1
|
Courjaret RJ, Wagner II LE, Ammouri RR, Yule DI, Machaca K. Ca2+ tunneling architecture and function are important for secretion. J Cell Biol 2025; 224:e202402107. [PMID: 39499286 PMCID: PMC11540855 DOI: 10.1083/jcb.202402107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.
Collapse
Affiliation(s)
- Raphael J. Courjaret
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Larry E. Wagner II
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rahaf R. Ammouri
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Khaled Machaca
- Research Department, Ca Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Li P, Wei X, Zi Q, Qu X, He C, Xiao B, Guo S. Single-nucleus RNA sequencing reveals cell types, genes, and regulatory factors influencing melanogenesis in the breast muscle of Xuefeng black-bone chicken. Poult Sci 2024; 103:104259. [PMID: 39278114 PMCID: PMC11419817 DOI: 10.1016/j.psj.2024.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
The black-bone chicken, known for its high melanin content, holds significant economic value due to this unique trait. Particularly notable is the prominent melanin deposition observed in its breast muscle. However, the molecular mechanisms governing melanin synthesis and deposition in the breast muscle of black-bone chickens remain largely unknown. This study employed a single-nucleus transcriptome assay to identify genes associated with melanin deposition in the breast muscle of black-bone chickens, which are presumed to influence pigmentation levels. A comprehensive analysis of the nuclear transcriptome was conducted on the breast muscle of Xuefeng black-bone chickens, encompassing 18 distinct cell types, including melanocytes. Our findings revealed that STIMATE, LRRC7, ENSGALG00000049990, and GLDC play pivotal regulatory roles in melanin deposition within the breast muscle. Further exploration into the molecular mechanisms unveiled transcription factors and protein interactions suggesting that RARB, KLF15, and PRDM4 may be crucial regulators of melanin accumulation in the breast muscle. Additionally, HPGDS, GSTO1, and CYP1B1 may modulate melanin production and deposition in the breast muscle by influencing melanocyte metabolism. Our findings also suggest that melanocyte function in the breast muscle may be intertwined with intercellular signaling pathways such as PTPRK-WNT5A, NOTCH1-JAG1, IGF1R-IGF1, IDE-GCG, and ROR2-WNT5A. Leveraging advanced snRNA-seq technology, we generated a comprehensive single-cell nuclear transcriptome atlas of the breast muscle of Xuefeng black-bone chickens. This facilitated the identification of candidate genes, regulatory factors, and cellular signals potentially influencing melanin deposition and melanocyte function. Overall, our study provides crucial insights into the molecular basis of melanin deposition in chicken breast muscle, laying the groundwork for future breeding programs aimed at enhancing black-bone chicken cultivation.
Collapse
Affiliation(s)
- Peng Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Xu Wei
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Qiongtao Zi
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Hunan, 418200, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan 410128, China.
| |
Collapse
|
4
|
Yang X, Tu J, Zang X, Huang X, Tao Y. A bibliometric and visualization analysis of entosis research from 2007 to 2024. Front Oncol 2024; 14:1424100. [PMID: 39529832 PMCID: PMC11551127 DOI: 10.3389/fonc.2024.1424100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Objective In 2007, entosis was proposed as a form of programmed cell death, distinct from apoptosis. This process involves a living cell (internalized cell) actively invading a neighboring live cell of the same type (host cell), forming a cell-in-cell structure. Recently, entosis has been increasingly associated with cancer, leading to significant advancements in research. Despite this progress, a comprehensive and unbiased review of the current state of entosis research is lacking. This study aims to evaluate the developments in the field of entosis over the past decade and highlight emerging research trends. Materials and methods We performed a literature search for studies published since the introduction of the entosis concept, using the Web of Science Core Collection database. The bibliometric analysis was conducted using VOSviewer, CiteSpace, Microsoft Excel, and the Bibliometrix R package. Results A total of 196 articles from 39 countries and 346 institutions were included. Between 2007 and 2024, research on entosis has seen rapid growth, with most publications originating from China and the United States. The United States also leads in total citations, with Memorial Sloan Kettering Cancer Center emerging as the top research institution. Sun Qiang is the most prolific author in this field, while Overholtzer M has the highest number of citations. Current Molecular Medicine has published the most articles related to entosis. Frequently occurring keywords include "entosis," "cannibalism," "autophagy," and "apoptosis." In recent years, keywords such as "phagocytosis," "drug resistance," and "human cancers" have surged, indicating a growing focus on understanding the role of entosis in tumor progression and exploring its potential as a therapeutic target for cancer treatment. Conclusions This study provides the first bibliometric analysis of entosis, detailing its evolution over the last decade. It highlights critical areas of interest, including the development of inhibitors targeting entosis and their potential clinical applications. This research aims to guide future investigations and serve as a valuable resource for scholars exploring entosis in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
5
|
Niu H, Maruoka M, Noguchi Y, Kosako H, Suzuki J. Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat Commun 2024; 15:7566. [PMID: 39217145 PMCID: PMC11366033 DOI: 10.1038/s41467-024-51939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.
Collapse
Affiliation(s)
- Han Niu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
6
|
Langthaler S, Zumpf C, Rienmüller T, Shrestha N, Fuchs J, Zhou R, Pelzmann B, Zorn-Pauly K, Fröhlich E, Weinberg SH, Baumgartner C. The bioelectric mechanisms of local calcium dynamics in cancer cell proliferation: an extension of the A549 in silico cell model. Front Mol Biosci 2024; 11:1394398. [PMID: 38770217 PMCID: PMC11102976 DOI: 10.3389/fmolb.2024.1394398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Advances in molecular targeting of ion channels may open up new avenues for therapeutic approaches in cancer based on the cells' bioelectric properties. In addition to in-vitro or in-vivo models, in silico models can provide deeper insight into the complex role of electrophysiology in cancer and reveal the impact of altered ion channel expression and the membrane potential on malignant processes. The A549 in silico model is the first computational cancer whole-cell ion current model that simulates the bioelectric mechanisms of the human non-small cell lung cancer cell line A549 during the different phases of the cell cycle. This work extends the existing model with a detailed mathematical description of the store-operated Ca2+ entry (SOCE) and the complex local intracellular calcium dynamics, which significantly affect the entire electrophysiological properties of the cell and regulate cell cycle progression. Methods The initial model was extended by a multicompartmental approach, addressing the heterogenous calcium profile and dynamics in the ER-PM junction provoked by local calcium entry of store-operated calcium channels (SOCs) and uptake by SERCA pumps. Changes of cytosolic calcium levels due to diffusion from the ER-PM junction, release from the ER by RyR channels and IP3 receptors, as well as corresponding PM channels were simulated and the dynamics evaluated based on calcium imaging data. The model parameters were fitted to available data from two published experimental studies, showing the function of CRAC channels and indirectly of IP3R, RyR and PMCA via changes of the cytosolic calcium levels. Results The proposed calcium description accurately reproduces the dynamics of calcium imaging data and simulates the SOCE mechanisms. In addition, simulations of the combined A549-SOCE model in distinct phases of the cell cycle demonstrate how Ca2+ - dynamics influence responding channels such as KCa, and consequently modulate the membrane potential accordingly. Discussion Local calcium distribution and time evolution in microdomains of the cell significantly impact the overall electrophysiological properties and exert control over cell cycle progression. By providing a more profound description, the extended A549-SOCE model represents an important step on the route towards a valid model for oncological research and in silico supported development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Christian Zumpf
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Niroj Shrestha
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
- Research Unit on Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Rui Zhou
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Brigitte Pelzmann
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| |
Collapse
|
7
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
8
|
Courjaret R, Prakriya M, Machaca K. SOCE as a regulator of neuronal activity. J Physiol 2024; 602:1449-1462. [PMID: 37029630 DOI: 10.1113/jp283826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.
