1
|
Narayanasamy S, Ong HL, Ambudkar IS. A Deep Dive into the N-Terminus of STIM Proteins: Structure-Function Analysis and Evolutionary Significance of the Functional Domains. Biomolecules 2024; 14:1200. [PMID: 39456133 PMCID: PMC11506743 DOI: 10.3390/biom14101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Calcium is an important second messenger that is involved in almost all cellular processes. Disruptions in the regulation of intracellular Ca2+ levels ([Ca2+]i) adversely impact normal physiological function and can contribute to various diseased conditions. STIM and Orai proteins play important roles in maintaining [Ca2+]i through store-operated Ca2+ entry (SOCE), with STIM being the primary regulatory protein that governs the function of Orai channels. STIM1 and STIM2 are single-pass ER-transmembrane proteins with their N- and C-termini located in the ER lumen and cytoplasm, respectively. The N-terminal EF-SAM domain of STIMs senses [Ca2+]ER changes, while the C-terminus mediates clustering in ER-PM junctions and gating of Orai1. ER-Ca2+ store depletion triggers activation of the STIM proteins, which involves their multimerization and clustering in ER-PM junctions, where they recruit and activate Orai1 channels. In this review, we will discuss the structure, organization, and function of EF-hand motifs and the SAM domain of STIM proteins in relation to those of other eukaryotic proteins.
Collapse
Affiliation(s)
| | | | - Indu S. Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA; (S.N.); (H.L.O.)
| |
Collapse
|
2
|
Ahsan N, Kataya ARA, Rao RSP, Swatek KN, Wilson RS, Meyer LJ, Tovar-Mendez A, Stevenson S, Maszkowska J, Dobrowolska G, Yao Q, Xu D, Thelen JJ. Decoding Arabidopsis thaliana CPK/SnRK Superfamily Kinase Client Signaling Networks Using Peptide Library and Mass Spectrometry. PLANTS (BASEL, SWITZERLAND) 2024; 13:1481. [PMID: 38891291 PMCID: PMC11174488 DOI: 10.3390/plants13111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Members of the calcium-dependent protein kinase (CDPK/CPK) and SNF-related protein kinase (SnRK) superfamilies are commonly found in plants and some protists. Our knowledge of client specificity of the members of this superfamily is fragmentary. As this family is represented by over 30 members in Arabidopsis thaliana, the identification of kinase-specific and overlapping client relationships is crucial to our understanding the nuances of this large family of kinases as directed towards signal transduction pathways. Herein, we used the kinase client (KiC) assay-a relative, quantitative, high-throughput mass spectrometry-based in vitro phosphorylation assay-to identify and characterize potential CPK/SnRK targets of Arabidopsis. Eight CPKs (1, 3, 6, 8, 17, 24, 28, and 32), four SnRKs (subclass 1 and 2), and PPCK1 and PPCK2 were screened against a synthetic peptide library that contains 2095 peptides and 2661 known phosphorylation sites. A total of 625 in vitro phosphorylation sites corresponding to 203 non-redundant proteins were identified. The most promiscuous kinase, CPK17, had 105 candidate target proteins, many of which had already been discovered. Sequence analysis of the identified phosphopeptides revealed four motifs: LxRxxS, RxxSxxR, RxxS, and LxxxxS, that were significantly enriched among CPK/SnRK clients. The results provide insight into both CPK- and SnRK-specific and overlapping signaling network architectures and recapitulate many known in vivo relationships validating this large-scale approach towards discovering kinase targets.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Chemistry and Biochemistry, Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK 73019, USA
| | - Amr R. A. Kataya
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Shyama Prasad Rao
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru 575018, India
| | - Kirby N. Swatek
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rashaun S. Wilson
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Arvinas, Inc., New Haven, CT 06511, USA
| | - Louis J. Meyer
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Bayer Crop Science, St. Louis, MO 63141, USA
| | - Alejandro Tovar-Mendez
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Elemental Enzymes, St. Louis, MO 63132, USA
| | - Severin Stevenson
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland (G.D.)
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland (G.D.)
| | - Qiuming Yao
- Department of Electrical Engineering & Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Department of Electrical Engineering & Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jay J. Thelen
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Giovannetti M, Binci F, Navazio L, Genre A. Nonbinary fungal signals and calcium-mediated transduction in plant immunity and symbiosis. THE NEW PHYTOLOGIST 2024; 241:1393-1400. [PMID: 38013492 DOI: 10.1111/nph.19433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Chitin oligomers (COs) are among the most common and active fungal elicitors of plant responses. Short-chain COs from symbiotic arbuscular mycorrhizal fungi activate accommodation responses in the host root, while long-chain COs from pathogenic fungi are acknowledged to trigger defence responses. The modulation of intracellular calcium concentration - a common second messenger in a wide variety of plant signal transduction processes - plays a central role in both signalling pathways with distinct signature features. Nevertheless, mounting evidence suggests that plant immunity and symbiosis signalling partially overlap at multiple levels. Here, we elaborate on recent findings on this topic, highlighting the nonbinary nature of chitin-based fungal signals, their perception and their interpretation through Ca2+ -mediated intracellular signals. Based on this, we propose that plant perception of symbiotic and pathogenic fungi is less clear-cut than previously described and involves a more complex scenario in which partially overlapping and blurred signalling mechanisms act upstream of the unambiguous regulation of gene expression driving accommodation or defence responses.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Filippo Binci
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, 10125, Torino, Italy
| |
Collapse
|
4
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
5
|
Li X, Wang X, Ma X, Cai W, Liu Y, Song W, Fu B, Li S. Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1285488. [PMID: 38023912 PMCID: PMC10655083 DOI: 10.3389/fpls.2023.1285488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Alfalfa is an excellent leguminous forage crop that is widely cultivated worldwide, but its yield and quality are often affected by drought and soil salinization. Hyperosmolality-gated calcium-permeable channel (OSCA) proteins are hyperosmotic calcium ion (Ca2+) receptors that play an essential role in regulating plant growth, development, and abiotic stress responses. However, no systematic analysis of the OSCA gene family has been conducted in alfalfa. In this study, a total of 14 OSCA genes were identified from the alfalfa genome and classified into three groups based on their sequence composition and phylogenetic relationships. Gene structure, conserved motifs and functional domain prediction showed that all MsOSCA genes had the same functional domain DUF221. Cis-acting element analysis showed that MsOSCA genes had many cis-regulatory elements in response to abiotic or biotic stresses and hormones. Tissue expression pattern analysis demonstrated that the MsOSCA genes had tissue-specific expression; for example, MsOSCA12 was only expressed in roots and leaves but not in stem and petiole tissues. Furthermore, RT-qPCR results indicated that the expression of MsOSCA genes was induced by abiotic stress (drought and salt) and hormones (JA, SA, and ABA). In particular, the expression levels of MsOSCA3, MsOSCA5, MsOSCA12 and MsOSCA13 were significantly increased under drought and salt stress, and MsOSCA7, MsOSCA10, MsOSCA12 and MsOSCA13 genes exhibited significant upregulation under plant hormone treatments, indicating that these genes play a positive role in drought, salt and hormone responses. Subcellular localization results showed that the MsOSCA3 protein was localized on the plasma membrane. This study provides a basis for understanding the biological information and further functional analysis of the MsOSCA gene family and provides candidate genes for stress resistance breeding in alfalfa.
