1
|
Dossat AM, Trychta KA, Glotfelty EJ, Hinkle JJ, Fortuno LV, Gore LN, Richie CT, Harvey BK. Excitotoxic glutamate levels cause the secretion of resident endoplasmic reticulum proteins. J Neurochem 2024; 168:2461-2478. [PMID: 38491746 PMCID: PMC11401966 DOI: 10.1111/jnc.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+-mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.
Collapse
Affiliation(s)
- Amanda M. Dossat
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Kathleen A. Trychta
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Elliot J. Glotfelty
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Joshua J. Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lowella V. Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Lana N. Gore
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Christopher T. Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, 21224
| |
Collapse
|
2
|
Zeng C, Lu Y, Wei X, Sun L, Wei L, Ou S, Huang Q, Wu Y. Parvalbumin Regulates GAD Expression through Calcium Ion Concentration to Affect the Balance of Glu-GABA and Improve KA-Induced Status Epilepticus in PV-Cre Transgenic Mice. ACS Chem Neurosci 2024; 15:1951-1966. [PMID: 38696478 DOI: 10.1021/acschemneuro.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.
Collapse
Affiliation(s)
- Chunmei Zeng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Lei Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Sijie Ou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, #6 Shuangyong Road,Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Aquiles A, Fiordelisio T, Luna-Munguia H, Concha L. Altered functional connectivity and network excitability in a model of cortical dysplasia. Sci Rep 2023; 13:12335. [PMID: 37518675 PMCID: PMC10387479 DOI: 10.1038/s41598-023-38717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Focal cortical dysplasias (FCDs) are malformations of cortical development that often result in medically refractory epilepsy, with a greater incidence in the pediatric population. The relationship between the disturbed cortical morphology and epileptogenic activity of FCDs remains unclear. We used the BCNU (carmustine 1-3-bis-chloroethyl-nitrosourea) animal model of cortical dysplasia to evaluate neuronal and laminar alterations and how these result in altered activity of intracortical networks in early life. We corroborated the previously reported morphological anomalies characteristic of the BCNU model, comprising slightly larger and rounder neurons and abnormal cortical lamination. Next, the neuronal activity of live cortical slices was evaluated through large field-of-view calcium imaging as well as the neuronal response to a stimulus that leads to cortical hyperexcitability (pilocarpine). Examination of the joint activity of neuronal calcium time series allowed us to identify intracortical communication patterns and their response to pilocarpine. The baseline power density distribution of neurons in the cortex of BCNU-treated animals was different from that of control animals, with the former showing no modulation after stimulus. Moreover, the intracortical communication pattern differed between the two groups, with cortexes from BCNU-treated animals displaying decreased inter-layer connectivity as compared to control animals. Our results indicate that the altered anatomical organization of the cortex of BCNU-treated rats translates into altered functional networks that respond abnormally to a hyperexcitable stimulus and highlight the role of network dysfunction in the pathophysiology of cortical dysplasia.
Collapse
Affiliation(s)
- A Aquiles
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - T Fiordelisio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - H Luna-Munguia
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - L Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico.
| |
Collapse
|
4
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
5
|
Dos Santos RR, Bernardino TC, da Silva MCM, de Oliveira ACP, Drumond LE, Rosa DV, Massensini AR, Moraes MFD, Doretto MC, Romano-Silva MA, Reis HJ. Neurochemical abnormalities in the hippocampus of male rats displaying audiogenic seizures, a genetic model of epilepsy. Neurosci Lett 2021; 761:136123. [PMID: 34293418 DOI: 10.1016/j.neulet.2021.136123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.
Collapse
Affiliation(s)
- Rodrigo Ribeiro Dos Santos
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil; Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Túlio C Bernardino
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Antônio C P de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Luciana E Drumond
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Daniela V Rosa
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - André R Massensini
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria C Doretto
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - Helton J Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Zhang L, Fan D, Wang Q, Baier G. Effects of brain-derived neurotrophic factor and noise on transitions in temporal lobe epilepsy in a hippocampal network. CHAOS (WOODBURY, N.Y.) 2018; 28:106322. [PMID: 30384669 DOI: 10.1063/1.5036690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has recently been implicated in the modulation of receptor activation leading to dynamic state transitions in temporal lobe epilepsy (TLE). In addition, the crucial role of neuronal noise in these transitions has been studied in electrophysiological experiments. However, the precise role of these factors during seizure generation in TLE is not known. Building on a previously proposed model of an epileptogenic hippocampal network, we included the actions of BDNF-regulated receptors and intrinsic noise. We found that the effects of both BDNF and noise can increase the activation of N-methyl-D-aspartate receptors leading to excessive C a 2 + flux, which induces abnormal fast spiking and bursting. Our results indicate that the combined effects have a strong influence on the seizure-generating network, resulting in higher firing frequency and amplitude. As correlations between firing increase, the synchronization of the entire network increases, a marker of the ictogenic transitions from normal to seizures-like dynamics. Our work on the effects of BDNF dynamics in a noisy environment might lead to an improved model-based understanding of the pathological mechanisms in TLE.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Dynamics and Control, Beihang University, 100191 Beijing, China
| | - Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083 Beijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, 100191 Beijing, China
| | - Gerold Baier
- Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Yang H, Rajah G, Guo A, Wang Y, Wang Q. Pathogenesis of epileptic seizures and epilepsy after stroke. Neurol Res 2018; 40:426-432. [PMID: 29681214 DOI: 10.1080/01616412.2018.1455014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anchen Guo
