light exposure of rod-dominated retinas. Here, we find the convergent evolution of enhanced Arr-1/RHO all-trans-retinal sequestration in owls and deep-diving whales. Statistical analyses reveal a parallel acceleration of Arr-1 evolutionary rates in these lineages, which is associated with the introduction of a rare Arr-1 mutation (Q69R) into the RHO-Arr-1 binding interface. Using in vitro assays, we find that this single mutation significantly enhances RHO-all-trans-retinal sequestration by ∼30%. This functional convergence across 300 million years of evolutionary divergence suggests that Arr-1 and RHO may play an underappreciated role in the photoprotection of the eye, with potentially vast clinical significance.
Collapse
Affiliation(s)
- Gianni M Castiglione
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Ophthalmology & Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Evolutionary Studies, Vanderbilt University, Nashville, TN 37235, USA.
| | - Yan L I Chiu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Eduardo de A Gutierrez
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Alexander Van Nynatten
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Frances E Hauser
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Matthew Preston
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Institute of Ophthalmology, University College London, London EC1V 2PD, UK
| | - Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Biology and Centre for Vision Research, York University, Toronto, ON M3J 1P3, Canada; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
4
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
5
|
Gurevich VV, Gurevich EV. Mechanisms of Arrestin-Mediated Signaling. Curr Protoc 2023; 3:e821. [PMID: 37367499 DOI: 10.1002/cpz1.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Arrestins were first discovered as proteins that selectively bind active phosphorylated GPCRs and suppress (arrest) their G protein-mediated signaling. Nonvisual arrestins are also recognized as signaling proteins regulating a variety of cellular pathways. Arrestins are highly flexible; they can assume many different conformations. In their receptor-bound conformation, arrestins have higher affinity for a subset of binding partners. This explains how receptor activation regulates certain branches of arrestin-dependent signaling via arrestin recruitment to GPCRs. However, free arrestins are also active molecular entities that regulate other signaling pathways and localize signaling proteins to particular subcellular compartments. Recent findings suggest that the two visuals, arrestin-1 and arrestin-4, which are expressed in photoreceptor cells, not only regulate signaling via binding to photopigments but also interact with several nonreceptor partners, critically affecting the health and survival of photoreceptor cells. Detailed in this overview are GPCR-dependent and independent modes of arrestin-mediated regulation of cellular signaling. © 2023 Wiley Periodicals LLC.
Collapse
|
6
|
Gurevich VV. Do arrestin oligomers have specific functions? CELL SIGNALING 2023; 1:42-46. [PMID: 37664541 PMCID: PMC10473880 DOI: 10.46439/signaling.1.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Arrestins are a small family of versatile regulators of cell signaling. Arrestins regulate signaling and trafficking of G protein-coupled receptors, regulate and direct to particular subcellular compartments numerous protein kinases, ubiquitin ligases, etc. Three out of four arrestin subtypes expressed in vertebrates self-associate, each forming oligomers of a distinct size and shape. While the structures of the solution oligomers of arrestin-1, -2, and -3 have been elucidated, no function specific for the oligomeric form of either of these three subtypes has been identified thus far. Considering how multi-functional average-sized (~45 kDa) arrestin proteins were found to be, it appears likely that certain functions are predominantly or exclusively fulfilled by monomeric and oligomeric forms of each subtype.
Collapse
|
7
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
8
|
Critical role of the finger loop in arrestin binding to the receptors. PLoS One 2019; 14:e0213792. [PMID: 30875392 PMCID: PMC6420155 DOI: 10.1371/journal.pone.0213792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
We tested the interactions with four different G protein-coupled receptors (GPCRs) of arrestin-3 mutants with substitutions in the four loops, three of which contact the receptor in the structure of the arrestin-1-rhodopsin complex. Point mutations in the loop at the distal tip of the N-domain (Glu157Ala), in the C-loop (Phe255Ala), back loop (Lys313Ala), and one of the mutations in the finger loop (Gly65Pro) had mild variable effects on receptor binding. In contrast, the deletion of Gly65 at the beginning of the finger loop reduced the binding to all GPCRs tested, with the binding to dopamine D2 receptor being affected most dramatically. Thus, the presence of a glycine at the beginning of the finger loop appears to be critical for the arrestin-receptor interaction.
