1
|
Iglesia MD, Jayasinghe RG, Chen S, Terekhanova NV, Herndon JM, Storrs E, Karpova A, Zhou DC, Naser Al Deen N, Shinkle AT, Lu RJH, Caravan W, Houston A, Zhao Y, Sato K, Lal P, Street C, Martins Rodrigues F, Southard-Smith AN, Targino da Costa ALN, Zhu H, Mo CK, Crowson L, Fulton RS, Wyczalkowski MA, Fronick CC, Fulton LA, Sun H, Davies SR, Appelbaum EL, Chasnoff SE, Carmody M, Brooks C, Liu R, Wendl MC, Oh C, Bender D, Cruchaga C, Harari O, Bredemeyer A, Lavine K, Bose R, Margenthaler J, Held JM, Achilefu S, Ademuyiwa F, Aft R, Ma C, Colditz GA, Ju T, Oh ST, Fitzpatrick J, Hwang ES, Shoghi KI, Chheda MG, Veis DJ, Chen F, Fields RC, Gillanders WE, Ding L. Differential chromatin accessibility and transcriptional dynamics define breast cancer subtypes and their lineages. NATURE CANCER 2024:10.1038/s43018-024-00773-6. [PMID: 39478117 DOI: 10.1038/s43018-024-00773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/24/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is defined by distinct molecular subtypes with different cells of origin. The transcriptional networks that characterize the subtype-specific tumor-normal lineages are not established. In this work, we applied bulk, single-cell and single-nucleus multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 patients with BC to show characteristic links in gene expression and chromatin accessibility between BC subtypes and their putative cells of origin. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal BC and luminal mature cells and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like (SOX6 and KCNQ3) and luminal A/B (FAM155A and LRP1B) lineages. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like BC, suggesting an altered means of immune dysfunction. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single-cell level is a powerful tool for investigating cancer lineage and highlight transcriptional networks that define basal and luminal BC lineages.
Collapse
Affiliation(s)
- Michael D Iglesia
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - John M Herndon
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew T Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Cherease Street
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - André Luiz N Targino da Costa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Crowson
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Catrina C Fronick
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Lucinda A Fulton
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Sherri R Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Sara E Chasnoff
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Madelyn Carmody
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Candace Brooks
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mathematics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Clara Oh
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane Bender
- Bursky Center for Human Immunology & Immunotherapy, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ron Bose
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Julie Margenthaler
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason M Held
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samuel Achilefu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Foluso Ademuyiwa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca Aft
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- John Cochran Veterans Hospital, St. Louis, MO, USA
| | - Cynthia Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Graham A Colditz
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Stephen T Oh
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - James Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in St. Louis, St. Louis, MO, USA
- Departments of Neuroscience and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC, England
| | - Kooresh I Shoghi
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Deborah J Veis
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan C Fields
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Roohy F, Moghanibashi M, Tahmasebi S. Bioinformatic and experimental analyses of GATA3 and its regulatory miRNAs in breast Cancer. Discov Oncol 2024; 15:588. [PMID: 39448444 PMCID: PMC11502614 DOI: 10.1007/s12672-024-01479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND GATA binding protein 3 (GATA3) is a transcription factor that plays a critical role in the differentiation and function of luminal epithelial cells in the breast. MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression and their dysregulation has been implicated in cancer. The purpose of this study was to investigate the expression of GATA3 and its corresponding targeting miRNAs in breast cancer. MATERIALS AND METHODS In this study, we used bioinformatic tools, including the miRWalk database and RNA Hybrid online tool, to identify potential miRNAs that target the GATA3 mRNA. Then, we collected frozen tissue specimens from 67 breast cancer patients and 67 adjacent normal breast tissue samples and evaluated the expression levels of GATA3, hsa-miR-433-3p, and hsa-miR-144-3p using quantitative RT-PCR. RESULTS We found that hsa-miR-433-3p and hsa-miR-144-3p are potential miRNAs that target the GATA3 mRNA, and we found that both were significantly downregulated in breast cancer tissues relative to adjacent normal breast tissues (P < 0.0001). We also observed a significant upregulation of the GATA3 mRNA in breast cancer tissues (P < 0.0001). Additionally, we found that their dysregulation was associated with clinicopathological features such as invasive carcinoma and carcinoma in situ subtypes, tumor grade, estrogen receptor status, progesterone receptor status, and HER2 status. CONCLUSIONS Our study represents the first attempt to investigate the expression of GATA3 and its targeting miRNAs simultaneously in breast cancer. Our findings suggest that dysregulation of these genes may contribute to breast cancer development and progression.