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2017; 136:271-279. [PMID: 29129776 DOI: 10.1016/j.neuropharm.2017.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most prevalent neurological disorder affecting more than 50 million people worldwide. Numerous studies have suggested that an imbalance in glutamatergic (excitatory) and GABAergic (inhibitory) neurotransmitter system is one of the dominating pathophysiological mechanisms underlying the occurrence and progression of seizures. Further, this alteration in GABAergic and glutamatergic system disrupts the delicate balance of other neurotransmitters system in the brain. Emerging strides have documented the protective role of GLP-1 signaling on altered neurotransmitters signaling in Epilepsy and associated co-morbidities. GLP-1 is neuropeptide and synthesized by preproglucagon (PPG) neurons in the brain. GLP-1 receptors are widely distributed throughout the brain including hippocampus (CA3 and CA1 region) and implicated in various neurological disorders like Epilepsy. A complete understanding of alteration in neurotransmitters signaling will provide essential insight into the basic pathogenic mechanisms of epilepsy and may uncover novel targets for future drug therapies. Presently, treatment of epilepsy is palliative in nature, providing only symptomatic relief to patients. The apparent or traditional approach of treating epileptic subjects with anti-epileptic drugs is associated with variety of adverse effects. Therefore, alternative approaches that can restore altered neurotransmitter signaling are being tried and adopted. Present review is an attempt to highlight the emerging protective role of GLP-1 signaling on altered neurotransmitters signaling in epilepsy. Authors have made significant efforts to discuss effect of various GLP-1 analogs on various neurotransmitters system and associated molecular and cellular pathways as a potential drug target for the management of epilepsy and associated co-morbidities. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
9
|
Wang C, Xu B, Ma Z, Liu C, Deng Y, Liu W, Xu ZF. Inhibition of Calpains Protects Mn-Induced Neurotransmitter release disorders in Synaptosomes from Mice: Involvement of SNARE Complex and Synaptic Vesicle Fusion. Sci Rep 2017. [PMID: 28623313 PMCID: PMC5473846 DOI: 10.1038/s41598-017-04017-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Overexposure to manganese (Mn) could disrupt neurotransmitter release via influencing the formation of SNARE complex, but the underlying mechanisms are still unclear. A previous study demonstrated that SNAP-25 is one of substrate of calpains. The current study investigated whether calpains were involved in Mn-induced disorder of SNARE complex. After mice were treated with Mn for 24 days, Mn deposition increased significantly in basal nuclei in Mn-treated and calpeptin pre-treated groups. Behaviorally, less time spent in the center of the area and decreased average velocity significantly in an open field test after 24 days of Mn exposure. With the increase in MnCl2 dosage, intracellular Ca2+ increased significantly, but pretreatment with calpeptin caused a dose-dependent decrease in calpains activity. There were fragments of N-terminal of SNAP-25 protein appearance in Mn-treated groups, but it is decreased with pretreatment of calpeptin. FM1-43-labeled synaptic vesicles also provided evidence that the treatment with Mn resulted in increasing first and then decreasing, which was consistent with Glu release and the 80 kDa protein levels of SNARE complexes. In summary, Mn induced the disorder of neurotransmitter release through influencing the formation of SNARE complex via cleaving SNAP-25 by overactivation of calpains in vivo.
Collapse
Affiliation(s)
- Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhao-Fa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| |
Collapse
|
10
|
Kolbaev SN, Simonova VV, Bobrov MY, Sharonova IN, Khaspekov LG. The effect of N-arachidonoyldopamine on the dynamics of the intracellular calcium concentration in hippocampal neurons in the model of postischemic epileptogenesis in vitro. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Razanau A, Xie J. Emerging mechanisms and consequences of calcium regulation of alternative splicing in neurons and endocrine cells. Cell Mol Life Sci 2013; 70:4527-36. [PMID: 23800988 PMCID: PMC11113957 DOI: 10.1007/s00018-013-1390-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 12/12/2022]
Abstract
Alternative splicing contributes greatly to proteomic complexity. How it is regulated by external stimuli to sculpt cellular properties, particularly the highly diverse and malleable neuronal properties, is an underdeveloped area of emerging interest. A number of recent studies in neurons and endocrine cells have begun to shed light on its regulation by calcium signals. Some mechanisms include changes in the trans-acting splicing factors by phosphorylation, protein level, alternative pre-mRNA splicing, and nucleocytoplasmic redistribution of proteins to alter protein-RNA or protein-protein interactions, as well as modulation of chromatin states. Importantly, functional analyses of the control of specific exons/splicing factors in the brain point to a crucial role of this regulation in synaptic maturation, maintenance, and transmission. Furthermore, its deregulation has been implicated in the pathogenesis of neurological disorders, particularly epilepsy/seizure. Together, these studies have not only provided mechanistic insights into the regulation of alternative splicing by calcium signaling but also demonstrated its impact on neuron differentiation, function, and disease. This may also help our understanding of similar regulations in other types of cells.
Collapse
Affiliation(s)
- Aleh Razanau
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
| | - Jiuyong Xie
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| |
Collapse
|
12
|
Hypothermia reduces calcium entry via the N-methyl-D-aspartate and ryanodine receptors in cultured hippocampal neurons. Eur J Pharmacol 2012; 698:186-92. [PMID: 23085028 DOI: 10.1016/j.ejphar.2012.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/06/2012] [Indexed: 11/21/2022]
Abstract
Hypothermia is a powerful neuroprotective method when induced following cardiac arrest, stroke, and traumatic brain injury. The physiological effects of hypothermia are multifaceted and therefore a better knowledge of its therapeutic targets will be central to developing innovative combination therapies to augment the protective benefits of hypothermia. Altered neuronal calcium dynamics have been implicated following stroke, status epilepticus and traumatic brain injury. This study was therefore initiated to evaluate the effect of hypothermia on various modes of calcium entry into a neuron. Here, we utilized various pharmacological agents to stimulate major routes of calcium entry in primary cultured hippocampal neurons. Fluorescent calcium indicator Fura-2AM was used to compare calcium ratio under normothermic (37 °C) and hypothermic (31 °C) conditions. The results of this study indicate that hypothermia preferentially reduces calcium entry through N-methyl-D-aspartate receptors and ryanodine receptors. Hypothermia, on the other hand, did not have a significant effect on calcium entry through the voltage-dependent calcium channels or the inositol tri-phosphate receptors. The ability of hypothermia to selectively affect both N-methyl-D-aspartate receptors and ryanodine receptors-mediated calcium systems makes it an attractive intervention for alleviating calcium elevations that are present following many neurological injuries.
