1
|
Zhang X, Song M, Wang H, Zhang Q, Liu Z, Deng J. Application of a modified multifunctional short peptide in the treatment of periodontitis. Sci Rep 2024; 14:22855. [PMID: 39353971 PMCID: PMC11445488 DOI: 10.1038/s41598-024-69933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/12/2024] [Indexed: 10/03/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease involving plaque biofilm as a pathogenic factor. Potassium ion plays an important role in cellular homeostasis; a large outflow of potassium may lead to local inflammation progression. In this work, the multifunctional short peptide molecule BmKTX-33 was designed by modifying the BmKTX, a Kv1.3 potassium channel inhibitor. This was to explore its antibacterial properties, capability of maintaining cell ion homeostasis, and bone-forming capacity. The results showed that BmKTX-33 had inhibitory effects on S. gordonii, F. nucleatum, and P. gingivalis. Moreover, BmKTX-33 also inhibited excessive potassium outflow in inflammatory environments. Finally, BmKTX-33 promoted MC3T3-E1 early osteogenesis while suppressing the NLRP3 inflammasome's production. In conclusion, BmKTX-33 not only has antibacterial properties, but also can inhibit the expression of NLRP3 inflammasome and play an anti-inflammatory role.
Collapse
Affiliation(s)
- Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China.
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China.
| | - Meiyan Song
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Hongbo Wang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China
| | - Qian Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China
| | - Zhiyang Liu
- College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China.
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China.
| |
Collapse
|
2
|
Kang H, Choi SW, Kim JY, Oh SJ, Kim SJ, Lee MS. ER-to-lysosome Ca 2+ refilling followed by K + efflux-coupled store-operated Ca 2+ entry in inflammasome activation and metabolic inflammation. eLife 2024; 12:RP87561. [PMID: 38953285 PMCID: PMC11219040 DOI: 10.7554/elife.87561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.
Collapse
Affiliation(s)
- Hyereen Kang
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of MedicineGyeongjuRepublic of Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| |
Collapse
|
3
|
Yang J, Gong X, Li T, Xia Z, He R, Song X, Wang X, Wu J, Chen J, Wang F, Xiong R, Lin Y, Chen G, Yang L, Cai K. Tantalum Particles Promote M2 Macrophage Polarization and Regulate Local Bone Metabolism via Macrophage-Derived Exosomes Influencing the Fates of BMSCs. Adv Healthc Mater 2024; 13:e2303814. [PMID: 38497832 DOI: 10.1002/adhm.202303814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 03/19/2024]
Abstract
In this study, the regulatory role and mechanisms of tantalum (Ta) particles in the bone tissue microenvironment are explored. Ta particle deposition occurs in both clinical samples and animal tissues following porous Ta implantation. Unlike titanium (Ti) particles promoting M1 macrophage (Mϕ) polarization, Ta particles regulating calcium signaling pathways and promoting M2 Mϕ polarization. Ta-induced M2 Mϕ enhances bone marrow-derived mesenchymal stem cells (BMSCs) proliferation, migration, and osteogenic differentiation through exosomes (Exo) by upregulating miR-378a-3p/miR-221-5p and downregulating miR-155-5p/miR-212-5p. Ta particles suppress the pro-inflammatory and bone resorption effects of Ti particles in vivo and in vitro. In a rat femoral condyle bone defect model, artificial bone loaded with Ta particles promotes endogenous Mϕ polarization toward M2 differentiation at the defect site, accelerating bone repair. In conclusion, Ta particles modulate Mϕ polarization toward M2 and influence BMSCs osteogenic capacity through Exo secreted by M2 Mϕ, providing insights for potential bone repair applications.
Collapse
Affiliation(s)
- Junjun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui He
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jiajia Chen
- Center of Biomedical Analysis, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fangzheng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ran Xiong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangjing Lin
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Peraza DA, Povo-Retana A, Mojena M, García-Redondo AB, Avilés P, Boscá L, Valenzuela C. Trabectedin modulates macrophage polarization in the tumor-microenvironment. Role of K V1.3 and K V1.5 channels. Biomed Pharmacother 2023; 161:114548. [PMID: 36940615 DOI: 10.1016/j.biopha.2023.114548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Immune cells have an important role in the tumor-microenvironment. Macrophages may tune the immune response toward inflammatory or tolerance pathways. Tumor-associated macrophages (TAM) have a string of immunosuppressive functions and they are considered a therapeutic target in cancer. This study aimed to analyze the effects of trabectedin, an antitumor agent, on the tumor-microenvironment through the characterization of the electrophysiological and molecular phenotype of macrophages. Experiments were performed using the whole-cell configuration of the patch-clamp technique in resident peritoneal mouse macrophages. Trabectedin does not directly interact with KV1.5 and KV1.3 channels, but their treatment (16 h) with sub-cytotoxic concentrations of trabectedin increased their KV current due to an upregulation of KV1.3 channels. In vitro generated TAM (TAMiv) exhibited an M2-like phenotype. TAMiv generated a small KV current and express high levels of M2 markers. K+ current from TAMs isolated from tumors generated in mice is a mixture of KV and KCa, and in TAM isolated from tumors generated in trabectedin-treated mice, the current is mostly driven by KCa. We conclude that the antitumor capacity of trabectedin is not only due to its effects on tumor cells, but also to the modulation of the tumor microenvironment, due, at least in part, to the modulation of the expression of different macrophage ion channels.
Collapse
Affiliation(s)
- Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain.
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain
| | - Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain
| | - Ana B García-Redondo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Pablo Avilés
- Departamento de Toxicología y Farmacología Preclínica, PharmaMar S.A., 28770 Colmenar Viejo, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Numata T, Sato-Numata K, Yoshino M. Intermediate conductance Ca 2+-activated potassium channels are activated by functional coupling with stretch-activated nonselective cation channels in cricket myocytes. FRONTIERS IN INSECT SCIENCE 2023; 2:1100671. [PMID: 38468799 PMCID: PMC10926553 DOI: 10.3389/finsc.2022.1100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2024]
Abstract
Cooperative gating of localized ion channels ranges from fine-tuning excitation-contraction coupling in muscle cells to controlling pace-making activity in the heart. Membrane deformation resulting from muscle contraction activates stretch-activated (SA) cation channels. The subsequent Ca2+ influx activates spatially localized Ca2+-sensitive K+ channels to fine-tune spontaneous muscle contraction. To characterize endogenously expressed intermediate conductance Ca2+-activated potassium (IK) channels and assess the functional relevance of the extracellular Ca2+ source leading to IK channel activity, we performed patch-clamp techniques on cricket oviduct myocytes and recorded single-channel data. In this study, we first investigated the identification of IK channels that could be distinguished from endogenously expressed large-conductance Ca2+-activated potassium (BK) channels by adding extracellular Ba2+. The single-channel conductance of the IK channel was 62 pS, and its activity increased with increasing intracellular Ca2+ concentration but was not voltage-dependent. These results indicated that IK channels are endogenously expressed in cricket oviduct myocytes. Second, the Ca2+ influx pathway that activates the IK channel was investigated. The absence of extracellular Ca2+ or the presence of Gd3+ abolished the activity of IK channels. Finally, we investigated the proximity between SA and IK channels. The removal of extracellular Ca2+, administration of Ca2+ to the microscopic region in a pipette, and application of membrane stretching stimulation increased SA channel activity, followed by IK channel activity. Membrane stretch-induced SA and IK channel activity were positively correlated. However, the emergence of IK channel activity and its increase in response to membrane mechanical stretch was not observed without Ca2+ in the pipette. These results strongly suggest that IK channels are endogenously expressed in cricket oviduct myocytes and that IK channel activity is regulated by neighboring SA channel activity. In conclusion, functional coupling between SA and IK channels may underlie the molecular basis of spontaneous rhythmic contractions.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
6
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
7
|
IK Ca channels control breast cancer metabolism including AMPK-driven autophagy. Cell Death Dis 2022; 13:902. [PMID: 36302750 PMCID: PMC9613901 DOI: 10.1038/s41419-022-05329-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ca2+-activated K+ channels of intermediate conductance (IK) are frequently overexpressed in breast cancer (BC) cells, while IK channel depletion reduces BC cell proliferation and tumorigenesis. This raises the question, of whether and mechanistically how IK activity interferes with the metabolic activity and energy consumption rates, which are fundamental for rapidly growing cells. Using BC cells obtained from MMTV-PyMT tumor-bearing mice, we show that both, glycolysis and mitochondrial ATP-production are reduced in cells derived from IK-deficient breast tumors. Loss of IK altered the sub-/cellular K+- and Ca2+- homeostasis and mitochondrial membrane potential, ultimately resulting in reduced ATP-production and metabolic activity. Consequently, we find that BC cells lacking IK upregulate AMP-activated protein kinase activity to induce autophagy compensating the glycolytic and mitochondrial energy shortage. Our results emphasize that IK by modulating cellular Ca2+- and K+-dynamics contributes to the remodeling of metabolic pathways in cancer. Thus, targeting IK channel might disturb the metabolic activity of BC cells and reduce malignancy.