Collapse
Affiliation(s)
- Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xiaotong Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xuxia Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wenqi Cai
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co., Ltd, Hohhot, China
| | - Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| |
Collapse
|
6
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
7
|
Sadoine M, De Michele R, Župunski M, Grossmann G, Castro-Rodríguez V. Monitoring nutrients in plants with genetically encoded sensors: achievements and perspectives. PLANT PHYSIOLOGY 2023; 193:195-216. [PMID: 37307576 PMCID: PMC10469547 DOI: 10.1093/plphys/kiad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
Understanding mechanisms of nutrient allocation in organisms requires precise knowledge of the spatiotemporal dynamics of small molecules in vivo. Genetically encoded sensors are powerful tools for studying nutrient distribution and dynamics, as they enable minimally invasive monitoring of nutrient steady-state levels in situ. Numerous types of genetically encoded sensors for nutrients have been designed and applied in mammalian cells and fungi. However, to date, their application for visualizing changing nutrient levels in planta remains limited. Systematic sensor-based approaches could provide the quantitative, kinetic information on tissue-specific, cellular, and subcellular distributions and dynamics of nutrients in situ that is needed for the development of theoretical nutrient flux models that form the basis for future crop engineering. Here, we review various approaches that can be used to measure nutrients in planta with an overview over conventional techniques, as well as genetically encoded sensors currently available for nutrient monitoring, and discuss their strengths and limitations. We provide a list of currently available sensors and summarize approaches for their application at the level of cellular compartments and organelles. When used in combination with bioassays on intact organisms and precise, yet destructive analytical methods, the spatiotemporal resolution of sensors offers the prospect of a holistic understanding of nutrient flux in plants.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy, Palermo 90129, Italy
| | - Milan Župunski
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
8
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
9
|
Mantilla G, Peréz-Gordones MC, Cisneros-Montufar S, Benaim G, Navarro JC, Mendoza M, Ramírez-Iglesias JR. Structural Analysis and Diversity of Calmodulin-Binding Domains in Membrane and Intracellular Ca2+-ATPases. J Membr Biol 2022; 256:159-174. [PMID: 36454258 DOI: 10.1007/s00232-022-00275-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
The plasma membrane and autoinhibited Ca2+-ATPases contribute to the Ca2+ homeostasis in a wide variety of organisms. The enzymatic activity of these pumps is stimulated by calmodulin, which interacts with the target protein through the calmodulin-binding domain (CaMBD). Most information about this region is related to all calmodulin modulated proteins, which indicates general chemical properties and there is no established relation between Ca2+ pump sequences and taxonomic classification. Thus, the aim of this study was to perform an in silico analysis of the CaMBD from several Ca2+-ATPases, in order to determine their diversity and to detect specific patterns and amino acid selection in different species. Patterns related to potential and confirmed CaMBD were detected using sequences retrieved from the literature. The occurrence of these patterns was determined across 120 sequences from 17 taxonomical classes, which were analyzed by a phylogenetic tree to establish phylogenetic groups. Predicted physicochemical characteristics including hydropathy and net charge were calculated for each group of sequences. 22 Ca2+-ATPases sequences from animals, unicellular eukaryotes, and plants were retrieved from bioinformatic databases. These sequences allow us to establish the Patterns 1(GQILWVRGLTRLQTQ), 3(KNPSLEALQRW), and 4(SRWRRLQAEHVKK), which are present at the beginning of putative CaMBD of metazoan, parasites, and land plants. A pattern 2 (IRVVNAFR) was consistently found at the end of most analyzed sequences. The amino acid preference in the CaMBDs changed depending on the phylogenetic groups, with predominance of several aliphatic and charged residues, to confer amphiphilic properties. The results here displayed show a conserved mechanism to contribute to the Ca2+ homeostasis across evolution and may help to detect putative CaMBDs.
Collapse
Affiliation(s)
- Génesis Mantilla
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - María C Peréz-Gordones
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Soledad Cisneros-Montufar
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Faculty of Engineering and Applied Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Gustavo Benaim
- Instituto de Biología Experimental (IBE), Universidad Central de Venezuela (UCV), Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Juan-Carlos Navarro
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Marta Mendoza
- Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela
| | - José R Ramírez-Iglesias
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity. Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
- Program of Master in Biomedicine, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador.
| |
Collapse
|
10
|
Miao S, Li F, Han Y, Yao Z, Xu Z, Chen X, Liu J, Zhang Y, Wang A. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress. BMC Genomics 2022; 23:547. [PMID: 35915415 PMCID: PMC9341080 DOI: 10.1186/s12864-022-08675-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Background OSCA (hyperosmolality-gated calcium-permeable channel) is a calcium permeable cation channel protein that plays an important role in regulating plant signal transduction. It is involved in sensing changes in extracellular osmotic potential and an increase in Ca2+ concentration. S. habrochaites is a good genetic material for crop improvement against cold, late blight, planthopper and other diseases. Till date, there is no report on OSCA in S. habrochaites. Thus, in this study, we performed a genome-wide screen to identify OSCA genes in S. habrochaites and characterized their responses to biotic and abiotic stresses. Results A total of 11 ShOSCA genes distributed on 8 chromosomes were identified. Subcellular localization analysis showed that all members of ShOSCA localized on the plasma membrane and contained multiple stress-related cis acting elements. We observed that genome-wide duplication (WGD) occurred in the genetic evolution of ShOSCA5 (Solhab04g250600) and ShOSCA11 (Solhab12g051500). In addition, repeat events play an important role in the expansion of OSCA gene family. OSCA gene family of S. habrochaites used the time lines of expression studies by qRT-PCR, do indicate OSCAs responded to biotic stress (Botrytis cinerea) and abiotic stress (drought, low temperature and abscisic acid (ABA)). Among them, the expression of ShOSCAs changed significantly under four stresses. The resistance of silencing ShOSCA3 plants to the four stresses was reduced. Conclusion This study identified the OSCA gene family of S. habrochaites for the first time and analyzed ShOSCA3 has stronger resistance to low temperature, ABA and Botrytis cinerea stress. This study provides a theoretical basis for clarifying the biological function of OSCA, and lays a foundation for tomato crop improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08675-6.