Collapse
|
9
|
Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol 2019; 11:47-56. [PMID: 30820275 PMCID: PMC6391623 DOI: 10.4330/wjc.v11.i2.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The two ubiquitous, outside the retina, G protein-coupled receptor (GPCR) adapter proteins, β-arrestin-1 and -2 (also known as arrestin-2 and -3, respectively), have three major functions in cells: GPCR desensitization, i.e., receptor decoupling from G-proteins; GPCR internalization via clathrin-coated pits; and signal transduction independently of or in parallel to G-proteins. Both β-arrestins are expressed in the heart and regulate a large number of cardiac GPCRs. The latter constitute the single most commonly targeted receptor class by Food and Drug Administration-approved cardiovascular drugs, with about one-third of all currently used in the clinic medications affecting GPCR function. Since β-arrestin-1 and -2 play important roles in signaling and function of several GPCRs, in particular of adrenergic receptors and angiotensin II type 1 receptors, in cardiac myocytes, they have been a major focus of cardiac biology research in recent years. Perhaps the most significant realization coming out of their studies is that these two GPCR adapter proteins, initially thought of as functionally interchangeable, actually exert diametrically opposite effects in the mammalian myocardium. Specifically, the most abundant of the two β-arrestin-1 exerts overall detrimental effects on the heart, such as negative inotropy and promotion of adverse remodeling post-myocardial infarction (MI). In contrast, β-arrestin-2 is overall beneficial for the myocardium, as it has anti-apoptotic and anti-inflammatory effects that result in attenuation of post-MI adverse remodeling, while promoting cardiac contractile function. Thus, design of novel cardiac GPCR ligands that preferentially activate β-arrestin-2 over β-arrestin-1 has the potential of generating novel cardiovascular therapeutics for heart failure and other heart diseases.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Jackson Memorial Hospital, Miami, FL 33136, United States
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
10
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
11
|
Yap CC, Digilio L, Kruczek K, Roszkowska M, Fu XQ, Liu JS, Winckler B. A dominant dendrite phenotype caused by the disease-associated G253D mutation in doublecortin (DCX) is not due to its endocytosis defect. J Biol Chem 2018; 293:18890-18902. [PMID: 30291144 DOI: 10.1074/jbc.ra118.004462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/29/2018] [Indexed: 01/14/2023] Open
Abstract
Doublecortin (DCX) is a protein needed for cortical development, and DCX mutations cause cortical malformations in humans. The microtubule-binding activity of DCX is well-described and is important for its function, such as supporting neuronal migration and dendrite growth during development. Previous work showed that microtubule binding is not sufficient for DCX-mediated promotion of dendrite growth and that domains in DCX's C terminus are also required. The more C-terminal regions of DCX bind several other proteins, including the adhesion receptor neurofascin and clathrin adaptors. We recently identified a role for DCX in endocytosis of neurofascin. The disease-associated DCX-G253D mutant protein is known to be deficient in binding neurofascin, and we now asked if disruption of neurofascin endocytosis underlies the DCX-G253D-associated pathology. We first demonstrated that DCX functions in endocytosis as a complex with both the clathrin adaptor AP-2 and neurofascin: disrupting either clathrin adaptor binding (DCX-ALPA) or neurofascin binding (DCX-G253D) decreased neurofascin endocytosis in primary neurons. We then investigated a known function for DCX, namely, increasing dendrite growth in cultured neurons. Surprisingly, we found that the DCX-ALPA and DCX-G253D mutants yield distinct dendrite phenotypes. Unlike DCX-ALPA, DCX-G253D caused a dominant-negative dendrite growth phenotype. The endocytosis defect of DCX-G253D thus was separable from its detrimental effects on dendrite growth. We recently identified Dcx-R59H as a dominant allele and can now classify Dcx-G253D as a second Dcx allele that acts dominantly to cause pathology, but does so via a different mechanism.