Collapse
Affiliation(s)
- Fatemeh Roohy
- Department of Biology, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, P.O. Box: 73135-168, Iran.
| | - Sedigheh Tahmasebi
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Schade AE, Perurena N, Yang Y, Rodriguez CL, Krishnan A, Gardner A, Loi P, Xu Y, Nguyen VTM, Mastellone GM, Pilla NF, Watanabe M, Ota K, Davis RA, Mattioli K, Xiang D, Zoeller JJ, Lin JR, Morganti S, Garrido-Castro AC, Tolaney SM, Li Z, Barbie DA, Sorger PK, Helin K, Santagata S, Knott SRV, Cichowski K. AKT and EZH2 inhibitors kill TNBCs by hijacking mechanisms of involution. Nature 2024:10.1038/s41586-024-08031-6. [PMID: 39385030 DOI: 10.1038/s41586-024-08031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and has the highest rate of recurrence1. The predominant standard of care for advanced TNBC is systemic chemotherapy with or without immunotherapy; however, responses are typically short lived1,2. Thus, there is an urgent need to develop more effective treatments. Components of the PI3K pathway represent plausible therapeutic targets; more than 70% of TNBCs have alterations in PIK3CA, AKT1 or PTEN3-6. However, in contrast to hormone-receptor-positive tumours, it is still unclear whether or how triple-negative disease will respond to PI3K pathway inhibitors7. Here we describe a promising AKT-inhibitor-based therapeutic combination for TNBC. Specifically, we show that AKT inhibitors synergize with agents that suppress the histone methyltransferase EZH2 and promote robust tumour regression in multiple TNBC models in vivo. AKT and EZH2 inhibitors exert these effects by first cooperatively driving basal-like TNBC cells into a more differentiated, luminal-like state, which cannot be effectively induced by either agent alone. Once TNBCs are differentiated, these agents kill them by hijacking signals that normally drive mammary gland involution. Using a machine learning approach, we developed a classifier that can be used to predict sensitivity. Together, these findings identify a promising therapeutic strategy for this highly aggressive tumour type and illustrate how deregulated epigenetic enzymes can insulate tumours from oncogenic vulnerabilities. These studies also reveal how developmental tissue-specific cell death pathways may be co-opted for therapeutic benefit.
Collapse
Affiliation(s)
- Amy E Schade
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Naiara Perurena
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoona Yang
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carrie L Rodriguez
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anjana Krishnan
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alycia Gardner
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patrick Loi
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yilin Xu
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Van T M Nguyen
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - G M Mastellone
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Natalie F Pilla
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marina Watanabe
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Keiichi Ota
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rachel A Davis
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kaia Mattioli
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jason J Zoeller
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jia-Ren Lin
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefania Morganti
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana C Garrido-Castro
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara M Tolaney
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kristian Helin
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Sandro Santagata
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Simon R V Knott
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Karen Cichowski
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Davis E, Avniel-Polak S, Abu-Kamel S, Antman I, Saadoun T, Brim C, Jumaa M, Maron Y, Maimon O, Bel-Ange A, Atlan K, Tzur T, Abu Akar F, Wald O, Izhar U, Hecht M, Grozinsky-Glasberg S, Drier Y. Enhancer landscape of lung neuroendocrine tumors reveals regulatory and developmental signatures with potential theranostic implications. Proc Natl Acad Sci U S A 2024; 121:e2405001121. [PMID: 39361648 PMCID: PMC11474083 DOI: 10.1073/pnas.2405001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Well-differentiated low-grade lung neuroendocrine tumors (lung carcinoids or LNETs) are histopathologically classified as typical and atypical LNETs, but each subtype is still heterogeneous at both the molecular level and its clinical manifestation. Here, we report genome-wide profiles of primary LNETs' cis-regulatory elements by H3K27ac ChIP-seq with matching RNA-seq profiles. Analysis of these regulatory landscapes revealed three regulatory subtypes, independent of the typical/atypical classification. We identified unique differentiation signals that delineate each subtype. The "proneuronal" subtype emerges under the influence of ASCL1, SOX4, and TCF4 transcription factors, embodying a pronounced proneuronal signature. The "luminal-like" subtype is characterized by gain of acetylation at markers of luminal cells and GATA2 activation and loss of LRP5 and OTP. The "HNF+" subtype is characterized by a robust enhancer landscape driven by HNF1A, HNF4A, and FOXA3, with notable acetylation and expression of FGF signaling genes, especially FGFR3 and FGFR4, pivotal components of the FGF pathway. Our findings not only deepen the understanding of LNETs' regulatory and developmental diversity but also spotlight the HNF+ subtype's reliance on FGFR signaling. We demonstrate that targeting this pathway with FGF inhibitors curtails tumor growth both in vitro and in xenograft models, unveiling a potential vulnerability and paving the way for targeted therapies. Overall, our work provides an important resource for studying LNETs to reveal regulatory networks, differentiation signals, and therapeutically relevant dependencies.