Collapse
|
8
|
Selezneva A, Gibb AJ, Willis D. The contribution of ion channels to shaping macrophage behaviour. Front Pharmacol 2022; 13:970234. [PMID: 36160429 PMCID: PMC9490177 DOI: 10.3389/fphar.2022.970234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The expanding roles of macrophages in physiological and pathophysiological mechanisms now include normal tissue homeostasis, tissue repair and regeneration, including neuronal tissue; initiation, progression, and resolution of the inflammatory response and a diverse array of anti-microbial activities. Two hallmarks of macrophage activity which appear to be fundamental to their diverse cellular functionalities are cellular plasticity and phenotypic heterogeneity. Macrophage plasticity allows these cells to take on a broad spectrum of differing cellular phenotypes in response to local and possibly previous encountered environmental signals. Cellular plasticity also contributes to tissue- and stimulus-dependent macrophage heterogeneity, which manifests itself as different macrophage phenotypes being found at different tissue locations and/or after different cell stimuli. Together, plasticity and heterogeneity align macrophage phenotypes to their required local cellular functions and prevent inappropriate activation of the cell, which could lead to pathology. To execute the appropriate function, which must be regulated at the qualitative, quantitative, spatial and temporal levels, macrophages constantly monitor intracellular and extracellular parameters to initiate and control the appropriate cell signaling cascades. The sensors and signaling mechanisms which control macrophages are the focus of a considerable amount of research. Ion channels regulate the flow of ions between cellular membranes and are critical to cell signaling mechanisms in a variety of cellular functions. It is therefore surprising that the role of ion channels in the macrophage biology has been relatively overlooked. In this review we provide a summary of ion channel research in macrophages. We begin by giving a narrative-based explanation of the membrane potential and its importance in cell biology. We then report on research implicating different ion channel families in macrophage functions. Finally, we highlight some areas of ion channel research in macrophages which need to be addressed, future possible developments in this field and therapeutic potential.
Collapse
|
9
|
Lee D, Hong JH. Ca 2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1473. [PMID: 33806911 PMCID: PMC8004807 DOI: 10.3390/cancers13061473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/06/2023] Open
Abstract
Metastatic features of breast cancer in the brain are considered a common pathology in female patients with late-stage breast cancer. Ca2+ signaling and the overexpression pattern of Ca2+ channels have been regarded as oncogenic markers of breast cancer. In other words, breast tumor development can be mediated by inhibiting Ca2+ channels. Although the therapeutic potential of inhibiting Ca2+ channels against breast cancer has been demonstrated, the relationship between breast cancer metastasis and Ca2+ channels is not yet understood. Thus, we focused on the metastatic features of breast cancer and summarized the basic mechanisms of Ca2+-related proteins and channels during the stages of metastatic breast cancer by evaluating Ca2+ signaling. In particular, we highlighted the metastasis of breast tumors to the brain. Thus, modulating Ca2+ channels with Ca2+ channel inhibitors and combined applications will advance treatment strategies for breast cancer metastasis to the brain.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| |
Collapse
|
10
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Nguyen HM, di Lucente J, Chen YJ, Cui Y, Ibrahim RH, Pennington MW, Jin LW, Maezawa I, Wulff H. Biophysical basis for Kv1.3 regulation of membrane potential changes induced by P2X4-mediated calcium entry in microglia. Glia 2020; 68:2377-2394. [PMID: 32525239 PMCID: PMC7540709 DOI: 10.1002/glia.23847] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 12/02/2022]
Abstract
Microglia‐mediated inflammation exerts adverse effects in ischemic stroke and in neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the voltage‐gated potassium channel Kv1.3 is required for microglia activation. Both genetic deletion and pharmacological inhibition of Kv1.3 are effective in reducing microglia activation and the associated inflammatory responses, as well as in improving neurological outcomes in animal models of AD and ischemic stroke. Here we sought to elucidate the molecular mechanisms underlying the therapeutic effects of Kv1.3 inhibition, which remain incompletely understood. Using a combination of whole‐cell voltage‐clamp electrophysiology and quantitative PCR (qPCR), we first characterized a stimulus‐dependent differential expression pattern for Kv1.3 and P2X4, a major ATP‐gated cationic channel, both in vitro and in vivo. We then demonstrated by whole‐cell current‐clamp experiments that Kv1.3 channels contribute not only to setting the resting membrane potential but also play an important role in counteracting excessive membrane potential changes evoked by depolarizing current injections. Similarly, the presence of Kv1.3 channels renders microglia more resistant to depolarization produced by ATP‐mediated P2X4 receptor activation. Inhibiting Kv1.3 channels with ShK‐223 completely nullified the ability of Kv1.3 to normalize membrane potential changes, resulting in excessive depolarization and reduced calcium transients through P2X4 receptors. Our report thus links Kv1.3 function to P2X4 receptor‐mediated signaling as one of the underlying mechanisms by which Kv1.3 blockade reduces microglia‐mediated inflammation. While we could confirm previously reported differences between males and females in microglial P2X4 expression, microglial Kv1.3 expression exhibited no gender differences in vitro or in vivo. Main Points The voltage‐gated K+ channel Kv1.3 regulates microglial membrane potential. Inhibition of Kv1.3 depolarizes microglia and reduces calcium entry mediated by P2X4 receptors by dissipating the electrochemical driving force for calcium.
Collapse
Affiliation(s)
- Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California, USA
| | - Jacopo di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Yi-Je Chen
- Department of Pharmacology, University of California, Davis, California, USA
| | - Yanjun Cui
- Department of Pharmacology, University of California, Davis, California, USA
| | - Rania H Ibrahim
- Department of Pharmacology, University of California, Davis, California, USA
| | | | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California, USA
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California, USA
| |
Collapse
|
12
|
Chen YF, Huang G, Wang YM, Cheng M, Zhu FF, Zhong JN, Gao YD. Exchange protein directly activated by cAMP (Epac) protects against airway inflammation and airway remodeling in asthmatic mice. Respir Res 2019; 20:285. [PMID: 31852500 PMCID: PMC6921488 DOI: 10.1186/s12931-019-1260-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background β2 receptor agonists induce airway smooth muscle relaxation by increasing intracellular cAMP production. PKA is the traditional downstream signaling pathway of cAMP. Exchange protein directly activated by cAMP (Epac) was identified as another important signaling molecule of cAMP recently. The role of Epac in asthmatic airway inflammation and airway remodeling is unclear. Methods We established OVA-sensitized and -challenged acute and chronic asthma mice models to explore the expression of Epac at first. Then, airway inflammation and airway hyperresponsiveness in acute asthma mice model and airway remodeling in chronic asthma mice model were observed respectively after treatment with Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP (8pCPT) and Epac inhibitor ESI-09. Next, the effects of 8pCPT and ESI-09 on the proliferation and apoptosis of in vitro cultured mouse airway smooth muscle cells (ASMCs) were detected with CCK-8 assays and Annexin-V staining. Lastly, the effects of 8pCPT and ESI-09 on store-operated Ca2+ entry (SOCE) of ASMCs were examined by confocal Ca2+ fluorescence measurement. Results We found that in lung tissues of acute and chronic asthma mice models, both mRNA and protein expression of Epac1 and Epac2, two isoforms of Epac, were lower than that of control mice. In acute asthma mice model, the airway inflammatory cell infiltration, Th2 cytokines secretion and airway hyperresponsiveness were significantly attenuated by 8pCPT and aggravated by ESI-09. In chronic asthma mice model, 8pCPT decreased airway inflammatory cell infiltration and airway remodeling indexes such as collagen deposition and airway smooth muscle cell proliferation, while ESI-09 increased airway inflammation and airway remodeling. In vitro cultured mice ASMCs, 8pCPT dose-dependently inhibited, whereas ESI-09 promoted ASMCs proliferation. Interestingly, 8pCPT promoted the apoptosis of ASMCs, whereas ESI-09 had no effect on ASMCs apoptosis. Lastly, confocal Ca2+ fluorescence examination found that 8pCPT could inhibit SOCE in ASMCs at 100 μM, and ESI-09 promoted SOCE of ASMCs at 10 μM and 100 μM. In addition, the promoting effect of ESI-09 on ASMCs proliferation was inhibited by store-operated Ca2+ channel blocker, SKF-96365. Conclusions Our results suggest that Epac has a protecting effect on asthmatic airway inflammation and airway remodeling, and Epac reduces ASMCs proliferation by inhibiting SOCE in part.