Collapse
Affiliation(s)
- Chan Choo Yap
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Laura Digilio
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | | | - Matylda Roszkowska
- the Faculty of Biology and Earth Sciences, Jagiellonian University, 31-007 Cracow, Poland, and
| | - Xiao-Qin Fu
- the Department of Neurology, Brown University, Providence, Rhode Island 02912
| | - Judy S Liu
- the Department of Neurology, Brown University, Providence, Rhode Island 02912
| | - Bettina Winckler
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908,
| |
Collapse
|
12
|
Gurevich VV, Chen Q, Gurevich EV. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:47-61. [PMID: 30470292 DOI: 10.1016/bs.pmbts.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arrestins were discovered as proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) and block their interactions with G proteins, i.e., for their role in homologous desensitization of GPCRs. Mammals express only four arrestin subtypes, two of which are largely restricted to the retina. Two nonvisual arrestins are ubiquitous and interact with hundreds of different GPCRs and dozens of other binding partners. Changes of just a few residues on the receptor-binding surface were shown to dramatically affect GPCR preference of inherently promiscuous nonvisual arrestins. Mutations on the cytosol-facing side of arrestins modulate their interactions with individual downstream signaling molecules. Thus, it appears feasible to construct arrestin mutants specifically linking particular GPCRs with signaling pathways of choice or mutants that sever the links between selected GPCRs and unwanted pathways. Signaling-biased "designer arrestins" have the potential to become valuable molecular tools for research and therapy.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
13
|
Chen Q, Iverson TM, Gurevich VV. Structural Basis of Arrestin-Dependent Signal Transduction. Trends Biochem Sci 2018; 43:412-423. [PMID: 29636212 PMCID: PMC5959776 DOI: 10.1016/j.tibs.2018.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
Arrestins are a small family of proteins with four isoforms in humans. Remarkably, two arrestins regulate signaling from >800 G protein-coupled receptors (GPCRs) or nonreceptor activators by simultaneously binding an activator and one out of hundreds of other signaling proteins. When arrestins are bound to GPCRs or other activators, the affinity for these signaling partners changes. Thus, it is proposed that an activator alters arrestin's ability to transduce a signal. The comparison of all available arrestin structures identifies several common conformational rearrangements associated with activation. In particular, it identifies elements that are directly involved in binding to GPCRs or other activators, elements that likely engage distinct downstream effectors, and elements that likely link the activator-binding sites with the effector-binding sites.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| |
Collapse
|
14
|
Abstract
G protein-coupled receptors (GPCRs), which mediate processes as diverse as olfaction and maintenance of metabolic homeostasis, have become the single most effective class of therapeutic drug targets. As a result, understanding the molecular basis for their activity is of paramount importance. Recent technological advances have made GPCR structural biology increasingly tractable, offering views of these receptors in unprecedented atomic detail. Structural and biophysical data have shown that GPCRs function as complex allosteric machines, communicating ligand-binding events through conformational change. Changes in receptor conformation lead to activation of effector proteins, such as G proteins and arrestins, which are themselves conformational switches. Here, we review how structural biology has illuminated the agonist-induced cascade of conformational changes that culminate in a cellular response to GPCR activation.
Collapse
Affiliation(s)
- Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
15
|
Arrestins in the Cardiovascular System: An Update. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:27-57. [DOI: 10.1016/bs.pmbts.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int J Mol Sci 2017; 18:ijms18122519. [PMID: 29186792 PMCID: PMC5751122 DOI: 10.3390/ijms18122519] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that respond to a wide variety of stimuli, from light, odorants, hormones, and neurotransmitters to proteins and extracellular calcium. GPCRs represent the largest family of signaling proteins targeted by many clinically used drugs. Recent studies shed light on the conformational changes that accompany GPCR activation and the structural state of the receptor necessary for the interactions with the three classes of proteins that preferentially bind active GPCRs, G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. Importantly, structural and biophysical studies also revealed activation-related conformational changes in these three types of signal transducers. Here, we summarize what is already known and point out questions that still need to be answered. Clear understanding of the structural basis of signaling by GPCRs and their interaction partners would pave the way to designing signaling-biased proteins with scientific and therapeutic potential.
Collapse
|
17
|
McCrink KA, Maning J, Vu A, Jafferjee M, Marrero C, Brill A, Bathgate-Siryk A, Dabul S, Koch WJ, Lymperopoulos A. β-Arrestin2 Improves Post-Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca 2+-ATPase-Dependent Positive Inotropy in Cardiomyocytes. Hypertension 2017; 70:972-981. [PMID: 28874462 DOI: 10.1161/hypertensionaha.117.09817] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/25/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing β1AR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca2+-ATPase) in vivo and in vitro in a β1AR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize β1AR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure.
Collapse
Affiliation(s)
- Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Jennifer Maning
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Angela Vu
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Malika Jafferjee
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Christine Marrero
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Ava Brill
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Ashley Bathgate-Siryk
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Samalia Dabul
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Walter J Koch
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.)
| | - Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.).
