1
|
Rebar RW, Keator CS. The history and future of in vitro fertilization in the United States: the complex interrelationships among basic science, human medicine, and politics. F&S SCIENCE 2023; 4:102-113. [PMID: 36907436 DOI: 10.1016/j.xfss.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Although much of the foundational basic scientific and clinical research was conducted in the United States, the first in vitro fertilization (IVF) birth occurred in the United Kingdom. Why? For centuries, all research surrounding the field of "reproduction" has elicited bipolar passionate responses by the American public, and the issue of "test tube babies" has been no different. The history of conception in the United States is defined by complex interrelationships among scientists, clinicians, and politically charged decisions by various branches of the US government. With a focus on research in the United States, this review summarizes the early scientific and clinical advances important to the development of IVF and then addresses the potential future developments in IVF. We also consider what future advances are possible in the United States given the current regulations, laws, and funding.
Collapse
Affiliation(s)
- Robert W Rebar
- Department of Obstetrics and Gynecology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan.
| | - Christopher S Keator
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| |
Collapse
|
2
|
Tao H, Yang J, Xu M, Liu Z, Liu Y, Xiong Q. MicroRNA-27a-3p targeting Vangl1 and Vangl2 inhibits cell proliferation in mouse granulosa cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194885. [PMID: 36288764 DOI: 10.1016/j.bbagrm.2022.194885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mammalian folliculogenesis is the complex process through which primordial follicles develop into preovulatory follicles. The chief function of ovarian follicle granulosa cells is to play a vital role in the growth, development and atresia of ovarian follicles via gap junctions. Increasing evidence suggests that microRNAs (miRNAs) are essential regulators of granulosa cell apoptosis or proliferation. METHODS The expression level of miR-27a-3p, myogenic differentiation (MyoD), Vangl1 and Vangl2 was investigated by Real-time quantitative PCR (RT-qPCR) and Western blot. Luciferase reporter assay, bioinformatics analysis and ChIP-PCR was used to detect the binding sites between miR-27a-3p, transcription factor and target genes. KEGG pathway analyses were performed to reveal the predicted targets of miR-27a-3p. Ethynyl deoxyuridine (EdU) proliferation assay was used to measure cell proliferation. RESULTS To explore the underlying mechanisms of the miR-27a-3p function in the development of mouse granulosa cells (mGCs), we screened for the target genes of miR-27a-3p, confirmed its interaction with Vangl1 and Vangl2 and elucidated their roles in mGCs. MiR-27a-3p inhibited the proliferation of mGCs, whereas target genes Vangl1 and Vangl2 had the opposite effect. In addition, the transcription factor MYOD bound to and activated the promoter of miR-27a-3p. MiR-27a-3p suppressed Vangl1 and Vangl2 expression by targeting their 3'-untranslated region (3'-UTR). Furthermore, Vangl1 and Vangl2 suppressed the Wnt pathway by reducing the expression of β-catenin and B-cell lymphoma/leukemia-2 (Bcl-2). CONCLUSION These findings indicate a pro-survival mechanism of the MyoD/miR-27a-3p/Vangl1/Vangl2 axis for granulosa cell proliferation and suggest a novel target for the improvement of female fertility.
Collapse
Affiliation(s)
- Hu Tao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Juan Yang
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mingzhu Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zelin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yang Liu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
3
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
4
|
Bühler N. The making of 'old eggs': the science of reproductive ageing between fertility and anti-ageing technologies. REPRODUCTIVE BIOMEDICINE & SOCIETY ONLINE 2022; 14:169-181. [PMID: 35024473 PMCID: PMC8732751 DOI: 10.1016/j.rbms.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/09/2021] [Accepted: 07/29/2021] [Indexed: 06/14/2023]
Abstract
This article proposes going back in the history of reproductive medicine to shed light on the role of assisted reproductive technology (ART) in the making of 'old eggs'. Focusing on two key technologies - egg donation and cytoplasmic transfer - both of which contributed significantly to the production of scientific knowledge about reproductive ageing, the article suggests that ART can be analysed as 'in-vivo models' playing a pivotal role in the shift from age as a demographic variable to ageing understood in biological terms. It will shed light on the role of ART in locating age in the eggs and producing a cellular understanding of fertility decline. It argues that ART not only offers new means of reconfiguring the biological clock by extending fertility, but also reconfigures the biology of reproductive ageing itself. This becomes both the target and the means for new technological interventions, imaginaries and norms, anchored in women's bodies and a more plastic biology, and thereby illuminates hitherto underexplored aspects of the encounter between the science and technology of reproduction and anti-ageing.
Collapse
|
5
|
Sfakianoudis K, Rapani A, Grigoriadis S, Retsina D, Maziotis E, Tsioulou P, Giannelou P, Pantos K, Koutsilieris M, Vlahos N, Mastorakos G, Simopoulou M. Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet? Cell Transplant 2021; 29:963689720926154. [PMID: 32686983 PMCID: PMC7563844 DOI: 10.1177/0963689720926154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ovarian insufficiency is described as a multifaceted issue typically encountered in the field of assisted reproduction. The three main identified diagnoses of ovarian insufficiency include premature ovarian failure (POF), poor ovarian response (POR), and advanced maternal age (AMA). Patient heterogeneity in the era of individualized medicine drives research forward leading to the emergence of novel approaches. This plethora of innovative treatments in the service of adequately managing ovarian insufficiency is called to undertake the challenge of addressing infertile patients exploring their reproductive options. This review provides an all-inclusive presentation and critical analysis on novel treatments that have not achieved routine clinical practice status yet, but have recently emerged as promising. In light of the lack of randomized controlled trials conveying safety and efficiency, clinicians are left puzzled in addressing the "how" and "for whom" these approaches may be beneficial. From ovarian injection employing platelet-rich plasma (PRP) or stem cells to artificial gametes and ovaries, ovarian transplantation, and mitochondrial replacement therapy, this descriptive review provides insight toward assisting the practitioner in decision making regarding these cutting-edge treatments. Biological mechanisms, invasiveness levels, efficiency, as well as possible complications, the current status along with bioethical concerns are discussed in the context of identifying future optimal treatment.
Collapse
Affiliation(s)
| | - Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Retsina
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Unit of Endocrinology, Diabetes Mellitus and Metabolism, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petroula Tsioulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polina Giannelou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Vlahos
- Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Current Understandings of Core Pathways for the Activation of Mammalian Primordial Follicles. Cells 2021; 10:cells10061491. [PMID: 34199299 PMCID: PMC8231864 DOI: 10.3390/cells10061491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovary has two main functions-producing mature oocytes for fertilization and secreting hormones for maintaining the ovarian endocrine functions. Both functions are vital for female reproduction. Primordial follicles are composed of flattened pre-granulosa cells and a primary oocyte, and activation of primordial follicles is the first step in follicular development and is the key factor in determining the reproductive capacity of females. The recent identification of the phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway as the key controller for follicular activation has made the study of primordial follicle activation a hot research topic in the field of reproduction. This review systematically summarizes the roles of the PI3K/PTEN signaling pathway in primordial follicle activation and discusses how the pathway interacts with various other molecular networks to control follicular activation. Studies on the activation of primordial follicles have led to the development of methods for the in vitro activation of primordial follicles as a treatment for infertility in women with premature ovarian insufficiency or poor ovarian response, and these are also discussed along with some practical applications of our current knowledge of follicular activation.
