1
|
Li Z, Zhang W, Zhang Z, Mao G, Qi L, Wang Y, Yang H, Ye H. PICH, A protein that maintains genomic stability, can promote tumor growth. Gene 2025; 935:149074. [PMID: 39491600 DOI: 10.1016/j.gene.2024.149074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genomic instability is regardedas a hallmark of cancer cells. It can be presented in many ways, among which chromosome instability has received attention. Ultrafine anaphase bridges are a typeof chromatin bridges, the untimely resolution of which can also lead to chromosome instability. PICH can play a role in maintaining chromosome stability by regulating chromosome morphologyand resolving ultrafine anaphase bridges. Recently, PICH has been found to be overexpressed in various cancers. Overexpression of PICH is related to the proliferation of tumors and poor prognosis. In this article, we consider that PICH can maintain genomic stability by regulating appropriate chromosome structure, ensuring proper chromosome segregation, and facilitating replication fork reversal. We summarize how PICH regulates chromosome stability, how PICH resolves Ultrafine anaphase bridges with other proteins, and how PICH promotes tumor progression.
Collapse
Affiliation(s)
- Zeyuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Wentao Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Zihan Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Guoming Mao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Linping Qi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China
| | - Yubin Wang
- Laboratory Medicine Center Gansu Provincial Natural Science, Lanzhou University Second Hospital, People's Republic of China
| | - Hanteng Yang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Huili Ye
- The Second Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China; Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
2
|
Silva MAP, Carvalho LIM, Destro MV, Braz LG, Braz MG. From indoors to outdoors: Impact of waste anesthetic gases on occupationally exposed professionals and related environmental hazards - a narrative review and update. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024:104624. [PMID: 39732353 DOI: 10.1016/j.etap.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards. Occupational exposure to WAGs has been linked to oxidative stress and cytotoxic, genotoxic and mutagenic potential. This review aims to analyze and update the literature on WAG monitoring, the impact of WAGs on occupationally exposed personnel and their effect on the environment. The awareness of exposed professionals in human and veterinary medicine is crucial. The implementation of biomonitoring practices and WAG occupational exposure limiting policies is needed. Promoting a sustainable healthcare system is also important for mitigating the impact of WAGs on global warming.
Collapse
Affiliation(s)
- Mariane A P Silva
- São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil
| | - Lorena I M Carvalho
- Getúlio Vargas Hospital, Teresina, Piauí, Brazil; Hospital Unimed Primavera, Department of Anesthesiology, Teresina, Piauí, Brazil
| | - Maria Vitória Destro
- São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil
| | - Leandro G Braz
- São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil
| | - Mariana G Braz
- São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil.
| |
Collapse
|
3
|
Sasaki N, Homme M, Murayama T, Osaki T, Tenma T, An T, Takegami Y, Tani T, Gedeon PC, Kobayashi Y, Cañadas I, Barbie DA, Yao R, Kitajima S. RNA sensing induced by chromosome missegregation augments anti-tumor immunity. Mol Cell 2024:S1097-2765(24)00950-X. [PMID: 39706184 DOI: 10.1016/j.molcel.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Activation of cytosolic dsRNA sensing cooperates with double-stranded DNA (dsDNA) sensing to upregulate immune cell migration and antigen-presenting machinery. Tracing of dsRNA-sequences reveals that dsRNA-forming transcripts are predominantly generated from non-exonic regions, particularly in locations proximal to genes exhibiting high chromatin accessibility. Activation of this pathway by pulsed monopolar spindle 1 (MPS1) inhibitor treatment, which potently induces micronuclei formation, upregulates cytoplasmic dsRNA sensing and thus promotes anti-tumor immunity mediated by cytotoxic lymphocyte activation in vivo. Collectively, our findings uncover a mechanism in which dsRNA sensing cooperates with dsDNA sensing to boost immune responses, offering an approach to enhance the efficacy of cancer therapies targeting genomic instability.
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Mizuki Homme
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Takahiko Murayama
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Tatsuya Osaki
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Toshiyuki Tenma
- Respiratory Center, Asahikawa Medical University Hospital, Asahikawa 078-8510, Japan
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Yujiro Takegami
- DNAFORM Precision Gene Technologies, Yokohama, Kanagawa 230-0051, Japan
| | - Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick C Gedeon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Shunsuke Kitajima
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
4
|
Marques MB, Luvizotto-Santos R, Hauser-Davis RA. Genetic damage in elasmobranchs: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 113:104607. [PMID: 39645100 DOI: 10.1016/j.etap.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
DNA integrity is crucial for organismal health, and assessing DNA damage in aquatic organisms is essential for identifying environmental threats and informing conservation efforts. Pollutants such as metals, hydrocarbons, agrochemicals, pharmaceuticals, and climate change are linked to genetic damage, oxidative stress, and mutagenesis in several species, such as elasmobranchs (sharks and rays). Most studies focus on bivalves, crustaceans, and bony fish, with fewer assessments being carried out in cartilaginous fish. Concerning elasmobranchs, studies employing the micronucleus test and nuclear anomaly assays have aided in understanding how this group responds to contamination by organic and inorganic pollutants. Notably, each species deals differently with these contaminants, presenting varied DNA damage levels, including low levels of response, probably associated to feeding habits, trophic position, maturation stage, sex and metabolism. Further investigations should be conducted in elasmobranchs to elucidate these variations and better understand DNA damage in this important ecological group.
Collapse
Affiliation(s)
- Mateus Brandão Marques
- Pós-Graduação em Ciência & Tecnologia Ambiental, PPGC & TAmb, São Luíz, Brazil; Grupo de Ecotoxicologia Aquática, Centro de Ciências Exatas e Tecnologia - CCET/UFMA, São Luís, MA, Brazil
| | - Ricardo Luvizotto-Santos
- Pós-Graduação em Ciência & Tecnologia Ambiental, PPGC & TAmb, São Luíz, Brazil; Grupo de Ecotoxicologia Aquática, Centro de Ciências Exatas e Tecnologia - CCET/UFMA, São Luís, MA, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Leem J, Gowett M, Bolarinwa S, Mogessie B. On the origin of mitosis-derived human embryo aneuploidy. Nat Commun 2024; 15:10391. [PMID: 39613785 DOI: 10.1038/s41467-024-54953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Affiliation(s)
- Jiyeon Leem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Madison Gowett
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sarah Bolarinwa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Jakubowska D, Al-Choboq J, Sonzogni L, Bourguignon M, Slonina D, Foray N. Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation. Int J Mol Sci 2024; 25:12313. [PMID: 39596376 PMCID: PMC11594578 DOI: 10.3390/ijms252212313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective-tissue disorder affecting multiple systems, such as skeletal, cardiovascular, and ocular systems. MFS is predominantly caused by mutations in the FBN1 gene, which encodes the fibrillin-1 protein, crucial for connective-tissue integrity. FBN1 mutations lead to defective fibrillin, resulting in structurally compromised connective tissues. Additionally, these mutations cause aberrant TGF-β expression, contributing to vascular issues and increased susceptibility to radiation-induced fibrosis. Studies about the potential radiosensitivity of MFS are rare and generally limited to case reports. Here, we aimed to investigate the radiation-induced ATM nucleo-shuttling (RIANS) model to explore the molecular and cellular radiation response in fibroblasts from MFS patients. The results showed that the MFS fibroblast cell lines tested are associated with moderate but significant radiosensitivity, high yield of micronuclei, and impaired recognition of DNA double-strand breaks (DSBs) caused by a diminished RIANS. The diminished RIANS is supported by the sequestration of ATM protein in the cytoplasm not only by mutated FBN1 protein but also by overexpressed TGF-β. This report is the first molecular and cellular characterization of the radiation response of MFS fibroblasts and highlights the importance of the FBN1-TGF-β complex after irradiation.