| |
Collapse
|
18
|
Zhu L, Rossi M, Cui Y, Lee RJ, Sakamoto W, Perry NA, Urs NM, Caron MG, Gurevich VV, Godlewski G, Kunos G, Chen M, Chen W, Wess J. Hepatic β-arrestin 2 is essential for maintaining euglycemia. J Clin Invest 2017. [PMID: 28650340 DOI: 10.1172/jci92913] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An increase in hepatic glucose production (HGP) represents a key feature of type 2 diabetes. This deficiency in metabolic control of glucose production critically depends on enhanced signaling through hepatic glucagon receptors (GCGRs). Here, we have demonstrated that selective inactivation of the GPCR-associated protein β-arrestin 2 in hepatocytes of adult mice results in greatly increased hepatic GCGR signaling, leading to striking deficits in glucose homeostasis. However, hepatocyte-specific β-arrestin 2 deficiency did not affect hepatic insulin sensitivity or β-adrenergic signaling. Adult mice lacking β-arrestin 1 selectively in hepatocytes did not show any changes in glucose homeostasis. Importantly, hepatocyte-specific overexpression of β-arrestin 2 greatly reduced hepatic GCGR signaling and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Our data support the concept that strategies aimed at enhancing hepatic β-arrestin 2 activity could prove useful for suppressing HGP for therapeutic purposes.
Collapse
Affiliation(s)
- Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Regina J Lee
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Wataru Sakamoto
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nikhil M Urs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Minyong Chen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| |
Collapse
|
19
|
Scheerer P, Sommer ME. Structural mechanism of arrestin activation. Curr Opin Struct Biol 2017; 45:160-169. [PMID: 28600951 DOI: 10.1016/j.sbi.2017.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 01/14/2023]
Abstract
The large and multifunctional family of G protein-coupled receptors (GPCRs) are regulated by a small family of structurally conserved arrestin proteins. In order to bind an active GPCR, arrestin must first be activated by interaction with the phosphorylated receptor C-terminus. Recent years have witnessed major developments in high-resolution crystal structures of pre-active arrestins and arrestin or arrestin-derived peptides in complex with an active GPCR. Although each structure individually offers only a limited snapshot, taken together and interpreted in light of recent complementary functional data, they offer valuable insight into how arrestin is activated by and couples to a phosphorylated active GPCR.
Collapse
Affiliation(s)
- Patrick Scheerer
- Institute of Medical Physics and Biophysics (CC2), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Group Protein X-ray Crystallography & Signal Transduction, Germany.
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics (CC2), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
20
|
Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav PN, Shukla AK. Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell 2017; 28:1003-1010. [PMID: 28228552 PMCID: PMC5391177 DOI: 10.1091/mbc.e16-12-0818] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) exhibit highly conserved activation and signaling mechanisms by which agonist stimulation leads to coupling of heterotrimeric G proteins and generation of second messenger response. This is followed by receptor phosphorylation, primarily in the carboxyl terminus but also in the cytoplasmic loops, and subsequent binding of arrestins. GPCRs typically recruit arrestins through two different sets of interactions, one involving phosphorylated receptor tail and the other mediated by the receptor core. The engagement of both set of interactions (tail and core) is generally believed to be necessary for arrestin-dependent functional outcomes such as receptor desensitization, endocytosis, and G protein-independent signaling. Here we demonstrate that a vasopressin receptor (V2R) mutant with truncated third intracellular loop (V2RΔICL3) can interact with β-arrestin 1 (βarr1) only through the phosphorylated tail without engaging the core interaction. Of interest, such a partially engaged V2RΔICL3-βarr1 complex can efficiently interact with clathrin terminal domain and ERK2 MAPK in vitro. Furthermore, this core interaction-deficient V2R mutant exhibits efficient endocytosis and ERK activation upon agonist stimulation. Our data suggest that core interaction with βarr is dispensable for V2R endocytosis and ERK activation and therefore provide novel insights into refining the current understanding of functional requirements in biphasic GPCR-βarr interaction.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Eshan Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
21
|
Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crépieux P, Poupon A, Reiter E, Marin P, Vandermoere F. Phosphorylation of β-arrestin2 at Thr 383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. eLife 2017; 6. [PMID: 28169830 PMCID: PMC5325621 DOI: 10.7554/elife.23777] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 01/14/2023] Open
Abstract