Collapse
Affiliation(s)
- Yi-Fei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ge Huang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Yi-Min Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ming Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Fang-Fang Zhu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Jin-Nan Zhong
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
13
|
Role of KCa3.1 Channels in Modulating Ca 2+ Oscillations during Glioblastoma Cell Migration and Invasion. Int J Mol Sci 2018; 19:ijms19102970. [PMID: 30274242 PMCID: PMC6213908 DOI: 10.3390/ijms19102970] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/29/2023] Open
Abstract
Cell migration and invasion in glioblastoma (GBM), the most lethal form of primary brain tumors, are critically dependent on Ca2+ signaling. Increases of [Ca2+]i in GBM cells often result from Ca2+ release from the endoplasmic reticulum (ER), promoted by a variety of agents present in the tumor microenvironment and able to activate the phospholipase C/inositol 1,4,5-trisphosphate PLC/IP3 pathway. The Ca2+ signaling is further strengthened by the Ca2+ influx from the extracellular space through Ca2+ release-activated Ca2+ (CRAC) currents sustained by Orai/STIM channels, meant to replenish the partially depleted ER. Notably, the elevated cytosolic [Ca2+]i activates the intermediate conductance Ca2+-activated K (KCa3.1) channels highly expressed in the plasma membrane of GBM cells, and the resulting K+ efflux hyperpolarizes the cell membrane. This translates to an enhancement of Ca2+ entry through Orai/STIM channels as a result of the increased electromotive (driving) force on Ca2+ influx, ending with the establishment of a recurrent cycle reinforcing the Ca2+ signal. Ca2+ signaling in migrating GBM cells often emerges in the form of intracellular Ca2+ oscillations, instrumental to promote key processes in the migratory cycle. This has suggested that KCa3.1 channels may promote GBM cell migration by inducing or modulating the shape of Ca2+ oscillations. In accordance, we recently built a theoretical model of Ca2+ oscillations incorporating the KCa3.1 channel-dependent dynamics of the membrane potential, and found that the KCa3.1 channel activity could significantly affect the IP3 driven Ca2+ oscillations. Here we review our new theoretical model of Ca2+ oscillations in GBM, upgraded in the light of better knowledge of the KCa3.1 channel kinetics and Ca2+ sensitivity, the dynamics of the Orai/STIM channel modulation, the migration and invasion mechanisms of GBM cells, and their regulation by Ca2+ signals.
Collapse
|
14
|
The function of TRP channels in neutrophil granulocytes. Pflugers Arch 2018; 470:1017-1033. [PMID: 29717355 DOI: 10.1007/s00424-018-2146-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues. Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of neutrophilic ion channels. We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.
Collapse
|
15
|
Nelson HA, Roe MW. Molecular physiology and pathophysiology of stromal interaction molecules. Exp Biol Med (Maywood) 2018; 243:451-472. [PMID: 29363328 DOI: 10.1177/1535370218754524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca2+ release from the endoplasmic reticulum is an important component of Ca2+ signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca2+ from the endoplasmic reticulum is coupled to the activation of store-operated Ca2+ entry into cells. Store-operated Ca2+ entry provides Ca2+ for replenishing depleted endoplasmic reticulum Ca2+ stores and a Ca2+ signal that regulates Ca2+-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca2+ stores following G protein-coupled receptor activation with the induction of store-operated Ca2+ entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca2+ concentration within the endoplasmic reticulum lumen and activators of Ca2+ release-activated Ca2+ channels. Emerging evidence indicates that in addition to their role in Ca2+ release-activated Ca2+ channel gating and store-operated Ca2+ entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca2+ signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca2+-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca2+ signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Heather A Nelson
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael W Roe
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.,2 Department of Medicine, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
16
|
Faouzi M, Hague F, Geerts D, Ay AS, Potier-Cartereau M, Ahidouch A, Ouadid-Ahidouch H. Functional cooperation between KCa3.1 and TRPC1 channels in human breast cancer: Role in cell proliferation and patient prognosis. Oncotarget 2017; 7:36419-36435. [PMID: 27183905 PMCID: PMC5095010 DOI: 10.18632/oncotarget.9261] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/08/2016] [Indexed: 12/24/2022] Open
Abstract
Intracellular Ca2+ levels are important regulators of cell cycle and proliferation. We, and others, have previously reported the role of KCa3.1 (KCNN4) channels in regulating the membrane potential and the Ca2+ entry in association with cell proliferation. However, the relevance of KC3.1 channels in cancer prognosis as well as the molecular mechanism of Ca2+ entry triggered by their activation remain undetermined. Here, we show that RNAi-mediated knockdown of KCa3.1 and/or TRPC1 leads to a significant decrease in cell proliferation due to cell cycle arrest in the G1 phase. These results are consistent with the observed upregulation of both channels in synchronized cells at the end of G1 phase. Additionally, knockdown of TRPC1 suppressed the Ca2+ entry induced by 1-EBIO-mediated KCa3.1 activation, suggesting a functional cooperation between TRPC1 and KCa3.1 in the regulation of Ca2+ entry, possibly within lipid raft microdomains where these two channels seem to co-localize. We also show significant correlations between KCa3.1 mRNA expression and poor patient prognosis and unfavorable clinical breast cancer parameters by mining large datasets in the public domain. Together, these results highlight the importance of KCa3.1 in regulating the proliferative mechanisms in breast cancer cells as well as in providing a promising novel target in prognosis and therapy.
Collapse
Affiliation(s)
- Malika Faouzi
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France.,Queen's Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Frederic Hague
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Anne-Sophie Ay
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Marie Potier-Cartereau
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France.,Inserm, UMR1069, Nutrition, Growth and Cancer, University of François Rabelais, Tours F-37032, France
| | - Ahmed Ahidouch
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR of Sciences, EA4667 Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|
17
|
Zhong JN, Lan L, Chen YF, Huang G, He GZ, Yang J, Gao YD. IL-4 and serum amyloid P inversely regulate fibrocyte differentiation by targeting store-operated Ca 2+ channels. Pharmacol Rep 2017; 70:22-28. [PMID: 29306759 DOI: 10.1016/j.pharep.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Circulating fibrocytes (CFs) have been shown to participate in subepithelial fibrosis of asthma with chronic airflow limitation by acting as an important source of fibroblasts deposited beneath airway epithelia. Serum amyloid P (SAP) is an innate inhibitor of fibrocytes differentiation. Store-operated Ca2+ entry (SOCE) is the major Ca2+ influx of non-excitable cells. In this study, the role of SOCE in the regulation of fibrocytes differentiation and the effects of Th2 cytokine IL-4 and SAP on SOCE of fibrocytes were investigated. METHODS Peripheral blood mononuclear cells or monocytes were cultured in serum-free medium for 7days to differentiate into fibrocytes; the expression of SOC channels was determined with PCR, SOCE was measured with Ca2+ fluorescence imaging. RESULTS IL-4 significantly promoted monocyte derived fibrocytes differentiation in vitro. It also increased both SOCE which was induced by thapsigargin or UTP and molecules STIM1 and Orai1 which were related to expression of SOC channels in fibrocytes. Fibrocytes differentiation induced by IL-4 and SOC channels activity could be inhibited by SOC channel blocker SKF-96365. As expected, SAP significantly inhibited IL-4-induced differentiation of fibrocytes, the activity of SOCE and the expression of STIM1 and Orai1 in IL-4-treated fibrocytes. CONCLUSION IL-4 and SAP reversely regulates cultured fibrocytes differentiation in vitro by respectively promoting or inhibiting the expression and activity of SOC channels in fibrocytes.
Collapse
Affiliation(s)
- Jin-Nan Zhong
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Lan Lan
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Yi-Fei Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Ge Huang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Guang-Zhen He
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Jiong Yang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Ya-Dong Gao
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
18
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
19
|
Clark RB, Schmidt TA, Sachse FB, Boyle D, Firestein GS, Giles WR. Cellular electrophysiological principles that modulate secretion from synovial fibroblasts. J Physiol 2017; 595:635-645. [PMID: 27079855 DOI: 10.1113/jp270209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/02/2016] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive disease that affects both pediatric and adult populations. The cellular basis for RA has been investigated extensively using animal models, human tissues and isolated cells in culture. However, many aspects of its aetiology and molecular mechanisms remain unknown. Some of the electrophysiological principles that regulate secretion of essential lubricants (hyaluronan and lubricin) and cytokines from synovial fibroblasts have been identified. Data sets describing the main types of ion channels that are expressed in human synovial fibroblast preparations have begun to provide important new insights into the interplay among: (i) ion fluxes, (ii) Ca2+ release from the endoplasmic reticulum, (iii) intercellular coupling, and (iv) both transient and longer duration changes in synovial fibroblast membrane potential. A combination of this information, knowledge of similar patterns of responses in cells that regulate the immune system, and the availability of adult human synovial fibroblasts are likely to provide new pathophysiological insights.
