1
|
Azarfarin M, Moradikor N, Matin S, Dadkhah M. Association Between Stress, Neuroinflammation, and Irritable Bowel Syndrome: The Positive Effects of Probiotic Therapy. Cell Biochem Funct 2024; 42:e70009. [PMID: 39487668 DOI: 10.1002/cbf.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Stress refers to an organism's response to environmental threats in normal condition to maintain homeostasis in the body. In addition, strong inflammatory reactions induced by the hypothalamic-pituitary-adrenal (HPA) axis under stress condition during a long time. Reciprocally, chronic stress can induce the irritable bowel syndrome (IBS) which is a well-known gut disorder thereby play an important role in the promotion and pathophysiology of neuropsychiatric diseases. It has been demonstrated that leaky gut is a hallmark of IBS, leads to the entrance the microbiota into the bloodstream and consequent low-grade systemic inflammation. In the current review, we will discuss the mechanisms by which stress can influence the risk and severity of IBS and its relationship with neuroinflammation. Also, the role of probiotics in IBS co-existing with chronic stress conditions is highlighted.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Department of Neuroscience, Faculty of Advanced Medical, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Somaieh Matin
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Zerillo L, Polvere I, Stilo R, Vito P, Rinaldi M, Zotti T, Costagliola C. Diverse effects of synthetic glucocorticoid species on cell viability and stress response of neuroblastoma cells. Neuroscience 2024; 554:1-10. [PMID: 39002754 DOI: 10.1016/j.neuroscience.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Glucocorticoids (GCs) are widely used as powerful anti-inflammatory and immunosuppressive therapeutics in multiple pathological conditions. However, compelling evidence indicates that they might promote neurodegeneration by altering mitochondrial homeostatic processes. Although the effect of dexamethasone on cell survival and homeostasis has been widely investigated, the effect of other glucocorticoids needs to be explored in more detail. In this report, we have compared the neurotoxicity induced by dexamethasone, prednisolone, betamethasone, and hydrocortisone in cultured neuroblastoma cells, through the analysis of several parameters such as cell viability, ER stress, oxidative stress, and mitochondrial fusion and fission markers. Interestingly, we have found that synthetic glucocorticoids may impact neuronal viability by affecting different cellular responses, suggesting that their therapeutic use should be consciously decided after careful consideration of benefits and detrimental effects.
Collapse
Affiliation(s)
- Lucrezia Zerillo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | | | - Romania Stilo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Pasquale Vito
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | - Michele Rinaldi
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy.
| | - Tiziana Zotti
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy.
| | - Ciro Costagliola
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
3
|
Gazorpak M, Hugentobler KM, Paul D, Germain PL, Kretschmer M, Ivanova I, Frei S, Mathis K, Rudolf R, Mompart Barrenechea S, Fischer V, Xue X, Ptaszek AL, Holzinger J, Privitera M, Hierlemann A, Meijer OC, Konrat R, Carreira EM, Bohacek J, Gapp K. Harnessing PROTAC technology to combat stress hormone receptor activation. Nat Commun 2023; 14:8177. [PMID: 38071198 PMCID: PMC10710461 DOI: 10.1038/s41467-023-44031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Counteracting the overactivation of glucocorticoid receptors (GR) is an important therapeutic goal in stress-related psychiatry and beyond. The only clinically approved GR antagonist lacks selectivity and induces unwanted side effects. To complement existing tools of small-molecule-based inhibitors, we present a highly potent, catalytically-driven GR degrader, KH-103, based on proteolysis-targeting chimera technology. This selective degrader enables immediate and reversible GR depletion that is independent of genetic manipulation and circumvents transcriptional adaptations to inhibition. KH-103 achieves passive inhibition, preventing agonistic induction of gene expression, and significantly averts the GR's genomic effects compared to two currently available inhibitors. Application in primary-neuron cultures revealed the dependency of a glucocorticoid-induced increase in spontaneous calcium activity on GR. Finally, we present a proof of concept for application in vivo. KH-103 opens opportunities for a more lucid interpretation of GR functions with translational potential.
Collapse
Affiliation(s)
- Mahshid Gazorpak
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Karina M Hugentobler
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Dominique Paul
- Lab of Statistical Bioinformatics, University of Zürich, 8057, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Lab of Statistical Bioinformatics, University of Zürich, 8057, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Iryna Ivanova
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Selina Frei
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Kei Mathis
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Remo Rudolf
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Sergio Mompart Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
| | - Xiaohan Xue
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, 4056, Basel, Switzerland
| | - Aleksandra L Ptaszek
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Julian Holzinger
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, 4056, Basel, Switzerland
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300, RA, Leiden, the Netherlands
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Johannes Bohacek
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, 8057, Zürich, Switzerland.
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
4
|
Grosse L, Lieftüchter V, Vollmuth Y, Hoffmann F, Olivieri M, Reiter K, Tacke M, Heinen F, Borggraefe I, Osterman A, Forstner M, Hübner J, von Both U, Birzele L, Rohlfs M, Schomburg A, Böhmer MM, Ruf V, Cadar D, Muntau B, Pörtner K, Tappe D. First detected geographical cluster of BoDV-1 encephalitis from same small village in two children: therapeutic considerations and epidemiological implications. Infection 2023; 51:1383-1398. [PMID: 36821024 PMCID: PMC9947883 DOI: 10.1007/s15010-023-01998-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The Borna disease virus (BoDV-1) is an emerging zoonotic virus causing severe and mostly fatal encephalitis in humans. METHODS AND RESULTS A local cluster of fatal BoDV-1 encephalitis cases was detected in the same village three years apart affecting two children. While the first case was diagnosed late in the course of disease, a very early diagnosis and treatment attempt facilitated by heightened awareness was achieved in the second case. Therapy started as early as day 12 of disease. Antiviral therapy encompassed favipiravir and ribavirin, and, after bioinformatic modelling, also remdesivir. As the disease is immunopathogenetically mediated, an intensified anti-inflammatory therapy was administered. Following initial impressive clinical improvement, the course was also fatal, although clearly prolonged. Viral RNA was detected by qPCR in tear fluid and saliva, constituting a possible transmission risk for health care professionals. Highest viral loads were found post mortem in the olfactory nerve and the limbic system, possibly reflecting the portal of entry for BoDV-1. Whole exome sequencing in both patients yielded no hint for underlying immunodeficiency. Full virus genomes belonging to the same cluster were obtained in both cases by next-generation sequencing. Sequences were not identical, indicating viral diversity in natural reservoirs. Specific transmission events or a common source of infection were not found by structured interviews. Patients lived 750m apart from each other and on the fringe of the settlement, a recently shown relevant risk factor. CONCLUSION Our report highlights the urgent necessity of effective treatment strategies, heightened awareness and early diagnosis. Gaps of knowledge regarding risk factors, transmission events, and tailored prevention methods become apparent. Whether this case cluster reflects endemicity or a geographical hot spot needs further investigation.