Collapse
Affiliation(s)
- Ester Davis
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Shani Avniel-Polak
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Shahd Abu-Kamel
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Israel Antman
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Tsipora Saadoun
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Chava Brim
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Mohammad Jumaa
- Department of Pathology, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Yariv Maron
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Ofra Maimon
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of Oncology, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Anat Bel-Ange
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Karine Atlan
- Department of Pathology, Hadassah Medical Center, Jerusalem9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Tomer Tzur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of Plastic and Reconstructive Surgery, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Firas Abu Akar
- The Edith Wolfson Medical Center, Holon5822012, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
- Department of Thoracic Surgery, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Ori Wald
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
| | - Uzi Izhar
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
| | - Merav Hecht
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Simona Grozinsky-Glasberg
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| |
Collapse
|
5
|
Sandström J, Bomanson J, Pérez-Tenorio G, Jönsson C, Nordenskjöld B, Fornander T, Lindström LS, Stål O. GATA3 and markers of epithelial-mesenchymal transition predict long-term benefit from tamoxifen in ER-positive breast cancer. NPJ Breast Cancer 2024; 10:78. [PMID: 39242600 PMCID: PMC11379893 DOI: 10.1038/s41523-024-00688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
GATA binding protein 3 (GATA3) is essential for normal development of the mammary gland and associated with ER-positive breast cancer. Loss of GATA3 has been associated with epithelial-mesenchymal transition (EMT) in experimental studies. We investigated tumoral GATA3 in a cohort of postmenopausal patients with lymph-node negative breast cancer, randomized to adjuvant tamoxifen or control. Nuclear GATA3 expression was assessed with immunohistochemistry and GATA3 gene expression with Agilent microarrays. High GATA3 nuclear expression was associated with a lower rate of distant recurrence in ER-positive breast cancer (HR = 0.60, 95% CI 0.39-0.93). Low gene expression of GATA3 was associated with limited long-term benefit from adjuvant tamoxifen (interaction: p = 0.033). GATA3 gene expression was associated with the epithelial markers CDH1 (E-cadherin) and FOXA1, whereas negatively associated with several mesenchymal markers. Low expression of CDH1 was associated with marginal tamoxifen benefit (HR = 0.80 (0.43-1.49)), whereas patients with higher expression showed a significant benefit (HR = 0.33 (0.20-0.55), interaction: p = 0.029). In ER-positive breast cancer, diminished expression of GATA3 is associated with markers of EMT and poor long-term benefit from tamoxifen.
Collapse
Affiliation(s)
- Josefine Sandström
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Jens Bomanson
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Carolin Jönsson
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Linda S Lindström
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Olle Stål
- Department of Biomedical and Clinical Sciences and Department of Oncology, 581 83 Linköping University, Linköping, Sweden.
| |
Collapse
|
6
|
Nightingale R, Reehorst CM, Vukelic N, Papadopoulos N, Liao Y, Guleria S, Bell C, Vaillant F, Paul S, Luk IY, Dhillon AS, Jenkins LJ, Morrow RJ, Jackling FC, Chand AL, Chisanga D, Chen Y, Williams DS, Anderson RL, Ellis S, Meikle PJ, Shi W, Visvader JE, Pal B, Mariadason JM. Ehf controls mammary alveolar lineage differentiation and is a putative suppressor of breast tumorigenesis. Dev Cell 2024; 59:1988-2004.e11. [PMID: 38781975 DOI: 10.1016/j.devcel.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.