Collapse
Affiliation(s)
- Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
9
|
Davis LC, Morgan AJ, Galione A. Optical profiling of autonomous Ca 2+ nanodomains generated by lysosomal TPC2 and TRPML1. Cell Calcium 2023; 116:102801. [PMID: 37742482 DOI: 10.1016/j.ceca.2023.102801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Multiple families of Ca2+-permeable channels co-exist on lysosomal Ca2+ stores but how each family couples to its own unique downstream physiology is unclear. We have therefore investigated the Ca2+-signalling architecture underpinning different channels on the same vesicle that drive separate pathways, using phagocytosis as a physiological stimulus. Lysosomal Ca2+-channels are a major Ca2+ source driving particle uptake in macrophages, but different channels drive different aspects of Fc-receptor-mediated phagocytosis: TPC2 couples to dynamin activation, whilst TRPML1 couples to lysosomal exocytosis. We hypothesised that they are driven by discrete local plumes of Ca2+ around open channels (Ca2+ nanodomains). To test this, we optimized Ca2+-nanodomain recordings by screening panels of genetically encoded Ca2+ indicators (GECIs) fused to TPC2 to monitor the [Ca2+] next to the channel. Signal calibration accounting for the distance of the GECI from the channel mouth reveals that, during phagocytosis, TPC2 generates local Ca2+ nanodomains around itself of up to 42 µM, nearly a hundred-fold greater than the global cytosolic [Ca2+] rise. We further show that TPC2 and TRPML1, though on the same lysosomes, generate autonomous Ca2+ nanodomains of high [Ca2+] that are largely insulated from one another, a platform allowing their discrete Ca2+-decoding to promote unique respective physiologies.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
10
|
Ahmadian Elmi M, Motamed N, Picard D. Proteomic Analyses of the G Protein-Coupled Estrogen Receptor GPER1 Reveal Constitutive Links to Endoplasmic Reticulum, Glycosylation, Trafficking, and Calcium Signaling. Cells 2023; 12:2571. [PMID: 37947649 PMCID: PMC10650109 DOI: 10.3390/cells12212571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) has been proposed to mediate rapid responses to the steroid hormone estrogen. However, despite a strong interest in its potential role in cancer, whether it is indeed activated by estrogen and how this works remain controversial. To provide new tools to address these questions, we set out to determine the interactome of exogenously expressed GPER1. The combination of two orthogonal methods, namely APEX2-mediated proximity labeling and immunoprecipitation followed by mass spectrometry, gave us high-confidence results for 73 novel potential GPER1 interactors. We found that this GPER1 interactome is not affected by estrogen, a result that mirrors the constitutive activity of GPER1 in a functional assay with a Rac1 sensor. We specifically validated several hits highlighted by a gene ontology analysis. We demonstrate that CLPTM1 interacts with GPER1 and that PRKCSH and GANAB, the regulatory and catalytic subunits of α-glucosidase II, respectively, associate with CLPTM1 and potentially indirectly with GPER1. An imbalance in CLPTM1 levels induces nuclear association of GPER1, as does the overexpression of PRKCSH. Moreover, we show that the Ca2+ sensor STIM1 interacts with GPER1 and that upon STIM1 overexpression and depletion of Ca2+ stores, GPER1 becomes more nuclear. Thus, these new GPER1 interactors establish interesting connections with membrane protein maturation, trafficking, and calcium signaling.
Collapse
Affiliation(s)
- Maryam Ahmadian Elmi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| |
Collapse
|
11
|
Gil Montoya DC, Ornelas-Guevara R, Diercks BP, Guse AH, Dupont G. T cell Ca 2+ microdomains through the lens of computational modeling. Front Immunol 2023; 14:1235737. [PMID: 37860008 PMCID: PMC10582754 DOI: 10.3389/fimmu.2023.1235737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Cellular Ca2+ signaling is highly organized in time and space. Locally restricted and short-lived regions of Ca2+ increase, called Ca2+ microdomains, constitute building blocks that are differentially arranged to create cellular Ca2+ signatures controlling physiological responses. Here, we focus on Ca2+ microdomains occurring in restricted cytosolic spaces between the plasma membrane and the endoplasmic reticulum, called endoplasmic reticulum-plasma membrane junctions. In T cells, these microdomains have been finely characterized. Enough quantitative data are thus available to develop detailed computational models of junctional Ca2+ dynamics. Simulations are able to predict the characteristics of Ca2+ increases at the level of single channels and in junctions of different spatial configurations, in response to various signaling molecules. Thanks to the synergy between experimental observations and computational modeling, a unified description of the molecular mechanisms that create Ca2+ microdomains in the first seconds of T cell stimulation is emerging.
Collapse
Affiliation(s)
- Diana C. Gil Montoya
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roberto Ornelas-Guevara
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
12
|
Weiß M, Hernandez LC, Gil Montoya DC, Löhndorf A, Krüger A, Kopdag M, Uebler L, Landwehr M, Nawrocki M, Huber S, Woelk LM, Werner R, Failla AV, Flügel A, Dupont G, Guse AH, Diercks BP. Adhesion to laminin-1 and collagen IV induces the formation of Ca 2+ microdomains that sensitize mouse T cells for activation. Sci Signal 2023; 16:eabn9405. [PMID: 37339181 DOI: 10.1126/scisignal.abn9405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.
Collapse
Affiliation(s)
- Mariella Weiß
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lola C Hernandez
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Diana C Gil Montoya
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anke Löhndorf
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Aileen Krüger
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Miriam Kopdag
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Liana Uebler
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marie Landwehr
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lena-Marie Woelk
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonio V Failla
- Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP231, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Andreas H Guse
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Lee AR, Park CY. Orai1 is an Entotic Ca 2+ Channel for Non-Apoptotic Cell Death, Entosis in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205913. [PMID: 36960682 DOI: 10.1002/advs.202205913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Entosis is a non-apoptotic cell death process that forms characteristic cell-in-cell structures in cancers, killing invading cells. Intracellular Ca2+ dynamics are essential for cellular processes, including actomyosin contractility, migration, and autophagy. However, the significance of Ca2+ and Ca2+ channels participating in entosis is unclear. Here, it is shown that intracellular Ca2+ signaling regulates entosis via SEPTIN-Orai1-Ca2+ /CaM-MLCK-actomyosin axis. Intracellular Ca2+ oscillations in entotic cells show spatiotemporal variations during engulfment, mediated by Orai1 Ca2+ channels in plasma membranes. SEPTIN controlled polarized distribution of Orai1 for local MLCK activation, resulting in MLC phosphorylation and actomyosin contraction, leads to internalization of invasive cells. Ca2+ chelators and SEPTIN, Orai1, and MLCK inhibitors suppress entosis. This study identifies potential targets for treating entosis-associated tumors, showing that Orai1 is an entotic Ca2+ channel that provides essential Ca2+ signaling and sheds light on the molecular mechanism underlying entosis that involves SEPTIN filaments, Orai1, and MLCK.
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chan Young Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
14
|
Shen J, Geng L, Li X, Emery C, Kroning K, Shingles G, Lee K, Heyden M, Li P, Wang W. A general method for chemogenetic control of peptide function. Nat Methods 2023; 20:112-122. [PMID: 36481965 PMCID: PMC10069916 DOI: 10.1038/s41592-022-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Natural or engineered peptides serve important biological functions. A general approach to achieve chemical-dependent activation of short peptides will be valuable for spatial and temporal control of cellular processes. Here we present a pair of chemically activated protein domains (CAPs) for controlling the accessibility of both the N- and C-terminal portion of a peptide. CAPs were developed through directed evolution of an FK506-binding protein. By fusing a peptide to one or both CAPs, the function of the peptide is blocked until a small molecule displaces them from the FK506-binding protein ligand-binding site. We demonstrate that CAPs are generally applicable to a range of short peptides, including a protease cleavage site, a dimerization-inducing heptapeptide, a nuclear localization signal peptide, and an opioid peptide, with a chemical dependence up to 156-fold. We show that the CAPs system can be utilized in cell cultures and multiple organs in living animals.