Collapse
|
7
|
Emerging follicular activation strategies to treat women with poor ovarian response and primary ovarian insufficiency. Curr Opin Obstet Gynecol 2021; 33:241-248. [PMID: 33896920 DOI: 10.1097/gco.0000000000000703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW Female reproductive aging remains one of the key unsolved challenges in the field of reproductive medicine. This article reviews three of the most recent and cutting-edge strategies that are currently being investigated to address the issues of poor ovarian response (POR) and primary ovarian insufficiency (POI). RECENT FINDINGS Publications revealing the mechanism of mechanical disruption of the Hippo signaling pathway paved the way to studies on its potential application for fertility treatments. This, in combination with Akt stimulation, resulted in live births and ongoing pregnancies in women with POI. Building on previous reports on the effects of bone marrow transplants on fertility after chemotherapy, another approach involved autologous stem cell ovarian transplantation (ASCOT). The method proved effective in achieving live births in women previously diagnosed with POR. A third approach, intraovarian injection of autologous platelet-rich plasma, resulted in live births and ongoing pregnancies both spontaneously and via in vitro fertilization (IVF) in women with POI and POR. SUMMARY New paths are being charted to address the issues of POI and POR. Although these are preliminary studies that should be interpreted with caution, they represent great promise for the women affected by these conditions and the physicians treating them.
Collapse
|
8
|
Regenerative Medicine Approaches in Bioengineering Female Reproductive Tissues. Reprod Sci 2021; 28:1573-1595. [PMID: 33877644 DOI: 10.1007/s43032-021-00548-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Diseases, disorders, and dysfunctions of the female reproductive tract tissues can result in either infertility and/or hormonal imbalance. Current treatment options are limited and often do not result in tissue function restoration, requiring alternative therapeutic approaches. Regenerative medicine offers potential new therapies through the bioengineering of female reproductive tissues. This review focuses on some of the current technologies that could address the restoration of functional female reproductive tissues, including the use of stem cells, biomaterial scaffolds, bio-printing, and bio-fabrication of tissues or organoids. The use of these approaches could also be used to address issues in infertility. Strategies such as cell-based hormone replacement therapy could provide a more natural means of restoring normal ovarian physiology. Engineering of reproductive tissues and organs could serve as a powerful tool for correcting developmental anomalies. Organ-on-a-chip technologies could be used to perform drug screening for personalized medicine approaches and scientific investigations of the complex physiological interactions between the female reproductive tissues and other organ systems. While some of these technologies have already been developed, others have not been translated for clinical application. The continuous evolution of biomaterials and techniques, advances in bioprinting, along with emerging ideas for new approaches, shows a promising future for treating female reproductive tract-related disorders and dysfunctions.
Collapse
|
9
|
Panay N, Anderson RA, Nappi RE, Vincent AJ, Vujovic S, Webber L, Wolfman W. Premature ovarian insufficiency: an International Menopause Society White Paper. Climacteric 2020; 23:426-446. [PMID: 32896176 DOI: 10.1080/13697137.2020.1804547] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this International Menopause Society White Paper on premature ovarian insufficiency (POI) is to provide the latest information regarding this distressing condition. The impact of POI has far-reaching consequences due to its impact on general, psychological, and sexual quality of life, fertility prospects, and long-term bone, cardiovascular, and cognitive health. Progress in fully understanding the etiology, diagnosis, and optimal management options has been slow thus far due to the complexity of the condition and fragmented research. Recent advances in epidemiological and genetic research have improved our understanding of this condition and randomized prospective trials are being planned to determine the intervention strategies, which will optimize quality of life and long-term well-being. The International Menopause Society has commissioned a number of experts at the forefront of their specialty to define the state of the art in the understanding of this condition, to advise on practical management strategies, and to propose future research strategies. It is hoped that a global task force will subsequently be convened in order to formulate a consensus statement across key societies, to accelerate date collection and analysis of a global POI registry, and to facilitate progress in the key defined areas of research.
Collapse
Affiliation(s)
- N Panay
- Queen Charlotte's & Chelsea and Chelsea & Westminster Hospitals, Imperial College, London, UK
| | - R A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - R E Nappi
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, Obstetrics and Gynecology Unit, IRCCS S. Matteo Foundation, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - A J Vincent
- Department of Endocrinology, Monash Health, Clayton, VIC, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, VIC, Australia
| | - S Vujovic
- Faculty of Medicine, Clinic of Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - L Webber
- St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - W Wolfman
- Department of Obstetrics and Gynaecology, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage. Stem Cell Rev Rep 2020; 15:356-373. [PMID: 30937640 DOI: 10.1007/s12015-019-09886-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.
Collapse
|
11
|
Xie Y, Li S, Zhou L, Lin H, Jiao X, Qiu Q, Liang Y, Zhang Q. Rapamycin preserves the primordial follicle pool during cisplatin treatment in vitro and in vivo. Mol Reprod Dev 2020; 87:442-453. [PMID: 32112509 DOI: 10.1002/mrd.23330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
Rapamycin has been proven to effectively inhibit the activation of primordial follicles while cisplatin-induced the loss of primordial follicles due to the over-activation of the primordial follicle stockpile. Whether rapamycin could inhibit the loss of primordial follicles induced by cisplatin is still unknown. The ovaries of neonatal Sprague Dawley rats were cultured in vitro in different doses of rapamycin (0.08, 0.16, and 0.32 μg/ml) and cisplatin (0.1, 0.4, and 0.8 μg/ml). The immature BALB/c mice were administered cisplatin with or without rapamycin by intraperitoneal injection. Ovaries were collected to analyze the histomorphology, the messenger RNA (mRNA) expression of anti-Mullerian hormone (AMH), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15) and the expression of key proteins of mammalian target of rapamycin (mTOR) pathway. Growing follicle counts of ovaries cultured in vitro in the R0.16 and R0.32 groups were decreased and the ratio of growing to primordial follicles was also decreased in a dose-dependent manner. In the C0.8 group, growing follicles were decreased compared with the other groups while the ratio was substantially increased in the C0.4 and C0.8 group. Co-treatment attenuated primordial follicle loss and reduced the upregulated ratio induced by cisplatin. Ovarian follicle dynamics in vivo was consistent with the in vitro results. Primordial follicles counts were statistically increased and the ratio was reduced in the rapamycin group compared with the control group. Primordial follicle counts were dramatically reduced in the cisplatin group whereas co-treatment with rapamycin slightly recovered its counts. There was no obvious difference in the number of growing follicles between the cisplatin group and other groups. The ratio was significantly increased in cisplatin-treated mice whereas decreased in the co-treatment group. The apoptosis rate of antral follicles in cisplatin-treated mice was higher than the other groups while the apoptosis rate was decreased in the co-treatment group in vivo. Compared with the control and rapamycin group, the mRNA expression of AMH, GDF9, and BMP15 were downregulated in the cisplatin group. The co-treatment group recovered the mRNA expression of BMP15. In addition, the expression of key protein of mTOR pathway rpS6 and its phosphorylated forms were increased in the cisplatin-treated group while co-treatment decreased their expression. Rapamycin attenuated the loss of primordial follicles induced by cisplatin through the inhibitory effect of rapamycin on the mTOR pathway. These results suggest that rapamycin may be an effective drug for the protection of ovarian function during chemotherapy.