Collapse
Affiliation(s)
- Shuang Miao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fengshuo Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Han
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhongtong Yao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Zeqian Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayin Liu
- College of Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China. .,College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. Int J Mol Sci 2022; 23:ijms23116158. [PMID: 35682837 PMCID: PMC9181413 DOI: 10.3390/ijms23116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels, leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype manipulation, modulation of gene expression, and as a novel cancer treatment. This review thoroughly explores both nsPEF’s history and applications, with emphasis on the cellular effects from a biophysics perspective, highlighting the role of ionic channels as a mechanistic driver of the increase in cytoplasmic Ca2+ concentration.
Collapse
Affiliation(s)
- Alvaro R. Ruiz-Fernández
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| | - Leonardo Campos
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Gonzalo Núñez
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
| | - Felipe Villanelo
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| |
Collapse
|
12
|
Spolaor S, Rovetta M, Nobile MS, Cazzaniga P, Tisi R, Besozzi D. Modeling Calcium Signaling in S. cerevisiae Highlights the Role and Regulation of the Calmodulin-Calcineurin Pathway in Response to Hypotonic Shock. Front Mol Biosci 2022; 9:856030. [PMID: 35664674 PMCID: PMC9158465 DOI: 10.3389/fmolb.2022.856030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Calcium homeostasis and signaling processes in Saccharomyces cerevisiae, as well as in any eukaryotic organism, depend on various transporters and channels located on both the plasma and intracellular membranes. The activity of these proteins is regulated by a number of feedback mechanisms that act through the calmodulin-calcineurin pathway. When exposed to hypotonic shock (HTS), yeast cells respond with an increased cytosolic calcium transient, which seems to be conditioned by the opening of stretch-activated channels. To better understand the role of each channel and transporter involved in the generation and recovery of the calcium transient—and of their feedback regulations—we defined and analyzed a mathematical model of the calcium signaling response to HTS in yeast cells. The model was validated by comparing the simulation outcomes with calcium concentration variations before and during the HTS response, which were observed experimentally in both wild-type and mutant strains. Our results show that calcium normally enters the cell through the High Affinity Calcium influx System and mechanosensitive channels. The increase of the plasma membrane tension, caused by HTS, boosts the opening probability of mechanosensitive channels. This event causes a sudden calcium pulse that is rapidly dissipated by the activity of the vacuolar transporter Pmc1. According to model simulations, the role of another vacuolar transporter, Vcx1, is instead marginal, unless calcineurin is inhibited or removed. Our results also suggest that the mechanosensitive channels are subject to a calcium-dependent feedback inhibition, possibly involving calmodulin. Noteworthy, the model predictions are in accordance with literature results concerning some aspects of calcium homeostasis and signaling that were not specifically addressed within the model itself, suggesting that it actually depicts all the main cellular components and interactions that constitute the HTS calcium pathway, and thus can correctly reproduce the shaping of the calcium signature by calmodulin- and calcineurin-dependent complex regulations. The model predictions also allowed to provide an interpretation of different regulatory schemes involved in calcium handling in both wild-type and mutants yeast strains. The model could be easily extended to represent different calcium signals in other eukaryotic cells.
Collapse
Affiliation(s)
- Simone Spolaor
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Mattia Rovetta
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Marco S. Nobile
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
| | - Paolo Cazzaniga
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| |
Collapse
|
13
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
14
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
15
|
Berrocal M, Cordoba-Granados JJ, Carabineiro SAC, Gutierrez-Merino C, Aureliano M, Mata AM. Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. METALS 2021; 11:1934. [DOI: 10.3390/met11121934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma membrane calcium ATPases (PMCA) are key proteins in the maintenance of calcium (Ca2+) homeostasis. Dysregulation of PMCA function is associated with several human pathologies, including neurodegenerative diseases, and, therefore, these proteins are potential drug targets to counteract those diseases. Gold compounds, namely of Au(I), are well-known for their therapeutic use in rheumatoid arthritis and other diseases for centuries. Herein, we report the ability of dichloro(2-pyridinecarboxylate)gold(III) (1), chlorotrimethylphosphinegold(I) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3), and chlorotriphenylphosphinegold(I) (4) compounds to interfere with the Ca2+-ATPase activity of pig brain purified PMCA and with membranes from SH-SY5Y neuroblastoma cell cultures. The Au(III) compound (1) inhibits PMCA activity with the IC50 value of 4.9 µM, while Au(I) compounds (2, 3, and 4) inhibit the protein activity with IC50 values of 2.8, 21, and 0.9 µM, respectively. Regarding the native substrate MgATP, gold compounds 1 and 4 showed a non-competitive type of inhibition, whereas compounds 2 and 3 showed a mixed type of inhibition. All gold complexes showed cytotoxic effects on human neuroblastoma SH-SY5Y cells, although compounds 1 and 3 were more cytotoxic than compounds 2 and 4. In summary, this work shows that both Au (I and III) compounds are high-affinity inhibitors of the Ca2+-ATPase activity in purified PMCA fractions and in membranes from SH-SY5Y human neuroblastoma cells. Additionally, they exert strong cytotoxic effects.