Collapse
|
13
|
Effects of selenium and topiramate on cytosolic Ca(2+) influx and oxidative stress in neuronal PC12 cells. Neurochem Res 2012; 38:90-7. [PMID: 23011208 DOI: 10.1007/s11064-012-0893-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
It has been widely suggested that selenium (Se) deficiency play an important role in the pathophysiology of epilepsy. It has been reported that Se provides protection against the neuronal damage in patients and animals with epilepsy by restoring the antioxidant defense mechanism. The neuroprotective effects of topiramate (TPM) have been reported in several studies but the putative mechanism of action remains elusive. We investigated effects of Se and TPM in neuronal PC12 cell by evaluating Ca(2+) mobilization, lipid peroxidation and antioxidant levels. PC12 cells were divided into eight groups namely control, TPM, Se, H(2)O(2), TPM + H(2)O(2), Se + H(2)O(2), Se + TPM and Se + TPM + H(2)O(2). The toxic doses and times of H(2)O(2), TPM and Se were determined by cell viability assay which is used to evaluate cell viability. Cells were incubated with 0.01 mM TPM for 5 h and 500 nM Se for 10 h. Then, the cells were exposed to 0.1 mM H(2)O(2) for 10 h before analysis. The cells in all groups except control, TPM and Se were exposed to H(2)O(2) for 15 min before analysis. Cytosolic Ca(2+) release and lipid peroxidation levels were higher in H(2)O(2) group than in control, Se and TPM combination groups although their levels were decreased by incubation of Se and TPM combination. However, there is no difference on Ca(2+) release in TPM group. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in H(2)O(2) group than in control, Se and TPM groups although their values were higher in the cells incubated with Se and TPM groups than in H(2)O(2) groups. In conclusion, these results indicate that Se induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca(2+) influx and antioxidant levels. TPM modulated also lipid peroxidation and glutathione and vitamin C concentrations in the cell system.
Collapse
|
14
|
Lim YA, Giese M, Shepherd C, Halliday G, Kobayashi M, Takamatsu K, Staufenbiel M, Eckert A, Götz J. Role of hippocalcin in mediating Aβ toxicity. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1247-57. [PMID: 22542901 DOI: 10.1016/j.bbadis.2012.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/04/2012] [Accepted: 04/12/2012] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and amyloid-β (Aβ) plaques and tau-containing tangles are its histopathological hallmark lesions. These do not occur at random; rather, the neurodegenerative process is stereotyped in that it is initiated in the entorhinal cortex and hippocampal formation. Interestingly, it is the latter brain area where the calcium-sensing enzyme hippocalcin is highly expressed. Because calcium deregulation is a well-established pathomechanism in AD, we aimed to address the putative role of hippocalcin in human AD brain and transgenic mouse models. We found that hippocalcin levels are increased in human AD brain and in Aβ plaque-forming APP23 transgenic mice compared to controls. To determine the role of hippocalcin in Aβ toxicity, we treated primary cultures derived from hippocalcin knockout (HC KO) mice with Aβ and found them to be more susceptible to Aβ toxicity than controls. Likewise, treatment with either thapsigargin or ionomycin, both known to deregulate intracellular calcium levels, caused an increased toxicity in hippocampal neurons from HC KO mice compared to wild-type. We found further that mitochondrial complex I activity increased from 3 to 6months in hippocampal mitochondria from wild-type and HC KO mice, but that the latter exhibited a significantly stronger aging phenotype than wild-type. Aβ treatment induced significant toxicity on hippocampal mitochondria from HC KO mice already at 3months of age, while wild-type mitochondria were spared. Our data suggest that hippocalcin has a neuroprotective role in AD, presenting it as a putative biomarker.
Collapse
Affiliation(s)
- Yun-An Lim
- Alzheimer's & Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW 2050, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bravo-Martínez J, Delgado-Coello B, García DE, Mas-Oliva J. Analysis of plasma membrane Ca2+-ATPase gene expression during epileptogenesis employing single hippocampal CA1 neurons. Exp Biol Med (Maywood) 2011; 236:409-17. [PMID: 21444370 DOI: 10.1258/ebm.2011.010342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disruption of calcium homeostasis in epileptic cells is characterized by both short- and long-term perturbations of Ca(2+) buffering systems. Along with the Na(+)/Ca(2+) exchanger, the plasma membrane Ca(2+)-ATPase (PMCA) plays an important role in excitable cells. The involvement of PMCAs in epileptogenesis has primarily been studied in brief intervals after various stimuli; however, the specific contribution of this molecule to epileptogenesis is not yet fully understood. Our aim has been to investigate whether PMCA expression in the chronic stages of epilepsy is altered. Through an interdisciplinary approach, involving whole-cell recordings and real-time reverse transcriptase-polymerase chain reaction, we have shown that epileptic neurons in our preparation consistently show changes in electrical properties during the period of chronic epilepsy. These changes included increased spike frequency, altered resting membrane potential and changes in passive membrane properties. Following these observations, which indicate an altered excitability in the epileptic cells studied, PMCA mRNA transcripts were studied. It was found that while PMCA1 transcripts are significantly increased one month following the pilocarpine epileptogenic stimulus, PMCA3, an isoform important in excitable tissues, was significantly, decreased. These findings suggest that, in the long-term, a slow PMCA (PMCA1) plays a role in the reestablishment of a new calcium homeostasis attained by epileptic cells. Overall, this phenomenon points out the fact that in seizure disorders, changes that take place in the balance of the different molecules and their isoforms in charge of maintaining neuronal calcium homeostasis, are fundamental in the survival of affected cells.