Collapse
Affiliation(s)
- Yanqiu Xie
- Department of Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Gongdong, China.,Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Gongdong, China
| | - Song Li
- Department of Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Gongdong, China
| | - Linyan Zhou
- Department of Reproductive Medicine Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Gongdong, China
| | - Haiyan Lin
- Department of Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Gongdong, China
| | - Xuedan Jiao
- Department of Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Gongdong, China
| | - Qi Qiu
- Department of Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Gongdong, China
| | - Yihua Liang
- Department of Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Gongdong, China
| | - Qingxue Zhang
- Department of Reproductive Medicine Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Gongdong, China
| |
Collapse
|
12
|
Blumenfeld Z. Fertility Preservation Using GnRH Agonists: Rationale, Possible Mechanisms, and Explanation of Controversy. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119870163. [PMID: 31488958 PMCID: PMC6710670 DOI: 10.1177/1179558119870163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
The only clinically accepted method of fertility preservation in young women facing gonadotoxic chemo- and/or radiotherapy for malignant or autoimmune diseases is cryopreservation of embryos or unfertilized ova, whereas cryopreservation of ovarian tissue for future reimplantation, or in vitro maturation of follicles, and the use of gonadotropin-releasing hormone agonists (GnRHa) are still considered investigational, by several authorities. Whereas previous publications have raised the fear of GnRHa's possible detrimental effects in patients with hormone receptor-positive breast cancers, recent randomized controlled trials (RCTs) have shown that it either improves or does not affect disease-free survival (DFS) in such patients. This review summarizes the pros and cons of GnRHa co-treatment for fertility preservation, suggesting 5 theoretical mechanisms for GnRHa action: (1) simulating the prepubertal hypogonadotropic milieu, (2) direct effect on GnRH receptors, (3) decreased ovarian perfusion, (4) upregulation of an ovarian-protecting molecule such as sphingosine-1-phosphate, and (5) protecting a possible germinative stem cell. We try to explain the reasons for the discrepancy between most publications that support the use of GnRHa for fertility preservation and the minority of publications that did not support its efficiency.
Collapse
Affiliation(s)
- Zeev Blumenfeld
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Clarkson YL, Weatherall E, Waterfall M, McLaughlin M, Lu H, Skehel PA, Anderson RA, Telfer EE. Extracellular Localisation of the C-Terminus of DDX4 Confirmed by Immunocytochemistry and Fluorescence-Activated Cell Sorting. Cells 2019; 8:cells8060578. [PMID: 31212843 PMCID: PMC6627596 DOI: 10.3390/cells8060578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 02/03/2023] Open
Abstract
Putative oogonial stem cells (OSCs) have been isolated by fluorescence-activated cell sorting (FACS) from adult human ovarian tissue using an antibody against DEAD-box helicase 4 (DDX4). DDX4 has been reported to be germ cell specific within the gonads and localised intracellularly. White et al. (2012) hypothesised that the C-terminus of DDX4 is localised on the surface of putative OSCs but is internalised during the process of oogenesis. This hypothesis is controversial since it is assumed that RNA helicases function intracellularly with no extracellular expression. To determine whether the C-terminus of DDX4 could be expressed on the cell surface, we generated a novel expression construct to express full-length DDX4 as a DsRed2 fusion protein with unique C- and N-terminal epitope tags. DDX4 and the C-terminal myc tag were detected at the cell surface by immunocytochemistry and FACS of non-permeabilised human embryonic kidney HEK 293T cells transfected with the DDX4 construct. DDX4 mRNA expression was detected in the DDX4-positive sorted cells by RT-PCR. This study clearly demonstrates that the C-terminus of DDX4 can be expressed on the cell surface despite its lack of a conventional membrane-targeting or secretory sequence. These results validate the use of antibody-based FACS to isolate DDX4-positive putative OSCs.
Collapse
Affiliation(s)
- Yvonne L Clarkson
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Emma Weatherall
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Martin Waterfall
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Marie McLaughlin
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Haojiang Lu
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | - Paul A Skehel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Evelyn E Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
14
|
Martin JJ, Woods DC, Tilly JL. Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries. Cells 2019; 8:E93. [PMID: 30696098 PMCID: PMC6407002 DOI: 10.3390/cells8020093] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Jessica J Martin
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Clarkson YL, McLaughlin M, Waterfall M, Dunlop CE, Skehel PA, Anderson RA, Telfer EE. Initial characterisation of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Sci Rep 2018; 8:6953. [PMID: 29725036 PMCID: PMC5934371 DOI: 10.1038/s41598-018-25116-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/16/2018] [Indexed: 01/31/2023] Open
Abstract
The existence of a population of putative stem cells with germline developmental potential (oogonial stem cells: OSCs) in the adult mammalian ovary has been marked by controversy over isolation methodology and potential for in-vitro transformation, particularly where cell sorting has been based on expression of DEAD box polypeptide 4 (DDX4). This study describes a refined tissue dissociation/fluorescence-activated cell sorting (FACS) protocol for the ovaries of adult women which results in increased cell viability and yield of putative OSCs. A FACS technique incorporating dual-detection of DDX4 with aldehyde dehydrogenase 1 (ALDH1) demonstrates the existence of two sub-populations of small DDX4-positive cells (approx. 7 µm diameter) with ALDH1 activity, distinguished by expression of differentially spliced DDX4 transcripts and of DAZL, a major regulator of germ cell differentiation. These may indicate stages of differentiation from a progenitor population and provide a likely explanation for the expression disparities reported previously. These findings provide a robust basis for the further characterisation of these cells, and exploration of their potential physiological roles and therapeutic application.
Collapse
Affiliation(s)
- Yvonne L Clarkson
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.,School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Marie McLaughlin
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.,School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Martin Waterfall
- School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Cheryl E Dunlop
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.,MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Skehel
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Evelyn E Telfer
- Institute of Cell Biology and the Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK. .,School of Biological Sciences, Ashworth Laboratories, the King's Buildings, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| |
Collapse
|
16
|
Badawy A, Sobh MA, Ahdy M, Abdelhafez MS. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health 2017; 9:441-447. [PMID: 28670143 PMCID: PMC5479293 DOI: 10.2147/ijwh.s134074] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective Attempting in vivo healing of cyclophosphamide-induced ovarian insufficiency in a mouse model using bone marrow mesenchymal stem cells (BMMSCs). Methods Female BALB/c white mice were used to prepare a model for premature ovarian failure by single intraperitoneal injection of cyclophosphamide (80 mg/kg). Ten mice were injected with BMMSCs and then sacrificed after 21 days for morphometric evaluation of the ovaries. Hormonal profile was evaluated while mice were being sacrificed. Another 10 mice were left for natural breeding with male mice, and 5 of these were injected with BMMSCs. Oocyte-like structures were obtained from 3 mice and were subjected to in vitro fertilization/intracytoplasmic sperm injection. Results Morphometric analysis of the ovaries demonstrated the presence of newly formed primordial follicles. Contribution of MSCs to the formation of these follicles was proven by a labeling technique. There was a drop in estradiol and rise in follicle-stimulating hormone levels, followed by resumption of the hormonal levels to near normal 21 days after MSCs therapy. The 5 mice that were injected with MSCs became pregnant after natural breeding. Fertilization and further division was reported in 5 oocytes subjected to intracytoplasmic sperm injection, but division did not continue. Conclusion From this proof-of-concept trial, we can say that healing of damaged ovaries after chemotherapy in mice is possible using in vivo therapy with BMMSCs. This should open the gate for a series of animal studies that test the possibility of in vitro maturation of germinal epithelium of the ovary into mature oocytes.