Collapse
Affiliation(s)
- Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan J. Cordoba-Granados
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), FCT, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana M. Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
16
|
Abstract
Calcium (Ca2+) is a unique mineral that serves as both a nutrient and a signal in all eukaryotes. To maintain Ca2+ homeostasis for both nutrition and signaling purposes, the toolkit for Ca2+ transport has expanded across kingdoms of eukaryotes to encode specific Ca2+ signals referred to as Ca2+ signatures. In parallel, a large array of Ca2+-binding proteins has evolved as specific sensors to decode Ca2+ signatures. By comparing these coding and decoding mechanisms in fungi, animals, and plants, both unified and divergent themes have emerged, and the underlying complexity will challenge researchers for years to come. Considering the scale and breadth of the subject, instead of a literature survey, in this review we focus on a conceptual framework that aims to introduce to readers to the principles and mechanisms of Ca2+ signaling. We finish with several examples of Ca2+-signaling pathways, including polarized cell growth, immunity and symbiosis, and systemic signaling, to piece together specific coding and decoding mechanisms in plants versus animals. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
17
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
18
|
Scarpelli PH, Pecenin MF, Garcia CRS. Intracellular Ca 2+ Signaling in Protozoan Parasites: An Overview with a Focus on Mitochondria. Int J Mol Sci 2021; 22:ijms22010469. [PMID: 33466510 PMCID: PMC7796463 DOI: 10.3390/ijms22010469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ signaling has been involved in controling critical cellular functions such as activation of proteases, cell death, and cell cycle control. The endoplasmatic reticulum plays a significant role in Ca2+ storage inside the cell, but mitochondria have long been recognized as a fundamental Ca2+ pool. Protozoan parasites such as Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma cruzi display a Ca2+ signaling toolkit with similarities to higher eukaryotes, including the participation of mitochondria in Ca2+-dependent signaling events. This review summarizes the most recent knowledge in mitochondrial Ca2+ signaling in protozoan parasites, focusing on the mechanism involved in mitochondrial Ca2+ uptake by pathogenic protists.
Collapse
|
19
|
De Loof A, Schoofs L. Two Undervalued Functions of the Golgi Apparatus: Removal of Excess Ca 2+ and Biosynthesis of Farnesol-Like Sesquiterpenoids, Possibly as Ca 2+-Pump Agonists and Membrane "Fluidizers-Plasticizers". Front Physiol 2020; 11:542879. [PMID: 33178030 PMCID: PMC7593688 DOI: 10.3389/fphys.2020.542879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The extensive literature dealing with the Golgi system emphasizes its role in protein secretion and modification, usually without specifying from which evolutionary ancient cell physiological necessity such secretion originated. Neither does it specify which functional requirements the secreted proteins must meet. From a reinterpretation of some classical and recent data gained mainly, but not exclusively, from (insect) endocrinology, the view emerged that the likely primordial function of the rough endoplasmic reticulum (RER)–Golgi complex in all eukaryotes was not the secretion of any type of protein but the removal of toxic excess Ca2+ from the cytoplasm. Such activity requires the concurrent secretion of large amounts of Ca2+-carrying/transporting proteins acting as a micro-conveyor belt system inside the RER–Golgi. Thus, (fitness increasing) protein secretion is subordinate to Ca2+ removal. Milk with its high content of protein and Ca2+ (60–90 mM vs. 100 nM in unstimulated mammary gland cells) is an extreme example. The sarco(endo)plasmatic reticulum Ca2+-ATPases (SERCAs) and SPCA1a Ca2+/Mn2+ transport ATPases are major players in Ca2+ removal through the Golgi. Both are blocked by the sesquiterpenoid thapsigargin. This strengthens the hypothesis (2014) that endogenous farnesol-like sesquiterpenoids (FLSs) may act as the long sought for but still unidentified agonist(s) for Ca2+-pumps in both the ER and Golgi. A second putative function also emerges. The fusion of both the incoming and outgoing transport vesicles, respectively, at the cis- and trans- side of Golgi stacks, with the membrane system requiring high flexibility and fast self-closing of the involved membranes. These properties may—possibly partially—be controlled by endogenous hydrophobic membrane “fluidizers” for which FLSs are prime candidates. A recent reexamination of unexplained classical data suggests that they are likely synthesized by the Golgi itself. This game-changing hypothesis is endorsed by several arguments and data, some of which date from 1964, that the insect corpus allatum (CA), which is the major production site of farnesol-esters, has active Golgi systems. Thus, in addition to secreting FLS, in particular juvenile hormone(s), it also secretes a protein(s) or peptide(s) with thus far unknown function. This paper suggests answers to various open questions in cell physiology and general endocrinology.
Collapse
Affiliation(s)
- Arnold De Loof
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Allert MJ, Hellinga HW. Harnessing Environmental Ca 2+ for Extracellular Protein Thermostabilization. Biochemistry 2020; 59:3725-3740. [PMID: 32915552 DOI: 10.1021/acs.biochem.0c00449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ca2+ is the third-most prevalent metal ion in the environment. EF hands are common Ca2+-binding motifs found in both extracellular and intracellular proteins of eukaryotes and prokaryotes. Cytoplasmic EF hand proteins often mediate allosteric control of signal transduction pathway components in response to intracellular Ca2+ concentration fluctuations by coupling Ca2+ binding to changes in protein structure. We show that an extracellular structural Ca2+-binding site mediates protein thermostabilization by such conformational coupling as well. Binding Ca2+ to the EF hand of the extracellular (periplasmic) Escherichia coli glucose-galactose binding protein thermostabilizes this protein by ∼17 K relative to its Ca2+-free form. Using statistical thermodynamic analysis of a fluorescent conjugate of ecGGBP that reports simultaneously on ligand binding and multiple conformational states, we found that its Ca2+-mediated stabilization is determined by conformational coupling mechanisms in two independent conformational exchange reactions. Binding to folded and unfolded states determines the maximum Ca2+-mediated stability. A disorder → order transition accompanies the formation of the Ca2+ complex in the folded state and dictates the minimum Ca2+ concentration at which the Ca2+-bound state becomes dominant. Similar transitions also encode the structural changes necessary for Ca2+-mediated control elements in signal transduction pathways. Ca2+-mediated thermostabilization and allosteric control, therefore, share a fundamental conformational coupling mechanism, which may have implications for the evolution of EF hands.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, P.O. Box 3711, Durham, North Carolina 27710, United States
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, P.O. Box 3711, Durham, North Carolina 27710, United States
| |
Collapse
|
21
|
Greenfield LM, Hill PW, Paterson E, Baggs EM, Jones DL. Do plants use root-derived proteases to promote the uptake of soil organic nitrogen? PLANT AND SOIL 2020; 456:355-367. [PMID: 33087989 PMCID: PMC7567722 DOI: 10.1007/s11104-020-04719-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
AIMS The capacity of plant roots to directly acquire organic nitrogen (N) in the form of oligopeptides and amino acids from soil is well established. However, plants have poor access to protein, the central reservoir of soil organic N. Our question is: do plants actively secrete proteases to enhance the breakdown of soil protein or are they functionally reliant on soil microorganisms to undertake this role? METHODS Growing maize and wheat under sterile hydroponic conditions with and without inorganic N, we measured protease activity on the root surface (root-bound proteases) or exogenously in the solution (free proteases). We compared root protease activities to the rhizosphere microbial community to estimate the ecological significance of root-derived proteases. RESULTS We found little evidence for the secretion of free proteases, with almost all protease activity associated with the root surface. Root protease activity was not stimulated under N deficiency. Our findings suggest that cereal roots contribute one-fifth of rhizosphere protease activity. CONCLUSIONS Our results indicate that plant N uptake is only functionally significant when soil protein is in direct contact with root surfaces. The lack of protease upregulation under N deficiency suggests that root protease activity is unrelated to enhanced soil N capture.