Collapse
Affiliation(s)
- Leonie Grosse
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany.
| | - Victoria Lieftüchter
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany.
- Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-University, Munich, Germany.
| | - Yannik Vollmuth
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Florian Hoffmann
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Martin Olivieri
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Karl Reiter
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Moritz Tacke
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Florian Heinen
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
- Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-University, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
- Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Osterman
- Max-Von-Pettenkofer Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Maria Forstner
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Johannes Hübner
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Ulrich von Both
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Lena Birzele
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Adrian Schomburg
- Department of Physiological Chemistry, LMU Biomedical Center Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Merle M Böhmer
- Department of Infectious Disease Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany
- Institute of Social Medicine and Health Systems Research, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Birgit Muntau
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| |
Collapse
|
5
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
6
|
Ding S, Yang L, Huang L, Kong L, Chen M, Su Y, Li X, Dong X, Han Y, Li W, Li W. Chronic glucocorticoid exposure accelerates Aβ generation and neurotoxicity by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons in APP/PS1 mice. Food Chem Toxicol 2022; 168:113407. [PMID: 36075474 DOI: 10.1016/j.fct.2022.113407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Glucocorticoid (GC) exposure can lead to deterioration of the structure and function of hippocampal neurons and is closely involved in Alzheimer's disease (AD). Amyloid-β (Aβ) overproduction is an important aspect of AD pathogenesis. Our study mainly investigated the mechanism of chronic GC exposure in accelerating Aβ production in primary cultured hippocampal neurons from APP/PS1 mice. The results indicated that chronic dexamethasone (DEX, 1 μM) significantly accelerated neuronal damage and Aβ accumulation in hippocampal neurons from APP/PS1 mice. Meanwhile, DEX exposure markedly upregulated APP, NCSTN, BACE1 and p-Tau/Tau expression in hippocampal neurons from APP/PS1 mice. Our study also indicated that chronic DEX exposure significantly increased intracellular Ca2+ ([Ca2+]i) levels and the expressions of p-PLC, CN and NFAT1 in hippocampal neurons from APP/PS1 mice. We further found that stabilizing intracellular calcium homeostasis with 2-APB (50 μM) and SKF-96365 (10 μM) significantly alleviated neuronal damage and Aβ accumulation in chronic DEX-induced hippocampal neurons from APP/PS1 mice. Additionally, dual luciferase assays showed that NFAT1 upregulated NCSTN transactivation, which was further increased upon DEX treatment. This study suggests that chronic DEX exposure accelerates Aβ accumulation by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons from APP/PS1 mice, which may be closely related to the acceleration of AD.
Collapse
Affiliation(s)
- Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Lei Huang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ming Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Amylin Protein Expression in the Rat Brain and Neuro-2a Cells. Int J Mol Sci 2022; 23:ijms23084348. [PMID: 35457166 PMCID: PMC9025265 DOI: 10.3390/ijms23084348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
The localization and expression of amylin protein in the rodent brain and mouse neuroblastoma Neuro-2a (N2a) are less widely known. Thus, this study investigated the expression distribution of amylin in the rat brain and N2a treated with steroid hormones. Amylin protein was identified in the olfactory bulb, cerebral cortex, dentate gyrus, thalamus, hypothalamus, ventral tegmental area (VTA), cerebellum, and brain stem in the rat brain. Additionally, the amylin protein was localized with the mature neurons of the cerebral cortex and dopaminergic neurons of the VTA. Progesterone (P4) and dexamethasone (Dex) significantly decreased, and 17β-estradiol (E2) increased the amylin protein level in the cerebral cortex. The P4 receptor antagonist RU486 significantly influenced the effects of P4 and Dex, and the E2 receptor antagonist ICI 182,780 slightly changed E2′s effect. Amylin protein expression was significantly reduced in the VTA by P4 and Dex, and its expression was changed only following P4 plus RU486 treatment. It was confirmed for the first time that amylin protein is strongly expressed in the cytoplasm in N2a cells using immunofluorescent staining. P4 increased the levels of amylin, and RU486 treatment decreased them. Dex significantly increased the levels of amylin protein. RU486 treatment reversed the effects of Dex. Therefore, amylin protein is expressed in the cerebral cortex neurons and dopaminergic neurons of the VTA of the immature rat brain. P4 and Dex influence the expression of amylin protein in the rat brain and N2a cells.
Collapse
|
8
|
Silva LJ, Silva CR, Sá LG, Barroso FD, Cândido TM, Queiroz HA, Almeida Moreira LE, Baccallini OV, Cavalcanti BC, Silva J, Marinho ES, Moraes MO, Neto JB, Júnior HV. Antifungal activity of dexamethasone against fluconazole-resistant Candida albicans and its activity against biofilms. Future Microbiol 2022; 17:607-620. [PMID: 35411812 DOI: 10.2217/fmb-2021-0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: The present study investigated the antifungal action of dexamethasone disodium phosphate (Dex). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol; M27-A3, checkerboard test and biofilm were evaluated with two isolates of Candida albicans, hyphal production test, molecular docking analysis and flow cytometry analysis. Result: Dex and fluconazole (FLC) together had a synergistic effect. Mature biofilm was reduced when treated with Dex alone or in combination. Dex and FLC promoted a decrease in the production of hyphae and changes in the level of mitochondrial depolarization, increased generation of reactive oxygen species, loss of membrane integrity, increased phosphatidylserine externalization and molecular docking; there was interaction with ALS3 and SAP5 targets. Conclusion: Dex showed antifungal activity against FLC-resistant C. albicans strains.