Collapse
Affiliation(s)
| | | | - Mohamed Ahdy
- Department of Clinical Pharmacology, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
17
|
Zeng M, Sheng X, Keefe DL, Liu L. Reconstitution of ovarian function following transplantation of primordial germ cells. Sci Rep 2017; 7:1427. [PMID: 28469243 PMCID: PMC5431110 DOI: 10.1038/s41598-017-01648-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Ovarian aging occurs earlier than somatic aging. We tested the hypothesis that ovarian functions could be artificially reconstructed by transplantation of primordial germ cells (PGCs). We compared various methods for transplantation of PGCs aggregated with gonadal somatic cells and showed that reconstituted ovaries exhibited folliculogenesis after transplantation of PGCs-aggregates into either kidney capsule or ovarian bursa. Neo-oogenesis occurred early after transplantation, as evidenced by the presence of prophase I meiocytes displaying homologous pairing. Moreover, endocrine function was recovered in ovariectomized recipients, including elevated levels of AMH and estradiol. Interestingly, folliculogenesis in the reconstituted ovaries failed to sustain past four weeks. Regardless of transplantation method, follicles diminished after 45 days, accompanied by increased apoptosis, and were undetectable after two months. Meanwhile, no replicative PGCs or prophase I meiocytes could be found. Together, transplantation of PGCs can effectively reconstitute ovarian functions but for limited time. These data suggest that PGCs do not undergo self-renewal but rapidly enter meiosis following transplantation. Global activation of primordial follicles in artificial ovaries can result in further rapid loss of germ cells. Methods for maintaining self-renewal and expansion in vivo of PGCs and controlling follicle activation will be essential for continuing maintenance of the functional reconstructed ovaries.
Collapse
Affiliation(s)
- Ming Zeng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Horan CJ, Williams SA. Oocyte stem cells: fact or fantasy? Reproduction 2017; 154:R23-R35. [PMID: 28389520 DOI: 10.1530/rep-17-0008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
Abstract
For many decades, the dogma prevailed that female mammals had a finite pool of oocytes at birth and this was gradually exhausted during a lifetime of reproductive function. However, in 2004, a new era began in the field of female oogenesis. A study was published that appeared to detect oocyte-stem cells capable of generating new eggs within mouse ovaries. This study was highly controversial and the years since this initial finding have produced extensive research and even more extensive debate into their possibility. Unequivocal evidence testifying to the existence of oocyte-stem cells (OSCs) has yet to be produced, meanwhile the spectrum of views from both sides of the debate are wide-ranging and surprisingly passionate. Although recent studies have presented some convincing results that germ cells exist and are capable of creating new oocytes, many questions remain. Are these cells present in humans? Do they exist in physiological conditions in a dormant state? This comprehensive review first examines where and how the dogma of a finite pool was established, how this has been challenged over the years and addresses the most pertinent questions as to the current status of their existence, their role in female fertility, and perhaps most importantly, if they do exist, how can we harness these cells to improve a woman's oocyte reserve and treat conditions such as premature ovarian insufficiency (POI: also known as premature ovarian failure, POF).
Collapse
Affiliation(s)
- Corrina J Horan
- Nuffield Department of Obstetrics and GynaecologyUniversity of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Suzannah A Williams
- Nuffield Department of Obstetrics and GynaecologyUniversity of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
19
|
El Yakoubi W, Wassmann K. Meiotic Divisions: No Place for Gender Equality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:1-17. [PMID: 28600780 DOI: 10.1007/978-3-319-57127-0_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms the fusion of two gametes with a haploid set of chromosomes leads to the formation of the zygote, the first cell of the embryo. Accurate execution of the meiotic cell division to generate a female and a male gamete is required for the generation of healthy offspring harboring the correct number of chromosomes. Unfortunately, meiosis is error prone. This has severe consequences for fertility and under certain circumstances, health of the offspring. In humans, female meiosis is extremely error prone. In this chapter we will compare male and female meiosis in humans to illustrate why and at which frequency errors occur, and describe how this affects pregnancy outcome and health of the individual. We will first introduce key notions of cell division in meiosis and how they differ from mitosis, followed by a detailed description of the events that are prone to errors during the meiotic divisions.
Collapse
Affiliation(s)
- Warif El Yakoubi
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75252, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75252, France
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, Paris, 75252, France. .,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, 75252, France.
| |
Collapse
|
20
|
Abstract
The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.
Collapse
Affiliation(s)
- Caroline E Gargett
- Centre for Women's Health Research, Monash Institute of Medical Research, and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
21
|
FACS-sorted putative oogonial stem cells from the ovary are neither DDX4-positive nor germ cells. Sci Rep 2016; 6:27991. [PMID: 27301892 PMCID: PMC4908409 DOI: 10.1038/srep27991] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Whether the adult mammalian ovary contains oogonial stem cells (OSCs) is controversial. They have been isolated by a live-cell sorting method using the germ cell marker DDX4, which has previously been assumed to be cytoplasmic, not surface-bound. Furthermore their stem cell and germ cell characteristics remain disputed. Here we show that although OSC-like cells can be isolated from the ovary using an antibody to DDX4, there is no good in silico modelling to support the existence of a surface-bound DDX4. Furthermore these cells when isolated were not expressing DDX4, and did not initially possess germline identity. Despite these unremarkable beginnings, they acquired some pre-meiotic markers in culture, including DDX4, but critically never expressed oocyte-specific markers, and furthermore were not immortal but died after a few months. Our results suggest that freshly isolated OSCs are not germ stem cells, and are not being isolated by their DDX4 expression. However it may be that culture induces some pre-meiotic markers. In summary the present study offers weight to the dogma that the adult ovary is populated by a fixed number of oocytes and that adult de novo production is a rare or insignificant event.