Collapse
Affiliation(s)
- Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lequn Geng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Emery
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Gwendolyn Shingles
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kerry Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
16
|
Gu C, Zhang W, Yang E, Gu C, Zhang Z, Ke J, Wang X, Wu S, Li S, Wu F. Blockage of Orai1-Nucleolin interaction meditated calcium influx attenuates breast cancer cells growth. Oncogenesis 2022; 11:55. [PMID: 36109490 PMCID: PMC9478099 DOI: 10.1038/s41389-022-00429-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractAs an important second messenger, calcium (Ca2+) regulates a wide variety of physiological processes. Disturbance of intracellular calcium homeostasis implicated in the occurrence of multiple types of diseases. Orai1 is the major player in mediating store-operated calcium entry (SOCE) and regulates calcium homeostasis in non-excitable cells. Over-expression and activation of Orai1 have been reported in breast cancer. However, its molecular mechanisms are still not very clear. Here, we demonstrated that Nucleolin (NCL) was a novel interacting partner of Orai1. NCL is a multifunctional nucleocytoplasmic protein and is upregulated in human breast tumors. The binding of C-termini of NCL (NCL-CT) to N-termini of Orai1 (Orai1-NT) is critical for mediating calcium influx and proliferation of breast cancer cells. Blocking the NCL-Orai1 interaction by synthesized Orai1 peptide can effectively reduce the intracellular calcium influx and suppress the proliferation of breast cancer cells in vitro and in vivo. Our findings reveal a novel activation mechanism of Orai1 via direct interaction with NCL, which may lead to calcium homeostasis imbalance and promote the proliferation of breast cancer cells. Blocking NCL-Orai1 interaction might be an effective treatment of breast cancer.
Collapse
|
17
|
Sun M, Chen Z, Song Y, Zhang B, Yang J, Tan H. PLXND1-mediated calcium dyshomeostasis impairs endocardial endothelial autophagy in atrial fibrillation. Front Physiol 2022; 13:960480. [PMID: 36017337 PMCID: PMC9395636 DOI: 10.3389/fphys.2022.960480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Left atrial appendage (LAA) thrombus detachment resulting in intracranial embolism is a major complication of atrial fibrillation (AF). Endocardial endothelial cell (EEC) injury leads to thrombosis, whereas autophagy protects against EEC dysfunction. However, the role and underlying mechanisms of autophagy in EECs during AF have not been elucidated. In this study, we isolated EECs from AF model mice and observed reduced autophagic flux and intracellular calcium concentrations in EECs from AF mice. In addition, we detected an increased expression of the mechanosensitive protein PLXND1 in the cytomembranes of EECs. PLXND1 served as a scaffold protein to bind with ORAI1 and further decreased ORAI1-mediated calcium influx. The decrease in the calcium influx-mediated phosphorylation of CAMK2 is associated with the inhibition of autophagy, which results in EEC dysfunction in AF. Our study demonstrated that the change in PLXND1 expression contributes to intracellular calcium dyshomeostasis, which inhibits autophagy flux and results in EEC dysfunction in AF. This study provides a potential intervention target for EEC dysfunction to prevent and treat intracardiac thrombosis in AF and its complications.
Collapse
Affiliation(s)
- Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Chen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanbin Song
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jie Yang, ; Hu Tan,
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jie Yang, ; Hu Tan,
| |
Collapse
|
18
|
Gil D, Diercks BP, Guse AH, Dupont G. Three-Dimensional Model of Sub-Plasmalemmal Ca2+ Microdomains Evoked by T Cell Receptor/CD3 Complex Stimulation. Front Mol Biosci 2022; 9:811145. [PMID: 35281279 PMCID: PMC8906516 DOI: 10.3389/fmolb.2022.811145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
Ca2+ signalling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains of reduced spatial and temporal extents develop in the junctions between the plasma membrane and the endoplasmic reticulum (ER). These microdomains rely on Ca2+ entry from the extracellular medium, via the ORAI1/STIM1/STIM2 system that mediates store operated Ca2+ entry Store operated calcium entry. The mechanism leading to local store depletion and subsequent Ca2+ entry depends on the activation state of the cells. The initial, smaller microdomains are triggered by D-myo-inositol 1,4,5-trisphosphate (IP3) signalling in response to T cell adhesion. T cell receptor (TCR)/CD3 stimulation then initiates nicotinic acid adenine dinucleotide phosphate signalling, which activates ryanodine receptors (RYR). We have recently developed a mathematical model to elucidate the spatiotemporal Ca2+ dynamics of the microdomains triggered by IP3 signalling in response to T cell adhesion (Gil et al., 2021). This reaction-diffusion model describes the evolution of the cytosolic and endoplasmic reticulum Ca2+ concentrations in a three-dimensional ER-PM junction and was solved using COMSOL Multiphysics. Modelling predicted that adhesion-dependent microdomains result from the concerted activity of IP3 receptors and pre-formed ORAI1-STIM2 complexes. In the present study, we extend this model to include the role of RYRs rapidly after TCR/CD3 stimulation. The involvement of STIM1, which has a lower KD for Ca2+ than STIM2, is also considered. Detailed 3D spatio-temporal simulations show that these Ca2+ microdomains rely on the concerted opening of ∼7 RYRs that are simultaneously active in response to the increase in NAADP induced by T cell stimulation. Opening of these RYRs provoke a local depletion of ER Ca2+ that triggers Ca2+ flux through the ORAI1 channels. Simulations predict that RYRs are most probably located around the junction and that the increase in junctional Ca2+ concentration results from the combination between diffusion of Ca2+ released through the RYRs and Ca2+ entry through ORAI1 in the junction. The computational model moreover provides a tool allowing to investigate how Ca2+ microdomains occur, extend and interact in various states of T cell activation.
Collapse
Affiliation(s)
- Diana Gil
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
- *Correspondence: Geneviève Dupont,
| |
Collapse
|
19
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
20
|
Lu F, Li Y, Lin S, Cheng H, Yang S. Spatiotemporal regulation of store-operated calcium entry in cancer metastasis. Biochem Soc Trans 2021; 49:2581-2589. [PMID: 34854917 PMCID: PMC9436031 DOI: 10.1042/bst20210307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023]
Abstract
The store-operated calcium (Ca2+) entry (SOCE) is the Ca2+ entry mechanism used by cells to replenish depleted Ca2+ store. The dysregulation of SOCE has been reported in metastatic cancer. It is believed that SOCE promotes migration and invasion by remodeling the actin cytoskeleton and cell adhesion dynamics. There is recent evidence supporting that SOCE is critical for the spatial and the temporal coding of Ca2+ signals in the cell. In this review, we critically examined the spatiotemporal control of SOCE signaling and its implication in the specificity and robustness of signaling events downstream of SOCE, with a focus on the spatiotemporal SOCE signaling during cancer cell migration, invasion and metastasis. We further discuss the limitation of our current understanding of SOCE in cancer metastasis and potential approaches to overcome such limitation.
Collapse
Affiliation(s)
- Fujian Lu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Yunzhan Li
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, United States
| | - Shengchen Lin
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, United States
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, United States
| |
Collapse
|
21
|
Uchimura T, Sakurai H. Orai1-STIM1 Regulates Increased Ca 2+ Mobilization, Leading to Contractile Duchenne Muscular Dystrophy Phenotypes in Patient-Derived Induced Pluripotent Stem Cells. Biomedicines 2021; 9:biomedicines9111589. [PMID: 34829817 PMCID: PMC8615222 DOI: 10.3390/biomedicines9111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ overload is one of the factors leading to Duchenne muscular dystrophy (DMD) pathogenesis. However, the molecular targets of dystrophin deficiency-dependent Ca2+ overload and the correlation between Ca2+ overload and contractile DMD phenotypes in in vitro human models remain largely elusive. In this study, we utilized DMD patient-derived induced pluripotent stem cells (iPSCs) to differentiate myotubes using doxycycline-inducible MyoD overexpression, and searched for a target molecule that mediates dystrophin deficiency-dependent Ca2+ overload using commercially available chemicals and siRNAs. We found that several store-operated Ca2+ channel (SOC) inhibitors effectively prevented Ca2+ overload and identified that STIM1–Orai1 is a molecular target of SOCs. These findings were further confirmed by demonstrating that STIM1–Orai1 inhibitors, CM4620, AnCoA4, and GSK797A, prevented Ca2+ overload in dystrophic myotubes. Finally, we evaluated CM4620, AnCoA4, and GSK7975A activities using a previously reported model recapitulating a muscle fatigue-like decline in contractile performance in DMD. All three chemicals ameliorated the decline in contractile performance, indicating that modulating STIM1–Orai1-mediated Ca2+ overload is effective in rescuing contractile phenotypes. In conclusion, SOCs are major contributors to dystrophin deficiency-dependent Ca2+ overload through STIM1–Orai1 as molecular mediators. Modulating STIM1–Orai1 activity was effective in ameliorating the decline in contractile performance in DMD.