Collapse
Affiliation(s)
- Lisandra J Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Lívia Gav Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Chemistry, Group for Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Fatima Dd Barroso
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Thiago M Cândido
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Helaine A Queiroz
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Lara E Almeida Moreira
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Octavio V Baccallini
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | | | - Jacilene Silva
- Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | | | - Manoel O Moraes
- Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - João Ba Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Chemistry, Group for Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| | - Hélio Vn Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, Ceará, Brazil
| |
Collapse
|
9
|
Hagino T, Nakano H, Saeki H, Kanda N. A Case of Darier's Disease with a Novel Missense Mutation in ATP2A2 Successfully Treated with Calcipotriol/Betamethasone Dipropionate Two-Compound Ointment. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:367-372. [PMID: 35283639 PMCID: PMC8906820 DOI: 10.2147/ccid.s354694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
Abstract
Darier’s disease (DD) is a rare autosomal dominant genodermatosis caused by mutations in the ATP2A2 gene, which encodes for the sarcoendoplasmic reticulum calcium ATPase type 2 isoform (SERCA2). In epidermal keratinocytes, the decrease in SERCA2 inhibits the transportation of desmosomal proteins to the plasma membrane, resulting in acantholysis and dyskeratosis. We present the first case of DD with a novel missense mutation in the ATP2A2 gene and successfully treated with calcipotriol/betamethasone dipropionate two-compound ointment. A 34-year-old Japanese woman presented with erythema and scales on the scalp and clusters of keratotic papules on the neck and groin. Similar symptoms were observed in her father, younger sister, and daughter. Histopathological examination revealed corps ronds in the granular layer and grains in the horny layer of the epidermis and acantholytic lacuna just above the basal layer. She was diagnosed with DD. A novel heterozygous missense mutation, c.616A>C (p.Asn206His), was detected in the ATP2A2 gene in both the patient and her daughter. The patient was treated with calcipotriol/betamethasone dipropionate two-compound ointment, which resulted in improvement of the skin eruption. This two-compound topical ointment may be a promising therapeutic strategy in the treatment for DD.
Collapse
Affiliation(s)
- Teppei Hagino
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | - Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| |
Collapse
|
10
|
Park EJ, Kim SN, Lee GH, Jo YM, Yoon C, Kim DW, Cho JW, Han JS, Lee SJ, Seong E, Park EJ, Oh I, Lee HS. Inhaled underground subway dusts may stimulate multiple pathways of cell death signals and disrupt immune balance. ENVIRONMENTAL RESEARCH 2020; 191:109839. [PMID: 32810496 DOI: 10.1016/j.envres.2020.109839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, we aimed to identify a toxic mechanism and the potential health effects of ambient dusts in an underground subway station. At 24 h exposure to human bronchial epithelial (BEAS-2B) cells (0, 2.5, 10, and 40 μg/mL), dusts located within autophagosome-like vacuoles, whereas a series of autophagic processes appeared to be blocked. The volume, potential and activity of mitochondria decreased in consistent with a condensed configuration, and the percentage of late apoptotic cells increased accompanying S phase arrest. While production of reactive oxygen species, expression of ferritin (heavy chain) protein, secretion of IL-6, IL-8 and matrix metalloproteinases, and the released LDH level notably increased in dust-treated cells (40 μg/mL), intracellular calcium level decreased. At day 14 after a single instillation to mice (0, 12.5, 50, and 200 μg/head), the total number of cells increased in the lungs of dust-treated mice with no significant change in cell composition. The pulmonary levels of TGF-β, GM-CSF, IL-12 and IL-13 clearly increased following exposure to dusts, whereas that of CXCL-1 was dose-dependently inhibited. Additionally, the population of cytotoxic T cells in T lymphocytes in the spleen increased relative to that of helper T cells, and the levels of IgA and IgM in the bloodstream were significantly reduced in the dust-treated mice. Subsequently, to improve the possibility of extrapolating our findings to humans, we repeatedly instilled dusts (1 time/week, 4 weeks, 0.25 and 1.0 mg/head) to monkeys. The total number of cells, the relative portion of neutrophils, the level of TNF-α significantly increased in the lungs of dust-treated monkeys, and the expression of cytochrome C was enhanced in the lung tissues. Meanwhile, the pulmonary level of MIP-α was clearly reduced, and the expression of caveolin-1 was inhibited in the lung tissues. More importantly, inflammatory lesions, such as granuloma, were seen in both mice and monkeys instilled with dusts. Taken together, we conclude that dusts may impair the host's immune function against foreign bodies by inhibiting the capacity for production of antibodies. In addition, iron metabolism may be closely associated with dust-induced cell death and inflammatory response.
Collapse
Affiliation(s)
- Eun-Jung Park
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea.
| | - Soo-Nam Kim
- Bio-Health Convergence Institute GLP Lab, Korea Testing Certification Institute, Cheongju, 28115, South Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Young-Min Jo
- Department of Environmental Science and Engineering, Global Campus, Kyung Hee University, Yongin-Si, 17104, South Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, 126-16, South Korea
| | - Dong-Wan Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Ji-Seok Han
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sang Jin Lee
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Eunsol Seong
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
| | - Eun-Jun Park
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
| | - Inkyung Oh
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Hong-Soo Lee
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, South Korea.
| |
Collapse
|
11
|
Amino Acids in Health and Endocrine Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:97-109. [PMID: 32761572 DOI: 10.1007/978-3-030-45328-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dietary amino acids play an important role in maintaining health. Branched chain amino acids can adversely increase blood pressure whereas arginine and citrulline can reduce it. D-amino acids play important roles in several cell types including testis, the nervous system and adrenal glands. Several amino acids also can have dramatic effects on diabetes; branched chain amino acids, phenylalanine and tyrosine have been implicated while others, namely arginine and citrulline can improve outcomes. Leucine has been shown to play important roles in muscle primarily through the mTOR pathway though this effect does not translate across every population. Glutamine, arginine and D-aspartate also exert their muscle effects through mTOR. Relationships between amino acids and endocrine function include that of glucocorticoids, thyroid function, glucagon-like peptide 1 (GLP-1), ghrelin, insulin-like growth factor-1 (IGF-1) and leptin. Leucine, for example, can alleviate the effect of dexamethasone on muscle protein accretion. Interestingly, amino acid transporters play an important role in thyroid function. Several amino acids have been shown to increase GLP-1 levels in non-diabetics when administered orally. Similarly, several amino acids increase ghrelin levels in different species while cysteine can decrease it in mice. There is evidence to suggest that the arginine/NO pathway may be involved in modulating some of the effects of ghrelin on cells. In regard to IGF-1, branched chain amino acids can increase levels in adults while tryptophan and phenylalanine have been shown to increase levels in infants. Finally, leptin levels can be elevated by branched chain amino acids while restricting leucine in high fat diets can increase leptin sensitivity.