Collapse
|
22
|
Anderson RA, Telfer EE. Replenishing the adult ovarian follicle population: a fresh look at dogma. Mol Hum Reprod 2016; 22:313-5. [PMID: 26916382 DOI: 10.1093/molehr/gaw017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Jung D, Kee K. Insights into female germ cell biology: from in vivo development to in vitro derivations. Asian J Androl 2016; 17:415-20. [PMID: 25652637 PMCID: PMC4430939 DOI: 10.4103/1008-682x.148077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Collapse
Affiliation(s)
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Albertini DF, Gleicher N. A detour in the quest for oogonial stem cells: methods matter. Nat Med 2016; 21:1126-7. [PMID: 26444636 DOI: 10.1038/nm.3969] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David F Albertini
- University of Kansas Medical Center, Kansas City, Kansas, USA, and the Center for Human Reproduction, New York, New York, USA
| | - Norbert Gleicher
- Center for Human Reproduction, New York, New York, USA, and the Rockefeller University, New York, New York, USA
| |
Collapse
|
25
|
Cai KQ, Wang Y, Smith ER, Smedberg JL, Yang DH, Yang WL, Xu XX. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia 2015; 17:89-100. [PMID: 25622902 PMCID: PMC4309726 DOI: 10.1016/j.neo.2014.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023] Open
Abstract
White spotting variant (Wv) mice are spontaneous mutants attributed to a point mutation in the c-Kit gene, which reduces the tyrosine kinase activity to around 1% and affects the development of melanocytes, mast cells, and germ cells. Homozygous mutant mice are sterile but can live nearly a normal life span. The female Wv mice have a greatly reduced ovarian germ cell and follicle reserve at birth, and the remaining follicles are largely depleted soon after the females reach reproductive stage at around 7 weeks of age. Consequently, ovarian epithelial tumors develop in 100% of Wv females by 3 to 4 months of age. These tumors, called tubular adenomas, are benign but can become invasive in older Wv mice. We tested if additional genetic mutation(s) could convert the benign ovarian epithelial tumors to malignant tumors by crossing the Wv mutant into the Trp53 knockout background. Surprisingly, we found that global deletion of Trp53 suppressed the development of ovarian tubular adenomas in Wv mice. The ovaries of Wv/Wv; Trp53 (−/−) mice were covered by a single layer of surface epithelium and lacked excessive epithelial proliferation. Rather, the ovaries contained a small number of follicles. The presence of ovarian follicles and granulosa cells, as indicated by Pgc7 and inhibin-alpha expression, correlated with the absence of epithelial lesions. A reduction of Pten gene dosage, as in Wv/Wv; Pten (+/−) mice, produced a similar, though less dramatic, phenotype. We conclude that deletion of Trp53 prolongs the survival of ovarian follicles in Wv mice and consequently prevents the proliferation of ovarian epithelial cells and development of ovarian tubular adenomas. The results suggest that various cell types within the ovary communicate and mutually modulate, and an intact tissue environment is required to ensure homeostasis of ovarian surface epithelial cells. Especially, the current finding emphasizes the importance of ovarian follicles in suppressing the hyperplastic growth of ovarian epithelial cells, dominating over the loss of p53.
Collapse
Affiliation(s)
- Kathy Qi Cai
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Ying Wang
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136; Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Elizabeth R Smith
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | | | - Dong-Hua Yang
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Wan-Lin Yang
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136.
| |
Collapse
|
26
|
Parvari S, Abbasi M, Abbasi N, Malek VG, Amidi F, Aval FS, Roudkenar MH, Izadyar F. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary. Arch Med Sci 2015; 11:670-8. [PMID: 26170863 PMCID: PMC4495162 DOI: 10.5114/aoms.2015.52374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/23/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. MATERIAL AND METHODS A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. RESULTS Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. CONCLUSIONS The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies.
Collapse
Affiliation(s)
- Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Abbasi
- Faculty of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Fardin Amidi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Ozakpinar OB, Maurer AM, Ozsavci D. Ovarian stem cells: From basic to clinical applications. World J Stem Cells 2015; 7:757-768. [PMID: 26029346 PMCID: PMC4444615 DOI: 10.4252/wjsc.v7.i4.757] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/28/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The field of reproductive biology has undergone significant developments in the last decade. The notion that there is a fixed reserve pool of oocytes before birth was established by Zuckerman in 1951. However, in 2004, an article published in nature challenged this central dogma of mammalian reproductive biology. Tilly’s group reported the existence of ovarian germline stem cells (GSCs) in postnatal ovaries of mice and suggested that the bone marrow could be an extragonadal source of ovarian GSCs. These findings were strongly criticized; however, several independent groups have since successfully isolated and characterized ovarian GSCs in postnatal mice. The ovarian GSCs are located in the ovarian surface epithelium and express markers of undifferentiated GSCs. When transplanted into mouse ovaries, mouse ovarian GSCs could differentiate and produce embryos and offspring. Similarly, in a recent study, ovarian GSCs were found to be present in the ovaries of women of reproductive age. Conversely, there is increasing evidence that stem cells responsible for maintaining a healthy state in normal tissue may be a source of some cancers, including ovarian cancer. Cancer stem cells (CSCs) have been found in many tissues, including ovaries. Some researchers have suggested that ovarian cancer may be a result of the transformation and dysfunction of ovarian GSCs with self-renewal properties. Drug resistant and metastasis-generating CSCs are responsible for many important problems affecting ovarian cancer patients. Therefore, the identification of CSCs will provide opportunities for the development of new therapeutic strategies for treatments for infertility and ovarian cancer. In this article, we summarize the current understanding of ovarian GSCs in adult mammals, and we also discuss whether there is a relationship between GSCs and CSCs.
Collapse
|
28
|
Lai D, Wang F, Yao X, Zhang Q, Wu X, Xiang C. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med 2015; 13:155. [PMID: 25964118 PMCID: PMC4490699 DOI: 10.1186/s12967-015-0516-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Background Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood have mesenchymal stem/stromal cells (MSCs) characteristics and can differentiate into cell types that arise from all three germ layers. We hypothesized that EnSCs may offer promise for restoration of ovarian dysfunction associated with premature ovarian failure/insufficiency (POF/POI). Methods Mouse ovaries were injured with busulfan and cyclophosphamide (B/C) to create a damaged ovary mouse model. Transplanted EnSCs were injected into the tail vein of sterilized mice (Chemoablated with EnSCs group; n = 80), or culture medium was injected into the sterilized mice via the tail vein as chemoablated group (n = 80). Non-sterilized mice were untreated controls (n = 80). Overall ovarian function was measured using vaginal smears, live imaging, mating trials and immunohistochemical techniques. Results EnSCs transplantation increased body weight and improved estrous cyclicity as well as restored fertility in sterilized mice. Migration and localization of GFP-labeled EnSCs as measured by live imaging and immunofluorescent methods indicated that GFP-labeled cells were undetectable 48 h after cell transplantation, but were later detected in and localized to the ovarian stroma. 5’-bromodeoxyuridine (BrdU) and mouse vasa homologue (MVH) protein double-positive cells were immunohistochemically detected in mouse ovaries, and EnSC transplantation reduced depletion of the germline stem cell (GSCs) pool induced by chemotherapy. Conclusion EnSCs derived from menstrual blood, as autologous stem cells, may restore damaged ovarian function and offer a suitable clinical strategy for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0516-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China.
| | - Fangyuan Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China.
| | - Xiaofen Yao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China.