Collapse
Affiliation(s)
- Jorge Bravo-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México, DF México
| | | | | | | |
Collapse
|
16
|
Occult cerebrovascular disease and late-onset epilepsy: could loss of neurovascular unit integrity be a viable model? Cardiovasc Psychiatry Neurol 2011; 2011:130406. [PMID: 21461380 PMCID: PMC3063412 DOI: 10.1155/2011/130406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/13/2010] [Accepted: 12/30/2010] [Indexed: 11/18/2022] Open
Abstract
Late-onset epilepsy (LOE) first occurs after 60 years of age and may be due to occult cerebrovascular disease (CVD) which confers an increased risk of stroke. However, patients with late-onset epilepsy are not currently consistently investigated or treated for cerebrovascular risk factors. We discuss how abnormalities of neurovascular unit
function, namely, changes in regional cerebral blood flow and blood brain barrier
disruption, may be caused by occult cerebrovascular disease but present clinically as
late-onset epilepsy. We describe novel magnetic resonance imaging methods to
detect abnormal neurovascular unit function in subjects with LOE and controls. We hypothesise that occult CVD may cause LOE as a result of neurovascular unit dysfunction.
Collapse
|
17
|
An organotypic hippocampal slice culture model of excitotoxic injury induced spontaneous recurrent epileptiform discharges. Brain Res 2010; 1371:110-20. [PMID: 21111720 DOI: 10.1016/j.brainres.2010.11.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 02/01/2023]
Abstract
Stroke is the major cause of acquired epilepsy in the adult population. The mechanisms of ischemia-induced epileptogenesis are not completely understood, but glutamate is associated with both ischemia-induced injury and epileptogenesis. The objective of this study was to develop an in vitro model of epileptogenesis induced by glutamate injury in organotypic hippocampal slice cultures (OHSCs), as observed in stroke-induced acquired epilepsy. OHSCs were prepared from 1-week-old Sprague-Dawley rat pups. They were exposed to 3.5 mM glutamate for 35 minutes at 21 days in vitro. Field potential recordings and whole-cell current clamp electrophysiology were used to monitor the development of in vitro seizure events up to 19 days after injury. Propidium iodide uptake assays were used to examine acute cell death following injury. Glutamate exposure produced a subset of hippocampal neurons that died acutely and a larger population of injured but surviving neurons. These surviving neurons manifested spontaneous, recurrent epileptiform discharges in neural networks, characterized by paroxysmal depolarizing shifts and high frequency spiking in both field potential and intracellular recordings. This model also exhibited anticonvulsant sensitivity similar to in vivo models. Our study is the first demonstration of a chronic model of acquired epilepsy in OHSCs following a glutamate injury. This in vitro model of glutamate injury-induced epileptogenesis may help develop therapeutic strategies to prevent epileptogenesis after stroke and elucidate some of the mechanisms that underlie stroke-induced epilepsy in a more anatomically intact system.
Collapse
|
18
|
Nicholson AM, Methner DNR, Ferreira A. Membrane cholesterol modulates {beta}-amyloid-dependent tau cleavage by inducing changes in the membrane content and localization of N-methyl-D-aspartic acid receptors. J Biol Chem 2010; 286:976-86. [PMID: 21047784 DOI: 10.1074/jbc.m110.154138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that β-amyloid (Aβ) treatment resulted in an age-dependent calpain activation leading to Tau cleavage into a neurotoxic 17-kDa fragment in a cellular model of Alzheimer disease. This detrimental cellular response was mediated by a developmentally regulated increase in membrane cholesterol levels. In this study, we assessed the molecular mechanisms by which cholesterol modulated Aβ-induced Tau cleavage in cultured hippocampal neurons. Our results indicated that these mechanisms did not involve the regulation of the binding of Aβ aggregates to the plasma membrane. On the other hand, experiments using N-methyl-d-aspartic acid receptor inhibitors suggested that these receptors played an essential role in cholesterol-mediated Aβ-dependent calpain activity and 17-kDa Tau production. Biochemical and immunocytochemical analyses demonstrated that decreasing membrane cholesterol levels in mature neurons resulted in a significant reduction of the NR1 subunit at the membrane as well as an increase in the number of large NR1, NR2A, and NR2B subunit clusters. Moreover, the majority of these larger N-methyl-d-aspartic acid receptor subunit immunoreactive spots was not juxtaposed to presynaptic sites in cholesterol-reduced neurons. These data suggested that changes at the synaptic level underlie the mechanism by which membrane cholesterol modulates developmental changes in the susceptibility of hippocampal neurons to Aβ-induced toxicity.
Collapse
Affiliation(s)
- Alexandra M Nicholson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
19
|
Nagarkatti N, Deshpande LS, DeLorenzo RJ. Development of the calcium plateau following status epilepticus: role of calcium in epileptogenesis. Expert Rev Neurother 2009; 9:813-24. [PMID: 19496685 DOI: 10.1586/ern.09.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Status epilepticus is a clinical emergency defined as continuous seizure activity or rapid, recurrent seizures without regaining consciousness and can lead to the development of acquired epilepsy, characterized by spontaneous, recurrent seizures. Understanding epileptogenesis--the transformation of healthy brain tissue into hyperexcitable neuronal networks--is an important challenge and the elucidation of molecular mechanisms can lend insight into new therapeutic targets to halt this progression. It has been demonstrated that intracellular calcium increases during status epilepticus and that these elevations are maintained past the duration of the injury (Ca(2+) plateau). As an important second messenger, Ca(2+) elevations can lead to changes in gene expression, neurotransmitter release and plasticity. Thus, characterization of the post-injury Ca(2+) plateau may be important in eventually understanding the pathophysiology of epileptogenesis and preventing the progression to chronic epilepsy after brain injury.