Collapse
Affiliation(s)
- R B Clark
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Canada, T2N 1N4
| | - T A Schmidt
- Faculties of Kinesiology and Engineering, University of Calgary, Calgary, Canada, T2N 1N4
| | - F B Sachse
- Department of Bioengineering and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - D Boyle
- Department of Medicine, University of California, San Diego, CA, USA
| | - G S Firestein
- Department of Medicine, University of California, San Diego, CA, USA
| | - W R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Canada, T2N 1N4
| |
Collapse
|
20
|
Crottès D, Félix R, Meley D, Chadet S, Herr F, Audiger C, Soriani O, Vandier C, Roger S, Angoulvant D, Velge-Roussel F. Immature human dendritic cells enhance their migration through KCa3.1 channel activation. Cell Calcium 2016; 59:198-207. [PMID: 27020659 DOI: 10.1016/j.ceca.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
Abstract
Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.
Collapse
Affiliation(s)
- David Crottès
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Romain Félix
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Daniel Meley
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Stéphanie Chadet
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Florence Herr
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Cindy Audiger
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Olivier Soriani
- Institut de Biologie Valrose (iBV), CNRS UMR7277, Inserm U1091, UNS 28, Avenue Valrose, 06108 Nice, France
| | - Christophe Vandier
- Institut National de la Santé et de la Recherche Médicale U1069, Université François-Rabelais de Tours, 10 Bd Tonnellé, F-37032 Tours, France
| | - Sébastien Roger
- Institut National de la Santé et de la Recherche Médicale U1069, Université François-Rabelais de Tours, 10 Bd Tonnellé, F-37032 Tours, France
| | - Denis Angoulvant
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; Service de cardiologie, CHRU de Tours, 2 Bd Tonnellé, F-37032 Tours, France
| | - Florence Velge-Roussel
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; UFR des Sciences Pharmaceutiques, Av Monge, F-37000 Tours, France.
| |
Collapse
|
21
|
Liang SJ, Zeng DY, Mai XY, Shang JY, Wu QQ, Yuan JN, Yu BX, Zhou P, Zhang FR, Liu YY, Lv XF, Liu J, Ou JS, Qian JS, Zhou JG. Inhibition of Orai1 Store-Operated Calcium Channel Prevents Foam Cell Formation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:618-28. [PMID: 26916730 DOI: 10.1161/atvbaha.116.307344] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/14/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine the role of orai1 store-operated Ca(2+) entry in foam cell formation and atherogenesis. APPROACH AND RESULTS Acute administration of oxidized low-density lipoprotein (oxLDL) activates an orai1-dependent Ca(2+) entry in macrophages. Chelation of intracellular Ca(2+), inhibition of orai1 store-operated Ca(2+) entry, or knockdown of orai1 dramatically inhibited oxLDL-induced upregulation of scavenger receptor A, uptake of modified LDL, and foam cell formation. Orai1-dependent Ca(2+) entry induces scavenger receptor A expression and foam cell formation through activation of calcineurin but not calmodulin kinase II. Activation of nuclear factor of activated T cells is not involved in calcineurin signaling to foam cell formation. However, oxLDL dephosohorylates and activates apoptosis signal-regulating kinase 1 in macrophages. Orai1 knockdown prevents oxLDL-induced apoptosis signal-regulating kinase 1 activation. Knockdown of apoptosis signal-regulating kinase 1, or inhibition of its downstream effectors, JNK and p38 mitogen-activated protein kinase, reduces scavenger receptor A expression and foam cell formation. Notably, orai1 expression is increased in atherosclerotic plaques of apolipoprotein E(-/-) mice fed with high-cholesterol diet. Knockdown of orai1 with adenovirus harboring orai1 siRNA or inhibition of orai1 Ca(2+) entry with SKF96365 for 4 weeks dramatically inhibits atherosclerotic plaque development in high-cholesterol diet feeding apolipoprotein E(-/-) mice. In addition, inhibition of orai1 Ca(2+) entry prevents macrophage apoptosis in atherosclerotic plaque. Moreover, the expression of inflammatory genes in atherosclerotic lesions and the infiltration of myeloid cells into the aortic sinus plaques are decreased after blocking orai1 signaling. CONCLUSIONS Orai1-dependent Ca(2+) entry promotes atherogenesis possibly by promoting foam cell formation and vascular inflammation, rendering orai1 Ca(2+) channel a potential therapeutic target against atherosclerosis.
Collapse
Affiliation(s)
- Si-Jia Liang
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - De-Yi Zeng
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Xiao-Yi Mai
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jin-Yan Shang
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Qian-Qian Wu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jia-Ni Yuan
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Bei-Xin Yu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Ping Zhou
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Fei-Ran Zhang
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Ying-Ying Liu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Xiao-Fei Lv
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jie Liu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jing-Song Ou
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jie-Sheng Qian
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.).
| | - Jia-Guo Zhou
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.).
| |
Collapse
|
22
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
23
|
Henríquez C, Riquelme TT, Vera D, Julio-Kalajzić F, Ehrenfeld P, Melvin JE, Figueroa CD, Sarmiento J, Flores CA. The calcium-activated potassium channel KCa3.1 plays a central role in the chemotactic response of mammalian neutrophils. Acta Physiol (Oxf) 2016; 216:132-45. [PMID: 26138196 DOI: 10.1111/apha.12548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/13/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022]
Abstract
AIM Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. METHODS Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. RESULTS We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1(-/-) mice are significantly less effective at recruiting neutrophils into the site of inflammation. CONCLUSIONS These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions.
Collapse
Affiliation(s)
- C. Henríquez
- Instituto de Farmacología; Facultad de Medicina Veterinaria; Universidad Austral de Chile; Valdivia Chile
| | | | - D. Vera
- Centro de Estudios Científicos (CECs); Valdivia Chile
| | - F. Julio-Kalajzić
- Centro de Estudios Científicos (CECs); Valdivia Chile
- Pontificia Universidad Católica de Valparaíso; Valparaíso Chile
| | - P. Ehrenfeld
- Institutos de Anatomía; Histología y Patología; Universidad Austral de Chile; Valdivia Chile
| | - J. E. Melvin
- Secretory Mechanisms and Dysfunction Section; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda MD USA
| | - C. D. Figueroa
- Institutos de Anatomía; Histología y Patología; Universidad Austral de Chile; Valdivia Chile
| | - J. Sarmiento
- Instituto de Fisiología; Facultad de Medicina; Universidad Austral de Chile; Valdivia Chile
| | - C. A. Flores
- Centro de Estudios Científicos (CECs); Valdivia Chile
| |
Collapse
|
24
|
Penna A, Stutzin A. KCa3.1-Dependent Hyperpolarization Enhances Intracellular Ca2+ Signaling Induced by fMLF in Differentiated U937 Cells. PLoS One 2015; 10:e0139243. [PMID: 26418693 PMCID: PMC4587941 DOI: 10.1371/journal.pone.0139243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/10/2015] [Indexed: 12/29/2022] Open
Abstract
Formylated peptides are chemotactic agents generated by pathogens. The most relevant peptide is fMLF (formyl-Met-Leu-Phe) which participates in several immune functions, such as chemotaxis, phagocytosis, cytokine release and generation of reactive oxygen species. In macrophages fMLF-dependent responses are dependent on both, an increase in intracellular calcium concentration and on a hyperpolarization of the membrane potential. However, the molecular entity underlying this hyperpolarization remains unknown and it is not clear whether changes in membrane potential are linked to the increase in intracellular Ca2+. In this study, differentiated U937 cells, as a macrophage-like cell model, was used to characterize the fMLF response using electrophysiological and Ca2+ imaging techniques. We demonstrate by means of pharmacological and molecular biology tools that fMLF induces a Ca2+-dependent hyperpolarization via activation of the K+ channel KCa3.1 and thus, enhancing fMLF-induced intracellular Ca2+ increase through an amplification of the driving force for Ca2+ entry. Consequently, enhanced Ca2+ influx would in turn lengthen the hyperpolarization, operating as a positive feedback mechanism for fMLF-induced Ca2+ signaling.