Collapse
Affiliation(s)
- Tomoya Uchimura
- Center for iPSC Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program, Fujisawa 251-8555, Japan
- Correspondence: (T.U.); (H.S.)
| | - Hidetoshi Sakurai
- Center for iPSC Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program, Fujisawa 251-8555, Japan
- Correspondence: (T.U.); (H.S.)
| |
Collapse
|
22
|
Ye L, Zeng Q, Ling M, Ma R, Chen H, Lin F, Li Z, Pan L. Inhibition of IP3R/Ca2+ Dysregulation Protects Mice From Ventilator-Induced Lung Injury via Endoplasmic Reticulum and Mitochondrial Pathways. Front Immunol 2021; 12:729094. [PMID: 34603302 PMCID: PMC8479188 DOI: 10.3389/fimmu.2021.729094] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Rationale Disruption of intracellular calcium (Ca2+) homeostasis is implicated in inflammatory responses. Here we investigated endoplasmic reticulum (ER) Ca2+ efflux through the Inositol 1,4,5-trisphosphate receptor (IP3R) as a potential mechanism of inflammatory pathophysiology in a ventilator-induced lung injury (VILI) mouse model. Methods C57BL/6 mice were exposed to mechanical ventilation using high tidal volume (HTV). Mice were pretreated with the IP3R agonist carbachol, IP3R inhibitor 2-aminoethoxydiphenyl borate (2-APB) or the Ca2+ chelator BAPTA-AM. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected to measure Ca2+ concentrations, inflammatory responses and mRNA/protein expression associated with ER stress, NLRP3 inflammasome activation and inflammation. Analyses were conducted in concert with cultured murine lung cell lines. Results Lungs from mice subjected to HTV displayed upregulated IP3R expression in ER and mitochondrial-associated-membranes (MAMs), with enhanced formation of MAMs. Moreover, HTV disrupted Ca2+ homeostasis, with increased flux from the ER to the cytoplasm and mitochondria. Administration of carbachol aggravated HTV-induced lung injury and inflammation while pretreatment with 2-APB or BAPTA-AM largely prevented these effects. HTV activated the IRE1α and PERK arms of the ER stress signaling response and induced mitochondrial dysfunction-NLRP3 inflammasome activation in an IP3R-dependent manner. Similarly, disruption of IP3R/Ca2+ in MLE12 and RAW264.7 cells using carbachol lead to inflammatory responses, and stimulated ER stress and mitochondrial dysfunction. Conclusion Increase in IP3R-mediated Ca2+ release is involved in the inflammatory pathophysiology of VILI via ER stress and mitochondrial dysfunction. Antagonizing IP3R/Ca2+ and/or maintaining Ca2+ homeostasis in lung tissue represents a prospective treatment approach for VILI.
Collapse
Affiliation(s)
- Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qi Zeng
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Riliang Ma
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haishao Chen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
23
|
Dynes JL, Yeromin AV, Cahalan MD. Cell-wide mapping of Orai1 channel activity reveals functional heterogeneity in STIM1-Orai1 puncta. J Gen Physiol 2021; 152:151900. [PMID: 32589186 PMCID: PMC7478869 DOI: 10.1085/jgp.201812239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2019] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Upon Ca2+ store depletion, Orai1 channels cluster and open at endoplasmic reticulum–plasma membrane (ER–PM) junctions in signaling complexes called puncta. Little is known about whether and how Orai1 channel activity may vary between individual puncta. Previously, we developed and validated optical recording of Orai channel activity, using genetically encoded Ca2+ indicators fused to Orai1 or Orai3 N or C termini. We have now combined total internal reflection fluorescence microscopy with whole-cell recording to map functional properties of channels at individual puncta. After Ca2+ store depletion in HEK cells cotransfected with mCherry-STIM1 and Orai1-GCaMP6f, Orai1-GCaMP6f fluorescence increased progressively with increasingly negative test potentials and robust responses could be recorded from individual puncta. Cell-wide fluorescence half-rise and -fall times during steps to −100 mV test potential indicated probe response times of <50 ms. The in situ Orai1-GCaMP6f affinity for Ca2+ was 620 nM, assessed by monitoring fluorescence using buffered Ca2+ solutions in “unroofed” cells. Channel activity and temporal activation profile were tracked in individual puncta using image maps and automated puncta identification and recording. Simultaneous measurement of mCherry-STIM1 fluorescence uncovered an unexpected gradient in STIM1/Orai1 ratio that extends across the cell surface. Orai1-GCaMP6f channel activity was found to vary across the cell, with inactive channels occurring in the corners of cells where the STIM1/Orai1 ratio was lowest; low-activity channels typically at edges displayed a slow activation phase lasting hundreds of milliseconds. Puncta with high STIM1/Orai1 ratios exhibited a range of channel activity that appeared unrelated to the stoichiometric requirements for gating. These findings demonstrate functional heterogeneity of Orai1 channel activity between individual puncta and establish a new experimental platform that facilitates systematic comparisons between puncta composition and activity.
Collapse
Affiliation(s)
- Joseph L Dynes
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA.,Institute for Immunology, University of California, Irvine, Irvine, CA
| |
Collapse
|
24
|
The store-operated Ca 2+ entry complex comprises a small cluster of STIM1 associated with one Orai1 channel. Proc Natl Acad Sci U S A 2021; 118:2010789118. [PMID: 33649206 PMCID: PMC7958290 DOI: 10.1073/pnas.2010789118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) links Ca2+ release from endoplasmic reticulum (ER) to Ca2+ entry across the plasma membrane (PM). SOCE is unusual in requiring interaction between proteins in different membranes. STIM1, when it senses loss of ER Ca2+, unfurls domains that interact with Orai1 PM Ca2+ channels. The stoichiometry of the SOCE complex is contentious, but it determines the regulation and functional consequences of SOCE. We show that native complexes are likely to comprise a single Orai1 channel and a few STIM1 dimers, too few to cluster Orai1 channels. We suggest that SOCE may be digitally regulated by local ER depletion, and that local SOCE-evoked Ca2+ fluxes are small enough to allow substantial intracellular redistribution of Ca2+ through ER tunnels. Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.
Collapse
|
25
|
Zhao M, Quintana A, Zhang C, Andreyev AY, Kiosses W, Kuwana T, Murphy A, Hogan PG, Kronenberg M. Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO J 2021; 40:e107901. [PMID: 34169542 PMCID: PMC8365263 DOI: 10.15252/embj.2021107901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
How natural or innate-like lymphocytes generate the capacity to produce IL-4 and other cytokines characteristic of type 2 immunity remains unknown. Invariant natural killer T (iNKT) cells differentiate in the thymus into NKT1, NKT2, and NKT17 subsets, similar to mature, peripheral CD4+ T helper cells. The mechanism for this differentiation was not fully understood. Here, we show that NKT2 cells required higher and prolonged calcium (Ca2+ ) signals and continuing activity of the calcium release-activated calcium (CRAC) channel, than their NKT1 counterparts. The sustained Ca2+ entry via CRAC pathway in NKT2 cells was apparently mediated by ORAI and controlled in part by the large mitochondrial Ca2+ uptake. Unique properties of mitochondria in NKT2 cells, including high activity of oxidative phosphorylation, may regulate mitochondrial Ca2+ buffering in NKT2 cells. In addition, the low Ca2+ extrusion rate may also contribute to the higher Ca2+ level in NKT2 cells. Altogether, we identified ORAI-dependent Ca2+ signaling connected with mitochondria and cellular metabolism, as a central regulatory pathway for the differentiation of NKT2 cells.