Collapse
Affiliation(s)
- Dagmara Jakubowska
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland;
| | - Joëlle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay, Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Dorota Slonina
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-100 Gliwice, Poland;
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, 28 rue Laennec, 69008 Lyon, France; (D.J.); (J.A.-C.); (M.B.)
| |
Collapse
|
7
|
Grosu-Bularda A, Lita FF, Hodea FV, Bordeanu-Diaconescu EM, Cretu A, Dumitru CS, Cacior S, Marinescu BM, Lascar I, Hariga CS. Navigating the Complexities of Radiation Injuries: Therapeutic Principles and Reconstructive Strategies. J Pers Med 2024; 14:1100. [PMID: 39590592 PMCID: PMC11595796 DOI: 10.3390/jpm14111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Radiation injuries, particularly those resulting from therapeutic or accidental exposure, present complex challenges for medical management. These injuries can manifest localized skin damage or extend to deeper tissues, presenting as various clinical entities that require treatment strategies, ranging from conservative management to complex surgical interventions. Radiation treatment constitutes a fundamental component of neoplastic management, with nearly two out of three oncological instances undergoing it as an element of their therapeutic strategy. The therapeutic approach to radiation injury consists of expanding prophylactic measures while maintaining the efficacy of treatment, such as conservative treatment or local debridement followed by reconstruction. The armamentarium of reconstructive methods available for plastic surgeons, from secondary healing to free tissue transfer, can be successfully applied to radiation injuries. However, the unique pathophysiological changes induced by radiation necessitate a careful and specialized approach for their application, considering the altered tissue characteristics and healing dynamics. The therapeutic strategy is guided by both the severity and progression of the injury, with the primary aim of restoring functionality and aesthetic aspects while simultaneously minimizing the risk of complications. This paper explores the various conditions encompassed by the term "radiation injury," reviews both non-surgical and surgical therapeutic strategies for managing these injuries, and highlights the unique challenges associated with treating irradiated tissues within specific oncological contexts.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Flavia-Francesca Lita
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Clinical Department Plastic Surgery and Reconstructive Microsurgery, Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Eliza-Maria Bordeanu-Diaconescu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Andrei Cretu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Catalina-Stefania Dumitru
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Stefan Cacior
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Bogdan-Mihai Marinescu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinical Department Plastic Surgery and Reconstructive Microsurgery, Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan Lascar
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Cristian-Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (I.L.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
8
|
Liang X, Liu H, Hu H, Ha E, Zhou J, Abedini A, Sanchez-Navarro A, Klötzer KA, Susztak K. TET2 germline variants promote kidney disease by impairing DNA repair and activating cytosolic nucleotide sensors. Nat Commun 2024; 15:9621. [PMID: 39511169 PMCID: PMC11543665 DOI: 10.1038/s41467-024-53798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified over 800 loci associated with kidney function, yet the specific genes, variants, and pathways involved remain elusive. By integrating kidney function GWAS with human kidney expression and methylation quantitative trait analyses, we identified Ten-Eleven Translocation (TET) DNA demethylase 2 (TET2) as a novel kidney disease risk gene. Utilizing single-cell chromatin accessibility and CRISPR-based genome editing, we highlight GWAS variants that influence TET2 expression in kidney proximal tubule cells. Experiments using kidney/tubule-specific Tet2 knockout mice indicated its protective role in cisplatin-induced acute kidney injury, as well as in chronic kidney disease and fibrosis induced by unilateral ureteral obstruction or adenine diet. Single-cell gene profiling of kidneys from Tet2 knockout mice and TET2-knockdown tubule cells revealed the altered expression of DNA damage repair and chromosome segregation genes, notably including INO80, another kidney function GWAS target gene itself. Remarkably, both TET2-null and INO80-null cells exhibited an increased accumulation of micronuclei after injury, leading to the activation of cytosolic nucleotide sensor cGAS-STING. Genetic deletion of cGAS or STING in kidney tubules, or pharmacological inhibition of STING, protected TET2-null mice from disease development. In conclusion, our findings highlight TET2 and INO80 as key genes in the pathogenesis of kidney diseases, indicating the importance of DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Xiujie Liang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Eunji Ha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jianfu Zhou
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Sanchez-Navarro
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Konstantin A Klötzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Penn/CHOP Kidney Innovation Center, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Harding SM. A road to rupture: New insights into the loss of micronuclear membrane integrity. Mol Cell 2024; 84:4056-4058. [PMID: 39515293 DOI: 10.1016/j.molcel.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
In two recent studies in Science, Martin et al. and Di Bona et al.1,2 showed that mitochondrial-derived reactive oxygen species (ROS) drive mechanisms responsible for micronuclei membrane rupture, with important implications for cancer.
Collapse
Affiliation(s)
- Shane M Harding
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Departments of Medical Biophysics, Immunology and Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Sannigrahi MK, Raghav L, Rich DJ, Schrank TP, Califano JA, Lukens JN, Sun L, Morgan IM, Cohen RB, Lin A, Liu X, Brown EJ, You J, Mirabello L, Mishra SK, Shimunov D, Brody RM, Pearson AT, Gimotty PA, Diab A, Jalaly JB, Basu D. Association of oropharyngeal cancer recurrence with tumor-intrinsic and immune-mediated sequelae of reduced genomic instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621311. [PMID: 39574723 PMCID: PMC11580908 DOI: 10.1101/2024.10.31.621311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Background Limited understanding of the biology predisposing certain human papillomavirus-related (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) to relapse impedes therapeutic personalization. We aimed to identify molecular traits that distinguish recurrence-prone tumors. Methods 50 HPV+ OPSCCs that later recurred (cases) and 50 non-recurrent controls matched for stage, therapy, and smoking history were RNA-sequenced. Groups were compared by gene set enrichment analysis, and select differences were validated by immunohistochemistry. Features discriminating groups were scored in each tumor using gene set variation analysis, and scores were evaluated for recurrence prediction ability. Results Cases downregulated pathways linked to anti-tumor immunity (FDR-adjusted p<.05) and contained fewer tumor-infiltrating lymphocytes (p<.001), including cytotoxic T-cells (p=.005). Cases also upregulated pathways related to cell division and other aspects of tumor progression. Upregulated and downregulated pathways were respectively used to define a tumor progression score (TPS) and immune suppression score (ISS) for each tumor. Correlation between TPS and ISS (r=.603, p<.001) was potentially explained by observed upregulation of DNA repair pathways in cases, which might enhance their progression directly and by limiting cytosolic DNA-induced inflammation. Accordingly, cases contained fewer double-strand breaks based on staining for phospho-RPA32 (p=.006) and γ-H2AX (p=.005) and downregulated pro-inflammatory components of the cytoplasmic DNA sensing pathway. A combined score derived from TPS and ISS optimized recurrence prediction and stratified survival in a manner generalizable to three external cohorts. Conclusions We provide novel evidence that limiting genomic instability makes tumor-intrinsic and immune-mediated contributions to HPV+ OPSCC recurrence risk, opening opportunities to detect and target this treatment-resistant biology.