Collapse
|
12
|
The effect of steroid hormone on the expression of the calcium-processing proteins in the immature female rat brain. J Chem Neuroanat 2020; 105:101767. [PMID: 32061997 DOI: 10.1016/j.jchemneu.2020.101767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
The cytosolic calcium concentration is regulated by calcium-processing proteins such as transient receptor potential cation channel subfamily V member 5 (TRPV5), TRPV6, sodium-calcium exchanger 1 (NCX1), and plasma membrane Ca2+ ATPase 1 (PMCA1). Those calcium-processing proteins are important for physiological functions in the brain. The effects of steroid hormones on calcium-processing protein expressions in the brains are unknown. Thus, the effects of steroid hormones on the distribution, localization, and expressions of calcium-processing proteins in the brain were analyzed. Immature female rats were injected with estrogen (E2), progesterone (P4), dexamethasone (DEX), and their antagonists (ICI 182,780 and RU486). We found that TRPV5 and TRPV6 proteins were highly expressed in the cerebral cortex (CT), hypothalamus (HY), and brain stem (BS) compared to that in the olfactory bulb (OB) and cerebellum (CB). Also, the NCX1 protein was highly expressed in CT and BS compared to that in OB, HY, and CB, and PMCA1 protein was highly expressed in CT compared to that in other brain regions. Furthermore, expression levels of TRPV5, TRPV6, NCX1, and PMCA1 proteins were regulated by E2, P4, and/or DEX in the CT and HY. In summary, calcium-processing proteins are widely expressed in the immature rat brain, and expressions of calcium-processing proteins in CT and HY indicated that they may regulate by E2, P4, and/or DEX and can be attenuated by antagonist treatment. These results indicate that steroid hormone regulation of TRPV5, TRPV6, NCX1, and PMCA1 proteins may serve as a critical regulator of cytosolic calcium absorption and release in the brain.
Collapse
|
13
|
Park SY, Yoo YM, Jung EM, Jeung EB. Distribution of and steroid hormone effects on calbindin-D 9k in the immature rat brain. Brain Res Bull 2019; 152:225-235. [PMID: 31357009 DOI: 10.1016/j.brainresbull.2019.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Calbindin-D9k (CaBP-9k), one of the major calcium-binding and calcium-buffering proteins, is important in the physiological functioning of organs. The neuroanatomical localization of CaBP-9k in the rodent brain has not been reported; thus, this study investigated the neuroanatomical distribution of CaBP-9k and the regulation of CaBP-9k expression on steroid hormones in the immature rat brain. To confirm the influence of steroid hormones on CaBP-9k expression, immature female rats were injected for 5 days with estrogen (E2), progesterone (P4), dexamethasone (DEX), and their antagonists (ICI 182, 780 and RU 486). The localization and expression of the CaBP-9k protein in brain regions were identified by immunofluorescence and western blot assays, respectively. We observed that CaBP-9k expression was especially strong in hypothalamus, cerebellum, and brain stem. In addition, CaBP-9k was colocalized with mature-, GABAergic, dopaminergic, and oxytocinergic neurons. We also observed that the CaBP-9k protein level was significantly increased by P4 and reversed by antagonist RU 486 treatment in immature rat brain. In summary, CaBP-9k positive cells have a wide distribution in the immature rat brain, and CaBP-9k expression is regulated by P4. We suggest that CaBP-9k expression regulated by steroid hormone may serve as an important regulator of cytosolic calcium concentration in the brain.
Collapse
Affiliation(s)
- Seon Young Park
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| |
Collapse
|
14
|
Inorganic Polyphosphate Regulates AMPA and NMDA Receptors and Protects Against Glutamate Excitotoxicity via Activation of P2Y Receptors. J Neurosci 2019; 39:6038-6048. [PMID: 31147524 DOI: 10.1523/jneurosci.0314-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Glutamate is one of the most important neurotransmitters in the process of signal transduction in the CNS. Excessive amounts of this neurotransmitter lead to glutamate excitotoxicity, which is accountable for neuronal death in acute neurological disorders, including stroke and trauma, and in neurodegenerative diseases. Inorganic polyphosphate (PolyP) plays multiple roles in the mammalian brain, including function as a calcium-dependent gliotransmitter mediating communication between astrocytes, while its role in the regulation of neuronal activity is unknown. Here we studied the effect of PolyP on glutamate-induced calcium signal in primary rat neurons in both physiological and pathological conditions. We found that preincubation of primary neurons with PolyP reduced glutamate-induced and AMPA-induced but not the NMDA-induced calcium signal. However, in rat hippocampal acute slices, PolyP reduced ion flux through NMDA and AMPA receptors in native neurons. The effect of PolyP on glutamate and specifically on the AMPA receptors was dependent on the presence of P2Y1 but not of P2X receptor inhibitors and also could be mimicked by P2Y1 agonist 2MeSADP. Preincubation of cortical neurons with PolyP significantly reduced the initial calcium peak as well as the number of neurons with delayed calcium deregulation in response to high concentrations of glutamate and resulted in protection of neurons against glutamate-induced cell death. As a result, activation of P2Y1 receptors by PolyP reduced calcium signal acting through AMPA receptors, thus protecting neurons against glutamate excitotoxicity by reduction of the calcium overload and restoration of mitochondrial function.SIGNIFICANCE STATEMENT One of the oldest polymers in the evolution of living matter is the inorganic polyphosphate (PolyP). It is shown to play a role of gliotransmitter in the brain; however, the role of polyphosphate in neuronal signaling is not clear. Here we demonstrate that inorganic polyphosphate is able to reduce calcium signaling induced by physiological or high concentrations of glutamate. The effect of polyphosphate on glutamate-induced calcium signal in neurons is due to the effect of this polymer on the AMPA receptors. The effect of PolyP on glutamate-induced and AMPA-induced calcium signal is dependent on P2Y receptor antagonist. The ability of PolyP to restrict the glutamate-induced calcium signal lies in the basis of its protection of neurons against glutamate excitotoxicity.
Collapse
|
15
|
Suwanjang W, Wu KLH, Prachayasittikul S, Chetsawang B, Charngkaew K. Mitochondrial Dynamics Impairment in Dexamethasone-Treated Neuronal Cells. Neurochem Res 2019; 44:1567-1581. [PMID: 30888577 DOI: 10.1007/s11064-019-02779-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand.