Collapse
Affiliation(s)
- Nisha Nagarkatti
- Department of , Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
20
|
Increased membrane cholesterol might render mature hippocampal neurons more susceptible to beta-amyloid-induced calpain activation and tau toxicity. J Neurosci 2009; 29:4640-51. [PMID: 19357288 DOI: 10.1523/jneurosci.0862-09.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A growing body of evidence suggests that beta-amyloid (Abeta), the main component of senile plaques, induces abnormal posttranslational processing of the microtubule-associated protein tau. We have recently described that, in addition to increasing tau phosphorylation, Abeta enhanced calpain activity leading to the generation of a toxic 17 kDa tau fragment in cultured hippocampal neurons. How aging, the greatest Alzheimer's disease (AD) risk factor, might regulate this proteolytic event remains unknown. In this study, we assessed the susceptibility of cultured hippocampal neurons to Abeta-dependent 17 kDa tau production at different developmental stages. Our results revealed that mature neurons were more susceptible to Abeta-induced calpain activation leading to the generation of this fragment than young neurons. In addition, the production of this fragment correlated with a decrease in cell viability in mature hippocampal neurons. Second, we determined whether membrane cholesterol, a suspect player in AD, might mediate these age-dependent differences in Abeta-induced calpain activation. Filipin staining and an Amplex Red cholesterol assay showed that mature neuron membrane cholesterol levels were significantly higher than those detected in young ones. Furthermore, decreasing membrane cholesterol in mature neurons reduced their susceptibility to Abeta-dependent calpain activation, 17 kDa tau production, and cell death, whereas increasing membrane cholesterol in young neurons enhanced these Abeta-mediated cellular processes. Finally, fura-2 calcium imaging indicated that membrane cholesterol alterations might change the vulnerability of cells to Abeta insult by altering calcium influx. Together these data suggested a potential role of cholesterol in linking aging to Abeta-induced tau proteolysis in the context of AD.
Collapse
|
21
|
Grumelli C, Berghuis P, Pozzi D, Caleo M, Antonucci F, Bonanno G, Carmignoto G, Dobszay MB, Harkany T, Matteoli M, Verderio C. Calpain activity contributes to the control of SNAP-25 levels in neurons. Mol Cell Neurosci 2008; 39:314-23. [PMID: 18721885 DOI: 10.1016/j.mcn.2008.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 01/20/2023] Open
Abstract
Calpains are a family of calcium-dependent proteases with abundant expression in the CNS, and potent in cleaving some synaptic components. Assessment of calpain activity by its fluorescent substrate, Boc-Leu-Met-CMAC, revealed that cultured neurons display a significant level of constitutive enzyme activity. Notably, calpain activity differs in distinct neuronal populations, with a significantly higher level of activity in GABAergic cells. Using selectively-enriched cultures of fast-spiking GABAergic interneurons, we show that calpain activity partially contributes to the post-translational down regulation of SNAP-25, a calpain substrate, in differentiated GABA cells. In addition, we demonstrate that SNAP-25 is cleaved by calpain in response to acute seizures induced by intraperitoneal kainate injection in vivo. These data indicate that calpains in neurons are active even at physiological calcium concentrations and that different levels of calpain activation in selected neuron subtypes may contribute to the pattern of synaptic protein expression.
Collapse
Affiliation(s)
- Carlotta Grumelli
- Dipartimento di Farmacologia Medica, Istituto CNR di Neuroscienze, Universita' di Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Effects of gamma knife irradiation on the expression of NMDA receptor subunits in rat forebrain. Neurosci Lett 2008; 439:250-5. [DOI: 10.1016/j.neulet.2008.05.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 03/17/2008] [Accepted: 05/05/2008] [Indexed: 11/22/2022]
|
23
|
Epileptogenesis causes an N-methyl-d-aspartate receptor/Ca2+-dependent decrease in Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges. Eur J Pharmacol 2008; 588:64-71. [PMID: 18495112 DOI: 10.1016/j.ejphar.2008.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/01/2008] [Accepted: 04/09/2008] [Indexed: 11/20/2022]
Abstract
Alterations in the function of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) have been observed in both in vivo and in vitro models of epileptogenesis; however the molecular mechanism mediating the effects of epileptogenesis on CaM kinase II has not been elucidated. This study was initiated to evaluate the molecular pathways involved in causing the long-lasting decrease in CaM kinase II activity in the hippocampal neuronal culture model of low Mg2+-induced spontaneous recurrent epileptiform discharges (SREDs). We show here that the decrease in CaM kinase II activity associated with SREDs in hippocampal cultures involves a Ca2+/N-methyl-d-aspartate (NMDA) receptor-dependent mechanism. Low Mg2+-induced SREDs result in a significant decrease in Ca2+/calmodulin-dependent substrate phosphorylation of the synthetic peptide autocamtide-2. Reduction of extracellular Ca2+ levels (0.2 mM in treatment solution) or the addition of dl-2-amino-5-phosphonovaleric acid (APV) 25 microM blocked the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. Antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid receptor or L-type voltage sensitive Ca2+ channel had no effect on the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. The results of this study demonstrate that the decrease in CaM kinase II activity associated with this model of epileptogenesis involves a selective Ca2+/NMDA receptor-dependent mechanism and may contribute to the production and maintenance of SREDs in this model.