In addition to their role in desensitization and internalization of G protein-coupled receptors (GPCRs), β-arrestins are essential scaffolds linking GPCRs to Erk1/2 signaling. However, their role in GPCR-operated Erk1/2 activation differs between GPCRs and the underlying mechanism remains poorly characterized. Here, we show that activation of serotonin 5-HT2C receptors, which engage Erk1/2 pathway via a β-arrestin-dependent mechanism, promotes MEK-dependent β-arrestin2 phosphorylation at Thr383, a necessary step for Erk recruitment to the receptor/β-arrestin complex and Erk activation. Likewise, Thr383 phosphorylation is involved in β-arrestin-dependent Erk1/2 stimulation elicited by other GPCRs such as β2-adrenergic, FSH and CXCR4 receptors, but does not affect the β-arrestin-independent Erk1/2 activation by 5-HT4 receptor. Collectively, these data show that β-arrestin2 phosphorylation at Thr383 underlies β-arrestin-dependent Erk1/2 activation by GPCRs. DOI:http://dx.doi.org/10.7554/eLife.23777.001
Collapse
Affiliation(s)
- Elisabeth Cassier
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Nathalie Gallay
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Thomas Bourquard
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Sylvie Claeysen
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Joël Bockaert
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Pascale Crépieux
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Anne Poupon
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Eric Reiter
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Philippe Marin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Franck Vandermoere
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Weinberg ZY, Zajac AS, Phan T, Shiwarski DJ, Puthenveedu MA. Sequence-Specific Regulation of Endocytic Lifetimes Modulates Arrestin-Mediated Signaling at the µ Opioid Receptor. Mol Pharmacol 2017; 91:416-427. [PMID: 28153854 DOI: 10.1124/mol.116.106633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Functional selectivity at the µ opioid receptor (µR), a prototypical G-protein-coupled receptor that is a physiologically relevant target for endogenous opioid neurotransmitters and analgesics, has been a major focus for drug discovery in the recent past. Functional selectivity is a cumulative effect of the magnitudes of individual signaling pathways, e.g., the Gαi-mediated and the arrestin-mediated pathways for µR. The present work tested the hypothesis that lifetimes of agonist-induced receptor-arrestin clusters at the cell surface control the magnitude of arrestin signaling, and therefore functional selectivity, at µR. We show that endomorphin-2 (EM2), an arrestin-biased ligand for µR, lengthens surface lifetimes of receptor-arrestin clusters significantly compared with morphine. The lengthening of lifetimes required two specific leucines on the C-terminal tail of µR. Mutation of these leucines to alanines decreased the magnitude of arrestin-mediated signaling by EM2 without affecting G-protein signaling, suggesting that lengthened endocytic lifetimes were required for arrestin-biased signaling by EM2. Lengthening surface lifetimes by pharmacologically slowing endocytosis was sufficient to increase arrestin-mediated signaling by both EM2 and the clinically relevant agonist morphine. Our findings show that distinct ligands can leverage specific sequence elements on µR to regulate receptor endocytic lifetimes and the magnitude of arrestin-mediated signaling, and implicate these sequences as important determinants of functional selectivity in the opioid system.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Amanda S Zajac
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Tiffany Phan
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Daniel J Shiwarski
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Manojkumar A Puthenveedu
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Crépieux P, Poupon A, Langonné-Gallay N, Reiter E, Delgado J, Schaefer MH, Bourquard T, Serrano L, Kiel C. A Comprehensive View of the β-Arrestinome. Front Endocrinol (Lausanne) 2017; 8:32. [PMID: 28321204 PMCID: PMC5337525 DOI: 10.3389/fendo.2017.00032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/07/2017] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane receptors critically involved in sensing the environment and orchestrating physiological processes. As such, they transduce extracellular signals such as hormone, neurotransmitters, ions, and light into an integrated cell response. The intracellular trafficking, internalization, and signaling ability of ligand-activated GPCRs are controlled by arrestins, adaptor proteins that they interact with upon ligand binding. β-arrestins 1 and 2 in particular are now considered as hub proteins assembling multiprotein complexes to regulate receptor fate and transduce diversified cell responses. While more than 400 β-arrestin interaction partners have been identified so far, much remains to be learnt on how discrimination between so many binding partners is accomplished. Here, we gathered the interacting partners of β-arrestins through database mining and manual curation of the literature to map the β-arrestin interactome (β-arrestinome). We discussed several parameters that determine compatible (AND) or mutually exclusive (XOR) binding of β-arrestin interactors, such as structural constraints, intracellular abundance, or binding affinity.