Collapse
Affiliation(s)
- Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Nikolaos Papadopoulos
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shalini Guleria
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Caroline Bell
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - François Vaillant
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amardeep S Dhillon
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Riley J Morrow
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Felicity C Jackling
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yunshun Chen
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Pathology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
7
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Increased prevalence of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. iScience 2024; 27:110116. [PMID: 38974967 PMCID: PMC11225361 DOI: 10.1016/j.isci.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. Decoding the interconnections among different biological axes of plasticity is crucial to understand the molecular origins of phenotypic heterogeneity. Here, we use multi-modal transcriptomic data-bulk, single-cell, and spatial transcriptomics-from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity-two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. Mathematical modeling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and identify interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Madhumathy G. Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Chandrakala M. Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Apoorva D. Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Arpita G. Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Christine L. Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- University of New South Wales, UNSW Medicine, Sydney, NSW 2010, Australia
| | - Jyothi S. Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Fu S, Zhang Y, Jiao Y, Wang Q, Deng Y, Du X. The role of Pm-miR-184-3p in regulating the immune response in the pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109658. [PMID: 38801841 DOI: 10.1016/j.fsi.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
microRNAs are a class of non-coding RNAs with post-transcriptional regulatory functions in eukaryotes. In our previous study, miR-184-3p was identified in the hemocyte transcriptome of Pinctada fucata martensii (Pm-miR-184-3p), and its expression was shown to be up-regulated following transplantation surgery; however, its role in regulating transplantation immunity has not yet been clarified. Here, the role of Pm-miR-184-3p in regulating the immune response of P. f. martensii was studied. The expression of Pm-miR-184-3p increased following the stimulation of pathogen-associated molecular patterns, and Pm-miR-184-3p overexpression increased the activity of antioxidant-related enzymes, such as superoxide dismutase and catalase. Transcriptome analysis obtained 1096 differentially expressed genes (DEGs) after overexpression of Pm-miR-184-3p, and these DEGs were significantly enriched in conserved pathways such as the Cell cycle pathway and NF-kappa B signaling pathway, as well as GO terms including base excision repair, cell cycle, and DNA replication, suggesting that Pm-miR-184-3p could enhance the inflammation process. Target prediction and dual luciferase analysis revealed that pro-inflammatory related genes Pm-TLR3 and Pm-FN were the potential target of Pm-miR-184-3p. We speculate that Pm-miR-184-3p may utilize negative regulation of target genes to delay the activation of corresponding immune pathways, potentially preventing excessive inflammatory responses and achieving a delicate balance within the organism. Overall, Pm-miR-184-3p play a key role in regulating cellular responses to transplantation. Our findings provide new insights into the immune response of P. f. martensii to transplantation.
Collapse
Affiliation(s)
- Shirong Fu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| |
Collapse
|
9
|
Warm HL, Kandt LD, Schaumann N, Werlein C, Gronewold M, Christgen H, Hellmann M, Lafos M, Auber B, Hillemanns P, Kreipe H, Christgen M. Immunohistochemical marker profiles for the differentiation of collagenous spherulosis from adenoid cystic carcinoma of the breast. Hum Pathol 2024; 148:7-13. [PMID: 38677556 DOI: 10.1016/j.humpath.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Collagenous spherulosis (CS) is a rare breast lesion of unknown histogenesis. Adenoid cystic carcinoma (ACC) is a rare basal-like breast carcinoma with low histological grade. CS is a benign lesion but resembles ACC. Both lesions show a similar histomorphology and feature bilineage differentiation. This study compared immunohistochemical markers in CS and ACC. We compiled n = 13 CS cases and n = 18 mammary ACCs. Fourteen marker proteins (ER, PR, HER2, GATA3, CK7, E-cadherin, CD117, CK5/14, p40, p63, SMA, CD10, calponin, P-cadherin) were evaluated by immunohistochemistry (IHC). MYB rearrangement, a common alteration in ACC, was assessed by fluorescence in situ hybridization. Patient age ranged between 40-60 years for CS lesions and 30-90 years for ACCs. 7/13 (54%) CS cases harbored a lobular carcinoma in situ (LCIS) in the luminal component. One CS/LCIS lesion occurred in a carrier of a pathogenic germline variant in CDH1/E-cadherin. MYB rearrangement was detected in 0/11 (0%) CS and 6/16 (37%) ACC cases (P = 0.054). CS was associated with expression of ER in the luminal component (P < 0.001), E-cadherin loss in the luminal component (P = 0.045), and expression of CD10 and calponin in the basal component (P < 0.001). Furthermore, CS was associated with GATA3 expression in the luminal component (12/13 [92%] versus 5/18 [27%], P < 0.001). In summary, IHC for GATA3 and E-cadherin may contribute to the differential diagnosis between CS and ACC, although these markers are not exclusively expressed in either lesion. Histologic evaluation has to take into account that CS is frequently colonized by LCIS, requiring thorough correlation of histomorphology and immunohistochemical features.