Collapse
Affiliation(s)
- Antonello Penna
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 838–0453, Santiago, Chile
| | - Andrés Stutzin
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 838–0453, Santiago, Chile
- * E-mail:
| |
Collapse
|
25
|
Zhu H, Yan L, Gu J, Hao W, Cao J. Kv1.3 channel blockade enhances the phagocytic function of RAW264.7 macrophages. SCIENCE CHINA-LIFE SCIENCES 2015; 58:867-75. [PMID: 26354506 DOI: 10.1007/s11427-015-4915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/13/2015] [Indexed: 11/25/2022]
Abstract
This study aimed to comprehend the largely unknown role of voltage-gated potassium channel 1.3 (Kv1.3) in the phagocytic function of macrophages. We found that blocking of the Kv1.3 channel with 100 pmol L(-1) Stichodactyla helianthus neurotoxin (ShK) enhanced the phagocytic capacities of both resting and lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in the chicken erythrocyte system. In the fluorescein isothiocyanate (FITC)-labeled Escherichia coli k-12 system, ShK increased the phagocytic capacities of resting RAW264.7 cells, but not of the LPS-stimulated cells, as LPS alone stimulated almost saturated phagocytosis of the macrophages. ShK increased the nitric oxide (NO) production in LPS-activated cells, but not in resting RAW264.7 cells. There was no effect of ShK alone on the cytokine secretions in resting RAW264.7 cells, but it suppressed IL-1β secretion in LPS-stimulated RAW264.7 cells. At a concentration of 100 pmol L(-1), ShK did not affect the viability of the tested cells. Kv1.3 was expressed in RAW264.7 cells; this expression was downregulated by LPS, but significantly upregulated by disrupting caveolin-dependent endocytosis with filipin III. In addition, cytochalasin D, an inhibitor of actin polymerization, did not affect the Kv1.3 expression. Thus, blocking of the Kv1.3 channel enhances the phagocytic capacity and NO production of this cell line. Our results suggest that Kv1.3 channel serves as a negative regulator of phagocytosis in macrophages and can therefore be a potential target in the treatment of macrophage dysfunction.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - JingLi Gu
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Wei Hao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - JiMin Cao
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
| |
Collapse
|
26
|
Kerr PM, Wei R, Tam R, Sandow SL, Murphy TV, Ondrusova K, Lunn SE, Tran CHT, Welsh DG, Plane F. Activation of endothelial IKCa channels underlies NO-dependent myoendothelial feedback. Vascul Pharmacol 2015; 74:130-138. [PMID: 26362477 DOI: 10.1016/j.vph.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/26/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022]
Abstract
Agonist-induced vasoconstriction triggers a negative feedback response whereby movement of charged ions through gap junctions and/or release of endothelium-derived (NO) limit further reductions in diameter, a mechanism termed myoendothelial feedback. Recent studies indicate that electrical myoendothelial feedback can be accounted for by flux of inositol trisphosphate (IP3) through myoendothelial gap junctions resulting in localized increases in endothelial Ca(2+) to activate intermediate conductance calcium-activated potassium (IKCa) channels, the resultant hyperpolarization then conducting back to the smooth muscle to attenuate agonist-induced depolarization and tone. In the present study we tested the hypothesis that activation of IKCa channels underlies NO-mediated myoendothelial feedback. Functional experiments showed that block of IP3 receptors, IKCa channels, gap junctions and transient receptor potential canonical type-3 (TRPC3) channels caused endothelium-dependent potentiation of agonist-induced increase in tone which was not additive with that caused by inhibition of NO synthase supporting a role for these proteins in NO-mediated myoendothelial feedback. Localized densities of IKCa and TRPC3 channels occurred at the internal elastic lamina/endothelial-smooth muscle interface in rat basilar arteries, potential communication sites between the two cell layers. Smooth muscle depolarization to contractile agonists was accompanied by IKCa channel-mediated endothelial hyperpolarization providing the first demonstration of IKCa channel-mediated hyperpolarization of the endothelium in response to contractile agonists. Inhibition of IKCa channels, gap junctions, TRPC3 channels or NO synthase potentiated smooth muscle depolarization to agonists in a non-additive manner. Together these data indicate that rather being distinct pathways for the modulation of smooth muscle tone, NO and endothelial IKCa channels are involved in an integrated mechanism for the regulation of agonist-induced vasoconstriction.
Collapse
Affiliation(s)
- Paul M Kerr
- Faculty of Health and Community Studies, MacEwan University, Robbins Health Learning Centre, Edmonton, Alberta T5J 4S2, Canada.
| | - Ran Wei
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AlbertaT6G 2H7, Canada.
| | - Raymond Tam
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AlbertaT6G 2H7, Canada.
| | - Shaun L Sandow
- Inflammation and Healing Cluster, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia.
| | - Timothy V Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW2052, Australia.
| | - Katarina Ondrusova
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AlbertaT6G 2H7, Canada.
| | - Stephanie E Lunn
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AlbertaT6G 2H7, Canada.
| | - Cam Ha T Tran
- Hotchkiss Brain and Libin Cardiovascular Research Institutes, Department of Physiology & Pharmacology, University of Calgary, AlbertaT2N-4N1, Canada.
| | - Donald G Welsh
- Hotchkiss Brain and Libin Cardiovascular Research Institutes, Department of Physiology & Pharmacology, University of Calgary, AlbertaT2N-4N1, Canada.
| | - Frances Plane
- Cardiovascular Research Centre, University of Alberta, Edmonton, AlbertaT6G 2H7, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AlbertaT6G 2H7, Canada.
| |
Collapse
|
27
|
Shao Z, Gaurav R, Agrawal DK. Intermediate-conductance calcium-activated potassium channel KCa3.1 and chloride channel modulate chemokine ligand (CCL19/CCL21)-induced migration of dendritic cells. Transl Res 2015; 166:89-102. [PMID: 25583444 PMCID: PMC4458411 DOI: 10.1016/j.trsl.2014.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/31/2014] [Accepted: 11/15/2014] [Indexed: 01/12/2023]
Abstract
The role of ion channels is largely unknown in chemokine-induced migration in nonexcitable cells such as dendritic cells (DCs). Here, we examined the role of intermediate-conductance calcium-activated potassium channel (KCa3.1) and chloride channel (CLC3) in lymphatic chemokine-induced migration of DCs. The amplitude and kinetics of chemokine ligand (CCL19/CCL21)-induced Ca(2+) influx were associated with chemokine receptor 7 expression levels, extracellular-free Ca(2+) and Cl(-), and independent of extracellular K(+). Chemokines (CCL19 and CCL21) and KCa3.1 activator (1-ethyl-1,3-dihydro-2H-benzimidazol-2-one) induced plasma membrane hyperpolarization and K(+) efflux, which was blocked by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, suggesting that KCa3.1 carried larger conductance than the inward calcium release-activated calcium channel. Blockade of KCa3.1, low Cl(-) in the medium, and low dose of 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) impaired CCL19/CCL21-induced Ca(2+) influx, cell volume change, and DC migration. High doses of DIDS completely blocked DC migration possibly by significantly disrupting mitochondrial membrane potential. In conclusion, KCa3.1 and CLC3 are critical in human DC migration by synergistically regulating membrane potential, chemokine-induced Ca(2+) influx, and cell volume.
Collapse
Affiliation(s)
- Zhifei Shao
- Center for Clinical and Translational Science, Creighton University of School of Medicine, Omaha, Neb
| | - Rohit Gaurav
- Center for Clinical and Translational Science, Creighton University of School of Medicine, Omaha, Neb
| | - Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University of School of Medicine, Omaha, Neb.