Collapse
Affiliation(s)
- Pascale Crépieux
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- «Biology and Bioinformatics of Signaling Systems (BIOS)» Group, CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
- *Correspondence: Pascale Crépieux,
| | - Anne Poupon
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- «Biology and Bioinformatics of Signaling Systems (BIOS)» Group, CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Nathalie Langonné-Gallay
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- «Biology and Bioinformatics of Signaling Systems (BIOS)» Group, CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Eric Reiter
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- «Biology and Bioinformatics of Signaling Systems (BIOS)» Group, CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martin H. Schaefer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Thomas Bourquard
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- «Biology and Bioinformatics of Signaling Systems (BIOS)» Group, CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Christina Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
24
|
Gurevich VV, Gurevich EV. Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs. Crit Rev Biochem Mol Biol 2016; 50:440-52. [PMID: 26453028 DOI: 10.3109/10409238.2015.1067185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most proteins have multiple functions. Obviously, conventional methods of manipulating the level of the protein of interest in the cell, such as over-expression, knockout or knockdown, affect all of its functions simultaneously. The key advantage of these methods is that over-expression, knockout or knockdown does not require any knowledge of the molecular mechanisms of the function(s) of the protein of interest. The disadvantage is that these approaches are inadequate to elucidate the role of an individual function of the protein in a particular cellular process. An alternative is the use of re-engineered proteins, in which a single function is eliminated or enhanced. The use of mono-functional elements of a multi-functional protein can also yield cleaner answers. This approach requires detailed knowledge of the structural basis of each function of the protein in question. Thus, a lot of preliminary structure-function work is necessary to make it possible. However, when this information is available, replacing the protein of interest with a mutant in which individual functions are modified can shed light on the biological role of those particular functions. Here, we illustrate this point using the example of protein kinases, most of which have additional non-enzymatic functions, as well as arrestins, known multi-functional signaling regulators in the cell.
Collapse
Affiliation(s)
| | - Eugenia V Gurevich
- a Department of Pharmacology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
25
|
β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol 2016; 18:303-10. [PMID: 26829388 PMCID: PMC4767649 DOI: 10.1038/ncb3307] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
β-arrestins critically regulate G protein-coupled receptor (GPCR) signaling, not only 'arresting' the G protein signal but also modulating endocytosis and initiating a discrete G protein-independent signal via MAP kinase1–3. Despite enormous recent progress toward understanding biophysical aspects of arrestin function4,5, its cell biology remains relatively poorly understood. Two key tenets underlie the present dogma: (1) β-arrestin accumulates in clathrin-coated structures (CCSs) exclusively in physical complex with its activating GPCR, and (2) MAP kinase activation requires endocytosis of formed GPCR - β-arrestin complexes6–9. We show here, using β1-adrenergic receptors, that β-arrestin-2 (Arrestin 3) accumulates robustly in CCSs after dissociating from its activating GPCR and transduces the MAP kinase signal from CCSs. Moreover, inhibiting subsequent endocytosis of CCSs enhances the clathrin and β-arrestin -dependent MAP kinase signal. These results demonstrate β-arrestin 'activation at a distance', after dissociating from its activating GPCR, and signaling from CCSs. We propose a β-arrestin signaling cycle that is catalytically activated by the GPCR and energetically coupled to the endocytic machinery.
Collapse
|
26
|
Yang SC, Song Y, Wang D, Wei WX, Yang Y, Men B, Li JB. Application of nitrate to enhance biodegradation of gasoline components in soil by indigenous microorganisms under anoxic condition. ENVIRONMENTAL TECHNOLOGY 2015; 37:1045-1053. [PMID: 26508265 DOI: 10.1080/09593330.2015.1098731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Anaerobic/anoxic biodegradation of hydrocarbons offers an attractive approach to the removal of these compounds from polluted environments such as aquifers, aquatic sediments, submerged soils and subsurface soils. The application of nitrate was investigated to accelerate the degradation of gasoline components such as mono-aromatic hydrocarbons and total petroleum hydrocarbons (TPH) in soil by indigenous microorganisms under anoxic condition. The addition of nitrate had little effect on the degradation of mono-aromatic hydrocarbons m- & p-xylene, o-xylene, sec-butylbenzene and 1,2,4-trimethylbenzene, but facilitated the degradation of TPH (C6-C12) and mono-aromatic hydrocarbons toluene and ethylbenzene markedly. Furthermore, the more nitrate added, the higher the percentage of toluene, ethylbenzene and TPH (C6-C12) degraded after 180 days of anoxic incubation. Microorganisms capable of degrading toluene, ethylbenzene and TPH (C6-C12) with nitrate as the electron acceptor under anaerobic/anoxic condition are composed predominantly of Alpha-, Beta-, Gamma- or Delta-proteobacteria. Beta- and Gamma-proteobacteria were the main components of indigenous microorganisms, and accounted for 83-100% of the total amount of indigenous microorganisms in soil used in this study. Furthermore, the total amount of indigenous microorganisms increased with nitrate added. The addition of nitrate stimulated the growth of indigenous microorganisms, and therefore facilitated the degradation of toluene, ethylbenzene and TPH (C6-C12).