Collapse
Affiliation(s)
- Malay K. Sannigrahi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Lovely Raghav
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Dominick J. Rich
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Travis P. Schrank
- Department of Otorhinolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joseph A. Califano
- Department of Otolaryngology-Head and Neck Surgery, U. California San Diego, San Diego, CA
| | - John N. Lukens
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Lova Sun
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Roger B. Cohen
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Xinyi Liu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Eric J. Brown
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA
| | - Jianxin You
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Lisa Mirabello
- Division of Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Sambit K. Mishra
- Division of Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - David Shimunov
- Department of Otolaryngology-Head and Neck Surgery, Stony Brook, NY
| | - Robert M Brody
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | | | - Phyllis A. Gimotty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ahmed Diab
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA
| | - Jalal B. Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Morgan EL, Saleh AD, Cornelius S, Carlson SG, Toni T, Cheng H, Jeon J, Viswanathan R, Yang X, Silvin C, Clavijo PE, Sowers AL, Mitchell JB, Ormanoglu P, Lal Nag M, Martin SE, Chen Z, Van Waes C. Functional RNAi Screening Identifies G2/M and Kinetochore Components as Modulators of TNFα/NF-κB Prosurvival Signaling in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2903-2918. [PMID: 39392349 PMCID: PMC11541648 DOI: 10.1158/2767-9764.crc-24-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
SIGNIFICANCE Here, RNAi library screening reveals that multiple G2/M and kinetochore components, including TTK/monopolar spindle 1, modulate TNFα-induced NF-κB activation, cell survival, and genotoxicity, underscoring their potential importance as therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anthony D. Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Sophie G. Carlson
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Jun Jeon
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Christopher Silvin
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Paul E. Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Pinar Ormanoglu
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Madhu Lal Nag
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Scott E. Martin
- RNAi Screening Facility, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Mitkovska V, Dimitrov H, Popgeorgiev G, Chassovnikarova T. Nuclear abnormalities and DNA damage indicate different genotoxic stress responses of marsh frogs (Pelophylax ridibundus, Pallas 1771) to industrial and agricultural water pollution in South Bulgaria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64339-64357. [PMID: 39535698 DOI: 10.1007/s11356-024-35462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Amphibians are continuously exposed to pollutants and anthropogenic stressors in their natural habitats, representing a significant challenge to their survival. This study aimed to quantify the extent of DNA damage caused by chronic industrial and agrochemical surface water pollution in wild populations of the marsh frog (Pelophylax ridibundus). The observed genotoxic effects on the marsh frog DNA, manifesting as abnormalities in erythrocyte nuclei, micronuclei, and DNA strand breaks, demonstrate a clear cause-and-effect relationship with surface water parameters, heavy metals, metalloids, and pesticides. The most prevalent nuclear abnormalities observed were notched and blebbed nuclei and nuclear buds, indicative of chromosomal instability. The significant correlation between cadmium, lead, and copper contamination and the increased frequency of DNA breakage in the marsh frogs from the industrial site indicates that heavy metal contamination has a higher genotoxic potential than pesticide contamination. These findings underscore the vulnerability of amphibians inhabiting heavy metal-contaminated wetlands to genotoxic stress due to their lower tolerance to environmental genotoxins. Therefore, using in situ assays to detect erythrocyte nuclear abnormalities and DNA damage in P. ridibundus could serve as a reliable indicator of environmental quality and provide early detection of anthropogenic pollution.
Collapse
Affiliation(s)
- Vesela Mitkovska
- Department of Zoology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria
| | - Hristo Dimitrov
- Department of Zoology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria
| | - Georgi Popgeorgiev
- National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria
| | - Tsenka Chassovnikarova
- Department of Zoology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria.
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria.
| |
Collapse
|
13
|
Mirceta M, Schmidt MHM, Shum N, Prasolava TK, Meikle B, Lanni S, Mohiuddin M, Mckeever PM, Zhang M, Liang M, van der Werf I, Scheers S, Dion PA, Wang P, Wilson MD, Abell T, Philips EA, Sznajder ŁJ, Swanson MS, Mehkary M, Khan M, Yokoi K, Jung C, de Jong PJ, Freudenreich CH, McGoldrick P, Yuen RKC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau GA, Kooy RF, Pearson CE. C9orf72 expansion creates the unstable folate-sensitive fragile site FRA9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620312. [PMID: 39569145 PMCID: PMC11577248 DOI: 10.1101/2024.10.26.620312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions ( C9orf72 Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72 Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immuno-stimulatory or damaged DNA is unknown. Here, we show C9orf72 Exp in pre-symptomatic and ALS-FTD patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33kb of C9orf72 as highly-compacted chromatin embedded in an 8.2Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72 Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72 Exp patient contained highly-rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72 Exp repeat instability and chromosomal fragility are sensitive to folate-deficiency. Age-dependent repeat instability, chromosomal fragility, and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72 Exp mice, implicating C9orf72 Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
|
14
|
Kumari L, Sreedharanunni S, Dahiya D, Dey P, Bhatia A. High prevalence of chromosome 17 in breast cancer micronuclei: a means to get rid of tumor suppressors? Hum Cell 2024; 38:5. [PMID: 39438374 DOI: 10.1007/s13577-024-01143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Micronuclei (MN), defined as small extra-nuclear chromatin bodies enclosed by a nuclear envelope, serve as noticeable markers of chromosomal instability (CIN). The MN have been used for breast cancer (BC) screening, diagnosis, and prognosis. However, more recently they have gained attention as seats for active chromosomal rearrangements. BC subtypes exhibit differential CIN levels and aggressiveness. This study aimed to investigate MN chromosomal contents across BC subtypes, exploring its potential role in aggressiveness and pathogenesis. Immunostaining of BC cells was performed with anti-centromeric antibody followed by confocal microscopy. Further, fluorescence in situ hybridization (FISH) was done to check the presence of specific chromosomes in the MN. The real time PCR was also done from the RNA isolated from MN to check the expression of TP53 gene. BC cell lines (CLs) showed the presence of both centromere-positive ( +) and -negative ( -) MN, with significant variation in frequency among hormone and human epidermal growth factor receptor positive and triple-negative (TN) BC cells. FISH targeting chromosomes 1, 3, 8, 11, and 17 detected centromeric signals for all the above chromosomes in MN with a relatively higher prevalence of chromosome 17 in all the CLs. Out of all the CLs, TNBC cells demonstrated the highest frequency of centromere + and chromosome 17 + MN. TP53 expression could also be demonstrated inside the MN by FISH and real time PCR. Patient sample imprints also confirmed the presence of chromosome 17 in MN with polysomy of the same in corresponding nuclei. The high prevalence of chromosome 17 in BC MN may connote the importance of its rearrangements in the pathogenesis of BC. Further, the higher prevalence of chromosome 17 and 1 signals in TNBC MN point towards the significance of pathogenetic events involving the genes located in these chromosomes in evolution of this more aggressive phenotype.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
15
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
16
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
17
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
18
|
Huang Y, Jiang W, Zhou R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat Rev Immunol 2024; 24:703-719. [PMID: 38684933 DOI: 10.1038/s41577-024-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
19
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
20
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
21
|
Wu J, Cheng S, Lee G, Agborbesong E, Li X, Zhou X, Li X. STING Promotes the Progression of ADPKD by Regulating Mitochondrial Function, Inflammation, Fibrosis, and Apoptosis. Biomolecules 2024; 14:1215. [PMID: 39456148 PMCID: PMC11505933 DOI: 10.3390/biom14101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a predominant genetic disease, which is caused by mutations in PKD genes and is associated with DNA damage in cystic cells. The intrinsic stimulator of interferon genes (STING) pathway is crucial for recognizing damaged DNA in the cytosol, triggering the expression of inflammatory cytokines to activate defense mechanisms. However, the precise roles and mechanisms of STING in ADPKD remain elusive. In this study, we show that Pkd1 mutant mouse kidneys show upregulation of STING, which is stimulated by the DNAs of nuclear and mitochondrial origin. The activation of STING promotes cyst growth through increasing (1) the activation of NF-κB in Pkd1 mutant cells and (2) the recruitment of macrophages in the interstitial and peri-cystic regions in Pkd1 mutant mouse kidneys via NF-κB mediating the upregulation of TNF-α and MCP-1. Targeting STING with its specific inhibitor C-176 delays cyst growth in an early-stage aggressive Pkd1 conditional knockout mouse model and a milder long-lasting Pkd1 mutant mouse model. Targeting STING normalizes mitochondrial structure and function, decreases the formation of micronuclei, induces Pkd1 mutant renal epithelial cell death via p53 signaling, and decreases renal fibrosis in Pkd1 mutant mouse kidneys. These results support that STING is a novel therapeutic target for ADPKD treatment.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Shasha Cheng
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Geoffray Lee
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Rao S, Andrs M, Shukla K, Isik E, König C, Schneider S, Bauer M, Rosano V, Prokes J, Müller A, Janscak P. Senataxin RNA/DNA helicase promotes replication restart at co-transcriptional R-loops to prevent MUS81-dependent fork degradation. Nucleic Acids Res 2024; 52:10355-10369. [PMID: 39119900 PMCID: PMC11417401 DOI: 10.1093/nar/gkae673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Replication forks stalled at co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage-religation cycles mediated by MUS81 endonuclease and DNA ligase IV (LIG4), which presumably relieve the topological barrier generated by the transcription-replication conflict (TRC) and facilitate ELL-dependent reactivation of transcription. Here, we report that the restart of R-loop-stalled replication forks via the MUS81-LIG4-ELL pathway requires senataxin (SETX), a helicase that can unwind RNA:DNA hybrids. We found that SETX promotes replication fork progression by preventing R-loop accumulation during S-phase. Interestingly, loss of SETX helicase activity leads to nascent DNA degradation upon induction of R-loop-mediated fork stalling by hydroxyurea. This fork degradation phenotype is independent of replication fork reversal and results from DNA2-mediated resection of MUS81-cleaved replication forks that accumulate due to defective replication restart. Finally, we demonstrate that SETX acts in a common pathway with the DEAD-box helicase DDX17 to suppress R-loop-mediated replication stress in human cells. A possible cooperation between these RNA/DNA helicases in R-loop unwinding at TRC sites is discussed.