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 73170, Nakhonpathom, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, 10700, Bangkok, Thailand
| |
Collapse
|
16
|
Prasad H, Dang DK, Kondapalli KC, Natarajan N, Cebotaru V, Rao R. NHA2 promotes cyst development in an in vitro model of polycystic kidney disease. J Physiol 2019; 597:499-519. [PMID: 30242840 PMCID: PMC6332743 DOI: 10.1113/jp276796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Significant and selective up-regulation of the Na+ /H+ exchanger NHA2 (SLC9B2) was observed in cysts of patients with autosomal dominant polycystic kidney disease. Using the MDCK cell model of cystogenesis, it was found that NHA2 increases cyst size. Silencing or pharmacological inhibition of NHA2 inhibits cyst formation in vitro. Polycystin-1 represses NHA2 expression via Ca2+ /NFAT signalling whereas the dominant negative membrane-anchored C-terminal fragment (PC1-MAT) increased NHA2 levels. Drugs (caffeine, theophylline) and hormones (vasopressin, aldosterone) known to exacerbate cysts elicit NHA2 expression. Taken together, the findings reveal NHA2 as a potential new player in salt and water homeostasis in the kidney and in the pathogenesis of polycystic kidney disease. ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2 encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The molecular pathways linking polycystins to cyst development in ADPKD are still unclear. Intracystic fluid secretion via ion transporters and channels plays a crucial role in cyst expansion in ADPKD. Unexpectedly, we observed significant and selective up-regulation of NHA2, a member of the SLC9B family of Na+ /H+ exchangers, that correlated with cyst size and disease severity in ADPKD patients. Using three-dimensional cultures of MDCK cells to model cystogenesis in vitro, we showed that ectopic expression of NHA2 is causal to increased cyst size. Induction of PC1 in MDCK cells inhibited NHA2 expression with concordant inhibition of Ca2+ influx through store-dependent and -independent pathways, whereas reciprocal activation of Ca2+ influx by the dominant negative membrane-anchored C-terminal tail fragment of PC1 elevated NHA2. We showed that NHA2 is a target of Ca2+ /NFAT signalling and is transcriptionally induced by methylxanthine drugs such as caffeine and theophylline, which are contraindicated in ADPKD patients. Finally, we observed robust induction of NHA2 by vasopressin, which is physiologically consistent with increased levels of circulating vasopressin and up-regulation of vasopressin V2 receptors in ADPKD. Our findings have mechanistic implications on the emerging use of vasopressin V2 receptor antagonists such as tolvaptan as safe and effective therapy for polycystic kidney disease and reveal a potential new regulator of transepithelial salt and water transport in the kidney.
Collapse
Affiliation(s)
- Hari Prasad
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Donna K. Dang
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kalyan C. Kondapalli
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Niranjana Natarajan
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Valeriu Cebotaru
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Rajini Rao
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
17
|
Angelova PR, Vinogradova D, Neganova ME, Serkova TP, Sokolov VV, Bachurin SO, Shevtsova EF, Abramov AY. Pharmacological Sequestration of Mitochondrial Calcium Uptake Protects Neurons Against Glutamate Excitotoxicity. Mol Neurobiol 2018; 56:2244-2255. [PMID: 30008072 PMCID: PMC6394642 DOI: 10.1007/s12035-018-1204-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022]
Abstract
Neuronal excitotoxicity which is induced by exposure to excessive extracellular glutamate is shown to be involved in neuronal cell death in acute brain injury and a number of neurological diseases. High concentration of glutamate induces calcium deregulation which results in mitochondrial calcium overload and mitochondrial depolarization that triggers the mechanism of cell death. Inhibition of mitochondrial calcium uptake could be potentially neuroprotective but complete inhibition of mitochondrial calcium uniporter could result in the loss of some physiological processes linked to Ca2+ in mitochondria. Here, we found that a novel compound, TG-2112x, can inhibit only the lower concentrations mitochondrial calcium uptake (induced by 100 nM-5 μM) but not the uptake induced by higher concentrations of calcium (10 μM and higher). This effect was not associated with changes in mitochondrial membrane potential and cellular respiration. However, a pre-treatment of neurons with TG-2112x protected the neurons against calcium overload upon application of toxic concentrations of glutamate. Thus, sequestration of mitochondrial calcium uptake protected the neurons against glutamate-induced mitochondrial depolarization and cell death. In our hands, TG-2112x was also protective against ionomycin-induced cell death. Hence, low rate mitochondrial calcium uptake plays an underestimated role in mitochondrial function, and its inhibition could protect neurons against calcium overload and cell death in glutamate excitotoxicity.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Darya Vinogradova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Tatiana P Serkova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Vladimir V Sokolov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Elena F Shevtsova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia.
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
18
|
Neurobehavioral and biochemical modulation following administration of MgO and ZnO nanoparticles in the presence and absence of acute stress. Life Sci 2018; 203:72-82. [DOI: 10.1016/j.lfs.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/11/2022]
|
19
|
Concepcion KR, Zhang L. Corticosteroids and perinatal hypoxic-ischemic brain injury. Drug Discov Today 2018; 23:1718-1732. [PMID: 29778695 DOI: 10.1016/j.drudis.2018.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/13/2018] [Accepted: 05/11/2018] [Indexed: 01/15/2023]
Abstract
Perinatal hypoxic-ischemic (HI) brain injury is the major cause of neonatal mortality and severe long-term neurological morbidity. Yet, the effective therapeutic interventions currently available are extremely limited. Corticosteroids act on both mineralocorticoid (MR) and glucocorticoid (GR) receptors and modulate inflammation and apoptosis in the brain. Neuroinflammatory response to acute cerebral HI is a major contributor to the pathophysiology of perinatal brain injury. Here, we give an overview of current knowledge of corticosteroid-mediated modulations of inflammation and apoptosis in the neonatal brain, focusing on key regulatory cells of the innate and adaptive immune response. In addition, we provide new insights into targets of MR and GR in potential therapeutic strategies that could be beneficial for the treatment of infants with HI brain injury.