Collapse
Affiliation(s)
- Su-Cai Yang
- a Beijing Key Laboratory of Remediation of Industrial Pollution Sites , Environmental Protection Research Institute of Light Industry , Beijing , People's Republic of China
| | - Yun Song
- a Beijing Key Laboratory of Remediation of Industrial Pollution Sites , Environmental Protection Research Institute of Light Industry , Beijing , People's Republic of China
| | - Dong Wang
- a Beijing Key Laboratory of Remediation of Industrial Pollution Sites , Environmental Protection Research Institute of Light Industry , Beijing , People's Republic of China
| | - Wen-Xia Wei
- a Beijing Key Laboratory of Remediation of Industrial Pollution Sites , Environmental Protection Research Institute of Light Industry , Beijing , People's Republic of China
| | - Yan Yang
- a Beijing Key Laboratory of Remediation of Industrial Pollution Sites , Environmental Protection Research Institute of Light Industry , Beijing , People's Republic of China
| | - Bin Men
- b Research Centre for Eco-environmental Sciences , Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Jia-Bin Li
- a Beijing Key Laboratory of Remediation of Industrial Pollution Sites , Environmental Protection Research Institute of Light Industry , Beijing , People's Republic of China
| |
Collapse
|
27
|
Chaves-Almagro C, Castan-Laurell I, Dray C, Knauf C, Valet P, Masri B. Apelin receptors: From signaling to antidiabetic strategy. Eur J Pharmacol 2015; 763:149-59. [PMID: 26007641 DOI: 10.1016/j.ejphar.2015.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023]
Abstract
The G protein-coupled receptor APJ and its cognate ligand, apelin, are widely expressed throughout human body. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, fluid homeostasis and energy metabolism regulation. On the other hand, this couple ligand-receptor is also involved in the development and progression of different pathologies including diabetes, obesity, cardiovascular disease and cancer. Recently, a new endogenous peptidic ligand of APJ, named Elabela/Toddler, has been identified and shown to play a crucial role in embryonic development. Whereas nothing is yet known regarding Elabela/Toddler functions in adulthood, apelin has been extensively described as a beneficial adipokine regarding to glucose and lipid metabolism and is endowed with anti-diabetic and anti-obesity properties. Indeed, there is a growing body of evidence supporting apelin signaling as a novel promising therapeutic target for metabolic disorders (obesity, type 2 diabetes). In this review, we provide an overview of the pharmacological properties of APJ and its endogenous ligands. We also report the activity of peptidic and non-peptidic agonists and antagonists targeting APJ described in the literature. Finally, we highlight the important role of this signaling pathway in the control of energy metabolism at the peripheral level and in the central nervous system in both physiological conditions and during obesity or diabetes.
Collapse
Affiliation(s)
- C Chaves-Almagro
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - I Castan-Laurell
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - C Dray
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - C Knauf
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - P Valet
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - B Masri
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France.
| |
Collapse
|
28
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
29
|
Kim DK, Yun Y, Kim HR, Seo MD, Chung KY. Different conformational dynamics of various active states of β-arrestin1 analyzed by hydrogen/deuterium exchange mass spectrometry. J Struct Biol 2015; 190:250-9. [DOI: 10.1016/j.jsb.2015.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
|
30
|
Azevedo AW, Doan T, Moaven H, Sokal I, Baameur F, Vishnivetskiy SA, Homan KT, Tesmer JJG, Gurevich VV, Chen J, Rieke F. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor. eLife 2015; 4. [PMID: 25910054 PMCID: PMC4438306 DOI: 10.7554/elife.05981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/23/2015] [Indexed: 12/31/2022] Open
Abstract
Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low-noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of GPCR activity. DOI:http://dx.doi.org/10.7554/eLife.05981.001 ‘Rod’ cells in the eye enable us to see in starlight. Inside these cells, a protein called rhodopsin is activated by light, which leads to an electrical signal being produced that travels to the brain. The duration of the electrical signal depends on the time it takes for the rhodopsin to be deactivated. Rhodopsin is a member of a large class of receptor proteins known as G protein-coupled receptors that regulate many processes throughout the body. Previous studies have shown that rhodopsin is deactivated by the attachment of phosphate groups to the protein. This allows another protein called arrestin to bind to rhodopsin. The phosphates can be attached to particular amino acids—the building blocks of proteins—at one end of rhodopsin. Three of these are a type of amino acid called serine. Previous work has shown that light increases the speed at which phosphate groups are added to these serines, suggesting that they are important for producing rapid electrical signals. The other three amino acids are of a different type—called threonine—but it is less clear what role they play in deactivating rhodopsin. Here, Azevedo et al. studied mutant forms of rhodopsin that were missing the serines or threonines in mice. The experiments show that loss of the serines only slightly slowed the electrical signals. However, loss of the threonines resulted in much slower electrical signals that ended at random times. This was due to rhodopsin being less able to bind to arrestin. Azevedo et al. propose a new model for how rhodopsin is deactivated. Once light activates the protein, phosphate groups are rapidly added to the serines, which begins to lower the activity of rhodopsin. However, it is the slower addition of phosphates to the threonines that is essential to promote arrestin binding and fully deactivate the protein. Other proteins belonging to the G protein-coupled receptor family also have these serines and threonines, and thus, may be regulated in a similar way. DOI:http://dx.doi.org/10.7554/eLife.05981.002
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Thuy Doan
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - Hormoz Moaven
- Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Iza Sokal
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Faiza Baameur
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Kristoff T Homan
- Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - John J G Tesmer
- Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Jeannie Chen
- Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
31
|
GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1-2 September 2014. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:883-903. [PMID: 25772061 PMCID: PMC4495723 DOI: 10.1007/s00210-015-1111-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 01/14/2023]
Abstract
G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future.