Collapse
Affiliation(s)
- Satyajeet Rao
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Andrs
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kaustubh Shukla
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Esin Isik
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christiane König
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefan Schneider
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael Bauer
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vinicio Rosano
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jiri Prokes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
23
|
Estrem B, Davis R, Wang J. End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination. Nucleic Acids Res 2024; 52:8913-8929. [PMID: 38953168 PMCID: PMC11347171 DOI: 10.1093/nar/gkae579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3'-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.
Collapse
Affiliation(s)
- Brandon Estrem
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
24
|
Kesti S, Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. Investigation of the protective role of Ginkgo biloba L. against phytotoxicity, genotoxicity and oxidative damage induced by Trifloxystrobin. Sci Rep 2024; 14:19937. [PMID: 39198657 PMCID: PMC11358517 DOI: 10.1038/s41598-024-70712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Trifloxystrobin (TFS) is a widely used strobilurin class fungicide. Ginkgo biloba L. has gained popularity due to its recognized medicinal and antioxidant properties. The aim of this study was to determine whether Ginkgo biloba L. extract (Gbex) has a protective role against TFS-induced phytotoxicity, genotoxicity and oxidative damage in A. cepa. Different groups were formed from Allium cepa L. bulbs subjected to tap water (control), 200 mg/L Gbex (Gbex1), 400 mg/L Gbex (Gbex2), 0.8 g/L TFS solution (TFS), 200 mg/L Gbex + 0.8 g/L TFS (TFS + Gbex1) and 400 mg/L Gbex + 0.8 g/L TFS (TFS + Gbex2), respectively. The phenolic composition of Gbex and alterations in the morphological, physiological, biochemical, genotoxicity and anatomical parameters were evaluated. Rutin, protocatechuic acid, catechin, gallic acid, taxifolin, p-coumaric acid, caffeic acid, epicatechin, syringic acid and quercetin were the most prevalent phenolic substances in Gbex. Rooting percentage, root elongation, weight gain, chlorophyll a and chlorophyll b decreased by approximately 50%, 85%, 77%, 55% and 70%, respectively, as a result of TFS treatment compared to the control. In the TFS group, the mitotic index fell by 28% compared to the control group, but chromosomal abnormalities, micronuclei frequency and tail DNA percentage increased. Fragment, vagrant chromosome, sticky chromosome, uneven chromatin distribution, bridge, vacuole-containing nucleus, reverse polarization and irregular mitosis were the chromosomal abnormalities observed in the TFS group. The levels of proline (2.17-fold) and malondialdehyde (2.71-fold), as well as the activities of catalase (2.75-fold) and superoxide dismutase (2.03-fold) were increased by TFS in comparison to the control. TFS-provoked meristematic disorders were damaged epidermis and cortex cells, flattened cell nucleus and thickened cortex cell wall. Gbex combined with TFS relieved all these TFS-induced stress signs in a dose-dependent manner. This investigation showed that Gbex can play protective role in A. cepa against the phytotoxicity, genotoxicity and oxidative damage caused by TFS. The results demonstrated that Gbex had this antioxidant and antigenotoxic potential owing to its high phenolic content.
Collapse
Affiliation(s)
- Saliha Kesti
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
25
|
Fournier LA, Kalantari F, Wells JP, Lee JS, Trigo-Gonzalez G, Moksa MM, Smith T, White J, Shanks A, Wang SL, Su E, Wang Y, Huntsman DG, Hirst M, Stirling PC. Genome-Wide CRISPR Screen Identifies KEAP1 Perturbation as a Vulnerability of ARID1A-Deficient Cells. Cancers (Basel) 2024; 16:2949. [PMID: 39272807 PMCID: PMC11394604 DOI: 10.3390/cancers16172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% of cases. Despite a growing understanding of the consequences of ARID1A loss in cancer, there remains limited targeted therapeutic options for ARID1A-deficient cancers. Using a genome-wide CRISPR screening approach, we identify KEAP1 as a genetic dependency of ARID1A in CCOC. Depletion or chemical perturbation of KEAP1 results in selective growth inhibition of ARID1A-KO cell lines and edited primary endometrial epithelial cells. While we confirm that KEAP1-NRF2 signalling is dysregulated in ARID1A-KO cells, we suggest that this synthetic lethality is not due to aberrant NRF2 signalling. Rather, we find that KEAP1 perturbation exacerbates genome instability phenotypes associated with ARID1A deficiency. Together, our findings identify a potentially novel synthetic lethal interaction of ARID1A-deficient cells.
Collapse
Affiliation(s)
- Louis-Alexandre Fournier
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5L1Z3, Canada
| | - Forouh Kalantari
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Joon Seon Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Genny Trigo-Gonzalez
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - Michelle M Moksa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Theodore Smith
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Justin White
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Alynn Shanks
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Siyun L Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Edmund Su
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Martin Hirst
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
26
|
Shigano M, Takashima R, Satomoto K, Sales H, Harada R, Hamada S. Confirmation of Di(2-ethylhexyl) phthalate-induced micronuclei by repeated dose liver micronucleus assay: focus on evaluation of liver micronucleus assay in young rats. Genes Environ 2024; 46:17. [PMID: 39180124 PMCID: PMC11344444 DOI: 10.1186/s41021-024-00311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer commonly used in a wide variety of products, including medical devices. It is rapidly metabolized in the liver into various metabolites upon absorption through oral ingestion, dermal absorption, and inhalation. DEHP is classified as a non-genotoxic hepatocarcinogen in rodents, as its chronic exposure has been associated with the development of liver cancer in these animals, but most genotoxicity studies have been negative. Epidemiologic studies in humans suggest that long-term high intakes of DEHP may be a risk factor for liver dysfunction. The repeated-dose liver micronucleus (RDLMN) assay is a well-established method for assessing chromosomal changes caused by hepatic genotoxins and/or carcinogens. It is particularly valuable for detecting substances that undergo metabolic activation, especially when the metabolite has a short half-life or does not reach the bone marrow effectively. Therefore, we investigated whether the RDLMN assay could detect DEHP-induced micronucleus formation in the liver following a 14 or 28-day treatment. RESULTS We report that the RDLMN assay demonstrated an increased frequency of hepatic micronuclei in rats exposed to DEHP for 14 or 28 days. The increases in micronuclei correlated with hepatomegaly, an established response to phthalates in the liver. Conversely, no such increases were observed in the micronucleus assay using bone marrow from these rats. CONCLUSION The detection of DEHP-induced micronuclei by the RDLMN assay suggests that this assay could detect the potential genotoxicity and hepatocarcinogenicity of DEHP. It also demonstrated the utility of the RDLMN assay in identifying metabolically activated hepatic carcinogens.