Collapse
|
24
|
Deshpande LS, Lou JK, Mian A, Blair RE, Sombati S, Attkisson E, DeLorenzo RJ. Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: role of NMDA receptor activation and NMDA dependent calcium entry. Eur J Pharmacol 2008; 583:73-83. [PMID: 18289526 PMCID: PMC2323609 DOI: 10.1016/j.ejphar.2008.01.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/02/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
The hippocampus is especially vulnerable to seizure-induced damage and excitotoxic neuronal injury. This study examined the time course of neuronal death in relationship to seizure duration and the pharmacological mechanisms underlying seizure-induced cell death using low magnesium (Mg2+) induced continuous high frequency epileptiform discharges (in vitro status epilepticus) in hippocampal neuronal cultures. Neuronal death was assessed using cell morphology and fluorescein diacetate-propidium iodide staining. Effects of low Mg2+ and various receptor antagonists on spike frequency were assessed using patch clamp electrophysiology. We observed a linear and time-dependent increase in neuronal death with increasing durations of status epilepticus. This cell death was dependent upon extracellular calcium (Ca2+) that entered primarily through the N-methyl-d-aspartate (NMDA) glutamate receptor channel subtype. Neuronal death was significantly decreased by co-incubation with the NMDA receptor antagonists and was also inhibited by reduction of extracellular (Ca2+) during status epilepticus. In contrast, neuronal death from in vitro status epilepticus was not significantly prevented by inhibition of other glutamate receptor subtypes or voltage-gated Ca2+ channels. Interestingly this NMDA-Ca2+ dependent neuronal death was much more gradual in onset compared to cell death from excitotoxic glutamate exposure. The results provide evidence that in vitro status epilepticus results in increased activation of the NMDA-Ca2+ transduction pathway leading to neuronal death in a time-dependent fashion. The results also indicate that there is a significant window of opportunity during the initial time of continuous seizure activity to be able to intervene, protect neurons and decrease the high morbidity and mortality associated with status epilepticus.
Collapse
Affiliation(s)
- Laxmikant S. Deshpande
- Department of Neurology: LSD, JKL, AM, REB, SS, EA and RJD, Department of Pharmacology and Toxicology: RJD, Department of Molecular Biophysics and Biochemistry: RJD, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Jeffrey K. Lou
- Department of Neurology: LSD, JKL, AM, REB, SS, EA and RJD, Department of Pharmacology and Toxicology: RJD, Department of Molecular Biophysics and Biochemistry: RJD, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ali Mian
- Department of Neurology: LSD, JKL, AM, REB, SS, EA and RJD, Department of Pharmacology and Toxicology: RJD, Department of Molecular Biophysics and Biochemistry: RJD, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Robert E. Blair
- Department of Neurology: LSD, JKL, AM, REB, SS, EA and RJD, Department of Pharmacology and Toxicology: RJD, Department of Molecular Biophysics and Biochemistry: RJD, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Sompong Sombati
- Department of Neurology: LSD, JKL, AM, REB, SS, EA and RJD, Department of Pharmacology and Toxicology: RJD, Department of Molecular Biophysics and Biochemistry: RJD, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Elisa Attkisson
- Department of Neurology: LSD, JKL, AM, REB, SS, EA and RJD, Department of Pharmacology and Toxicology: RJD, Department of Molecular Biophysics and Biochemistry: RJD, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Robert J. DeLorenzo
- Department of Neurology: LSD, JKL, AM, REB, SS, EA and RJD, Department of Pharmacology and Toxicology: RJD, Department of Molecular Biophysics and Biochemistry: RJD, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
25
|
Sun DA, Deshpande LS, Sombati S, Baranova A, Wilson MS, Hamm RJ, DeLorenzo RJ. Traumatic brain injury causes a long-lasting calcium (Ca2+)-plateau of elevated intracellular Ca levels and altered Ca2+ homeostatic mechanisms in hippocampal neurons surviving brain injury. Eur J Neurosci 2008; 27:1659-72. [PMID: 18371074 DOI: 10.1111/j.1460-9568.2008.06156.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) survivors often suffer chronically from significant morbidity associated with cognitive deficits, behavioral difficulties and a post-traumatic syndrome and thus it is important to understand the pathophysiology of these long-term plasticity changes after TBI. Calcium (Ca2+) has been implicated in the pathophysiology of TBI-induced neuronal death and other forms of brain injury including stroke and status epilepticus. However, the potential role of long-term changes in neuronal Ca2+ dynamics after TBI has not been evaluated. In the present study, we measured basal free intracellular Ca2+ concentration ([Ca2+](i)) in acutely isolated CA3 hippocampal neurons from Sprague-Dawley rats at 1, 7 and 30 days after moderate central fluid percussion injury. Basal [Ca2+](i) was significantly elevated when measured 1 and 7 days post-TBI without evidence of neuronal death. Basal [Ca2+](i) returned to normal when measured 30 days post-TBI. In contrast, abnormalities in Ca2+ homeostasis were found for as long as 30 days after TBI. Studies evaluating the mechanisms underlying the altered Ca2+ homeostasis in TBI neurons indicated that necrotic or apoptotic cell death and abnormalities in Ca2+ influx and efflux mechanisms could not account for these changes and suggested that long-term changes in Ca2+ buffering or Ca2+ sequestration/release mechanisms underlie these changes in Ca2+ homeostasis after TBI. Further elucidation of the mechanisms of altered Ca2+ homeostasis in traumatized, surviving neurons in TBI may offer novel therapeutic interventions that may contribute to the treatment and relief of some of the morbidity associated with TBI.
Collapse
Affiliation(s)
- David A Sun
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Srinivas KV, Jain R, Saurav S, Sikdar SK. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur J Neurosci 2007; 25:3276-86. [PMID: 17552996 DOI: 10.1111/j.1460-9568.2007.05559.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal network topologies and connectivity patterns were explored in control and glutamate-injured hippocampal neuronal networks, cultured on planar multielectrode arrays. Spontaneous activity was characterized by brief episodes of synchronous firing at many sites in the array (network bursts). During such assembly activity, maximum numbers of neurons are known to interact in the network. After brief glutamate exposure followed by recovery, neuronal networks became hypersynchronous and fired network bursts at higher frequency. Connectivity maps were constructed to understand how neurons communicate during a network burst. These maps were obtained by analysing the spike trains using cross-covariance analysis and graph theory methods. Analysis of degree distribution, which is a measure of direct connections between electrodes in a neuronal network, showed exponential and Gaussian distributions in control and glutamate-injured networks, respectively. Although both the networks showed random features, small-world properties in these networks were different. These results suggest that functional two-dimensional neuronal networks in vitro are not scale-free. After brief exposure to glutamate, normal hippocampal neuronal networks became hyperexcitable and fired a larger number of network bursts with altered network topology. The small-world network property was lost and this was accompanied by a change from an exponential to a Gaussian network.