Collapse
|
32
|
Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJG, Gurevich VV, Gurevich EV. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). J Biol Chem 2015; 290:10775-90. [PMID: 25770216 DOI: 10.1074/jbc.m115.644773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.
Collapse
Affiliation(s)
- Lingyong Li
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristoff T Homan
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | | | - Aashish Manglik
- the Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - John J G Tesmer
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | - Vsevolod V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232,
| |
Collapse
|
33
|
Homan KT, Tesmer JJG. Molecular basis for small molecule inhibition of G protein-coupled receptor kinases. ACS Chem Biol 2015; 10:246-56. [PMID: 24984143 PMCID: PMC4301174 DOI: 10.1021/cb5003976] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small molecules that inhibit the protein kinase A, G, and C (AGC) family of serine/threonine kinases can exert profound effects on cell homeostasis and thereby regulate fundamental processes such as heart rate, blood pressure, and metabolism, but there is not yet a clinically approved drug in the United States selective for a member of this family. One subfamily of AGC kinases, the G protein-coupled receptor (GPCR) kinases (GRKs), initiates the desensitization of active GPCRs. Of these, GRK2 has been directly implicated in the progression of heart failure. Thus, there is great interest in the identification of GRK2-specific chemical probes that can be further developed into therapeutics. Herein, we compare crystal structures of small molecule inhibitors in complex with GRK2 to those of highly selective compounds in complex with Rho-associated coiled-coil containing kinase 1 (ROCK1), a closely related AGC kinase. This analysis suggests that reduced hydrogen-bond formation with the hinge of the kinase domain, occupation of the hydrophobic subsite, and, consequently, higher buried surface area are key drivers of potency and selectivity among GRK inhibitors.
Collapse
Affiliation(s)
- Kristoff T. Homan
- Life Sciences Institute,
Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John J. G. Tesmer
- Life Sciences Institute,
Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Gurevich VV, Gurevich EV. Overview of different mechanisms of arrestin-mediated signaling. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:2.10.1-2.10.9. [PMID: 25446289 PMCID: PMC4260930 DOI: 10.1002/0471141755.ph0210s67] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arrestins are characterized by their ability to selectively bind active, phosphorylated GPCRs and suppress (arrest) receptor coupling to G proteins. Nonvisual arrestins are also signaling proteins in their own right, activating a variety of cellular pathways. Arrestins are highly flexible proteins that can assume many distinct conformations. In their receptor-bound conformation, arrestins have higher affinity for a subset of partners. This explains how receptor activation regulates certain branches of arrestin-dependent signaling via arrestin recruitment to GPCRs. However, free arrestins are also active molecular entities that act in other pathways and localize signaling proteins to particular subcellular compartments, such as cytoskeleton. These functions are regulated by the enhancement or reduction of arrestin affinity for target proteins by other binding partners and by proteolytic cleavage. Recent findings suggest that the two visual arrestins, arrestin-1 and arrestin-4, which are expressed in photoreceptor cells, do not regulate signaling solely via binding to photopigments but also interact with a variety of nonreceptor partners, critically affecting the health and survival of photoreceptor cells. Detailed in this overview are GPCR-dependent and independent modes of arrestin-mediated regulation of cellular signaling pathways.
Collapse
|