Collapse
Affiliation(s)
- Miyuki Shigano
- Safety Assessment Department, Kashima Laboratories, Mediford Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki, 314-0255, Japan.
| | - Rie Takashima
- Nippon Kayaku Co., Ltd., 2-1-1 Marunouchi, Chiyoda-Ku, Tokyo, 100-0005, Japan
| | - Kensuke Satomoto
- Ishihara Sangyo Kaisha Ltd., 2-3-1 Nishi-Shibukawa Kusatsu-Shi, Shiga, 525-0025, Japan
| | - Henri Sales
- ITR Laboratories Canada Inc., 19601 Clark Graham Ave, Baie-D'Urfé, Quebec, H9X 3T1, Canada
| | - Ryoko Harada
- ITR Laboratories Canada Inc., 19601 Clark Graham Ave, Baie-D'Urfé, Quebec, H9X 3T1, Canada
| | - Shuichi Hamada
- BoZo Research Center Inc., 1-3-11 Hanegi, Setagaya-ku, Tokyo, 156-0042, Japan
| |
Collapse
|
27
|
Muhs S, Paraschiakos T, Schäfer P, Joosse SA, Windhorst S. Centrosomal Protein 55 Regulates Chromosomal Instability in Cancer Cells by Controlling Microtubule Dynamics. Cells 2024; 13:1382. [PMID: 39195269 DOI: 10.3390/cells13161382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Centrosomal Protein 55 (CEP55) exhibits various oncogenic activities; it regulates the PI3K-Akt-pathway, midbody abscission, and chromosomal instability (CIN) in cancer cells. Here, we analyzed the mechanism of how CEP55 controls CIN in ovarian and breast cancer (OvCa) cells. Down-regulation of CEP55 reduced CIN in all cell lines analyzed, and CEP55 depletion decreased spindle microtubule (MT)-stability in OvCa cells. Moreover, recombinant CEP55 accelerated MT-polymerization and attenuated cold-induced MT-depolymerization. To analyze a potential relationship between CEP55-controlled CIN and its impact on MT-stability, we identified the CEP55 MT-binding peptides inside the CEP55 protein. Thereafter, a mutant with deficient MT-binding activity was re-expressed in CEP55-depleted OvCa cells and we could show that this mutant did not restore reduced CIN in CEP55-depleted cells. This finding strongly indicates that CEP55 regulates CIN by controlling MT dynamics.
Collapse
Affiliation(s)
- Stefanie Muhs
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Themistoklis Paraschiakos
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Paula Schäfer
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
28
|
Zannini L, Cardano M, Liberi G, Buscemi G. R-loops and impaired autophagy trigger cGAS-dependent inflammation via micronuclei formation in Senataxin-deficient cells. Cell Mol Life Sci 2024; 81:339. [PMID: 39120648 PMCID: PMC11335261 DOI: 10.1007/s00018-024-05380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.
Collapse
Affiliation(s)
- Laura Zannini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Miriana Cardano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| | - Giacomo Buscemi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, Pavia, 27100, Italy.
| |
Collapse
|
29
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
30
|
Chan FF, Yuen VWH, Shen J, Chin DWC, Law CT, Wong BPY, Chan CYK, Cheu JWS, Ng IOL, Wong CCL, Wong CM. Inhibition of CAF-1 histone chaperone complex triggers cytosolic DNA and dsRNA sensing pathways and induces intrinsic immunity of hepatocellular carcinoma. Hepatology 2024; 80:295-311. [PMID: 38051950 DOI: 10.1097/hep.0000000000000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.
Collapse
Affiliation(s)
- For-Fan Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Hin Yuen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jialing Shen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bowie Po-Yee Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Cerise Yuen-Ki Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jacinth Wing-Sum Cheu
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Zych MG, Hatch EM. Small spaces, big problems: The abnormal nucleoplasm of micronuclei and its consequences. Curr Opin Struct Biol 2024; 87:102839. [PMID: 38763098 DOI: 10.1016/j.sbi.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Micronuclei (MN) form from missegregated chromatin that recruits its own nuclear envelope during mitotic exit and are a common consequence of chromosomal instability. MN are unstable due to errors in nuclear envelope organization and frequently rupture, leading to loss of compartmentalization, loss of nuclear functions, and major changes in genome stability and gene expression. However, recent work found that, even prior to rupture, nuclear processes can be severely defective in MN, which may contribute to rupture-associated defects and have lasting consequences for chromatin structure and function. In this review we discuss work that highlights nuclear function defects in intact MN, including their mechanisms and consequences, and how biases in chromosome missegregation into MN may affect the penetrance of these defects. Illuminating the nuclear environment of MN demonstrates that MN formation alone has major consequences for both the genome and cell and provides new insight into how nuclear content is regulated.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA; Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. https://twitter.com/ZychMolly
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
32
|
Bitgen N, Bayram F, Hamurcu Z, Baskol G, Ozturk F, Abdulrezzak U, Donmez-Altuntas H. The effects of iodine 131 treatment on chromosomal and oxidative DNA damage in papillary thyroid carcinoma. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503797. [PMID: 39147446 DOI: 10.1016/j.mrgentox.2024.503797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Papillary thyroid carcinoma (PTC) is a common endocrine cancer with a good prognosis. Radioactive iodine is thought to be useful for individuals who have had a total or almost total thyroidectomy, but its effects are still controversial. The effects of radioactive iodine-131 (I-131) treatment on oxidative and chromosomal damage in PTC patients were examined in this study, which was carried out with 16 patients newly diagnosed with PTC and 20 healthy control subjects with similar age and gender. Blood samples were taken from patients with PTC at five sampling times (before total thyroidectomy, after total thyroidectomy, and seven days, six months, and one year after treatment) and from control subjects. The cytokinesis block micronucleus cytome (CBMN-cyt) assay parameters in peripheral blood lymphocytes of patients with PTC and controls were evaluated and plasma 8-hydroxydeoxyguanosine (8-OHdG) levels were measured. Furthermore, genome instability and oxidative DNA damage in peripheral blood lymphocytes and plasma of patients with PTC were evaluated before total thyroidectomy (n=16), after total thyroidectomy (before I-131 treatment) (n=16), seven days (n=10), six months (n=5), and one year after treatment (n=5). The numbers of CBMN-cyt assay parameters (micronucleus; MN and nucleoplasmic bridges; NPB) and 8-OHdG levels in patients with PTC were determined to be significantly higher than in those of the control subjects and these values significantly decreased after total thyroidectomy (before I-131 treatment). While the number of MN, apoptotic, and necrotic cells increased after I-131 treatment, it significantly decreased after six months and one year after treatment. The results achieved in this study suggest that I-131 treatment may pose a threat to cells and that radioactive iodine therapy should be avoided (if possible) for patients with PTC after total thyroidectomy.
Collapse
Affiliation(s)
- Nazmiye Bitgen
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fahri Bayram
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gulden Baskol
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Figen Ozturk
- Department of Pathology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ummuhan Abdulrezzak
- Department of Nuclear Medicine, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
33
|
Nie P, Zhang C, Wu F, Chen S, Wang L. The Compromised Fanconi Anemia Pathway in Prelamin A-Expressing Cells Contributes to Replication Stress-Induced Genomic Instability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307751. [PMID: 38894550 PMCID: PMC11321653 DOI: 10.1002/advs.202307751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Genomic instability is not only a hallmark of senescent cells but also a key factor driving cellular senescence, and replication stress is the main source of genomic instability. Defective prelamin A processing caused by lamin A/C (LMNA) or zinc metallopeptidase STE24 (ZMPSTE24) gene mutations results in premature aging. Although previous studies have shown that dysregulated lamin A interferes with DNA replication and causes replication stress, the relationship between lamin A dysfunction and replication stress remains largely unknown. Here, an increase in baseline replication stress and genomic instability is found in prelamin A-expressing cells. Moreover, prelamin A confers hypersensitivity of cells to exogenous replication stress, resulting in decreased cell survival and exacerbated genomic instability. These effects occur because prelamin A promotes MRE11-mediated resection of stalled replication forks. Fanconi anemia (FA) proteins, which play important roles in replication fork maintenance, are downregulated by prelamin A in a retinoblastoma (RB)/E2F-dependent manner. Additionally, prelamin A inhibits the activation of the FA pathway upon replication stress. More importantly, FA pathway downregulation is an upstream event of p53-p21 axis activation during the induction of prelamin A expression. Overall, these findings highlight the critical role of FA pathway dysfunction in driving replication stress-induced genomic instability and cellular senescence in prelamin A-expressing cells.