Collapse
Affiliation(s)
| | - Paul W. Hill
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW UK
| | - Eric Paterson
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH UK
| | - Elizabeth M. Baggs
- Global Academy of Agriculture and Food Security, the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Davey L. Jones
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW UK
- SoilsWest, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
22
|
Nunn AVW, Guy GW, Botchway SW, Bell JD. From sunscreens to medicines: Can a dissipation hypothesis explain the beneficial aspects of many plant compounds? Phytother Res 2020; 34:1868-1888. [PMID: 32166791 PMCID: PMC7496984 DOI: 10.1002/ptr.6654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Abstract
Medicine has utilised plant‐based treatments for millennia, but precisely how they work is unclear. One approach is to use a thermodynamic viewpoint that life arose by dissipating geothermal and/or solar potential. Hence, the ability to dissipate energy to maintain homeostasis is a fundamental principle in all life, which can be viewed as an accretion system where layers of complexity have built upon core abiotic molecules. Many of these compounds are chromophoric and are now involved in multiple pathways. Plants have further evolved a plethora of chromophoric compounds that can not only act as sunscreens and redox modifiers, but also have now become integrated into a generalised stress adaptive system. This could be an extension of the dissipative process. In animals, many of these compounds are hormetic, modulating mitochondria and calcium signalling. They can also display anti‐pathogen effects. They could therefore modulate bioenergetics across all life due to the conserved electron transport chain and proton gradient. In this review paper, we focus on well‐described medicinal compounds, such as salicylic acid and cannabidiol and suggest, at least in animals, their activity reflects their evolved function in plants in relation to stress adaptation, which itself evolved to maintain dissipative homeostasis.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | | | - Stanley W Botchway
- STFC, UKRI & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
23
|
Cracking the code of sodium/calcium exchanger (NCX) gating: Old and new complexities surfacing from the deep web of secondary regulations. Cell Calcium 2020; 87:102169. [PMID: 32070925 DOI: 10.1016/j.ceca.2020.102169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Cell membranes spatially define gradients that drive the complexity of biological signals. To guarantee movements and exchanges of solutes between compartments, membrane transporters negotiate the passages of ions and other important molecules through lipid bilayers. The Na+/Ca2+ exchangers (NCXs) in particular play central roles in balancing Na+ and Ca2+ fluxes across diverse proteolipid borders in all eukaryotic cells, influencing cellular functions and fate by multiple means. To prevent progression from balance to disease, redundant regulatory mechanisms cooperate at multiple levels (transcriptional, translational, and post-translational) and guarantee that the activities of NCXs are finely-tuned to cell homeostatic requirements. When this regulatory network is disturbed by pathological forces, cells may approach the end of life. In this review, we will discuss the main findings, controversies and open questions about regulatory mechanisms that control NCX functions in health and disease.
Collapse
|
24
|
Schäffer DE, Iyer LM, Burroughs AM, Aravind L. Functional Innovation in the Evolution of the Calcium-Dependent System of the Eukaryotic Endoplasmic Reticulum. Front Genet 2020; 11:34. [PMID: 32117448 PMCID: PMC7016017 DOI: 10.3389/fgene.2020.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 01/30/2023] Open
Abstract
The origin of eukaryotes was marked by the emergence of several novel subcellular systems. One such is the calcium (Ca2+)-stores system of the endoplasmic reticulum, which profoundly influences diverse aspects of cellular function including signal transduction, motility, division, and biomineralization. We use comparative genomics and sensitive sequence and structure analyses to investigate the evolution of this system. Our findings reconstruct the core form of the Ca2+-stores system in the last eukaryotic common ancestor as having at least 15 proteins that constituted a basic system for facilitating both Ca2+ flux across endomembranes and Ca2+-dependent signaling. We present evidence that the key EF-hand Ca2+-binding components had their origins in a likely bacterial symbiont other than the mitochondrial progenitor, whereas the protein phosphatase subunit of the ancestral calcineurin complex was likely inherited from the asgard archaeal progenitor of the stem eukaryote. This further points to the potential origin of the eukaryotes in a Ca2+-rich biomineralized environment such as stromatolites. We further show that throughout eukaryotic evolution there were several acquisitions from bacteria of key components of the Ca2+-stores system, even though no prokaryotic lineage possesses a comparable system. Further, using quantitative measures derived from comparative genomics we show that there were several rounds of lineage-specific gene expansions, innovations of novel gene families, and gene losses correlated with biological innovation such as the biomineralized molluscan shells, coccolithophores, and animal motility. The burst of innovation of new genes in animals included the wolframin protein associated with Wolfram syndrome in humans. We show for the first time that it contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.