Collapse
Affiliation(s)
- Kalyan V Srinivas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-12, India
| | | | | | | |
Collapse
|
27
|
Raza M, Deshpande LS, Blair RE, Carter DS, Sombati S, DeLorenzo RJ. Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci Lett 2007; 418:77-81. [PMID: 17374449 PMCID: PMC2094130 DOI: 10.1016/j.neulet.2007.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Aging is associated with increased vulnerability to neurodegenerative conditions such as Parkinson's and Alzheimer's disease and greater neuronal deficits after stroke and epilepsy. Emerging studies have implicated increased levels of intracellular calcium ([Ca(2+)](i)) for the neuronal loss associated with aging related disorders. Recent evidence demonstrates increased expression of voltage gated Ca(2+) channel proteins and associated Ca(2+) currents with aging. However, a direct comparison of [Ca(2+)](i) levels and Ca(2+) homeostatic mechanisms in hippocampal neurons acutely isolated from young and mid-age adult animals has not been performed. In this study, Fura-2 was used to determine [Ca(2+)](i) levels in CA1 hippocampal neurons acutely isolated from young (4-5 months) and mid-age (12-16 months) Sprague-Dawley rats. Our data provide the first direct demonstration that mid-age neurons in comparison to young neurons manifest significant elevations in basal [Ca(2+)](i) levels. Upon glutamate stimulation and a subsequent [Ca(2+)](i) load, mid-age neurons took longer to remove the excess [Ca(2+)](i) in comparison to young neurons, providing direct evidence that altered Ca(2+) homeostasis may be present in animals at significantly younger ages than those that are commonly considered aged (> or =24 months). These alterations in Ca(2+) dynamics may render aging neurons more vulnerable to neuronal death following stroke, seizures or head trauma. Elucidating the functionality of Ca(2+) homeostatic mechanisms may offer an understanding of the increased neuronal loss that occurs with aging, and allow for the development of novel therapeutic agents targeted towards decreasing [Ca(2+)](i) levels thereby restoring the systems that maintain normal Ca(2+) homeostasis in aged neurons.
Collapse
Affiliation(s)
- Mohsin Raza
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | | | | | | | | | | |
Collapse
|
28
|
DeLorenzo RJ, Sun DA, Blair RE, Sombati S. An in vitro model of Stroke‐Induced Epilepsy: Elucidation of The roles of Glutamate and Calcium in The induction and Maintenance of Stroke‐Induced Epileptogenesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 81:59-84. [PMID: 17433918 DOI: 10.1016/s0074-7742(06)81005-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stroke is a major risk factor for developing acquired epilepsy (AE). Although the underlying mechanisms of ischemia-induced epileptogenesis are not well understood, glutamate has been found to be associated with both epileptogenesis and ischemia-induced injury in several research models. This chapter discusses the development of an in vitro model of epileptogenesis induced by glutamate injury in hippocampal neurons, as found in a clinical stroke, and the implementation of this model of stroke-induced AE to evaluate calcium's role in the induction and maintenance of epileptogenesis. To monitor the acute effects of glutamate on neurons and chronic alterations in neuronal excitability up to 8 days after glutamate exposure, whole-cell current-clamp electrophysiology was employed. Various durations and concentrations of glutamate were applied to primary hippocampal cultures. A single 30-min, 5-microM glutamate exposure produced a subset of neurons that died or had a stroke-like injury, and a larger population of injured neurons that survived. Neurons that survived the injury manifested spontaneous, recurrent, epileptiform discharges (SREDs) in neural networks characterized by paroxysmal depolarizing shifts (PDSs) and high-frequency spike firing that persisted for the life of the culture. The neuronal injury produced in this model was evaluated by determining the magnitude of the prolonged, reversible membrane depolarization, loss of synaptic activity, and neuronal swelling. The permanent epileptiform phenotype expressed as SREDs that resulted from glutamate injury was found to be dependent on the presence of extracellular calcium. The "epileptic" neurons manifested elevated intracellular calcium levels when compared to control neurons, independent of neuronal activity and seizure discharge, demonstrating that alterations in calcium homeostatic mechanisms occur in association with stroke-induced epilepsy. Findings from this investigation present the first in vitro model of glutamate injury-induced epileptogenesis that may help elucidate some of the mechanisms that underlie stroke-induced epilepsy.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
29
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
30
|
Carter DS, Haider SN, Blair RE, Deshpande LS, Sombati S, DeLorenzo RJ. Altered calcium/calmodulin kinase II activity changes calcium homeostasis that underlies epileptiform activity in hippocampal neurons in culture. J Pharmacol Exp Ther 2006; 319:1021-31. [PMID: 16971505 DOI: 10.1124/jpet.106.110403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is characterized by the occurrence of spontaneous recurrent epileptiform discharges (SREDs) in neurons. A decrease in calcium/calmodulin-dependent protein kinase II (CaMK-II) activity has been shown to occur with the development of SREDs in a hippocampal neuronal culture model of acquired epilepsy, and altered calcium (Ca(2+)) homeostasis has been implicated in the development of SREDs. Using antisense oligonucleotides, this study was conducted to determine whether selective suppression of CaMK-II activity, with subsequent induction of SREDs, was associated with altered Ca(2+) homeostasis in hippocampal neurons in culture. Antisense knockdown resulted in the development of SREDs and a decrease in both immunocytochemical staining and enzyme activity of CaMK-II. Evaluation of [Ca(2+)](i) using Fura indicators revealed that antisense-treated neurons manifested increased basal [Ca(2+)](i), whereas missense-treated neurons showed no change in basal [Ca(2+)](i). Antisense suppression of CaMK-II was also associated with an inability of neurons to restore a Ca(2+) load. Upon removal of oligonucleotide treatment, CaMK-II suppression and Ca(2+) homeostasis recovered to control levels and SREDs were abolished. To our knowledge, the results demonstrate the first evidence that selective suppression of CaMK-II activity results in alterations in Ca(2+) homeostasis and the development of SREDs in hippocampal neurons and suggest that CaMK-II suppression may be causing epileptogenesis by altering Ca(2+) homeostatic mechanisms.