Collapse
Affiliation(s)
- Pengqing Nie
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
- Department of Infectious DiseasesInstitute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038China
| | - Cheng Zhang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Fengyi Wu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
- Department of Burn and Plastic SurgeryShenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's HospitalShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationGuangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
- Department of Infectious DiseasesInstitute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038China
| |
Collapse
|
34
|
Grosicki M, Wojnar-Lason K, Mosiolek S, Mateuszuk L, Stojak M, Chlopicki S. Distinct profile of antiviral drugs effects in aortic and pulmonary endothelial cells revealed by high-content microscopy and cell painting assays. Toxicol Appl Pharmacol 2024; 490:117030. [PMID: 38981531 DOI: 10.1016/j.taap.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Antiretroviral therapy have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, highly effective antiretroviral therapy (HAART) may lead to an increased risk of cardiovascular diseases, which could be related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy. The colourimetric study (MTS test) revealed similar toxicity profiles of all antiviral drugs tested in the concentration range of 1 nM-50 μM in aortic and pulmonary endothelial cells. Conversely, the drugs' effects on morphological parameters were more pronounced in HAECs as compared with hLMVECs. Based on the antiviral drugs' effects on the cytoplasmic and nuclei architecture (analyzed by multiple pre-defined parameters including SER texture and STAR morphology), the studied compounds were classified into five distinct morphological subgroups, each linked to a specific cellular response profile. In relation to morphological subgroup classification, antiviral drugs induced a loss of mitochondrial membrane potential, elevated ROS, changed lipid droplets/lysosomal content, decreased von Willebrand factor expression and micronuclei formation or dysregulated cellular autophagy. In conclusion, based on specific changes in endothelial cytoplasm, nuclei and subcellular morphology, the distinct endothelial response was identified for remdesivir, ritonavir, lopinavir, efavirenz, zidovudine and abacavir treatments. The effects detected in aortic endothelial cells were not detected in pulmonary endothelial cells. Taken together, high-content microscopy has proven to be a robust and informative method for endothelial drug profiling that may prove useful in predicting the organ-specific endothelial toxicity of various drugs.
Collapse
Affiliation(s)
- Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Sylwester Mosiolek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
35
|
Villagomez FR, Lang J, Rosario FJ, Nunez-Avellaneda D, Webb P, Neville M, Woodruff ER, Bitler BG. Claudin-4 Modulates Autophagy via SLC1A5/LAT1 as a Mechanism to Regulate Micronuclei. CANCER RESEARCH COMMUNICATIONS 2024; 4:1625-1642. [PMID: 38867360 PMCID: PMC11218812 DOI: 10.1158/2767-9764.crc-24-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Genome instability is a hallmark of cancer crucial for tumor heterogeneity and is often a result of defects in cell division and DNA damage repair. Tumors tolerate genomic instability, but the accumulation of genetic aberrations is regulated to avoid catastrophic chromosomal alterations and cell death. In ovarian cancer tumors, claudin-4 is frequently upregulated and closely associated with genome instability and worse patient outcomes. However, its biological association with regulating genomic instability is poorly understood. Here, we used CRISPR interference and a claudin mimic peptide to modulate the claudin-4 expression and its function in vitro and in vivo. We found that claudin-4 promotes a tolerance mechanism for genomic instability through micronuclei generation in tumor cells. Disruption of claudin-4 increased autophagy and was associated with the engulfment of cytoplasm-localized DNA. Mechanistically, we observed that claudin-4 establishes a biological axis with the amino acid transporters SLC1A5 and LAT1, which regulate autophagy upstream of mTOR. Furthermore, the claudin-4/SLC1A5/LAT1 axis was linked to the transport of amino acids across the plasma membrane as one of the potential cellular processes that significantly decreased survival in ovarian cancer patients. Together, our results show that the upregulation of claudin-4 contributes to increasing the threshold of tolerance for genomic instability in ovarian tumor cells by limiting its accumulation through autophagy. SIGNIFICANCE Autophagy regulation via claudin-4/SLC1A5/LAT1 has the potential to be a targetable mechanism to interfere with genomic instability in ovarian tumor cells.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico.
| | - Patricia Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
36
|
Fahrer J. Decoding the genetic program of micronucleus formation: linking chromosomal instability to human disease. Signal Transduct Target Ther 2024; 9:162. [PMID: 38877011 PMCID: PMC11178884 DOI: 10.1038/s41392-024-01869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
| |
Collapse
|
37
|
Fonseca ASAD, Monteiro IDS, Dos Santos CR, Carneiro MLB, Morais SS, Araújo PL, Santana TF, Joanitti GA. Effects of andiroba oil (Carapa guianensis aublet) on the immune system in inflammation and wound healing: A scoping review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118004. [PMID: 38432579 DOI: 10.1016/j.jep.2024.118004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andiroba seed oil (Carapa guianensis Aubl.) is widely used by traditional populations in tropical countries, especially in the Brazilian Amazon, because of its anti-inflammatory, antirheumatic, antiseptic, healing and antipyretic properties, among others, which makes it useful for the treatment, mainly, of skin afflictions and wounds. AIM OF THE STUDY To describe the modulation of the immune system by andiroba oil (Carapa guianensis Aubl.) in inflammation and wound healing. MATERIALS AND METHODS A scoping review was performed, following the recommendations of the Joanna Briggs Institute (JBI) and PRISMA for Scoping Reviews (PRISMA-ScR). As inclusion criteria, in vitro, in vivo, ex vivo, and clinical studies were selected, in Portuguese, English, or Spanish, in thirteen databases of published studies, gray literature, and references of the included studies, which deal with immune modulation by andiroba oil in the context of the various therapeutic applications that make use of its anti-inflammatory and wound healing properties. The selection of information sources was carried out by two independent reviewers between November 2022 and January 2023. The process of data extraction and evidence analysis was conducted by four pairs of independent reviewers between January and February 2023. RESULTS 22 sources of evidence were included in this scoping review, mostly scientific articles published between 2005 and 2021 with in vivo sampling. The evidence suggests that andiroba oil reduces inflammation and promotes the healing of wounds of multiple etiologies by reducing leukocyte infiltration, increasing phagocytic activity, enhancing interleukin and inflammatory cytokine activity, promoting fibroblast recovery, increasing growth factors, reducing apoptotic cells, promoting reepithelialization, as well as promoting angiogenesis, reducing edema, and stimulating the production of glucocorticoids that alleviate pain. Additionally, different formulations of the oil (such as nanoemulsions, films and gels) are more effective in modulating inflammation and wound healing compared to in natura oil. CONCLUSIONS Evidence in the literature suggests that andiroba oil (Carapa guianensis Aubl.) has positive effects on immune modulation in inflammation and wound healing, which makes it a biocompound with high therapeutic potential.