Collapse
Affiliation(s)
- Meng Zhao
- Division of Developmental ImmunologyLa Jolla Institute for ImmunologyLa JollaCAUSA
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Ariel Quintana
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
- Translational Science DivisionClinical Science DepartmentMoffitt Cancer Center Magnolia CampusTampaFLUSA
| | - Chen Zhang
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
| | | | - William Kiosses
- Core MicroscopyLa Jolla Institute for ImmunologyLa JollaCAUSA
| | - Tomomi Kuwana
- Division of Immune RegulationLa Jolla Institute for ImmunologyLa JollaCAUSA
| | | | - Patrick G Hogan
- Division of Signaling and Gene ExpressionLa Jolla Institute for ImmunologyLa JollaCAUSA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Mitchell Kronenberg
- Division of Developmental ImmunologyLa Jolla Institute for ImmunologyLa JollaCAUSA
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
26
|
Persechini A, Armbruster H, Keightley A. Investigating the landscape of intracellular [Ca 2+] in live cells by rapid photoactivated cross-linking of calmodulin-protein interactions. Cell Calcium 2021; 98:102450. [PMID: 34375924 DOI: 10.1016/j.ceca.2021.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
The Ca2+ sensor protein calmodulin interacts in a Ca2+-dependent manner with a large number of proteins that among them encompass a diverse assortment of functions and subcellular localizations. A method for monitoring calmodulin-protein interactions as they occur throughout a living cell would thus uniquely enable investigations of the intracellular landscape of [Ca2+] and its relationship to cell function. We have developed such a method based on capture of calmodulin-protein interactions by rapid photoactivated cross-linking (t1/2 ∼7s) in cells stably expressing a tandem affinity tagged calmodulin that have been metabolically labeled with a photoreactive methionine analog. Tagged adducts are stringently enriched, and captured calmodulin interactors are then identified and quantified based on tandem mass spectrometry data for their tryptic peptides. In this paper we show that the capture behaviors of interactors in cells are consistent with the presence of basal microdomains of elevated [Ca2+]. Ca2+ sensitivities for capture were determined, and these suggest that [Ca2+] levels are above ∼1 μM in these regions. Although the microdomains appear to affect capture of most proteins, capture of some is at an apparent Ca2+-dependent maximum, suggesting they are targeted to the domains. Removal of extracellular Ca2+ has both immediate (5 min) and delayed (30 min) effects on capture, implying that the microdomains are supported by a combination of Ca2+ influx across the cell membrane and Ca2+ derived from internal stores. The known properties of the presumptive microdomain targeted proteins suggestroles in a variety of Ca2+-dependent basal metabolism and in formation and maintenance of the domains.
Collapse
Affiliation(s)
- Anthony Persechini
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA.
| | - Hailey Armbruster
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Andrew Keightley
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| |
Collapse
|
27
|
KRAP tethers IP 3 receptors to actin and licenses them to evoke cytosolic Ca 2+ signals. Nat Commun 2021; 12:4514. [PMID: 34301929 PMCID: PMC8302619 DOI: 10.1038/s41467-021-24739-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Regulation of IP3 receptors (IP3Rs) by IP3 and Ca2+ allows regenerative Ca2+ signals, the smallest being Ca2+ puffs, which arise from coordinated openings of a few clustered IP3Rs. Cells express thousands of mostly mobile IP3Rs, yet Ca2+ puffs occur at a few immobile IP3R clusters. By imaging cells with endogenous IP3Rs tagged with EGFP, we show that KRas-induced actin-interacting protein (KRAP) tethers IP3Rs to actin beneath the plasma membrane. Loss of KRAP abolishes Ca2+ puffs and the global increases in cytosolic Ca2+ concentration evoked by more intense stimulation. Over-expressing KRAP immobilizes additional IP3R clusters and results in more Ca2+ puffs and larger global Ca2+ signals. Endogenous KRAP determines which IP3Rs will respond: it tethers IP3R clusters to actin alongside sites where store-operated Ca2+ entry occurs, licenses IP3Rs to evoke Ca2+ puffs and global cytosolic Ca2+ signals, implicates the actin cytoskeleton in IP3R regulation and may allow local activation of Ca2+ entry.
Collapse
|
28
|
Courjaret R, Machaca K. Native SOCE complexes: Small but mighty? Cell Calcium 2021; 97:102421. [PMID: 34023656 DOI: 10.1016/j.ceca.2021.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
Our current understanding of the molecular mechanisms underlying activation of store-operated Ca2+ entry (SOCE) relies in large part on studies that modulate the expression of STIM1 and Orai1. Shen et al. present the first detailed study to address the dynamics and stoichiometry of endogenous STIM1 and Orai1. They argue for an active SOCE cluster centered around a single Orai1 channel per punctum linked to 12 STIM1 dimers, which could have significant implications on SOCE-dependent Ca2+ signaling.
Collapse
Affiliation(s)
- Raphael Courjaret
- Department of Physiology and Biophysics, Ca(2+) Signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Ca(2+) Signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar.
| |
Collapse
|
29
|
Gil D, Guse AH, Dupont G. Three-Dimensional Model of Sub-Plasmalemmal Ca 2+ Microdomains Evoked by the Interplay Between ORAI1 and InsP 3 Receptors. Front Immunol 2021; 12:659790. [PMID: 33995380 PMCID: PMC8113648 DOI: 10.3389/fimmu.2021.659790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ signaling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains characterized by reduced spatial and temporal extents are observed in the junctions between the plasma membrane (PM) and the endoplasmic reticulum (ER). Such Ca2+ responses can also occur in response to T cell adhesion to other cells or extracellular matrix proteins in otherwise unstimulated T cells. These non-TCR/CD3-dependent Ca2+ microdomains rely on d-myo-inositol 1,4,5-trisphosphate (IP3) signaling and subsequent store operated Ca2+ entry (SOCE) via the ORAI/STIM system. The detailed molecular mechanism of adhesion-dependent Ca2+ microdomain formation remains to be fully elucidated. We used mathematical modeling to investigate the spatiotemporal characteristics of T cell Ca2+ microdomains and their molecular regulators. We developed a reaction-diffusion model using COMSOL Multiphysics to describe the evolution of cytosolic and ER Ca2+ concentrations in a three-dimensional ER-PM junction. Equations are based on a previously proposed realistic description of the junction, which is extended to take into account IP3 receptors (IP3R) that are located next to the junction. The first model only considered the ORAI channels and the SERCA pumps. Taking into account the existence of preformed clusters of ORAI1 and STIM2, ORAI1 slightly opens in conditions of a full ER. These simulated Ca2+ microdomains are too small as compared to those observed in unstimulated T cells. When considering the opening of the IP3Rs located near the junction, the local depletion of ER Ca2+ allows for larger Ca2+ fluxes through the ORAI1 channels and hence larger local Ca2+ concentrations. Computational results moreover show that Ca2+ diffusion in the ER has a major impact on the Ca2+ changes in the junction, by affecting the local Ca2+ gradients in the sub-PM ER. Besides pointing out the likely involvement of the spontaneous openings of IP3Rs in the activation of SOCE in conditions of T cell adhesion prior to full activation, the model provides a tool to investigate how Ca2+ microdomains extent and interact in response to T cell receptor activation.
Collapse
Affiliation(s)
- Diana Gil
- The Ca2+ Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Ca2+ Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
30
|
Guse AH, Gil Montoya DC, Diercks BP. Mechanisms and functions of calcium microdomains produced by ORAI channels, d-myo-inositol 1,4,5-trisphosphate receptors, or ryanodine receptors. Pharmacol Ther 2021; 223:107804. [PMID: 33465399 DOI: 10.1016/j.pharmthera.2021.107804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
With the discovery of local Ca2+ signals in the 1990s the concept of 'elementary Ca2+ signals' and 'fundamental Ca2+ signals' was developed. While 'elementary Ca2+signals' relate to optical signals gained by activity of small clusters of Ca2+channels, 'fundamental signals' describe such optical signals that arise from opening of single Ca2+channels. In this review, we discuss (i) concepts of local Ca2+ signals and Ca2+ microdomains, (ii) molecular mechanisms underlying Ca2+ microdomains, (iii) functions of Ca2+ microdomains, and (iv) mathematical modelling of Ca2+ microdomains. We focus on Ca2+ microdomains produced by ORAI channels, D-myo-inositol 1,4,5-trisphosphate receptors, or ryanodine receptors. In summary, research on local Ca2+ signals in different cell models aims to better understand how cells use the Ca2+ toolkit to produce Ca2+ microdomains as relevant signals for specific cellular responses, but also how local Ca2+ signals as building blocks merge into global Ca2+ signaling.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Dept of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Diana C Gil Montoya
- The Calcium Signalling Group, Dept of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Dept of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| |
Collapse
|
31
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
32
|
|
33
|
Leverrier-Penna S, Destaing O, Penna A. Insights and perspectives on calcium channel functions in the cockpit of cancerous space invaders. Cell Calcium 2020; 90:102251. [PMID: 32683175 DOI: 10.1016/j.ceca.2020.102251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.