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China.
| | - Xiaoxing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
29
|
Ramos-Ibeas P, Pericuesta E, Fernández-González R, Gutiérrez-Adán A, Ramírez MÁ. Characterisation of the deleted in azoospermia like (Dazl)-green fluorescent protein mouse model generated by a two-step embryonic stem cell-based strategy to identify pluripotent and germ cells. Reprod Fertil Dev 2015; 28:RD14253. [PMID: 25942058 DOI: 10.1071/rd14253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/04/2015] [Indexed: 02/28/2024] Open
Abstract
The deleted in azoospermia like (Dazl) gene is preferentially expressed in germ cells; however, recent studies indicate that it may have pluripotency-related functions. We generated Dazl-green fluorescent protein (GFP) transgenic mice and assayed the ability of Dazl-driven GFP to mark preimplantation embryo development, fetal, neonatal and adult tissues, and in vitro differentiation from embryonic stem cells (ESCs) to embryoid bodies (EBs) and to primordial germ cell (PGC)-like cells. The Dazl-GFP mice were generated by a two-step ESC-based strategy, which enabled primary and secondary screening of stably transfected clones before embryo injection. During preimplantation embryo stages, GFP was detected from the zygote to blastocyst stage. At Embryonic Day (E) 12.5, GFP was expressed in gonadal ridges and in neonatal gonads of both sexes. In adult mice, GFP expression was found during spermatogenesis from spermatogonia to elongating spermatids and in the cytoplasm of oocytes. However, GFP mRNA was also detected in other tissues harbouring multipotent cells, such as the intestine and bone marrow. Fluorescence was maintained along in vitro Dazl-GFP ESC differentiation to EBs, and in PGC-like cells. In addition to its largely known function in germ cell development, Dazl could have an additional role in pluripotency, supporting these transgenic mice as a valuable tool for the prospective identification of stem cells from several tissues.
Collapse
|
30
|
Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice. Proc Natl Acad Sci U S A 2014; 111:17983-8. [PMID: 25453063 PMCID: PMC4273382 DOI: 10.1073/pnas.1421047111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether or not oocyte regeneration occurs in adult life has been the subject of much debate. In this study, we have traced germ-cell lineages over the life spans of three genetically modified mouse models and provide direct evidence that oogenesis does not originate from any germline stem cells (GSCs) in adult mice. By selective ablation of all existing oocytes in a Gdf9-Cre;iDTR mouse model, we have demonstrated that no new germ cells were ever regenerated under pathological conditions. By in vivo tracing of oocytes and follicles in the Sohlh1-CreER(T2);R26R and Foxl2-CreER(T2);mT/mG mouse models, respectively, we have shown that the initial pool of oocytes is the only source of germ cells throughout the life span of the mice and that no adult oogenesis ever occurs under physiological conditions. Our findings clearly show that there are no GSCs that contribute to adult oogenesis in mice and that the initial pool of oocytes formed in early life is the only source of germ cells throughout the entire reproductive life span.
Collapse
|
31
|
Yuan J, Zhang D, Wang L, Liu M, Mao J, Yin Y, Ye X, Liu N, Han J, Gao Y, Cheng T, Keefe DL, Liu L. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells 2014; 31:2538-50. [PMID: 23897655 DOI: 10.1002/stem.1480] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022]
Abstract
Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age.
Collapse
Affiliation(s)
- Jihong Yuan
- State Key Laboratory of Medicinal Chemical Biology, The 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics and College of Life Sciences, Nankai University, Tianjin, China; Key Laboratory of Ministry of Health on Hormones and Development, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
It has long been established that germline stem cells (GSCs) are responsible for lifelong gametogenesis in males, and some female invertebrates (for example, Drosophila) and lower vertebrates (for example, teleost fish and some prosimians) also appear to rely on GSCs to replenish their oocyte reserve in adulthood. However, the presence of such cells in the majority of female mammals is controversial, and the idea of a fixed ovarian reserve determined at birth is the prevailing belief among reproductive biologists. However, accumulating evidence demonstrates the isolation and culture of putative GSCs from the ovaries of adult mice and humans. Live offspring have been reportedly produced from the culture of adult mouse GSCs, and human GSCs formed primordial follicles using a mouse xenograft model. If GSCs were present in adult female ovaries, it could be postulated that the occurrence of menopause is not due to the exhaustion of a fixed supply of oocytes but instead is a result of GSC and somatic cell aging. Alternatively, they may be benign under normal physiological conditions. If their existence were confirmed, female GSCs could have many potential applications in both basic science and clinical therapies. GSCs not only may provide a valuable model for germ cell development and maturation but may have a role in the field of fertility preservation, with women potentially being able to store GSCs or GSC-derived oocytes from their own ovaries prior to infertility-inducing treatments. Essential future work in this field will include further independent corroboration of the existence of GSCs in female mammals and the demonstration of the production of mature competent oocytes from GSCs cultured entirely in vitro.
Collapse
|
33
|
Myers M, Morgan FH, Liew SH, Zerafa N, Gamage TU, Sarraj M, Cook M, Kapic I, Sutherland A, Scott CL, Strasser A, Findlay JK, Kerr JB, Hutt KJ. PUMA regulates germ cell loss and primordial follicle endowment in mice. Reproduction 2014; 148:211-9. [DOI: 10.1530/rep-13-0666] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The number of primordial follicles initially established within the ovary is influenced by the extent of germ cell death during foetal ovarian development, but the mechanisms that mediate this death have not been fully uncovered. In this study, we identified BBC3 (PUMA) (p53 upregulated modulator of apoptosis, also known as BCL2-binding component 3), a pro-apoptotic BH3-only protein belonging to the BCL2 family, as a critical determinant of the number of germ cells during ovarian development. Targeted disruption of the Bbc3 gene revealed a significant increase in the number of germ cells as early as embryonic day 13.5. The number of germ cells remained elevated in Bbc3−/− female mice compared with WT female mice throughout the remainder of embryonic and early postnatal life, resulting in a 1.9-fold increase in the number of primordial follicles in the ovary on postnatal day 10. The increase in the number of germ cells observed in the ovaries of Bbc3−/− mice could not be attributed to the altered proliferative activity of germ cells within the ovaries. Furthermore, BBC3 was found to be not required for the massive germ cell loss that occurs during germ cell nest breakdown. Our data indicate that BBC3 is a critical regulator of germ cell death that acts during the migratory phase of oogenesis or very soon after the arrival of germ cells in the gonad and that BBC3-mediated cell death limits the number of primordial follicles established in the initial ovarian reserve.