Collapse
Affiliation(s)
- Aimê Stefany Alves da Fonseca
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; Post-Graduation Program in Microbial Biology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil.
| | - Isolda de Souza Monteiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Carolina Ramos Dos Santos
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Marcella Lemos Brettas Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; Post-Graduation Program in Biomedical Engineering, Faculty of Gama, University of Brasilia, Brasilia 72444-240, DF, Brazil.
| | - Samuel Silva Morais
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Paula Lauane Araújo
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Thamis Fernandes Santana
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil.
| |
Collapse
|
38
|
Takaki T, Millar R, Hiley CT, Boulton SJ. Micronuclei induced by radiation, replication stress, or chromosome segregation errors do not activate cGAS-STING. Mol Cell 2024; 84:2203-2213.e5. [PMID: 38749421 DOI: 10.1016/j.molcel.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024]
Abstract
The cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a pivotal role in innate immune responses to viral infection and inhibition of autoimmunity. Recent studies have suggested that micronuclei formed by genotoxic stress can activate innate immune signaling via the cGAS-STING pathway. Here, we investigated cGAS localization, activation, and downstream signaling from micronuclei induced by ionizing radiation, replication stress, and chromosome segregation errors. Although cGAS localized to ruptured micronuclei via binding to self-DNA, we failed to observe cGAS activation; cGAMP production; downstream phosphorylation of STING, TBK1, or IRF3; nuclear accumulation of IRF3; or expression of interferon-stimulated genes. Failure to activate the cGAS-STING pathway was observed across primary and immortalized cell lines, which retained the ability to activate the cGAS-STING pathway in response to dsDNA or modified vaccinia virus infection. We provide evidence that micronuclei formed by genotoxic insults contain histone-bound self-DNA, which we show is inhibitory to cGAS activation in cells.
Collapse
Affiliation(s)
- Tohru Takaki
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rhona Millar
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Radnet City of London Centre, UCL Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Crispin T Hiley
- Cancer Research UK Radnet City of London Centre, UCL Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Artios Pharma Ltd., Babraham Research Campus, Meditrina Building, Cambridge CB22 3AT, UK.
| |
Collapse
|
39
|
Santos HDAGD, Kitamura RSA, Soares GDCB, Dos Santos MP, Miranda LPDS, Mela M, Vitule JRS, Grassi MT, Cestari MM, Padial AA, Silva de Assis HC. Assessing the water quality in a World Heritage Site using biomarkers in top fish predators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172072. [PMID: 38575033 DOI: 10.1016/j.scitotenv.2024.172072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The use of biomarkers in fish for biomonitoring is a valuable approach to reveal effects of human impacts on biota health. Top predator fish are effective models for monitoring human activities' impacts on aquatic ecosystems. The Guaraguaçu River is the largest river-system on coastal region of South Brazil and a World Heritage site. The river receives contaminants from disorderly urban growth, including discharges of domestic sewage and small fishery boats, particularly during the tourist season. Our study aimed to assess impact of anthropogenic activities on water quality in the Guaraguaçu River by analyzing environmental contamination biomarkers in the top fish predator Hoplias malabaricus. Fish were collected using a fyke net trap across sectors representing a gradient of anthropic impact: sector 1 - pristine; sector 2 - impacted; and sector 3 - less impacted. Water samples were collected to analyze the presence of trace elements and pesticide. Biomarkers of the antioxidant system, histopathology, genotoxicity, neurotoxicity, and concentration of trace elements were analyzed in fish tissues. In water samples Al, Fe and Mn were detected, but no pesticides were found. In fish muscle, zinc and iron were detected. Brain acetylcholinesterase activity decreased in impacted sectors, indicating neurotoxic effects. The antioxidant system increased activity in gills and liver, and damage from lipoperoxidation was observed, particularly in sector 2 when compared to sector 1, suggesting oxidative stress. Histopathological biomarkers revealed lesions in the liver and gills of fish in impacted sectors. Micronuclei, a genotoxicity biomarker, were observed in organisms from all sectors. Our results demonstrate detrimental effects of poor water quality on biota health, even when contaminants are not detected in water.
Collapse
Affiliation(s)
| | - Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980 Curitiba, PR, Brazil
| | | | | | | | - Maritana Mela
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81537-990 Curitiba, PR, Brazil
| | - Jean Ricardo Simões Vitule
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Environmental Engineering, Federal University of Paraná, PO Box 19011, 81531-980 Curitiba, PR, Brazil
| | - Marco Tadeu Grassi
- Department of Chemistry, Federal University of Paraná, PO Box 19032, 81531-980 Curitiba, PR, Brazil
| | - Marta Margarete Cestari
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980 Curitiba, PR, Brazil
| | - Andre Andrian Padial
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Botany, Federal University of Paraná, PO Box 19031, 81531-980 Curitiba, PR, Brazil
| | - Helena Cristina Silva de Assis
- Ecology and Conservation Post-Graduate Program, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980 Curitiba, PR, Brazil.
| |
Collapse
|
40
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
41
|
Gulati S, Mosgoeller W, Moldan D, Kosik P, Durdik M, Jakl L, Skorvaga M, Markova E, Kochanova D, Vigasova K, Belyaev I. Evaluation of oxidative stress and genetic instability among residents near mobile phone base stations in Germany. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116486. [PMID: 38820877 DOI: 10.1016/j.ecoenv.2024.116486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
Human exposure to radiofrequency electromagnetic fields (RF-EMF) is restricted to prevent thermal effects in the tissue. However, at very low intensity exposure "non-thermal" biological effects, like oxidative stress, DNA or chromosomal aberrations, etc. collectively termed genomic-instability can occur after few hours. Little is known about chronic (years long) exposure with non-thermal RF-EMF. We identified two neighboring housing estates in a rural region with residents exposed to either relatively low (control-group) or relatively high (exposed-group) RF-EMF emitted from nearby mobile phone base stations (MPBS). 24 healthy adults that lived in their homes at least for 5 years volunteered. The homes were surveyed for common types of EMF, blood samples were tested for oxidative status, transient DNA alterations, permanent chromosomal damage, and specific cancer related genetic markers, like MLL gene rearrangements. We documented possible confounders, like age, sex, nutrition, life-exposure to ionizing radiation (X-rays), occupational exposures, etc. The groups matched well, age, sex, lifestyle and occupational risk factors were similar. The years long exposure had no measurable effect on MLL gene rearrangements and c-Abl-gene transcription modification. Associated with higher exposure, we found higher levels of lipid oxidation and oxidative DNA-lesions, though not statistically significant. DNA double strand breaks, micronuclei, ring chromosomes, and acentric chromosomes were not significantly different between the groups. Chromosomal aberrations like dicentric chromosomes (p=0.007), chromatid gaps (p=0.019), chromosomal fragments (p<0.001) and the total of chromosomal aberrations (p<0.001) were significantly higher in the exposed group. No potential confounder interfered with these findings. Increased rates of chromosomal aberrations as linked to excess exposure with ionizing radiation may also occur with non-ionizing radiation exposure. Biological endpoints can be informative for designing exposure limitation strategies. Further research is warranted to investigate the dose-effect-relationship between both, exposure intensity and exposure time, to account for endpoint accumulations after years of exposure. As established for ionizing radiation, chromosomal aberrations could contribute to the definition of protection thresholds, as their rate reflects exposure intensity and exposure time.
Collapse
Affiliation(s)
- Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | | | | | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Dominika Kochanova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Katarina Vigasova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic.
| |
Collapse
|
42
|
Ibarra-Arellano MA, Caprio LA, Hada A, Stotzem N, Cai L, Shah S, Melms JC, Wünneman F, Izar B, Schapiro D. micronuclAI: Automated quantification of micronuclei for assessment of chromosomal instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595722. [PMID: 38854106 PMCID: PMC11160592 DOI: 10.1101/2024.05.24.595722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN results from chromosome mis-segregation events during anaphase, as excessive chromatin is packaged in micronuclei (MN), that can be enumerated to quantify CIN. Despite recent advancements in automation through computer vision and machine learning, the assessment of CIN remains a predominantly manual and time-consuming task, thus hampering important work in the field. Here, we present micronuclAI , a novel pipeline for automated and reliable quantification of MN of varying size, morphology and location from DNA-only stained images. In micronucleAI , single-cell crops are extracted from high-resolution microscopy images with the help of segmentation masks, which are then used to train a convolutional neural network (CNN) to output the number of MN associated with each cell. The pipeline was evaluated against manual single-cell level counts by experts and against routinely used MN ratio within the complete image. The classifier was able to achieve a weighted F1 score of 0.937 on the test dataset and the complete pipeline can achieve close to human-level performance on various datasets derived from multiple human and murine cancer cell lines. The pipeline achieved a root-mean-square deviation (RMSE) value of 0.0041, an R 2 of 0.87 and a Pearson's correlation of 0.938 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and also on a publicly available image data set (obtained at 100X) and achieved an RMSE value of 0.0159, an R 2 of 0.90, and a Pearson's correlation of 0.951. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on routinely obtained images. We release a GUI-implementation for easy access and utilization of the pipeline.