Collapse
Affiliation(s)
| | - Olivier Destaing
- Institute for Advanced BioSciences, CNRS UMR 5309, INSERM U1209, Institut Albert Bonniot, University Grenoble Alpes, 38700 Grenoble, France.
| | - Aubin Penna
- STIM, CNRS ERL7003, University of Poitiers, 86000 Poitiers, France.
| |
Collapse
|
34
|
Barak P, Parekh AB. Signaling through Ca 2+ Microdomains from Store-Operated CRAC Channels. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035097. [PMID: 31358516 DOI: 10.1101/cshperspect.a035097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calcium (Ca2+) ion microdomains are subcellular regions of high Ca2+ concentration that develop rapidly near open Ca2+ channels in the plasma membrane or internal stores and generate local regions of high Ca2+ concentration. These microdomains are remarkably versatile in that they activate a range of responses that differ enormously in both their temporal and spatial profile. In this review, we describe how Ca2+ microdomains generated by store-operated calcium channels, a widespread and conserved Ca2+ entry pathway, stimulate different signaling pathways, and how the spatial extent of a Ca2+ microdomain can be influenced by Ca2+ ATPase pumps.
Collapse
Affiliation(s)
- Pradeep Barak
- Department of Physiology, Anatomy, and Genetics, Oxford University, Oxford OX1 3PT, United Kingdom
| | - Anant B Parekh
- Department of Physiology, Anatomy, and Genetics, Oxford University, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
35
|
Ryu KH. [Gut Microbiota and Pancreatobiliary System]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 75:231-239. [PMID: 32448854 DOI: 10.4166/kjg.2020.75.5.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 11/03/2022]
Abstract
The gut microbiota is part of the human body that is involved in body metabolism and the occurrence of various diseases. Detecting and analyzing their genetic information (microbiome) is as important as analyzing human genes. The core microbiome, the key functional genes shared by all humans, helps better understand the physiology of the human body. Information on the gut microbiome of a diseased person can help diagnose and treat disease. The pancreatobiliary system releases functional antimicrobial substances, such as bile acids and antimicrobial peptides, which affect the gut microbiota directly. In response, the gut microbiota influences pancreatobiliary secretion by controlling the generation and emission of substances through indirect signaling. This crosstalk maintains homeostasis of the pancreatobiliary system secretion and microbiota. Dysbiosis and disease can occur if this fails to work properly. Bile acid therapy has been used widely and may affect the microbial environment in the intestine. An association of the gut microbiota has been reported in many cases of pancreatobiliary diseases, including malignant tumors. Traditionally, most pancreatobiliary diseases are accompanied by infections from the gut microbiota, which is an important target for treatment. The pancreatobiliary system can control its function through physical and drug therapy. This may be a new pioneering field in the study or treatment of the gut microbiota.
Collapse
Affiliation(s)
- Ki-Hyun Ryu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
36
|
Ma G, He L, Liu S, Xie J, Huang Z, Jing J, Lee YT, Wang R, Luo H, Han W, Huang Y, Zhou Y. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat Commun 2020; 11:1039. [PMID: 32098964 PMCID: PMC7042325 DOI: 10.1038/s41467-020-14841-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically encoded photoswitches have enabled spatial and temporal control of cellular events to achieve tailored functions in living cells, but their applications to probe the structure-function relations of signaling proteins are still underexplored. We illustrate herein the incorporation of various blue light-responsive photoreceptors into modular domains of the stromal interaction molecule 1 (STIM1) to manipulate protein activity and faithfully recapitulate STIM1-mediated signaling events. Capitalizing on these optogenetic tools, we identify the molecular determinants required to mediate protein oligomerization, intramolecular conformational switch, and protein-target interactions. In parallel, we have applied these synthetic devices to enable light-inducible gating of calcium channels, conformational switch, dynamic protein-microtubule interactions and assembly of membrane contact sites in a reversible manner. Our optogenetic engineering approach can be broadly applied to aid the mechanistic dissection of cell signaling, as well as non-invasive interrogation of physiological processes with high precision. Optogenetic tools have been used to control cellular behaviours but their use to probe structure-function relations of signalling proteins are underexplored. Here the authors engineer optogenetic modules into STIM1 to dissect molecular details of STIM1-mediated signalling and control various cellular events.
Collapse
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Shuzhong Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiansheng Xie
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zixian Huang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Rui Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Hesheng Luo
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weidong Han
- Department of Medical Oncology, Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA. .,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol 2020; 17:53-64. [PMID: 31811279 DOI: 10.1038/s41575-019-0242-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Diseases intrinsic to the pancreas such as pancreatitis, pancreatic cancer and type 1 diabetes mellitus impart substantial health and financial burdens on society but identification of novel mechanisms contributing to these pathologies are slow to emerge. A novel area of research suggests that pancreatic-specific disorders might be modulated by the gut microbiota, either through a local (direct pancreatic influence) or in a remote (nonpancreatic) fashion. In this Perspectives, we examine literature implicating microorganisms in diseases of the pancreas, specifically pancreatitis, type 1 diabetes mellitus and pancreatic ductal adenocarcinoma. We also discuss evidence of an inherent pancreatic microbiota and the influence of the intestinal microbiota as it relates to disease association and development. In doing so, we address pitfalls in the current literature and areas of investigation that are needed to advance a developing field of research that has clinical potential to reduce the societal burden of pancreatic diseases.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
38
|
Bhuvaneshwari S, Sankaranarayanan K. Structural and Mechanistic Insights of CRAC Channel as a Drug Target in Autoimmune Disorder. Curr Drug Targets 2019; 21:55-75. [PMID: 31556856 DOI: 10.2174/1389450120666190926150258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Calcium (Ca2+) ion is a major intracellular signaling messenger, controlling a diverse array of cellular functions like gene expression, secretion, cell growth, proliferation, and apoptosis. The major mechanism controlling this Ca2+ homeostasis is store-operated Ca2+ release-activated Ca2+ (CRAC) channels. CRAC channels are integral membrane protein majorly constituted via two proteins, the stromal interaction molecule (STIM) and ORAI. Following Ca2+ depletion in the Endoplasmic reticulum (ER) store, STIM1 interacts with ORAI1 and leads to the opening of the CRAC channel gate and consequently allows the influx of Ca2+ ions. A plethora of studies report that aberrant CRAC channel activity due to Loss- or gain-of-function mutations in ORAI1 and STIM1 disturbs this Ca2+ homeostasis and causes several autoimmune disorders. Hence, it clearly indicates that the therapeutic target of CRAC channels provides the space for a new approach to treat autoimmune disorders. OBJECTIVE This review aims to provide the key structural and mechanical insights of STIM1, ORAI1 and other molecular modulators involved in CRAC channel regulation. RESULTS AND CONCLUSION Understanding the structure and function of the protein is the foremost step towards improving the effective target specificity by limiting their potential side effects. Herein, the review mainly focusses on the structural underpinnings of the CRAC channel gating mechanism along with its biophysical properties that would provide the solid foundation to aid the development of novel targeted drugs for an autoimmune disorder. Finally, the immune deficiencies caused due to mutations in CRAC channel and currently used pharmacological blockers with their limitation are briefly summarized.
Collapse
Affiliation(s)
- Sampath Bhuvaneshwari
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| |
Collapse
|
39
|
Black DJ, Tran QK, Keightley A, Chinawalkar A, McMullin C, Persechini A. Evaluating Calmodulin-Protein Interactions by Rapid Photoactivated Cross-Linking in Live Cells Metabolically Labeled with Photo-Methionine. J Proteome Res 2019; 18:3780-3791. [PMID: 31483676 DOI: 10.1021/acs.jproteome.9b00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work addresses the question of how the Ca2+ sensor protein calmodulin shapes cellular responses to Ca2+ signals. Proteins interacting with affinity tagged calmodulin were captured by rapid (t1/2 ≈ 7 s) photoactivated cross-linking under basal conditions, after brief removal of extracellular Ca2+ and during a cytosolic [Ca2+] transient in cells metabolically labeled with a photoreactive methionine analog. Tagged adducts were stringently enriched, and captured proteins were identified and quantified by LC-MS/MS. A set of 489 proteins including 27 known calmodulin interactors was derived. A threshold for fractional capture was applied to define a high specificity group of 170 proteins, including 22 known interactors, and a low specificity group of 319 proteins. Capture of ∼60% of the high specificity group was affected by manipulations of Ca2+, compared with ∼20% of the low specificity group. This suggests that the former is likely to contain novel interactors of physiological significance. The capture of 29 proteins, nearly all high specificity, was decreased by the removal of extracellular Ca2+, although this does not affect cytosolic [Ca2+]. Capture of half of these was unaffected by the cytosolic [Ca2+] transient, consistent with high local [Ca2+]. These proteins are hypothesized to reside in or near microdomains of high [Ca2+] supported by the Ca2+ influx.