Collapse
Affiliation(s)
- Daniel E Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.,Science, Mathematics, and Computer Science Magnet Program, Montgomery Blair High School, Silver Spring, MD, United States
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Castelli MA, Whiteley SL, Georges A, Holleley CE. Cellular calcium and redox regulation: the mediator of vertebrate environmental sex determination? Biol Rev Camb Philos Soc 2020; 95:680-695. [DOI: 10.1111/brv.12582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan A. Castelli
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Sarah L. Whiteley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Clare E. Holleley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| |
Collapse
|
26
|
Xu H, Fang T, Omran RP, Whiteway M, Jiang L. RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans. Cell Commun Signal 2020; 18:1. [PMID: 31900175 PMCID: PMC6942403 DOI: 10.1186/s12964-019-0473-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background The calcium/calcineurin signaling pathway is mediated by the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeasts and other lower eukaryotes. A previous microarray analysis identified a putative Crz1-binding motif in promoters of its target genes in Candida albicans, but it has not been experimentally demonstrated. Methods An inactivation mutant for CaCRZ1 was generated through CRISPR/Cas9 approach. Transcript profiling was carried out by RNA sequencing of the wild type and the inactivation mutant for CaCRZ1 in response to 0.2 M CaCl2. Gene promoters were scanned by the online MEME (Multiple Em for Motif Elicitation) software. Gel electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were used for in vitro and in vivo CaCrz1-binding experiments, respectively. Results RNA sequencing reveals that expression of 219 genes is positively, and expression of 59 genes is negatively, controlled by CaCrz1 in response to calcium stress. These genes function in metabolism, cell cycling, protein fate, cellular transport, signal transduction, transcription, and cell wall biogenesis. Forty of these positively regulated 219 genes have previously been identified by DNA microarray analysis. Promoter analysis of these common 40 genes reveals a consensus motif [5′-GGAGGC(G/A)C(T/A)G-3′], which is different from the putative CaCrz1-binding motif [5′-G(C/T)GGT-3′] identified in the previous study, but similar to Saccharomyces cerevisiae ScCrz1-binding motif [5′-GNGGC(G/T)CA-3′]. EMSA and ChIP assays indicate that CaCrz1 binds in vitro and in vivo to both motifs in the promoter of its target gene CaUTR2. Promoter mutagenesis demonstrates that these two CaCrz1-binding motifs play additive roles in the regulation of CaUTR2 expression. In addition, the CaCRZ1 gene is positively regulated by CaCrz1. CaCrz1 can bind in vitro and in vivo to its own promoter, suggesting an autoregulatory mechanism for CaCRZ1 expression. Conclusions CaCrz1 differentially binds to promoters of its target genes to regulate their expression in response to calcium stress. CaCrz1 also regulates its own expression through the 5′-TGAGGGACTG-3′ site in its promoter. Video abstract
Collapse
Affiliation(s)
- Huihui Xu
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
27
|
Xu H, Whiteway M, Jiang L. The tricarboxylic acid cycle, cell wall integrity pathway, cytokinesis and intracellular pH homeostasis are involved in the sensitivity of Candida albicans cells to high levels of extracellular calcium. Genomics 2019; 111:1226-1230. [DOI: 10.1016/j.ygeno.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
|
28
|
Roopa, Kumar N, Kumar M, Bhalla V. Design and Applications of Small Molecular Probes for Calcium Detection. Chem Asian J 2019; 14:4493-4505. [PMID: 31549484 DOI: 10.1002/asia.201901149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/16/2022]
Abstract
The physiological significance of calcium ions such as the role in cellular signalling, cell growth, etc. have driven the development of methods to detect and monitor the level of Ca2+ ions, both in vivo and in vitro. Although various approaches for the detection of calcium ions have been reported, methods based on small molecular fluorescent probes have unique advantages including small probe size, easy monitoring of detection processes and applicability in biological systems. In this review article, we will discuss the progress in the development of Ca2+ -binding fluorescent probes by taking into account the types of chelating groups that have been employed for Ca2+ binding.
Collapse
Affiliation(s)
- Roopa
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala, 144603, Punjab, India
| | - Naresh Kumar
- Department of Chemistry, Kanya Maha Vidyalaya, Jalandhar, 144004, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar-, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar-, 143005, Punjab, India
| |
Collapse
|
29
|
Verkhratsky A, Untiet V, Rose CR. Ionic signalling in astroglia beyond calcium. J Physiol 2019; 598:1655-1670. [PMID: 30734296 DOI: 10.1113/jp277478] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes are homeostatic and protective cells of the central nervous system. Astroglial homeostatic responses are tightly coordinated with neuronal activity. Astrocytes maintain neuronal excitability through regulation of extracellular ion concentrations, as well as assisting and modulating synaptic transmission by uptake and catabolism of major neurotransmitters. Moreover, they support neuronal metabolism and detoxify ammonium and reactive oxygen species. Astroglial homeostatic actions are initiated and controlled by intercellular signalling of ions, including Ca2+ , Na+ , Cl- , H+ and possibly K+ . This review summarises current knowledge on ionic signals mediated by the major monovalent ions, which occur in microdomains, as global events, or as propagating intercellular waves and thereby represent the substrate for astroglial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, UK.,Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Verena Untiet
- Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
30
|
The protein kinase Cmk2 negatively regulates the calcium/calcineurin signalling pathway and expression of calcium pump genes PMR1 and PMC1 in budding yeast. Cell Commun Signal 2019; 17:7. [PMID: 30665402 PMCID: PMC6341702 DOI: 10.1186/s12964-019-0320-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Through a genome-wide screen we have identified calcium-tolerant deletion mutants for five genes in the budding yeast Saccharomyces cerevisiae. In addition to CNB1 and RCN1 that are known to play a role in the calcium signalling pathway, the protein kinase gene CMK2, the sphingolipid homeostasis-related gene ORM2 and the gene SIF2 encoding the WD40 repeat-containing subunit of Set3C histone deacetylase complex are involved in the calcium sensitivity of yeast cells to extracellular calcium. Cmk2 and the transcription factor Crz1 have opposite functions in the response of yeast cells to calcium stress. Deletion of CMK2 elevates the level of calcium/calcineurin signalling and increases the expression level of PMR1 and PMC1, which is dependent on Crz1. Effects of Cmk2 on calcium sensitivity and calcium/calcineurin signalling are dependent on its kinase activity. Therefore, Cmk2 is a negative feedback controller of the calcium/calcineurin signalling pathway. Furthermore, the cmk2 crz1 double deletion mutant is more resistant than the crz1 deletion mutant, suggesting that Cmk2 has an additional Crz1-independent role in promoting calcium tolerance.