Collapse
Affiliation(s)
- Dawn S Carter
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wang J, Jiang Y, Cao H, Yu L, Bo T, Ni H, Jiang Q, Wu X. Long-term effect of early discharge on sEPSC and [Ca2+]i in developing neurons. Neurosci Lett 2006; 397:104-9. [PMID: 16448748 DOI: 10.1016/j.neulet.2005.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 10/23/2005] [Accepted: 12/01/2005] [Indexed: 11/28/2022]
Abstract
To study the long-term changes induced in immature rat cortical neuronal cultures by transient exposure to an Mg(2+)-free treatment, at cultured day 6, cells were assigned into three groups, based on the mediums they were transiently exposed to as follows: control group 1 (CONT1) was exposed to Dulbecco's Modified Eagle's Medium (DMEM), control group 2 was exposed to a physiological solution (PS), and the magnesium-free physiological solution group (MGFPS) was exposed to the same medium as CONT2 except for the removal of magnesium. Following a 3-h exposure, the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSC) were recorded and intracellular calcium concentrations ([Ca2+]i) were measured. Compared to the CONT1 and CONT2 groups, the MGFPS group displayed a significantly greater amplitude (at d6, d7, d9, and d12) and frequency (at d6, d7, and d9) of sEPSC (p<0.05). Also, both the resting and peak intracellular calcium levels were significantly greater in the MGFPS group at days 6, 7, 9, 12 and 17 (p<0.05). The rise time (time from resting level to peak level of intracellular calcium following NMDA application) was significantly shorter in the MGFPS group at culture days 7 and 17 and significantly longer at culture day 12 (p<0.05). Finally, we compared the percentage of cortical neurons expressing neuron-specific enolase (NSE) and found that there were no significant differences in the number of NSE positive neurons among three groups at days 7, 12, and 17. Our results suggests that there are long-term changes in sEPSCs and [Ca2+]i in cultured rat cortical neurons following exposure to Mg2+-free environment without cell loss.
Collapse
Affiliation(s)
- Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, 100034 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Leppik IE, Kelly KM, deToledo-Morrell L, Patrylo PR, DeLorenzo RJ, Mathern GW, White HS. Basic research in epilepsy and aging. Epilepsy Res 2005; 68 Suppl 1:S21-37. [PMID: 16384687 DOI: 10.1016/j.eplepsyres.2005.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
A PubMed search of the years 1965 to 2003 found only 30 articles that were directly related to modeling seizures or epilepsy in aged animals. This lack of research is disturbing but explainable because of the high cost of aged animals and their increasing infirmity. Many changes occur in the older brain: cell loss in the hippocampal formation, changes in long-term potentiation maintenance, alteration in kindling, increased susceptibility to status epilepticus, and neuronal damage from stroke. The effect of aging on voltage-gated sodium and calcium channels has not been studied sufficiently. With increasing numbers of elderly persons with epilepsy needing appropriate treatment, the need to better understand the basic mechanisms of epilepsy is crucial.
Collapse
Affiliation(s)
- Ilo E Leppik
- College of Pharmacy, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
34
|
Raza M, Blair RE, Sombati S, Carter DS, Deshpande LS, DeLorenzo RJ. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci U S A 2004; 101:17522-7. [PMID: 15583136 PMCID: PMC535000 DOI: 10.1073/pnas.0408155101] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 01/09/2023] Open
Abstract
Alterations in hippocampal neuronal Ca(2+) and Ca(2+)-dependent systems have been implicated in mediating some of the long-term neuroplasticity changes associated with acquired epilepsy (AE). However, there are no studies in an animal model of AE that directly evaluate alterations in intracellular calcium concentration ([Ca(2+)](i)) and Ca(2+) homeostatic mechanisms (Ca(2+) dynamics) during the development of AE. In this study, Ca(2+) dynamics were evaluated in acutely isolated rat CA1 hippocampal, frontal, and occipital neurons in the pilocarpine model by using [Ca(2+)](i) imaging fluorescence microscopy during the injury (acute), epileptogenesis (latency), and chronic-epilepsy phases of the development of AE. Immediately after status epilepticus (SE), hippocampal neurons, but not frontal and occipital neurons, had significantly elevated [Ca(2+)](i) compared with saline-injected control animals. Hippocampal neuronal [Ca(2+)](i) remained markedly elevated during epileptogenesis and was still elevated indefinitely in the chronic-epilepsy phase but was not elevated in SE animals that did not develop AE. Inhibiting the increase in [Ca(2+)](i) during SE with the NMDA channel inhibitor MK801 was associated in all three phases of AE with inhibition of the changes in Ca(2+) dynamics and the development of AE. Ca(2+) homeostatic mechanisms in hippocampal neurons also were altered in the brain-injury, epileptogenesis, and chronic-epilepsy phases of AE. These results provide evidence that [Ca(2+)](i) and Ca(2+)-homeostatic mechanisms are significantly altered during the development of AE and suggest that altered Ca(2+) dynamics may play a role in the induction and maintenance of AE and underlie some of the neuroplasticity changes associated with the epileptic phenotype.
Collapse
Affiliation(s)
- Mohsin Raza
- Departments of Neurology, Pharmacology and Toxicology, and Biochemistry and Molecular Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0599, USA
| | | | | | | | | | | |
Collapse
|