Collapse
|
43
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Kloc M, Halasa M, Ghobrial RM. Macrophage niche imprinting as a determinant of macrophage identity and function. Cell Immunol 2024; 399-400:104825. [PMID: 38648700 DOI: 10.1016/j.cellimm.2024.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Macrophage niches are the anatomical locations within organs or tissues consisting of various cells, intercellular and extracellular matrix, transcription factors, and signaling molecules that interact to influence macrophage self-maintenance, phenotype, and behavior. The niche, besides physically supporting macrophages, imposes a tissue- and organ-specific identity on the residing and infiltrating monocytes and macrophages. In this review, we give examples of macrophage niches and the modes of communication between macrophages and surrounding cells. We also describe how macrophages, acting against their immune defensive nature, can create a hospitable niche for pathogens and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| |
Collapse
|
45
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
46
|
Dvorkin S, Cambier S, Volkman HE, Stetson DB. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity 2024; 57:718-730. [PMID: 38599167 PMCID: PMC11013568 DOI: 10.1016/j.immuni.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The cGAS-STING intracellular DNA-sensing pathway has emerged as a key element of innate antiviral immunity and a promising therapeutic target. The existence of an innate immune sensor that can be activated by any double-stranded DNA (dsDNA) of any origin raises fundamental questions about how cGAS is regulated and how it responds to "foreign" DNA while maintaining tolerance to ubiquitous self-DNA. In this review, we summarize recent evidence implicating important roles for cGAS in the detection of foreign and self-DNA. We describe two recent and surprising insights into cGAS-STING biology: that cGAS is tightly tethered to the nucleosome and that the cGAMP product of cGAS is an immunotransmitter acting at a distance to control innate immunity. We consider how these advances influence our understanding of the emerging roles of cGAS in the DNA damage response (DDR), senescence, aging, and cancer biology. Finally, we describe emerging approaches to harness cGAS-STING biology for therapeutic benefit.
Collapse
Affiliation(s)
- Steve Dvorkin
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Stephanie Cambier
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hannah E Volkman
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
47
|
Sato Y, Hayashi MT. Micronucleus is not a potent inducer of the cGAS/STING pathway. Life Sci Alliance 2024; 7:e202302424. [PMID: 38307626 PMCID: PMC10837050 DOI: 10.26508/lsa.202302424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Micronuclei (MN) have been associated with the innate immune response. The abrupt rupture of MN membranes results in the accumulation of cGAS, potentially activating STING and downstream interferon-responsive genes. However, direct evidence connecting MN and cGAS activation has been lacking. We have developed the FuVis2 reporter system, which enables the visualization of the cell nucleus carrying a single sister chromatid fusion and, consequently, MN. Using this FuVis2 reporter equipped with cGAS and STING reporters, we rigorously assessed the potency of cGAS activation by MN in individual living cells. Our findings reveal that cGAS localization to membrane-ruptured MN during interphase is infrequent, with cGAS primarily capturing MN during mitosis and remaining bound to cytosolic chromatin. We found that cGAS accumulation during mitosis neither activates STING in the subsequent interphase nor triggers the interferon response. Gamma-ray irradiation activates STING independently of MN formation and cGAS localization to MN. These results suggest that cGAS accumulation in cytosolic MN is not a robust indicator of its activation and that MN are not the primary trigger of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Yuki Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto T Hayashi
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
48
|
Yoo M, Haydak JC, Azeloglu EU, Lee K, Gusella GL. cGAS Activation Accelerates the Progression of Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:466-482. [PMID: 38247039 PMCID: PMC11000720 DOI: 10.1681/asn.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal immune infiltrate observed in autosomal polycystic kidney disease contributes to the evolution of the disease. Elucidating the cellular mechanisms underlying the inflammatory response could help devise new therapeutic strategies. Here, we provide evidence for a mechanistic link between the deficiency polycystin-1 and mitochondrial homeostasis and the activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of the interferon genes (STING) pathway. Our data identify cGAS as an important mediator of renal cystogenesis and suggest that its inhibition may be useful to slow down the disease progression. BACKGROUND Immune cells significantly contribute to the progression of autosomal dominant polycystic kidney disease (ADPKD), the most common genetic disorder of the kidney caused by the dysregulation of the Pkd1 or Pkd2 genes. However, the mechanisms triggering the immune cells recruitment and activation are undefined. METHODS Immortalized murine collecting duct cell lines were used to dissect the molecular mechanism of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activation in the context of genotoxic stress induced by Pkd1 ablation. We used conditional Pkd1 and knockout cGas-/- genetic mouse models to confirm the role of cGAS/stimulator of the interferon genes (STING) pathway activation on the course of renal cystogenesis. RESULTS We show that Pkd1 -deficient renal tubular cells express high levels of cGAS, the main cellular sensor of cytosolic nucleic acid and a potent stimulator of proinflammatory cytokines. Loss of Pkd1 directly affects cGAS expression and nuclear translocation, as well as activation of the cGAS/STING pathway, which is reversed by cGAS knockdown or functional pharmacological inhibition. These events are tightly linked to the loss of mitochondrial structure integrity and genotoxic stress caused by Pkd1 depletion because they can be reverted by the potent antioxidant mitoquinone or by the re-expression of the polycystin-1 carboxyl terminal tail. The genetic inactivation of cGAS in a rapidly progressing ADPKD mouse model significantly reduces cystogenesis and preserves normal organ function. CONCLUSIONS Our findings indicate that the activation of the cGAS/STING pathway contributes to ADPKD cystogenesis through the control of the immune response associated with the loss of Pkd1 and suggest that targeting this pathway may slow disease progression.
Collapse
Affiliation(s)
- Miran Yoo
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | |
Collapse
|
49
|
Suptela AJ, Radwan Y, Richardson C, Yan S, Afonin KA, Marriott I. cGAS Mediates the Inflammatory Responses of Human Microglial Cells to Genotoxic DNA Damage. Inflammation 2024; 47:822-836. [PMID: 38148453 PMCID: PMC11073916 DOI: 10.1007/s10753-023-01946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Genomic instability is a key driving force for the development and progression of many age-related neurodegenerative diseases and central nervous system (CNS) cancers. Recently, the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), has been shown to detect and respond to self-DNA accumulation resulting from DNA damaging insults in peripheral cell types. cGAS has been shown to be important in the responses of microglia to DNA viruses and amyloid beta, and we have reported that it underlies the responses of human microglia to exogenous DNA. However, the role of this cytosolic sensor in the detection of self-DNA by glia is poorly understood and its ability to mediate the cellular responses of human microglia to genotoxic DNA damage has not been established. Here, we describe the ability of ionizing radiation and oxidative stress to elicit genomic DNA damage in human microglial cells and to stimulate the production of key inflammatory mediators by these cells in an NF-kB dependent manner. Importantly, we have utilized CRISPR/Cas9 and siRNA-mediated knockdown approaches and a pharmacological inhibitor of the cGAS adaptor protein stimulator of interferon genes (STING) to demonstrate that the cGAS-STING pathway plays a critical role in the generation of these microglial immune responses to such genotoxic insults. Together, these studies support the notion that cGAS mediates the detection of cytosolic self-DNA by microglia, providing a potential mechanism linking genomic instability to the development of CNS cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexander J Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Christine Richardson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA.
| |
Collapse
|
50
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|