Collapse
|
31
|
Liu Z, Jing X, Zhang S, Tian Y. A Copper Nanocluster-Based Fluorescent Probe for Real-Time Imaging and Ratiometric Biosensing of Calcium Ions in Neurons. Anal Chem 2019; 91:2488-2497. [DOI: 10.1021/acs.analchem.8b05360] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Xia Jing
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| |
Collapse
|
32
|
SICT: automated detection and supervised inspection of fast Ca 2+ transients. Sci Rep 2018; 8:15523. [PMID: 30341397 PMCID: PMC6195629 DOI: 10.1038/s41598-018-33847-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advances in live Ca2+ imaging with increasing spatial and temporal resolution offer unprecedented opportunities, but also generate an unmet need for data processing. Here we developed SICT, a MATLAB program that automatically identifies rapid Ca2+ rises in time-lapse movies with low signal-to-noise ratios, using fluorescent indicators. A graphical user interface allows visual inspection of automatically detected events, reducing manual labour to less than 10% while maintaining quality control. The detection performance was tested using synthetic data with various signal-to-noise ratios. The event inspection phase was evaluated by four human observers. Reliability of the method was demonstrated in a direct comparison between manual and SICT-aided analysis. As a test case in cultured neurons, SICT detected an increase in frequency and duration of spontaneous Ca2+ transients in the presence of caffeine. This new method speeds up the analysis of elementary Ca2+ transients.
Collapse
|
33
|
Qin F, Cao H, Yuan H, Guo W, Pei H, Cao Y, Tong J. 1800 MHz radiofrequency fields inhibits testosterone production via CaMKI /RORα pathway. Reprod Toxicol 2018; 81:229-236. [DOI: 10.1016/j.reprotox.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
|
34
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
35
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
36
|
Functions of CaPhm7 in the regulation of ion homeostasis, drug tolerance, filamentation and virulence in Candida albicans. BMC Microbiol 2018; 18:49. [PMID: 29866033 PMCID: PMC5987382 DOI: 10.1186/s12866-018-1193-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Calcium-permeable transient receptor potential (TRP) channels exist in eukaryotic cells from yeasts to animals and plants. and they act as sensors for various stresses. Arabidopsis thaliana calcium permeable stress-gated cation channel 1 (AtCSC1) was the first plant calcium-permeable TRP to be described and can be activated by hyperosmotic shock. Candida albicans CaPHM7 is one of the sequence homologs of AtCSC1, but its function remains unknown. RESULTS We show here that CaPhm7 is localized to the plasma membrane in both the yeast and hyphal cells of C. albicans. C. albicans cells lacking CaPHM7 are sensitive to SDS and ketoconazole but tolerant to rapamycin and zinc. In addition, deletion of CaPHM7 leads to a filamentation defect, reduced colony growth and attenuated virulence in the mouse model of systemic infection. CONCLUSIONS CaPhm7 is involved in the regulation of ion homeostasis, drug tolerance, filamentation and virulence in this important human fungal pathogen. CaPhm7 could be a potential target of antifungal drugs.
Collapse
|
37
|
Abstract
Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions.Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes.Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets.In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.
Collapse
|
38
|
Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol 2018; 103:157-169. [PMID: 29210126 PMCID: PMC6813793 DOI: 10.1113/ep086534] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fabiana Perocchi
- Gene Center/Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
39
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
40
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 964] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
41
|
Petersen OH, Verkhratsky A. Calcium and ATP control multiple vital functions. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0418. [PMID: 27377728 DOI: 10.1098/rstb.2015.0418] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Life on Planet Earth, as we know it, revolves around adenosine triphosphate (ATP) as a universal energy storing molecule. The metabolism of ATP requires a low cytosolic Ca(2+) concentration, and hence tethers these two molecules together. The exceedingly low cytosolic Ca(2+) concentration (which in all life forms is kept around 50-100 nM) forms the basis for a universal intracellular signalling system in which Ca(2+) acts as a second messenger. Maintenance of transmembrane Ca(2+) gradients, in turn, requires ATP-dependent Ca(2+) transport, thus further emphasizing the inseparable links between these two substances. Ca(2+) signalling controls the most fundamental processes in the living organism, from heartbeat and neurotransmission to cell energetics and secretion. The versatility and plasticity of Ca(2+) signalling relies on cell specific Ca(2+) signalling toolkits, remodelling of which underlies adaptive cellular responses. Alterations of these Ca(2+) signalling toolkits lead to aberrant Ca(2+) signalling which is fundamental for the pathophysiology of numerous diseases from acute pancreatitis to neurodegeneration. This paper introduces a theme issue on this topic, which arose from a Royal Society Theo Murphy scientific meeting held in March 2016.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Ole H Petersen
- Cardiff School of Biosciences and Systems Immunity Institute, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
42
|
Plattner H, Verkhratsky A. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0419. [PMID: 27377729 DOI: 10.1098/rstb.2015.0419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca(2+) to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca(2+) as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca(2+) as a universal signalling ion; similarly, Ca(2+) is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca(2+) started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca(2+) interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca(2+) low forced cells to restrict Ca(2+) signals in space and time and to develop energetically favourable Ca(2+) signalling and Ca(2+) microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca(2+)-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca(2+) signalling. Similar to atmospheric oxygen, Ca(2+) must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca(2+) homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca(2+) and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Alexei Verkhratsky
- Faculty of Biological Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
43
|
Andreev IM. Emerging evidence for potential role of Ca 2+-ATPase-mediated calcium accumulation in symbiosomes of infected root nodule cells. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:955-960. [PMID: 32480623 DOI: 10.1071/fp17042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/28/2017] [Indexed: 06/11/2023]
Abstract
Symbiosomes are organelle-like compartments responsible for nitrogen fixation in infected nodule cells of legumes, which are formed as a result of symbiotic association of soil bacteria rhizobia with certain plant root cells. They are virtually the only source of reduced nitrogen in the Earth's biosphere, and consequently, are of great importance. It has been proven that the functioning of symbiosomes depends to a large extent on the transport of various metabolites and ions - most likely including Ca2+ - across the symbiosome membrane (SM). Although it has been well established that this cation is involved in the regulation of a broad spectrum of processes in cells of living organisms, its role in the functioning of symbiosomes remains obscure. This is despite available data indicating both its transport through the SM and accumulation within these compartments. This review summarises the results obtained in the course of studies on the given aspects of calcium behaviour in symbiosomes, and on this basis gives a possible explanation of the proper functional role in them of Ca2+.