Collapse
Affiliation(s)
- D J Black
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | | | - Andrew Keightley
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Ameya Chinawalkar
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Cole McMullin
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Anthony Persechini
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , 5007 Rockhill Road , Kansas City , Missouri 64110-2499 , United States
| |
Collapse
|
40
|
Katz ZB, Zhang C, Quintana A, Lillemeier BF, Hogan PG. Septins organize endoplasmic reticulum-plasma membrane junctions for STIM1-ORAI1 calcium signalling. Sci Rep 2019; 9:10839. [PMID: 31346209 PMCID: PMC6658532 DOI: 10.1038/s41598-019-46862-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
ORAI1 Ca2+ channels in the plasma membrane (PM) are gated by STIM1 at endoplasmic reticulum (ER)-PM junctions to effect store-dependent Ca2+ entry into cells, but little is known about how local STIM-ORAI signalling at junctions is coordinated with overall cellular architecture. Filamentous septins can specify cytoskeletal rearrangements and have been found recently to modulate STIM-ORAI signalling. Here we show by super-resolution imaging of ORAI1, STIM1, and septin 4 in living cells that septins facilitate Ca2+ signalling indirectly. Septin 4 does not colocalize preferentially with ORAI1 in resting or stimulated cells, assemble stably at ER-PM junctions, or specify a boundary that directs or confines ORAI1 to junctions. Rather, ORAI1 is recruited to junctions solely through interaction with STIM proteins, while septins regulate the number of ER-PM junctions and enhance STIM1-ORAI1 interactions within junctions. Thus septins communicate with STIM1 and ORAI1 through protein or lipid intermediaries, and are favorably positioned to coordinate Ca2+ signalling with rearrangements in cellular architecture.
Collapse
Affiliation(s)
- Zachary B Katz
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chen Zhang
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ariel Quintana
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Translational Science Division, Clinical Science Department, Moffitt Cancer Center Magnolia Campus, Tampa, FL, 33612, USA
| | - Björn F Lillemeier
- NOMIS Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Program in Immunology, University of California San Diego, La Jolla, CA, 92037, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
41
|
Westman J, Grinstein S, Maxson ME. Revisiting the role of calcium in phagosome formation and maturation. J Leukoc Biol 2019; 106:837-851. [DOI: 10.1002/jlb.mr1118-444r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Johannes Westman
- Program in Cell BiologyHospital for Sick Children Toronto Ontario Canada
| | - Sergio Grinstein
- Program in Cell BiologyHospital for Sick Children Toronto Ontario Canada
- Department of BiochemistryUniversity of Toronto Toronto Ontario Canada
- Keenan Research Centre of the Li Ka Shing Knowledge InstituteSt. Michael's Hospital Toronto Ontario Canada
| | - Michelle E. Maxson
- Program in Cell BiologyHospital for Sick Children Toronto Ontario Canada
| |
Collapse
|
42
|
Butorac C, Muik M, Derler I, Stadlbauer M, Lunz V, Krizova A, Lindinger S, Schober R, Frischauf I, Bhardwaj R, Hediger MA, Groschner K, Romanin C. A novel STIM1-Orai1 gating interface essential for CRAC channel activation. Cell Calcium 2019; 79:57-67. [PMID: 30831274 DOI: 10.1016/j.ceca.2019.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 11/30/2022]
Abstract
Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400-403), which is located within the CAD/SOAR domain. We determined this segment's specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.
Collapse
Affiliation(s)
- Carmen Butorac
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Martin Muik
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Michael Stadlbauer
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Victoria Lunz
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Adéla Krizova
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Sonja Lindinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Romana Schober
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Rajesh Bhardwaj
- Institute of Biochemistry and Molecular Medicine, University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Buehlstrasse 28, CH-3012 Bern, Switzerland
| | - Klaus Groschner
- Gottfried Schatz Forschungszentrum, Medizinische Universität Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria.
| |
Collapse
|
43
|
Qian N, Ichimura A, Takei D, Sakaguchi R, Kitani A, Nagaoka R, Tomizawa M, Miyazaki Y, Miyachi H, Numata T, Kakizawa S, Nishi M, Mori Y, Takeshima H. TRPM7 channels mediate spontaneous Ca 2+ fluctuations in growth plate chondrocytes that promote bone development. Sci Signal 2019; 12:12/576/eaaw4847. [PMID: 30967513 DOI: 10.1126/scisignal.aaw4847] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During endochondral ossification of long bones, the proliferation and differentiation of chondrocytes cause them to be arranged into layered structures constituting the epiphyseal growth plate, where they secrete the cartilage matrix that is subsequently converted into trabecular bone. Ca2+ signaling has been implicated in chondrogenesis in vitro. Through fluorometric imaging of bone slices from embryonic mice, we demonstrated that live growth plate chondrocytes generated small, cell-autonomous Ca2+ fluctuations that were associated with weak and intermittent Ca2+ influx. Several genes encoding Ca2+-permeable channels were expressed in growth plate chondrocytes, but only pharmacological inhibitors of transient receptor potential cation channel subfamily M member 7 (TRPM7) reduced the spontaneous Ca2+ fluctuations. The TRPM7-mediated Ca2+ influx was likely activated downstream of basal phospholipase C activity and was potentiated upon cell hyperpolarization induced by big-conductance Ca2+-dependent K+ channels. Bones from embryos in which Trpm7 was conditionally knocked out during ex vivo culture exhibited reduced outgrowth and displayed histological abnormalities accompanied by insufficient autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the growth plate. The link between TRPM7-mediated Ca2+ fluctuations and CaMKII-dependent chondrogenesis was further supported by experiments with chondrocyte-specific Trpm7 knockout mice. Thus, growth plate chondrocytes generate spontaneous, TRPM7-mediated Ca2+ fluctuations that promote self-maturation and bone development.
Collapse
Affiliation(s)
- Nianchao Qian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Reiko Sakaguchi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 615-8510, Japan
| | - Akihiro Kitani
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Ryohei Nagaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Masato Tomizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Yuu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tomohiro Numata
- Graduate School of Medical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 615-8501, Japan.