Collapse
Affiliation(s)
- Katherine R Concepcion
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
20
|
Abdoul-Azize S, Dubus I, Vannier JP. Improvement of dexamethasone sensitivity by chelation of intracellular Ca2+ in pediatric acute lymphoblastic leukemia cells through the prosurvival kinase ERK1/2 deactivation. Oncotarget 2018; 8:27339-27352. [PMID: 28423696 PMCID: PMC5432339 DOI: 10.18632/oncotarget.16039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
Previous studies have demonstrated that glucocorticoid hormones, including dexamethasone, induced alterations in intracellular calcium homeostasis in acute lymphoblastic leukemia (ALL) cells. However, the mechanism by which intracellular calcium homeostasis participates in dexamethasone sensitivity and resistance on ALL cells remains elusive. Here, we found that treatment of cells with dexamethasone resulted in increased intracellular calcium concentrations through store-operated calcium entry stimulation, which was curtailed by store-operated calcium channel blockers. We show that BAPTA-AM, an intracellular Ca2+ chelator, synergistically enhances dexamethasone lethality in two human ALL cell lines and in three primary specimens. This effect correlated with the inhibition of the prosurvival kinase ERK1/2 signaling pathway. Chelating intracellular calcium with Bapta-AM or inhibiting ERK1/2 with PD98059 significantly potentiated dexamethasone-induced mitochondrial membrane potential collapse, reactive oxygen species production, cytochrome c release, caspase-3 activity, and cell death. Moreover, we show that thapsigargin elevates intracellular free calcium ion level, and activates ERK1/2 signaling, resulting in the inhibition of dexamethasone-induced ALL cells apoptosis. Together, these results indicate that calcium-related ERK1/2 signaling pathway contributes to protect cells from dexamethasone sensitivity by limiting mitochondrial apoptotic pathway. This report provides a novel resistance pathway underlying the regulatory effect of dexamethasone on ALL cells.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| | - Isabelle Dubus
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| | - Jean-Pierre Vannier
- Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.,Service Immuno-Hémato-Oncologie Pédiatrique, CHU Charles Nicolle, 76031 ROUEN Cedex, France.,Current address: Unité Inserm U1234/Université de Rouen/IRIB, Rouen, France
| |
Collapse
|
21
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
22
|
de Vargas LDS, Gonçalves R, Lara MVS, Costa-Ferro ZSM, Salamoni SD, Domingues MF, Piovesan AR, de Assis DR, Vinade L, Corrado AP, Alves-Do-Prado W, Correia-de-Sá P, da Costa JC, Izquierdo I, Dal Belo CA, Mello-Carpes PB. Methylprednisolone as a memory enhancer in rats: Effects on aversive memory, long-term potentiation and calcium influx. Brain Res 2017; 1670:44-51. [PMID: 28606783 DOI: 10.1016/j.brainres.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
It is well recognized that stress or glucocorticoids hormones treatment can modulate memory performance in both directions, either impairing or enhancing it. Despite the high number of studies aiming at explaining the effects of glucocorticoids on memory, this has not yet been completely elucidated. Here, we demonstrate that a low daily dose of methylprednisolone (MP, 5mg/kg, i.p.) administered for 10-days favors aversive memory persistence in adult rats, without any effect on the exploring behavior, locomotor activity, anxiety levels and pain perception. Enhanced performance on the inhibitory avoidance task was correlated with long-term potentiation (LTP), a phenomenon that was strengthen in hippocampal slices of rats injected with MP (5mg/kg) during 10days. Additionally, in vitro incubation with MP (30-300µM) concentration-dependently increased intracellular [Ca2+]i in cultured hippocampal neurons depolarized by KCl (35mM). In conclusion, a low daily dose of MP for 10days may promote aversive memory persistence in rats.
Collapse
Affiliation(s)
| | - Rithiele Gonçalves
- Physiology Research Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Zaquer S M Costa-Ferro
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Simone Denise Salamoni
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Michelle Flores Domingues
- Graduate Program in Cell and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Neurotoxins, Laneurotox, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Graduate Program in Cell and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Neurotoxins, Laneurotox, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Dênis Reis de Assis
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Lucia Vinade
- Laboratory of Neurobiology and Toxinology, Lanetox, Federal University of Pampa, São Gabriel, RS, Brazil
| | - Alexandre P Corrado
- Department of Pharmacology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Alves-Do-Prado
- Department of Pharmacology and Therapeutics, State University of Maringa, PR, Brazil
| | - Paulo Correia-de-Sá
- Laboratory of Pharmacology and Neurobiology, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal
| | - Jaderson Costa da Costa
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Ivan Izquierdo
- Centre of Memory, Brain Institute of Rio Grande do Sul, InsCer, PUCRS, Porto Alegre, RS, Brazil
| | - Cháriston A Dal Belo
- Laboratory of Neurobiology and Toxinology, Lanetox, Federal University of Pampa, São Gabriel, RS, Brazil
| | | |
Collapse
|
23
|
Abdoul-Azize S, Dubus I, Vannier JP. [Modulation of glucocorticoid sensitivity in acute lymphoblastic leukemia: Pyr3, a new therapeutic tool?]. Med Sci (Paris) 2017; 33:130-132. [PMID: 28240201 DOI: 10.1051/medsci/20173302005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Souleymane Abdoul-Azize
- Micro-environnement et renouvellement cellulaire intégré, MERCI EA 3829, faculté de médecine et pharmacie, université de Rouen, 22, boulevard Gambetta, 76183 Rouen Cedex, France
| | - Isabelle Dubus
- Micro-environnement et renouvellement cellulaire intégré, MERCI EA 3829, faculté de médecine et pharmacie, université de Rouen, 22, boulevard Gambetta, 76183 Rouen Cedex, France
| | - Jean-Pierre Vannier
- Micro-environnement et renouvellement cellulaire intégré, MERCI EA 3829, faculté de médecine et pharmacie, université de Rouen, 22, boulevard Gambetta, 76183 Rouen Cedex, France - Service immuno-hémato-oncologie pédiatrique, CHU Charles Nicolle, 1, rue de Germont, 76031 Rouen Cedex, France
| |
Collapse
|
24
|
Wang GY, Zhu ZM, Cui S, Wang JH. Glucocorticoid Induces Incoordination between Glutamatergic and GABAergic Neurons in the Amygdala. PLoS One 2016; 11:e0166535. [PMID: 27861545 PMCID: PMC5115758 DOI: 10.1371/journal.pone.0166535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stressful life leads to mood disorders. Chronic mild stress is presumably major etiology for depression, and acute severe stress leads to anxiety. These stressful situations may impair hypothalamus-pituitary-adrenal axis and in turn induce synapse dysfunction. However, it remains elusive how the stress hormones mess up subcellular compartments and interactions between excitatory and inhibitory neurons, which we have investigated in mouse amygdala, a structure related to emotional states. METHODS AND RESULTS Dexamethasone was chronically given by intraperitoneal injection once a day for one week or was acutely washed into the brain slices. The neuronal spikes and synaptic transmission were recorded by whole-cell patching in amygdala neurons of brain slices. The chronic or acute administration of dexamethasone downregulates glutamate release as well as upregulates GABA release and GABAergic neuron spiking. The chronic administration of dexamethasone also enhances the responsiveness of GABA receptors. CONCLUSION The upregulation of GABAergic neurons and the downregulation of glutamatergic neurons by glucocorticoid impair their balance in the amygdala, which leads to emotional disorders during stress.