Collapse
Affiliation(s)
- Igor M Andreev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow 127276, Russia. Email
| |
Collapse
|
44
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
45
|
Carpenter MC, Palmer AE. Native and engineered sensors for Ca 2+ and Zn 2+: lessons from calmodulin and MTF1. Essays Biochem 2017; 61:237-243. [PMID: 28487400 PMCID: PMC6016828 DOI: 10.1042/ebc20160069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/16/2023]
Abstract
Ca2+ and Zn2+ dynamics have been identified as important drivers of physiological processes. In order for these dynamics to encode function, the cell must have sensors that transduce changes in metal concentration to specific downstream actions. Here we compare and contrast the native metal sensors: calmodulin (CaM), the quintessential Ca2+ sensor and metal-responsive transcription factor 1 (MTF1), a candidate Zn2+ sensor. While CaM recognizes and modulates the activity of hundreds of proteins through allosteric interactions, MTF1 recognizes a single DNA motif that is distributed throughout the genome regulating the transcription of many target genes. We examine how the different inorganic chemistries of these two metal ions may shape these different mechanisms transducing metal ion concentration into changing physiologic activity. In addition to native metal sensors, scientists have engineered sensors to spy on the dynamic changes of metals in cells. The inorganic chemistry of the metals shapes the possibilities in the design strategies of engineered sensors. We examine how different strategies to tune the affinities of engineered sensors mirror the strategies nature developed to sense both Ca2+ and Zn2+ in cells.
Collapse
Affiliation(s)
- Margaret C Carpenter
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80305, U.S.A
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80305, U.S.A.
| |
Collapse
|
46
|
Verkhratsky A, Muallem S. The forefront of technology of science: Methods for monitoring cell function. Cell Calcium 2017; 64:1-2. [PMID: 28325689 DOI: 10.1016/j.ceca.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Shmuel Muallem
- Secretory Physiology Section, NIDCR, NIH, United States.
| |
Collapse
|
47
|
Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 2017; 8:186-197. [PMID: 27325145 PMCID: PMC5354160 DOI: 10.1080/21505594.2016.1201250] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/26/2023] Open
Abstract
Increases in the incidence and mortality due to the major invasive fungal infections such as aspergillosis, candidiasis and cryptococcosis caused by the species of Aspergillus, Candida and Cryptococcus, are a growing threat to the immunosuppressed patient population. In addition to the limited armamentarium of the current classes of antifungal agents available (pyrimidine analogs, polyenes, azoles, and echinocandins), their toxicity, efficacy and the emergence of resistance are major bottlenecks limiting successful patient outcomes. Although these drugs target distinct fungal pathways, there is an urgent need to develop new antifungals that are more efficacious, fungal-specific, with reduced or no toxicity and simultaneously do not induce resistance. Here we review several lines of evidence which indicate that the calcineurin signaling pathway, a target of the immunosuppressive drugs FK506 and cyclosporine A, orchestrates growth, virulence and drug resistance in a variety of fungal pathogens and can be exploited for novel antifungal drug development.
Collapse
Affiliation(s)
- Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Soo Chan Lee
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
48
|
Traynor D, Kay RR. A polycystin-type transient receptor potential (Trp) channel that is activated by ATP. Biol Open 2017; 6:200-209. [PMID: 28011630 PMCID: PMC5312093 DOI: 10.1242/bio.020685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP. Summary: We show that a Trp channel related to the mammalian polycystin channel, rather than a P2X receptor, is responsible for the purinergic stimulation of cytosolic calcium levels in Dictyostelium cells.
Collapse
Affiliation(s)
- David Traynor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| |
Collapse
|
49
|
Ferreira-Rodríguez N, Fernández I, Varandas S, Cortes R, Cancela ML, Pardo I. The role of calcium concentration in the invasive capacity of Corbicula fluminea in crystalline basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1363-1370. [PMID: 28012654 DOI: 10.1016/j.scitotenv.2016.12.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The natural variation of environmental factors in freshwater basins determines their biodiversity. Among them, calcium is a key physiological compound for freshwater invertebrates. It is required for shell formation, muscle contraction, it mediates gene expression and allows counteracting acidosis during stress periods, among other functions. Although the distribution of different freshwater species has been suggested to be linked with the environmental calcium concentration, as yet, no research studies have confirmed this. Identifying whether environmental calcium concentrations might determine the invasion success of alien species would be critical in developing and implementing effective management strategies to control them. Here, a multidisciplinary approach integrating field surveys, analytical chemistry techniques, molecular biology analyses and a lab-scale experiment was taken to decipher whether the environmental calcium concentration might hamper the establishment of Corbicula fluminea in northwestern Iberian rivers. A Principal Component Analysis on water chemistry variables from 13 water bodies identified environmental calcium concentration, among others, as one key factor that best characterized the distribution area of C. fluminea. The calcium content in animals' bodies from two representative rivers was dependent on the environmental calcium concentration of freshwater basins; the lower the concentration, the lower the body's content. The expression of stress- and calcium homeostasis-related genes was higher in C. fluminea from low calcium concentration environments than in those from calcium-rich freshwater basins. Finally, under experimental conditions, lower water calcium concentrations decreased C. fluminea growth rates. The present data suggest, for the first time, that environmental calcium concentration may act as a determinant factor on the invasion success of C. fluminea in freshwater environments. Our results provide new clues for the identification of basins with increased risk of potential invasion by C. fluminea based on environmental calcium levels.
Collapse
Affiliation(s)
- Noé Ferreira-Rodríguez
- Departamento de Ecología y Biología Animal, Facultad de Biología, Campus As Lagoas - Marcosende, Universidad de Vigo, 36310 Vigo, Spain; ECIMAT - Estación de Ciencias Mariñas de Toralla, Illa de Toralla, 36331 Vigo, Spain.
| | - Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal.
| | - Simone Varandas
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Rui Cortes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139 Faro, Portugal
| | - Isabel Pardo
- Departamento de Ecología y Biología Animal, Facultad de Biología, Campus As Lagoas - Marcosende, Universidad de Vigo, 36310 Vigo, Spain; ECIMAT - Estación de Ciencias Mariñas de Toralla, Illa de Toralla, 36331 Vigo, Spain
| |
Collapse
|
50
|
Mishra A, Jiang Y, Roberts S, Ntziachristos V, Westmeyer GG. Near-Infrared Photoacoustic Imaging Probe Responsive to Calcium. Anal Chem 2016; 88:10785-10789. [DOI: 10.1021/acs.analchem.6b03039] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anurag Mishra
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yuanyuan Jiang
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sheryl Roberts
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Nuclear
Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Chair for Biological Imaging, Technical University of Munich, 80333 Munich, Germany
| | - Gil G. Westmeyer
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Nuclear
Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|