| |
Collapse
|
28
|
Vaeth M, Zee I, Concepcion AR, Maus M, Shaw P, Portal-Celhay C, Zahra A, Kozhaya L, Weidinger C, Philips J, Unutmaz D, Feske S. Ca2+ Signaling but Not Store-Operated Ca2+ Entry Is Required for the Function of Macrophages and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1202-17. [PMID: 26109647 DOI: 10.4049/jimmunol.1403013] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels is essential for immunity to infection. CRAC channels are formed by ORAI1 proteins in the plasma membrane and activated by stromal interaction molecule (STIM)1 and STIM2 in the endoplasmic reticulum. Mutations in ORAI1 and STIM1 genes that abolish SOCE cause severe immunodeficiency with recurrent infections due to impaired T cell function. SOCE has also been observed in cells of the innate immune system such as macrophages and dendritic cells (DCs) and may provide Ca(2+) signals required for their function. The specific role of SOCE in macrophage and DC function, as well as its contribution to innate immunity, however, is not well defined. We found that nonselective inhibition of Ca(2+) signaling strongly impairs many effector functions of bone marrow-derived macrophages and bone marrow-derived DCs, including phagocytosis, inflammasome activation, and priming of T cells. Surprisingly, however, macrophages and DCs from mice with conditional deletion of Stim1 and Stim2 genes, and therefore complete inhibition of SOCE, showed no major functional defects. Their differentiation, FcR-dependent and -independent phagocytosis, phagolysosome fusion, cytokine production, NLRP3 inflammasome activation, and their ability to present Ags to activate T cells were preserved. Our findings demonstrate that STIM1, STIM2, and SOCE are dispensable for many critical effector functions of macrophages and DCs, which has important implications for CRAC channel inhibition as a therapeutic strategy to suppress pathogenic T cells while not interfering with myeloid cell functions required for innate immunity.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | - Isabelle Zee
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | - Axel R Concepcion
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | - Mate Maus
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | - Patrick Shaw
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | | | - Aleena Zahra
- Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Lina Kozhaya
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Carl Weidinger
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | - Jennifer Philips
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| | - Derya Unutmaz
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016; and
| |
Collapse
|
29
|
Bulk E, Ay AS, Hammadi M, Ouadid-Ahidouch H, Schelhaas S, Hascher A, Rohde C, Thoennissen NH, Wiewrodt R, Schmidt E, Marra A, Hillejan L, Jacobs AH, Klein HU, Dugas M, Berdel WE, Müller-Tidow C, Schwab A. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer 2015; 137:1306-17. [PMID: 25704182 DOI: 10.1002/ijc.29490] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/31/2023]
Abstract
Epigenomic changes are an important feature of malignant tumors. How tumor aggressiveness is affected by DNA methylation of specific loci is largely unexplored. In genome-wide DNA methylation analyses, we identified the KCa 3.1 channel gene (KCNN4) promoter to be hypomethylated in an aggressive non-small-cell lung carcinoma (NSCLC) cell line and in patient samples. Accordingly, KCa 3.1 expression was increased in more aggressive NSCLC cells. Both findings were strong predictors for poor prognosis in lung adenocarcinoma. Increased KCa 3.1 expression was associated with aggressive features of NSCLC cells. Proliferation and migration of pro-metastatic NSCLC cells depended on KCa 3.1 activity. Mechanistically, elevated KCa 3.1 expression hyperpolarized the membrane potential, thereby augmenting the driving force for Ca(2+) influx. KCa 3.1 blockade strongly reduced the growth of xenografted NSCLC cells in mice as measured by positron emission tomography-computed tomography. Thus, loss of DNA methylation of the KCNN4 promoter and increased KCa 3.1 channel expression and function are mechanistically linked to poor survival of NSCLC patients.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Anne-Sophie Ay
- Laboratory of Cellular Physiology, EA 4667, SFR CAP-SANTE (FED4231), UFR Sciences, University of Picardie Jules Verne, Amiens, 80039, France
| | - Mehdi Hammadi
- Laboratory of Cellular Physiology, EA 4667, SFR CAP-SANTE (FED4231), UFR Sciences, University of Picardie Jules Verne, Amiens, 80039, France.,Inserm U916, Institut Bergonié, Bordeaux, 33076, France
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular Physiology, EA 4667, SFR CAP-SANTE (FED4231), UFR Sciences, University of Picardie Jules Verne, Amiens, 80039, France
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Antje Hascher
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Christian Rohde
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany.,Department of Medicine, Hematology and Oncology, University Hospital of Halle (Saale), Halle (Saale), Germany
| | - Nils H Thoennissen
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany.,Department of Internal Medicine II and Clinic (Oncology Center), University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Wiewrodt
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Eva Schmidt
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Alessandro Marra
- Department of Thoracic Surgery, Niels-Stensen Clinics, Ostercappeln, Germany
| | - Ludger Hillejan
- Department of Thoracic Surgery, Niels-Stensen Clinics, Ostercappeln, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| | - Hans-Ulrich Klein
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany.,Department of Medicine, Hematology and Oncology, University Hospital of Halle (Saale), Halle (Saale), Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
30
|
Bose T, Cieślar-Pobuda A, Wiechec E. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells. Cell Death Dis 2015; 6:e1648. [PMID: 25695601 PMCID: PMC4669790 DOI: 10.1038/cddis.2015.23] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023]
Abstract
Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca2+ influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca2+ homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.
Collapse
Affiliation(s)
- T Bose
- Leibniz-Institute of Neurobiology, Brenneckestrasse 6, D-39 Magdeburg, Germany
| | - A Cieślar-Pobuda
- 1] Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden [2] Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - E Wiechec
- Department of Clinical and Experimental Medicine, Division of Cell Biology & Integrative Regenerative Medicine Center (IGEN), Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
31
|
Inhibition of KCa3.1 by depolarisation and 2-aminoethoxydiphenyl borate (2-APB) during Ca2+ release activated Ca2+ (CRAC) entry in human erythroleukemia (HEL) cells: Implications for the interpretation of 2-APB inhibition of CRAC entry. Cell Calcium 2015; 57:76-88. [DOI: 10.1016/j.ceca.2014.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/12/2014] [Accepted: 12/12/2014] [Indexed: 01/05/2023]
|
32
|
Abstract
Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, California 95616
| | - Edward Y. Skolnik
- Division of Nephrology, New York University School of Medicine, New York, NY 10016
- Department of Molecular Pathogenesis, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
33
|
Garneau L, Klein H, Lavoie MF, Brochiero E, Parent L, Sauvé R. Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process. ACTA ACUST UNITED AC 2014; 143:289-307. [PMID: 24470490 PMCID: PMC4001770 DOI: 10.1085/jgp.201311097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interactions between aromatic amino acid residues in the pore helix and S5 transmembrane domain control gating of the Ca2+-activated potassium channel KCa3.1. The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators.
Collapse
Affiliation(s)
- Line Garneau
- Department of Physiology and Membrane Protein Research Group, 2 Centre de recherche du Centre hospitalier de l'Université de Montréal, and 3 Department of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Rada B, Park JJ, Sil P, Geiszt M, Leto TL. NLRP3 inflammasome activation and interleukin-1β release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm Res 2014; 63:821-30. [PMID: 25048991 DOI: 10.1007/s00011-014-0756-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/18/2014] [Accepted: 07/02/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE AND DESIGN We studied the involvement of calcium and calcium-activated NADPH oxidases in NLRP3 inflammasome activation and IL-1β release to better understand inflammasome signaling in macrophages. MATERIAL OR SUBJECTS Human volunteer blood donors were recruited to isolate monocytes to differentiate them into macrophages. Wild-type or DUOX1-deficient C57/B6 mice were used to prepare bone marrow-derived macrophages. TREATMENT Murine or human macrophages were treated in vitro with NLRP3 inflammasome agonists (ATP, silica crystals) or calcium agonists (thapsigargin, ionomycin) in calcium-containing or calcium-free medium. METHODS Intracellular calcium changes were followed by measuring FURA2-based fluorescence. Gene expression changes were measured by quantitative real-time PCR. Protein expression was assessed by western blotting. Enzymatic activity was measured by fluorescence caspase-1 activity assay. IL-1β release was determined by ELISA. ELISA data were analyzed by ANOVA and Tukey's post hoc test. RESULTS Our data show that calcium is essential for IL-1β release in human macrophages. Increases in cytosolic calcium alone lead to IL-1β secretion. Calcium removal blocks caspase-1 activation. Human macrophages express Duox1, a calcium-regulated NADPH oxidase that produces reactive oxygen species. However, Duox1-deficient murine macrophages show normal IL-1β release. CONCLUSIONS Human macrophage inflammasome activation and IL-1β secretion requires calcium but does not involve NADPH oxidases.