Collapse
Affiliation(s)
- Guang-Yan Wang
- Qingdao University, School of Pharmacy, 38 Dengzhou, Shandong, China
| | - Zhao-Ming Zhu
- Qingdao University, School of Pharmacy, 38 Dengzhou, Shandong, China
| | - Shan Cui
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, 38 Dengzhou, Shandong, China
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Zhang C, Wang C, Ren J, Guo X, Yun K. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress. Int J Mol Sci 2016; 17:ijms17101523. [PMID: 27783050 PMCID: PMC5085616 DOI: 10.3390/ijms17101523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 12/24/2022] Open
Abstract
Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| | - Chendan Wang
- Department of Nephrology, People's Hospital of Shanxi Province, 29 Shuang-ta Street, Taiyuan 030012, China.
| | - Jianbo Ren
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| | - Xiangjie Guo
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| | - Keming Yun
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| |
Collapse
|
26
|
Comparison of In Vivo Gene Expression Profiling of RPE/Choroid following Intravitreal Injection of Dexamethasone and Triamcinolone Acetonide. J Ophthalmol 2016; 2016:9856736. [PMID: 27429799 PMCID: PMC4939337 DOI: 10.1155/2016/9856736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose. To identify retinal pigment epithelium (RPE)/choroid genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care. Methods. Differential gene expression of over 34,000 well-characterized mouse genes in the RPE/choroid of 6-week-old C57BL/6J mice was analyzed after intravitreal steroid injections at 1 week and 1 month postinjection, using Affymetrix Mouse Genome 430 2.0 microarrays. The data were analyzed using GeneSpring GX 12.5 and Ingenuity Pathway Analysis (IPA) microarray analysis software for biologically relevant changes. Results. Both triamcinolone and dexamethasone caused differential activation of genes involved in “Circadian Rhythm Signaling” pathway at both time points tested. Triamcinolone (TAA) uniquely induced significant changes in gene expression in “Calcium Signaling” (1 week) and “Glutamate Receptor Signaling” pathways (1 month). In contrast, dexamethasone (Dex) affected the “GABA Receptor Signaling” (1 week) and “Serotonin Receptor Signaling” (1 month) pathways. Understanding how intraocular steroids affect the gene expression of RPE/choroid is clinically relevant. Conclusions. This in vivo study has elucidated several genes and pathways that are potentially altering the circadian rhythms and several other neurotransmitter pathways in RPE/choroid during intravitreal steroid injections, which likely has consequences in the dysregulation of RPE function and neurodegeneration of the retina.
Collapse
|
27
|
Divolis G, Mavroeidi P, Mavrofrydi O, Papazafiri P. Differential effects of calcium on PI3K-Akt and HIF-1α survival pathways. Cell Biol Toxicol 2016; 32:437-49. [PMID: 27344565 DOI: 10.1007/s10565-016-9345-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Calcium signaling participates in the regulation of numberless cellular functions including cell cycle progression and cellular migration, important processes for cancer expansion. Cancer cell growth, migration, and invasion are typically supported by PI3K/Akt activation, while a hypoxic environment is critical in cancer development. Accordingly, in the present study, we aimed at investigating whether perturbations in calcium homeostasis induce alterations of HIF-1α and activate Akt levels in epithelial A549 and A431 cells. Survival was drastically reduced in the presence of calcium chelator BAPTA-AM and thapsigargin, a SERCA inhibitor inducing store-operated calcium entry, to a lesser extent. Calcium chelation provoked a transient but strong upregulation of HIF-1α protein levels and accumulation in the nucleus, whereas in the presence of thapsigargin, HIF-1α levels were rapidly abolished before reaching and exceeding control levels. Despite cell death, calcium chelation merely inhibited Akt, which was significantly activated in the presence of thapsigargin. Moreover, when store-operated calcium entry was simulated by reintroducing calcium ions in cell suspensions, Akt was rapidly activated in the absence of any growth factor. These data further underscore the growing importance of calcium entry and directly link this elementary event of calcium homeostasis to the Akt pathway, which is commonly deregulated in cancer.
Collapse
Affiliation(s)
- Georgios Divolis
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece.,Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Panagiota Mavroeidi
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece
| | - Olga Mavrofrydi
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece.
| |
Collapse
|
28
|
Abdoul-Azize S, Buquet C, Vannier JP, Dubus I. Pyr3, a TRPC3 channel blocker, potentiates dexamethasone sensitivity and apoptosis in acute lymphoblastic leukemia cells by disturbing Ca(2+) signaling, mitochondrial membrane potential changes and reactive oxygen species production. Eur J Pharmacol 2016; 784:90-8. [PMID: 27179991 DOI: 10.1016/j.ejphar.2016.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/02/2023]
Abstract
Dexamethasone (Dex) is used as a chemotherapeutic drug in the treatment of acute lymphoblastic leukemia (ALL) because of its capacity to induce apoptosis. However, some ALL patients acquire resistance to glucocorticoids (GC). Thus, it is important to explore new agents to overcome GC resistance. The aim of the present work was to assess the ability of Pyr3, a selective inhibitor of transient receptor potential canonical 3 (TRPC3), to sensitize human ALL cells to Dex. We show here, for the first time, that Pyr3 enhances Dex sensitivity through the distraction of Dex-mediated Ca(2+) signaling in ALL cells (in vitro) and primary blasts (ex vivo) associated with mitochondrial-mediated reactive oxygen species production in ALL cells. Pyr3 alone induced Ca(2+) signaling via only endoplasmic reticulum-released Ca(2+) and exerted inhibitory effect on store-operated Ca(2+) entry in dose-dependent manner in ALL cell lines. Pre-incubation of cells with Pyr3 significantly curtailed the thapsigargin- and Dex-evoked Ca(2+) signaling in ALL cell lines. Pyr3 synergistically potentiated Dex lethality, as shown by the induction of cell mortality, G2/M cell cycle arrest and apoptosis in ALL cell lines. Moreover, Pyr3 disrupted Dex-mediated Ca(2+) signaling and increased the sensitivity of Dex-induced cell death in primary blasts from ALL patients. Additional analysis showed that co-treatment with Dex and Pyr3 results in mitochondrial membrane potential depolarization and reactive oxygen species production in ALL cells. Together, Pyr3 exhibited potential therapeutic benefit in combination with Dex to inverse glucocorticoid resistance in human ALL and probably in other lymphoid malignancies.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.
| | - Catherine Buquet
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France
| | - Jean-Pierre Vannier
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France; Service Immuno-Hémato-Oncologie Pédiatrique, CHU Charles Nicolle, 76031 Rouen Cedex, France
| | - Isabelle Dubus
- Groupe de Recherche "Micro-Environnement et Renouvellement Cellulaire Intégré" MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France
| |
Collapse
|
29
|
DHEA-induced modulation of renal gluconeogenesis, insulin sensitivity and plasma lipid profile in the control- and dexamethasone-treated rabbits. Metabolic studies. Biochimie 2016; 121:87-101. [DOI: 10.1016/j.biochi.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
|
30
|
Pearson-Leary J, Osborne DM, McNay EC. Role of Glia in Stress-Induced Enhancement and Impairment of Memory. Front Integr Neurosci 2016; 9:63. [PMID: 26793072 PMCID: PMC4707238 DOI: 10.3389/fnint.2015.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/05/2015] [Indexed: 12/20/2022] Open
Abstract
Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized.