Collapse
|
34
|
Bui HT, Van Thuan N, Kwon DN, Choi YJ, Kang MH, Han JW, Kim T, Kim JH. Identification and characterization of putative stem cells in the adult pig ovary. Development 2014; 141:2235-44. [DOI: 10.1242/dev.104554] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, the concept of ‘neo-oogenesis’ has received increasing attention, since it was shown that adult mammals have a renewable source of eggs. The purpose of this study was to elucidate the origin of these eggs and to confirm whether neo-oogenesis continues throughout life in the ovaries of the adult mammal. Adult female pigs were utilized to isolate, identify and characterize, including their proliferation and differentiation capabilities, putative stem cells (PSCs) from the ovary. PSCs were found to comprise a heterogeneous population based on c-kit expression and cell size, and also express stem and germ cell markers. Analysis of PSC molecular progression during establishment showed that these cells undergo cytoplasmic-to-nuclear translocation of Oct4 in a manner reminiscent of gonadal primordial germ cells (PGCs). Hence, cells with the characteristics of early PGCs are present or are generated in the adult pig ovary. Furthermore, the in vitro establishment of porcine PSCs required the presence of ovarian cell-derived extracellular regulatory factors, which are also likely to direct stem cell niche interactions in vivo. In conclusion, the present work supports a crucial role for c-kit and kit ligand/stem cell factor in stimulating the growth, proliferation and nuclear reprogramming of porcine PSCs, and further suggests that porcine PSCs might be the culture equivalent of early PGCs.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
- Department of Biotechnology, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Biotechnology, Tan Tao University, Long An 81000, Vietnam
| | - Nguyen Van Thuan
- Department of Biotechnology, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 70000, Vietnam
- School of Biotechnology, Tan Tao University, Long An 81000, Vietnam
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Jae-Woong Han
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Teoan Kim
- Department of Physiology, Catholic University of Daegu School of Medicine, Daegu 705718, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
35
|
Pan Y. A new tool to generate transgenic rats using female germline stem cells from post-natal ovaries. Mol Hum Reprod 2014; 20:283-5. [PMID: 24608712 DOI: 10.1093/molehr/gau017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yuqiong Pan
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Hanna CB, Hennebold JD. Ovarian germline stem cells: an unlimited source of oocytes? Fertil Steril 2014; 101:20-30. [PMID: 24382341 DOI: 10.1016/j.fertnstert.2013.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
While there has been progress in directing the development of embryonic stem cells and induced pluripotent stem cells toward a germ cell state, their ability to serve as a source of functional oocytes in a clinically relevant model or situation has yet to be established. Recent studies suggest that the adult mammalian ovary is not endowed with a finite number of oocytes, but instead possesses stem cells that contribute to their renewal. The ability to isolate and promote the growth and development of such ovarian germline stem cells (GSCs) would provide a novel means to treat infertility in women. Although such ovarian GSCs are well characterized in nonmammalian model organisms, the findings that support the existence of adult ovarian GSCs in mammals have been met with considerable evidence that disputes their existence. This review details the lessons provided by model organisms that successfully utilize ovarian GSCs to allow for a continual and high level of female germ cell production throughout their life, with a specific focus on the cellular mechanisms involved in GSC self-renewal and oocyte development. Such an overview of the role that oogonial stem cells play in maintaining fertility in nonmammalian species serves as a backdrop for the data generated to date that supports or disputes the existence of GSCs in mammals as well as the future of this area of research in terms of its potential for any application in reproductive medicine.
Collapse
Affiliation(s)
- Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
37
|
Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, Wolf I, Kanety H, Sredni B, Meirow D. Cyclophosphamide triggers follicle activation and "burnout"; AS101 prevents follicle loss and preserves fertility. Sci Transl Med 2014; 5:185ra62. [PMID: 23677591 DOI: 10.1126/scitranslmed.3005402] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Premature ovarian failure and infertility are major side effects of chemotherapy treatments in young cancer patients. A more thorough understanding of the mechanism behind chemotherapy-induced follicle loss is necessary to develop new methods to preserve fertility in these patients. We show that the alkylating agent cyclophosphamide (Cy) activates the growth of the quiescent primordial follicle population in mice, resulting in loss of ovarian reserve. Despite the initial massive apoptosis observed in growing, though not in resting, follicles of Cy-treated mice, differential follicle counts demonstrated both a decrease in primordial follicles and an increase in early growing follicles. Immunohistochemistry showed that granulosa cells were undergoing proliferation. Analysis of the phosphatidylinositol 3-kinase signaling pathway demonstrated that Cy increased phosphorylation of proteins that stimulate follicle activation in the oocytes and granulosa cells. Coadministration of an immunomodulator, AS101, reduced follicle activation, thereby increasing follicle reserve and rescuing fertility after Cy, and also increased the efficacy of Cy against breast cancer cell lines. These findings suggest that the mechanism in Cy-induced loss of ovarian reserve is accelerated primordial follicle activation, which results in a "burnout" effect and follicle depletion. By preventing this activation, AS101 shows potential as an ovarian-protective agent, which may be able to preserve fertility in female cancer patients.
Collapse
Affiliation(s)
- Lital Kalich-Philosoph
- Fertility Preservation Research Laboratory, IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang H, Adhikari D, Zheng W, Liu K. Combating ovarian aging depends on the use of existing ovarian follicles, not on putative oogonial stem cells. Reproduction 2013; 146:R229-33. [DOI: 10.1530/rep-13-0202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ovarian aging is characterized by both a reduction in egg quality and a drastic reduction in the number of ovarian follicles. It has been generally accepted for 60 years that a fixed population of primordial follicles is established in the ovaries during early life, and in most mammalian species, oocytes cannot renew themselves in postnatal or adult life. This dogma, however, has been challenged over the past decade. In this review, we summarize the recent studies on primordial follicles and putative oogonial stem cells and discuss what resources in the ovary might be more reliable and promising source tools for combating ovarian aging.
Collapse
|
39
|
Zhou L, Wang L, Kang JX, Xie W, Li X, Wu C, Xu B, Wu J. Production of fat-1 transgenic rats using a post-natal female germline stem cell line. ACTA ACUST UNITED AC 2013; 20:271-81. [DOI: 10.1093/molehr/gat081] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Kharsa ZC, Gustin SLF, Westphal LM. Pregnancy During Recovery from Hematopoietic Stem Cell Transplant for Mycosis Fungoides. J Adolesc Young Adult Oncol 2013; 2:133-5. [PMID: 26812191 DOI: 10.1089/jayao.2013.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We report a case of spontaneous pregnancy with subsequent full-term live birth following hematopoietic stem cell transplantation (HSCT) for mycosis fungoides in a 24-year-old nulligravida with 4 years of prior infertility due to primary ovarian insufficiency. Four months post-transplant, the patient was found to be 10 weeks pregnant. Her pregnancy was complicated by first trimester fetal exposure to mycophenolate mofetil (pregnancy category D), delayed-onset acute gastrointestinal graft-versus-host disease, and multiple systemic infections. This report highlights the importance of discussing potential fertility outcomes in patients undergoing HSCT, including the necessity for adequate contraception post-transplant, even in the setting of previous infertility.
Collapse
Affiliation(s)
- Zena C Kharsa
- 1 University of California , San Diego School of Medicine, La Jolla, California
| | - Stephanie L F Gustin
- 2 Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University Medical Center , Stanford, California
| | - Lynn M Westphal
- 2 Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University Medical Center , Stanford, California.,3 Stanford Fertility and Reproductive Medicine Center , Palo Alto, California
| |
Collapse
|
41
|
Bai Y, Yu M, Hu Y, Qiu P, Liu W, Zheng W, Peng S, Hua J. Location and characterization of female germline stem cells (FGSCs) in juvenile porcine ovary. Cell Prolif 2013; 46:516-28. [PMID: 24033494 DOI: 10.1111/cpr.12058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Existence of germline stem cells (GSCs) in juvenile mammalian female ovaries has been drastically debated recently since reports that adult mouse ovaries still have mitotically active germ cells have been proposed. In addition, definitive location of such female germline stem cells (FGSCs) had not been demonstrated. MATERIALS AND METHODS We segregated porcine FGSCs mechanically from ovary cortex, and tested our hypotheses by utilizing immunofluorescent staining, qRT-PCR and western blotting. RESULTS We attached emphasis to unambiguous location of FGSCs, which settle simultaneously in the theca. Dissected cells from porcine thecal layers maintained similar characteristics to mouse FGSCs and ESCs over 4-months in vitro culture. CONCLUSION These results may provide a new resource for the study of oogenesis and therapy for ovarian sterility.