| |
Collapse
|
44
|
Taylor CW, Machaca K. IP3 receptors and store-operated Ca2+ entry: a license to fill. Curr Opin Cell Biol 2019; 57:1-7. [DOI: 10.1016/j.ceb.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
|
45
|
Lu F, Sun J, Zheng Q, Li J, Hu Y, Yu P, He H, Zhao Y, Wang X, Yang S, Cheng H. Imaging elemental events of store-operated Ca 2+ entry in invading cancer cells with plasmalemmal targeted sensors. J Cell Sci 2019; 132:jcs.224923. [PMID: 30814332 DOI: 10.1242/jcs.224923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
STIM1- and Orai1-mediated store-operated Ca2+ entry (SOCE) constitutes the major Ca2+ influx in almost all electrically non-excitable cells. However, little is known about the spatiotemporal organization at the elementary level. Here, we developed Orai1-tethered or palmitoylated biosensor GCaMP6f to report subplasmalemmal Ca2+ signals. We visualized spontaneous discrete and long-lasting transients ('Ca2+ glows') arising from STIM1-Orai1 in invading melanoma cells. Ca2+ glows occurred preferentially in single invadopodia and at sites near the cell periphery under resting conditions. Re-addition of external Ca2+ after store depletion elicited spatially synchronous Ca2+ glows, followed by high-rate discharge of asynchronous local events. Knockout of STIM1 or expression of the dominant-negative Orai1-E106A mutant markedly decreased Ca2+ glow frequency, diminished global SOCE and attenuated invadopodial formation. Functionally, invadopodial Ca2+ glows provided high Ca2+ microdomains to locally activate Ca2+/calmodulin-dependent Pyk2 (also known as PTK2B), which initiates the SOCE-Pyk2-Src signaling cascade required for invasion. Overall, the discovery of elemental Ca2+ signals of SOCE not only unveils a previously unappreciated gating mode of STIM1-Orai1 channels in situ, but also underscores a critical role of the spatiotemporal dynamics of SOCE in orchestrating complex cell behaviors such as invasion. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Fujian Lu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jianwei Sun
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qiaoxia Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanzhao Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Peng Yu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Huifang He
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Yan Zhao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA .,Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Samanta K, Bakowski D, Amin N, Parekh AB. The whole-cell Ca 2+ release-activated Ca 2+ current, I CRAC , is regulated by the mitochondrial Ca 2+ uniporter channel and is independent of extracellular and cytosolic Na . J Physiol 2019; 598:1753-1773. [PMID: 30582626 PMCID: PMC7318671 DOI: 10.1113/jp276551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Key points Ca2+ entry through Ca2+ release‐activated Ca2+ channels activates numerous cellular responses. Under physiological conditions of weak intracellular Ca2+ buffering, mitochondrial Ca2+ uptake regulates CRAC channel activity. Knockdown of the mitochondrial Ca2+ uniporter channel prevented the development of ICRAC in weak buffer but not when strong buffer was used instead. Removal of either extracellular or intra‐pipette Na+ had no effect on the selectivity, kinetics, amplitude, rectification or reversal potential of whole‐cell CRAC current. Knockdown of the mitochondrial Na+–Ca2+ exchanger did not prevent the development of ICRAC in strong or weak Ca2+ buffer. Whole cell CRAC current is Ca2+‐selective. Mitochondrial Ca2+ channels, and not Na+‐dependent transport, regulate CRAC channels under physiological conditions.
Abstract Ca2+ entry through store‐operated Ca2+ release‐activated Ca2+ (CRAC) channels plays a central role in activation of a range of cellular responses over broad spatial and temporal bandwidths. Mitochondria, through their ability to take up cytosolic Ca2+, are important regulators of CRAC channel activity under physiological conditions of weak intracellular Ca2+ buffering. The mitochondrial Ca2+ transporter(s) that regulates CRAC channels is unclear and could involve the 40 kDa mitochondrial Ca2+ uniporter (MCU) channel or the Na+–Ca2+–Li+ exchanger (NCLX). Here, we have investigated the involvement of these mitochondrial Ca2+ transporters in supporting the CRAC current (ICRAC) under a range of conditions in RBL mast cells. Knockdown of the MCU channel impaired the activation of ICRAC under physiological conditions of weak intracellular Ca2+ buffering. In strong Ca2+ buffer, knockdown of the MCU channel did not inhibit ICRAC development demonstrating that mitochondria regulate CRAC channels under physiological conditions by buffering of cytosolic Ca2+ via the MCU channel. Surprisingly, manipulations that altered extracellular Na+, cytosolic Na+ or both failed to inhibit the development of ICRAC in either strong or weak intracellular Ca2+ buffer. Knockdown of NCLX also did not affect ICRAC. Prolonged removal of external Na+ also had no significant effect on store‐operated Ca2+ entry, on cytosolic Ca2+ oscillations generated by receptor stimulation or on CRAC channel‐driven gene expression. In the RBL mast cell, Ca2+ flux through the MCU but not NCLX is indispensable for activation of ICRAC. Ca2+ entry through Ca2+ release‐activated Ca2+ channels activates numerous cellular responses. Under physiological conditions of weak intracellular Ca2+ buffering, mitochondrial Ca2+ uptake regulates CRAC channel activity. Knockdown of the mitochondrial Ca2+ uniporter channel prevented the development of ICRAC in weak buffer but not when strong buffer was used instead. Removal of either extracellular or intra‐pipette Na+ had no effect on the selectivity, kinetics, amplitude, rectification or reversal potential of whole‐cell CRAC current. Knockdown of the mitochondrial Na+–Ca2+ exchanger did not prevent the development of ICRAC in strong or weak Ca2+ buffer. Whole cell CRAC current is Ca2+‐selective. Mitochondrial Ca2+ channels, and not Na+‐dependent transport, regulate CRAC channels under physiological conditions.
Collapse
Affiliation(s)
- Krishna Samanta
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Daniel Bakowski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Nader Amin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
47
|
Wacquier B, Voorsluijs V, Combettes L, Dupont G. Coding and decoding of oscillatory Ca 2+ signals. Semin Cell Dev Biol 2019; 94:11-19. [PMID: 30659886 DOI: 10.1016/j.semcdb.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.
Collapse
Affiliation(s)
- Benjamin Wacquier
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valérie Voorsluijs
- Nonlinear Physical Chemistry Unit & Center for Nonlinear Phenomena and Complex Systems (CENOLI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
48
|
EGR-mediated control of STIM expression and function. Cell Calcium 2018; 77:58-67. [PMID: 30553973 DOI: 10.1016/j.ceca.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ is a ubiquitous, dynamic and pluripotent second messenger with highly context-dependent roles in complex cellular processes such as differentiation, proliferation, and cell death. These Ca2+ signals are generated by Ca2+-permeable channels located on the plasma membrane (PM) and endoplasmic reticulum (ER) and shaped by PM- and ER-localized pumps and transporters. Differences in the expression of these Ca2+ homeostasis proteins contribute to cell and context-dependent differences in the spatiotemporal organization of Ca2+ signals and, ultimately, cell fate. This review focuses on the Early Growth Response (EGR) family of zinc finger transcription factors and their role in the transcriptional regulation of Stromal Interaction Molecule (STIM1), a critical regulator of Ca2+ entry in both excitable and non-excitable cells.
Collapse
|
49
|
Thillaiappan NB, Chakraborty P, Hasan G, Taylor CW. IP 3 receptors and Ca 2+ entry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1092-1100. [PMID: 30448464 DOI: 10.1016/j.bbamcr.2018.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.
Collapse
Affiliation(s)
| | - Pragnya Chakraborty
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Colin W Taylor
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
50
|
Kono T, Tong X, Taleb S, Bone RN, Iida H, Lee CC, Sohn P, Gilon P, Roe MW, Evans-Molina C. Impaired Store-Operated Calcium Entry and STIM1 Loss Lead to Reduced Insulin Secretion and Increased Endoplasmic Reticulum Stress in the Diabetic β-Cell. Diabetes 2018; 67:2293-2304. [PMID: 30131394 PMCID: PMC6198337 DOI: 10.2337/db17-1351] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/08/2018] [Indexed: 12/24/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a dynamic process that leads to refilling of endoplasmic reticulum (ER) Ca2+ stores through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor Stromal Interaction Molecule 1 (STIM1). Pathogenic reductions in β-cell ER Ca2+ have been observed in diabetes. However, a role for impaired SOCE in this phenotype has not been tested. We measured the expression of SOCE molecular components in human and rodent models of diabetes and found a specific reduction in STIM1 mRNA and protein levels in human islets from donors with type 2 diabetes (T2D), islets from hyperglycemic streptozotocin-treated mice, and INS-1 cells (rat insulinoma cells) treated with proinflammatory cytokines and palmitate. Pharmacologic SOCE inhibitors led to impaired islet Ca2+ oscillations and insulin secretion, and these effects were phenocopied by β-cell STIM1 deletion. STIM1 deletion also led to reduced ER Ca2+ storage and increased ER stress, whereas STIM1 gain of function rescued β-cell survival under proinflammatory conditions and improved insulin secretion in human islets from donors with T2D. Taken together, these data suggest that the loss of STIM1 and impaired SOCE contribute to ER Ca2+ dyshomeostasis under diabetic conditions, whereas efforts to restore SOCE-mediated Ca2+ transients may have the potential to improve β-cell health and function.
Collapse
Affiliation(s)
- Tatsuyoshi Kono
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Solaema Taleb
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Robert N Bone
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hitoshi Iida
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Chih-Chun Lee
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Paul Sohn
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels, Belgium
| | - Michael W Roe
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|