Collapse
Affiliation(s)
- Balázs Rada
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA,
| | | | | | | | | |
Collapse
|
35
|
Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol 2014; 171:5524-40. [PMID: 24724725 DOI: 10.1111/bph.12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Cancer cells are strongly influenced by host cells within the tumour stroma and vice versa. This leads to the development of a tumour microenvironment with distinct physical and chemical properties that are permissive for tumour progression. The ability to migrate plays a central role in this mutual interaction. Migration of cancer cells is considered as a prerequisite for tumour metastasis and the migration of host stromal cells is required for reaching the tumour site. Increasing evidence suggests that transient receptor potential (TRP) channels and STIM/ORAI proteins affect key calcium-dependent mechanisms implicated in both cancer and stroma cell migration. These include, among others, cytoskeletal remodelling, growth factor/cytokine signalling and production, and adaptation to tumour microenvironmental properties such as hypoxia and oxidative stress. In this review, we will summarize the current knowledge regarding TRP channels and STIM/ORAI proteins in cancer and stroma cell migration. We focus on how TRP channel or STIM/ORAI-mediated Ca(2+) signalling directly or indirectly influences cancer and stroma cell migration by affecting the above listed mechanisms. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- N Nielsen
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | |
Collapse
|
36
|
KCa and Ca(2+) channels: the complex thought. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2322-33. [PMID: 24613282 DOI: 10.1016/j.bbamcr.2014.02.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 01/30/2023]
Abstract
Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca(2+)-activated K(+) channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca(2+) channels are divided into two main families, voltage gated/voltage dependent Ca(2+) channels and non-voltage gated/voltage independent Ca(2+) channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca(2+) channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca(2+). Non-voltage gated Ca(2+) channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca(2+) channels while non-voltage gated Ca(2+) channels are activated by Ca(2+) depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca(2+) channel families also control constitutive Ca(2+) entries. For reducing the energy consumption and for the fine regulation of Ca(2+), KCa and Ca(2+) channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa-Ca(2+) channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
|
37
|
Hoth M, Niemeyer BA. The neglected CRAC proteins: Orai2, Orai3, and STIM2. CURRENT TOPICS IN MEMBRANES 2014; 71:237-71. [PMID: 23890118 DOI: 10.1016/b978-0-12-407870-3.00010-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasma-membrane-localized Orai1 ion channel subunits interacting with ER-localized STIM1 molecules comprise the major subunit composition responsible for calcium release-activated calcium channels. STIM1 "translates" the Ca(2+) store content into Orai1 activity, making it a store-operated channel. Surprisingly, in addition to being the physical activator, STIM1 also modulates Orai1 properties, including its inactivation and permeation (see Chapter 1). STIM1 is thus more than a pure Orai1 activator. Within the past 7 years following the discovery of STIM and Orai proteins, the molecular mechanisms of STIM1/Orai1 activity and their functional importance have been studied in great detail. Much less is currently known about the other isoforms STIM2, Orai2, and Orai3. In this chapter, we summarize the current knowledge about STIM2, Orai2, and Orai3 properties and function. Are these homologues mainly modulators of predominantly STIM1/Orai1-mediated complexes or do store-dependent or -independent functions such as regulation of basal Ca(2+) concentration and activation of Orai3-containing complexes by arachidonic acid or by estrogen receptors point toward their "true" physiological function? Is Orai2 the Orai1 of neurons? A major focus of the review is on the functional relevance of STIM2, Orai2, and Orai3, some of which still remains speculative.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Saarland University, Homburg, Germany
| | | |
Collapse
|
38
|
Catalán MA, Peña-Munzenmayer G, Melvin JE. Ca²⁺-dependent K⁺ channels in exocrine salivary glands. Cell Calcium 2014; 55:362-8. [PMID: 24559652 DOI: 10.1016/j.ceca.2014.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 11/28/2022]
Abstract
In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca(2+)-dependent K(+) channels take part in key functions including membrane potential regulation, fluid movement and K(+) secretion in exocrine glands. Two K(+) channels have been identified in exocrine salivary glands: (1) a Ca(2+)-activated K(+) channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca(2+)-dependent K(+) channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca(2+)-dependent K(+) channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca(2+)-dependent K(+) channels by protein-protein interactions that may significantly impact exocrine gland physiology.
Collapse
Affiliation(s)
- Marcelo A Catalán
- Secretory Mechanisms and Dysfunction Section (SMDS), National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Building 10/Room 5N102, Bethesda, MD 20892, USA.
| | - Gaspar Peña-Munzenmayer
- Secretory Mechanisms and Dysfunction Section (SMDS), National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Building 10/Room 5N102, Bethesda, MD 20892, USA
| | - James E Melvin
- Secretory Mechanisms and Dysfunction Section (SMDS), National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Building 10/Room 5N102, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
40
|
Strøbæk D, Brown DT, Jenkins DP, Chen YJ, Coleman N, Ando Y, Chiu P, Jørgensen S, Demnitz J, Wulff H, Christophersen P. NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 2013; 168:432-44. [PMID: 22891655 DOI: 10.1111/j.1476-5381.2012.02143.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/21/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The K(Ca) 3.1 channel is a potential target for therapy of immune disease. We identified a compound from a new chemical class of K(Ca) 3.1 inhibitors and assessed in vitro and in vivo inhibition of immune responses. EXPERIMENTAL APPROACH We characterized the benzothiazinone NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) with respect to potency and molecular site of action on K(Ca) 3.1 channels, selectivity towards other targets, effects on T-cell activation as well as pharmacokinetics and inflammation control in colitis induced by 2,4-dinitrobenzene sulfonic acid, a rat model of inflammatory bowel disease (IBD). KEY RESULTS NS6180 inhibited cloned human K(Ca) 3.1 channels (IC(50) = 9 nM) via T250 and V275, the same amino acid residues conferring sensitivity to triarylmethanes such as like TRAM-34. NS6180 inhibited endogenously expressed K(Ca) 3.1 channels in human, mouse and rat erythrocytes, with similar potencies (15-20 nM). NS6180 suppressed rat and mouse splenocyte proliferation at submicrolar concentrations and potently inhibited IL-2 and IFN-γ production, while exerting smaller effects on IL-4 and TNF-α and no effect on IL-17 production. Antibody staining showed K(Ca) 3.1 channels in healthy colon and strong up-regulation in association with infiltrating immune cells after induction of colitis. Despite poor plasma exposure, NS6180 (3 and 10 mg·kg(-1) b.i.d.) dampened colon inflammation and improved body weight gain as effectively as the standard IBD drug sulfasalazine (300 mg·kg(-1) q.d.). CONCLUSIONS AND IMPLICATIONS NS6180 represents a novel class of K(Ca) 3.1 channel inhibitors which inhibited experimental colitis, suggesting K(Ca) 3.1 channels as targets for pharmacological control of intestinal inflammation.
Collapse
|
41
|
Gao YD, Zheng JW, Li P, Cheng M, Yang J. Store-operated Ca2+ entry is involved in transforming growth factor-β1 facilitated proliferation of rat airway smooth muscle cells. J Asthma 2013; 50:439-48. [PMID: 23452113 DOI: 10.3109/02770903.2013.778275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the role and underlying mechanisms of store-operated Ca(2+) entry (SOCE) in mediating the promoting effect of transforming growth factor (TGF)-β1 on the proliferation of airway smooth muscle cells (ASMCs). METHODS Rat bronchial smooth muscle cells were cultured as we described previously. The intracellular Ca(2+) concentration ([Ca(2+)]i) of ASMCs was measured by laser confocal microscope Ca(2+) fluorescence imaging with Fluo-3/AM. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and p27 expression assay were used to determine the proliferation rate of ASMCs. RESULTS We demonstrated that TGF-β1 (10 ng/ml) increased basal (Ca(2+)]i) level, [Ca(2+)]i rise induced by thapsigargin-induced Ca(2+) release and SOCE in rat ASMCs. This effect of TGF-β1 on SOCE was not inhibited by glucocorticoid dexamethasone (DXM, 100 nM), antioxidant α-tocopherol (100 μM), and intermediate-conductance Ca(2+)-activated K(+) channels (IKCa) inhibitor charybdotoxin (100 nM), suggesting that reactive oxygen species and IKCa channels might not mediate the effect of TGF-β1. TGF-β1 slightly increased the expression of Orai1 and STIM1, two important molecules involved in the molecule component and regulation of SOC channels, in the presence of 10% fetal bovine serum (FBS). The proliferation of ASMC stimulated with 2.5% FBS was promoted by TGF-β1, and partly inhibited by non-specific Ca(2+) channel blocker SKF-96365 (10 μM) and Ni(2+) (100 μM). DXM, α-tocopherol, and charybdotoxin had no effect on the proliferation promoted by TGF-β1. CONCLUSION TGF-β1 promotes ASMC proliferation partly through increasing the expression and activity of SOC channels.
Collapse
Affiliation(s)
- Ya-Dong Gao
- Department of Respiratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | | | | | | | | |
Collapse
|
42
|
Ferreira R, Schlichter LC. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca(2+) signaling, store refilling and migration of rat microglial cells. PLoS One 2013; 8:e62345. [PMID: 23620825 PMCID: PMC3631179 DOI: 10.1371/journal.pone.0062345] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/20/2013] [Indexed: 12/26/2022] Open
Abstract
Microglial activation involves Ca(2+) signaling, and numerous receptors can evoke elevation of intracellular Ca(2+). ATP released from damaged brain cells can activate ionotropic and metabotropic purinergic receptors, and act as a chemoattractant for microglia. Metabotropic P2Y receptors evoke a Ca(2+) rise through release from intracellular Ca(2+) stores and store-operated Ca(2+) entry, and some have been implicated in microglial migration. This Ca(2+) rise is expected to activate small-conductance Ca(2+)-dependent K(+) (SK) channels, if present. We previously found that SK3 (KCa2.3) and KCa3.1 (SK4/IK1) are expressed in rat microglia and contribute to LPS-mediated activation and neurotoxicity. However, neither current has been studied by elevating Ca(2+) during whole-cell recordings. We hypothesized that, rather than responding only to Ca(2+), each channel type might be coupled to different receptor-mediated pathways. Here, our objective was to determine whether the channels are differentially activated by P2Y receptors, and, if so, whether they play differing roles. We used primary rat microglia and a rat microglial cell line (MLS-9) in which riluzole robustly activates both SK3 and KCa3.1 currents. Using electrophysiological, Ca(2+) imaging and pharmacological approaches, we show selective functional coupling of KCa3.1 to UTP-mediated P2Y2 receptor activation. KCa3.1 current is activated by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC/Orai1) channels, and both CRAC/Orai1 and KCa3.1 channels facilitate refilling of Ca(2+) stores. The Ca(2+) dependence of KCa3.1 channel activation was skewed to abnormally high concentrations, and we present evidence for a close physical association of the two channel types. Finally, migration of primary rat microglia was stimulated by UTP and inhibited by blocking either KCa3.1 or CRAC/Orai1 channels. This is the first report of selective coupling of one type of SK channel to purinergic stimulation of microglia, transactivation of KCa3.1 channels by CRAC/Orai1, and coordinated roles for both channels in store refilling, Ca(2+) signaling and microglial migration.