Collapse
Affiliation(s)
- Y Bai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Although it is widely appreciated that age is the primary determinant of the number of primordial follicles remaining within the ovary, it is now also recognized that for any given age two women can have a 100-fold difference in their ovarian reserve. Consequently, age alone has relatively poor accuracy in determining the reproductive potential for young women, and this has led to the development of additional biomarkers that more accurately reflect the ovarian reserve. In this review we discuss the strengths and limitations of the classical and novel biomarkers and provide a rationale for the adoption of biomarkers to facilitate the individualization of reproductive health.
Collapse
Affiliation(s)
- Stamatina Iliodromiti
- Maternal & Reproductive Medicine, School of Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
43
|
|
44
|
Dunlop CE, Telfer EE, Anderson RA. Ovarian stem cells--potential roles in infertility treatment and fertility preservation. Maturitas 2013; 76:279-83. [PMID: 23693139 DOI: 10.1016/j.maturitas.2013.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/22/2022]
Abstract
One of the principal beliefs in reproductive biology is that women have a finite ovarian reserve, which is fixed from the time they are born. This theory has been questioned recently by the discovery of ovarian stem cells which are purported to have the ability to form new oocytes under specific conditions post-natally. Almost a decade after their discovery, ovarian, or oogonial, stem cells (OSCs) have been isolated in mice and humans but remain the subject of much debate. Studies in mice have shown that these cells can be cultured to a mature oocyte stage in vitro, and when injected into germ-cell depleted ovary they can form follicles and have resulted in the birth of healthy offspring. There are few data from human OSCs but this finding would open the door to novel fertility preservation strategies for women with both age-related and premature ovarian insufficiency (POI). As the number of girls and young women surviving cancer increases worldwide, POI secondary to gonadotoxic treatments, such as chemotherapy, is becoming more common. The ideal fertility preservation approach would prevent delays in commencing life-saving treatment and avoid transplanting malignant cells back into a woman after treatment: OSCs may offer one route to achieving this. This review summarises our current understanding of OSCs and discusses their potential clinical application in infertility treatment and fertility preservation.
Collapse
Affiliation(s)
- Cheryl E Dunlop
- MRC Centre for Reproductive Health, University of Edinburgh, Queens Medical Research Institute, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
45
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
46
|
|
47
|
Ma Z, Liu R, Wang X, Huang M, Gao Q, Lu Y, Liu C. Spontaneous germline potential of human hepatic cell line in vitro. ACTA ACUST UNITED AC 2012. [DOI: 10.1093/molehr/gas058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update 2012; 19:67-83. [PMID: 23103636 DOI: 10.1093/humupd/dms043] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Advanced maternal age is associated with reduced fertility and adverse pregnancy outcomes. This review details recent developments in our understanding of the biology and mechanisms underlying reproductive ageing in women and the implications for fertility and pregnancy. METHODS Sociological online libraries (IBSS, SocINDEX), PubMed and Google Scholar were searched for relevant demographic, epidemiological, clinical and biological studies, using key words and hierarchical MeSH terms. From this, we identified and focused on key topics where it was judged that there had been clinically relevant advances in the understanding of ovarian and uterine ageing with implications for improved diagnostics and novel interventions. RESULTS Mapping of the ovarian reserve, follicular dynamics and associated biomarkers, across the reproductive lifespan has recently been performed. This now allows an assessment of the effects of environmental, lifestyle and prenatal exposures on follicular dynamics and the identification of their impact during periods of germ cell vulnerability and may also facilitate early identification of individuals with shorter reproductive lifespans. If women choose to time their family based on their ovarian reserve this would redefine the meaning of family planning. Despite recent reports of the potential existence of stem cells which may be used to restore the primordial follicle and thereby the oocyte pool, therapeutic interventions in female reproductive ageing at present remain limited. Maternal ageing has detrimental effects on decidual and placental development, which may be related to repeated exposure to sex steroids and underlie the association of ageing with adverse perinatal outcomes. CONCLUSIONS Ageing has incontrovertible detrimental effects on the ovary and the uterus. Our enhanced understanding of ovarian ageing will facilitate early identification of individuals at greatest risk, and novel therapeutic interventions. Changes in both ovary and uterus are in addition to age-related co-morbidities, which together have synergistic effects on reducing the probability of a successful pregnancy outcome.
Collapse
Affiliation(s)
- S M Nelson
- School of Medicine, University of Glasgow, McGregor Building, Western Infirmary, Glasgow, UK.
| | | | | |
Collapse
|
49
|
Grynberg M, Poulain M, Sebag-Peyrelevade S, le Parco S, Fanchin R, Frydman N. Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil Steril 2012; 97:1260-8. [PMID: 22656306 DOI: 10.1016/j.fertnstert.2012.04.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To review and summarize data from the scientific literature on ovarian tissue and follicle transplantation as an option for fertility preservation. DESIGN Review of pertinent literature. SETTING University hospital. PATIENT(S) Women having undergone ovarian tissue transplantation. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Review of the literature. RESULT(S) Over the last decade, the field of ovarian transplantation and cryopreservation has significantly progressed, becoming applicable in humans. Indeed, fresh and frozen cortical ovarian tissue transplantations have been successfully reported worldwide, resulting in around 28 healthy babies. Although ovarian-tissue harvesting seems to be safe, the risk of reimplantation of cancer from ovarian cortical transplants cannot be estimated at this time. As a consequence, auto-transplantation of ovarian tissue in women having suffered from systemic hematological malignancies is not recommended. In these situations, reimplantation of isolated ovarian follicles might represent an interesting option in the future. CONCLUSION(S) Although the clinical experience is limited, the robust results obtained open new perspectives for the management of premature ovarian failure resulting or not from gonadotoxic treatments.
Collapse
Affiliation(s)
- Michael Grynberg
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Antoine Béclère, Clamart, France.
| | | | | | | | | | | |
Collapse
|
50
|
Chuai Y, Xu X, Wang A. Preservation of fertility in females treated for cancer. Int J Biol Sci 2012; 8:1005-12. [PMID: 22904668 PMCID: PMC3421231 DOI: 10.7150/ijbs.4800] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/29/2012] [Indexed: 12/17/2022] Open
Abstract
Advancements of diagnosis and treatment have substantially improved cancer survival rates in the last few decades. The increasing number of survivors focuses attention on long-term effects caused by cancer treatment and its impact on quality of life. Ovarian failure is one of the major sequelae of cytotoxic chemotherapy and/or radiotherapy in female children and reproductive-age women. Oncologists should address the patients about fertility preservation options before therapy. Embryo cryopreservation is the only well-established method for females in preserving fertility; however other strategies including ovarian suppression, ovarian transposition and cryopreservation of oocytes and ovarian tissue are still experimental. Patients need advice and to know which are the most practical options for them. This article reviews the available fertility preservation methods in women, and the related issues including normal physiology of the ovary, effect of anticancer therapy on fertility, role of the oncologist and ethics. We performed a MEDLINE search from 1971 to 2011 in a similar way as Jensen et al. 2011, using the following MeSH terms: antineoplastic agents; ovarian failure; premature; infertility, female; fertility preservation; child and cancer; reproductive technologies, assisted.
Collapse
Affiliation(s)
- Yunhai Chuai
- Department of Obstetrics and Gynecology, Navy General Hospital, Beijing, China
| | | | | |
Collapse
|