Collapse
Affiliation(s)
- Jiah Pearson-Leary
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | | - Ewan C McNay
- Behavioral Neuroscience and Biology, University at Albany Albany, NY, USA
| |
Collapse
|
31
|
Kalafatakis K, Russell GM, Zarros A, Lightman SL. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics. Neurosci Biobehav Rev 2015; 61:12-25. [PMID: 26656793 DOI: 10.1016/j.neubiorev.2015.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Apostolos Zarros
- Research Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| |
Collapse
|
32
|
Berry JN, Saunders MA, Sharrett-Field LJ, Reynolds AR, Bardo MT, Pauly JR, Prendergast MA. Corticosterone enhances N-methyl-D-aspartate receptor signaling to promote isolated ventral tegmental area activity in a reconstituted mesolimbic dopamine pathway. Brain Res Bull 2015; 120:159-65. [PMID: 26631585 DOI: 10.1016/j.brainresbull.2015.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/30/2022]
Abstract
Elevations in circulating corticosteroids during periods of stress may influence activity of the mesolimbic dopamine reward pathway by increasing glutamatergic N-methyl-D-aspartate (NMDA) receptor expression and/or function in a glucocorticoid receptor-dependent manner. The current study employed organotypic co-cultures of the ventral tegmental area (VTA) and nucleus accumbens (NAcc) to examine the effects of corticosterone exposure on NMDA receptor-mediated neuronal viability. Co-cultures were pre-exposed to vehicle or corticosterone (CORT; 1 μM) for 5 days prior to a 24 h co-exposure to NMDA (200 μM). Co-cultures pre-exposed to a non-toxic concentration of corticosterone and subsequently NMDA showed significant neurotoxicity in the VTA only. This was evidenced by increases in propidium iodide uptake as well as decreases in immunoreactivity of the neuronal nuclear protein (NeuN). Co-exposure to the NMDA receptor antagonist 2-amino-7-phosphonovaleric acid (APV; 50 μM) or the glucocorticoid receptor (GR) antagonist mifepristone (10 μM) attenuated neurotoxicity. In contrast, the combination of corticosterone and NMDA did not produce any significant effects on either measure within the NAcc. Cultures of the VTA and NAcc maintained without synaptic contact showed no response to CORT or NMDA. These results demonstrate the ability to functionally reconstitute key regions of the mesolimbic reward pathway ex vivo and to reveal a GR-dependent enhancement of NMDA receptor-dependent signaling in the VTA.
Collapse
Affiliation(s)
- Jennifer N Berry
- Department of Psychology, University of Kentucky, Lexington, KY 40536-0509, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building, 741 S. Limestone St., Lexington, KY 40536-0509, United States.
| | - Meredith A Saunders
- Department of Psychology, University of Kentucky, Lexington, KY 40536-0509, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building, 741 S. Limestone St., Lexington, KY 40536-0509, United States
| | - Lynda J Sharrett-Field
- Department of Psychology, University of Kentucky, Lexington, KY 40536-0509, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building, 741 S. Limestone St., Lexington, KY 40536-0509, United States
| | - Anna R Reynolds
- Department of Psychology, University of Kentucky, Lexington, KY 40536-0509, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building, 741 S. Limestone St., Lexington, KY 40536-0509, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536-0509, United States
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0509, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building, 741 S. Limestone St., Lexington, KY 40536-0509, United States
| | - Mark A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY 40536-0509, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Biomedical and Biological Sciences Research Building, 741 S. Limestone St., Lexington, KY 40536-0509, United States
| |
Collapse
|
33
|
Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet 2015; 96:657-65. [PMID: 25799108 PMCID: PMC4385177 DOI: 10.1016/j.ajhg.2015.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
Reports of primary isolated dystonia inherited in an autosomal-recessive (AR) manner, often lumped together as “DYT2 dystonia,” have appeared in the scientific literature for several decades, but no genetic cause has been identified to date. Using a combination of homozygosity mapping and whole-exome sequencing in a consanguineous kindred affected by AR isolated dystonia, we identified homozygous mutations in HPCA, a gene encoding a neuronal calcium sensor protein found almost exclusively in the brain and at particularly high levels in the striatum, as the cause of disease in this family. Subsequently, compound-heterozygous mutations in HPCA were also identified in a second independent kindred affected by AR isolated dystonia. Functional studies suggest that hippocalcin might play a role in regulating voltage-dependent calcium channels. The identification of mutations in HPCA as a cause of AR primary isolated dystonia paves the way for further studies to assess whether “DYT2 dystonia” is a genetically homogeneous condition or not.
Collapse
|
34
|
Angelova PR, Horrocks MH, Klenerman D, Gandhi S, Abramov AY, Shchepinov MS. Lipid peroxidation is essential for α-synuclein-induced cell death. J Neurochem 2015; 133:582-9. [PMID: 25580849 PMCID: PMC4471127 DOI: 10.1111/jnc.13024] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 12/30/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.
![]() We have found that aggregated α‐synuclein‐induced production of reactive oxygen species (ROS) that subsequently stimulates lipid peroxidation and cell death in neurons and astrocytes. Specific inhibition of lipid peroxidation by incubation with reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of α‐synuclein on lipid peroxidation and cell death.
Collapse
|
35
|
Alteration of the threshold stimulus for intraoperative brain mapping via use of antiepileptic medications. INTERDISCIPLINARY NEUROSURGERY 2015. [DOI: 10.1016/j.inat.2014.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Markham A, Bains R, Franklin P, Spedding M. Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: how important is BDNF? Br J Pharmacol 2014; 171:2206-29. [PMID: 24720259 PMCID: PMC3976631 DOI: 10.1111/bph.12531] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
The brain is at the very limit of its energy supply and has evolved specific means of adapting function to energy supply, of which mitochondria form a crucial link. Neurotrophic and inflammatory processes may not only have opposite effects on neuroplasticity, but also involve opposite effects on mitochondrial oxidative phosphorylation and glycolytic processes, respectively, modulated by stress and glucocorticoids, which also have marked effects on mood. Neurodegenerative processes show marked disorders in oxidative metabolism in key brain areas, sometimes decades before symptoms appear (Parkinson's and Alzheimer's diseases). We argue that brain-derived neurotrophic factor couples activity to changes in respiratory efficiency and these effects may be opposed by inflammatory cytokines, a key factor in neurodegenerative processes.
Collapse
Affiliation(s)
- A Markham
- Department of Pharmacy, Health & Well Being, Faculty of Applied Sciences, University of SunderlandSunderland, UK
| | - R Bains
- University of PortsmouthPortsmouth, UK
| | - P Franklin
- Department of Pharmacy, Health & Well Being, Faculty of Applied Sciences, University of SunderlandSunderland, UK
| | - M Spedding
- Spedding Research Solutions SARLLe Vesinet, France
| |
Collapse
|