Collapse
Affiliation(s)
- Roger Ferreira
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lyanne C. Schlichter
- Genes and Development Division, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
KCNN4 channels participate in the EMT induced by PRL-3 in colorectal cancer. Med Oncol 2013; 30:566. [PMID: 23572150 DOI: 10.1007/s12032-013-0566-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/30/2013] [Indexed: 02/08/2023]
Abstract
Studies have shown that phosphatase of regenerating liver-3 (PRL-3) promotes the invasion, migration, and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition (EMT). However, the mechanism by which PRL-3 induces tumor cell EMT is unknown. Our previous research revealed that PRL-3 promotes LoVo cell proliferation by up-regulating KCNN4 channels. In the current study, we explored the mechanism by which PRL-3 mediates EMT. We demonstrated that PRL-3 induced the expression of KCNN4 channels, leading to EMT and the down-regulation of E-cadherin. Further studies revealed that KCNN4 channels increased intracellular calcium levels and activated components of cell signaling downstream of calcium, including CaM-kinase II and glycogen synthase kinase-3 beta (GSK-3 beta), which increased Snail expression. Inhibiting KCNN4 with siRNA and TRAM-34, a specific inhibitor, restored E-cadherin expression and inhibited Snail expression. These results implicated the up-regulation of KCNN4 channels in the PRL-3-mediated induction of EMT and promotion of cancer metastasis.
Collapse
|
44
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
45
|
Stoneking CJ, Shivakumar O, Thomas DN, Colledge WH, Mason MJ. Voltage dependence of the Ca(2+)-activated K(+) channel K(Ca)3.1 in human erythroleukemia cells. Am J Physiol Cell Physiol 2013; 304:C858-72. [PMID: 23407879 DOI: 10.1152/ajpcell.00368.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a K(+)-selective, Ca(2+)-dependent whole cell current and single-channel correlate in the human erythroleukemia (HEL) cell line. The whole cell current was inhibited by the intermediate-conductance KCa3.1 inhibitors clotrimazole, TRAM-34, and charybdotoxin, unaffected by the small-conductance KCa2 family inhibitor apamin and the large-conductance KCa1.1 inhibitors paxilline and iberiotoxin, and augmented by NS309. The single-channel correlate of the whole cell current was blocked by TRAM-34 and clotrimazole, insensitive to paxilline, and augmented by NS309 and had a single-channel conductance in physiological K(+) gradients of ~9 pS. RT-PCR revealed that the KCa3.1 gene, but not the KCa1.1 gene, was expressed in HEL cells. The KCa3.1 current, isolated in HEL cells under whole cell patch-clamp conditions, displayed an activated current component during depolarizing voltage steps from hyperpolarized holding potentials and tail currents upon repolarization, consistent with voltage-dependent modulation. This activated current increased with increasing voltage steps above -40 mV and was sensitive to inhibition by clotrimazole, TRAM-34, and charybdotoxin and insensitive to apamin, paxilline, and iberiotoxin. In single-channel experiments, depolarization resulted in an increase in open channel probability (Po) of KCa3.1, with no increase in channel number. The voltage modulation of Po was an increasing monotonic function of voltage. In the absence of elevated Ca(2+), voltage was ineffective at inducing channel activity in whole cell and single-channel experiments. These data indicate that KCa3.1 in HEL cells displays a unique form of voltage dependence modulating Po.
Collapse
Affiliation(s)
- Colin J Stoneking
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
47
|
KERR PAULM, TAM RAYMOND, ONDRUSOVA KATARINA, MITTAL ROHAN, NARANG DEEPAK, TRAN CAMHAT, WELSH DONALDG, PLANE FRANCES. Endothelial Feedback and the Myoendothelial Projection. Microcirculation 2012; 19:416-22. [DOI: 10.1111/j.1549-8719.2012.00187.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Expression and Role of the Intermediate-Conductance Calcium-Activated Potassium Channel KCa3.1 in Glioblastoma. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:421564. [PMID: 22675627 PMCID: PMC3362965 DOI: 10.1155/2012/421564] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/15/2012] [Indexed: 12/29/2022]
Abstract
Glioblastomas are characterized by altered expression of several ion channels that have important consequences in cell functions associated with their aggressiveness, such as cell survival, proliferation, and migration. Data on the altered expression and function of the intermediate-conductance calcium-activated K (KCa3.1) channels in glioblastoma cells have only recently become available. This paper aims to (i) illustrate the main structural, biophysical, pharmacological, and modulatory properties of the KCa3.1 channel, (ii) provide a detailed account of data on the expression of this channel in glioblastoma cells, as compared to normal brain tissue, and (iii) critically discuss its major functional roles. Available data suggest that KCa3.1 channels (i) are highly expressed in glioblastoma cells but only scantly in the normal brain parenchima, (ii) play an important role in the control of glioblastoma cell migration. Altogether, these data suggest KCa3.1 channels as potential candidates for a targeted therapy against this tumor.
Collapse
|
49
|
TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 2012; 32:3931-41. [PMID: 22423113 DOI: 10.1523/jneurosci.4703-11.2012] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that neuroimmune interactions contribute to pathological pain. Transient receptor potential melastatin 2 (TRPM2) is a nonselective Ca²⁺-permeable cation channel that acts as a sensor for reactive oxygen species. TRPM2 is expressed abundantly in immune cells and is important in inflammatory processes. The results of the present study show that TRPM2 plays a crucial role in inflammatory and neuropathic pain. While wild-type and TRPM2 knock-out mice showed no difference in their basal sensitivity to mechanical and thermal stimulation, nocifensive behaviors in the formalin test were reduced in TRPM2 knock-out mice. In carrageenan-induced inflammatory pain and sciatic nerve injury-induced neuropathic pain models, mechanical allodynia and thermal hyperalgesia were attenuated in TRPM2 knock-out mice. Carrageenan-induced inflammation and sciatic nerve injury increased the expression of TRPM2 mRNA in the inflamed paw and around the injured sciatic nerve, respectively. TRPM2 deficiency diminished the infiltration of neutrophils and the production of chemokine (C-X-C motif) ligand-2 (CXCL2), a major chemokine that recruits neutrophils, but did not alter the recruitment of F4/80-positive macrophages in the inflamed paw or around the injured sciatic nerve. Microglial activation after nerve injury was suppressed in the spinal cord of TRPM2 knock-out mice. Furthermore, CXCL2 production and inducible nitric oxide synthase induction were diminished in cultured macrophages and microglia derived from TRPM2 knock-out mice. Together, these results suggest that TRPM2 expressed in macrophages and microglia aggravates peripheral and spinal pronociceptive inflammatory responses and contributes to the pathogenesis of inflammatory and neuropathic pain.
Collapse
|
50
|
López E, Salido GM, Rosado JA, Berna-Erro A. Unraveling STIM2 function. J Physiol Biochem 2012; 68:619-33. [PMID: 22477146 DOI: 10.1007/s13105-012-0163-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/13/2012] [Indexed: 12/11/2022]
Abstract
The discovery of molecular players in capacitative calcium (Ca(2+)) entry, also referred to as store-operated Ca(2+) entry (SOCE), supposed a great advance in the knowledge of cellular mechanisms of Ca(2+) entry, which are essential for a broad range of cellular functions. The identification of STIM1 and STIM2 proteins as the sensors of Ca(2+) stored in the endoplasmic reticulum unraveled the mechanism by which depletion of intracellular Ca(2+) stores is communicated to store-operated Ca(2+) channels located in the plasma membrane, triggering the activation of SOCE and intracellular Ca(2+)-dependent signaling cascades. Initial studies suggested a dominant function of STIM1 in SOCE and SOCE-dependent cellular functions compared to STIM2, especially those that participate in immune responses. Consequently, most of the subsequent studies focused on STIM1. However, during the last years, STIM2 has been demonstrated to play a more relevant and complex function than initially reported, being even important to sustain normal life in mice. These studies have led to reconsider the role of STIM2 in SOCE and its relevance in cellular physiology. This review is intended to summarize and provide an overview of the current data available about this exciting isoform, STIM2, and its actual position together with STIM1 in the mechanism of SOCE.
Collapse
Affiliation(s)
- Esther López
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | | | | | | |
Collapse
|