Collapse
Affiliation(s)
- Henriette L Warm
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Leonie D Kandt
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Nora Schaumann
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Christopher Werlein
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Malte Gronewold
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Henriette Christgen
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Malin Hellmann
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Marcel Lafos
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Peter Hillemanns
- Clinic for Obstetrics, Gynecology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Perna A, Hay E, Lucariello A, Scala B, De Blasiis P, Komici K, Sgambati E, Guerra G, Baldi A, De Luca A. GATA3 and TGF-β in normal placenta and pre-eclampsia. Tissue Cell 2024; 88:102402. [PMID: 38759523 DOI: 10.1016/j.tice.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
GATA3 plays critical roles in the development and function of various tissues and organs throughout the body. Likewise, TGF-β signaling is critical for placental development and can interact with GATA3. We aimed to investigate the involvement of the multifunctional cytokine and transcription factor in trophoblast development. By using immunohistochemistry, we evaluated the localization and expression level of GATA3 and TGF-β in placentas at term of normal pregnancy and with pre-eclampsia. Up-regulation of both GATA3 and TGF-β was observed in pathological placentas, with localization in the villus epithelium (syncytiotrophoblast) stroma and decidua. Our data show altered expression of TGF-β and GATA3, which downstream could lead to a cascade of events that negatively influence trophoblast development and contribute to the pathogenesis of pre-eclampsia.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy.
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples 80133, Italy
| | - Beatrice Scala
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Klara Komici
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso 86100, Italy
| | - Alfonso Baldi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
11
|
Perugini J, Smorlesi A, Acciarini S, Mondini E, Colleluori G, Pirazzini C, Kwiatkowska KM, Garagnani P, Franceschi C, Zingaretti MC, Dani C, Giordano A, Cinti S. Adipo-Epithelial Transdifferentiation in In Vitro Models of the Mammary Gland. Cells 2024; 13:943. [PMID: 38891075 PMCID: PMC11171678 DOI: 10.3390/cells13110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Subcutaneous adipocytes are crucial for mammary gland epithelial development during pregnancy. Our and others' previous data have suggested that adipo-epithelial transdifferentiation could play a key role in the mammary gland alveolar development. In this study, we tested whether adipo-epithelial transdifferentiation occurs in vitro. Data show that, under appropriate co-culture conditions with mammary epithelial organoids (MEOs), mature adipocytes lose their phenotype and acquire an epithelial one. Interestingly, even in the absence of MEOs, extracellular matrix and diffusible growth factors are able to promote adipo-epithelial transdifferentiation. Gene and protein expression studies indicate that transdifferentiating adipocytes exhibit some characteristics of milk-secreting alveolar glands, including significantly higher expression of milk proteins such as whey acidic protein and β-casein. Similar data were also obtained in cultured human multipotent adipose-derived stem cell adipocytes. A miRNA sequencing experiment on the supernatant highlighted mir200c, which has a well-established role in the mesenchymal-epithelial transition, as a potential player in this phenomenon. Collectively, our data show that adipo-epithelial transdifferentiation can be reproduced in in vitro models where this phenomenon can be investigated at the molecular level.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Arianna Smorlesi
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Samantha Acciarini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
| | - Katarzyna Malgorzata Kwiatkowska
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, 603005 Nizhny Novgorod, Russia
| | - Maria Cristina Zingaretti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Christian Dani
- Faculté de Médecine, CNRS, INSERM, iBV, Université Côte d’Azur, CEDEX 2, F-06107 Nice, France;
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| |
Collapse
|
12
|
Tollot-Wegner M, Jessen M, Kim K, Sanz-Moreno A, Spielmann N, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, von Eyss B. TRPS1 maintains luminal progenitors in the mammary gland by repressing SRF/MRTF activity. Breast Cancer Res 2024; 26:74. [PMID: 38702730 PMCID: PMC11067134 DOI: 10.1186/s13058-024-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.
Collapse
Affiliation(s)
- Marie Tollot-Wegner
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Marco Jessen
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - KyungMok Kim
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Ingolstaedter Landstr.1, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstaedter Landstraße. 1, 85764, Neuherberg, Germany
| | - Björn von Eyss
- Transcriptional Control of Tissue Homeostasis Lab, Leibniz Institute on Aging, Fritz Lipmann Institute E.V., Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
13
|
Bernard MJ, Goldstein AS. A Metabolic-Epigenetic Mechanism Directs Cell Fate and Therapeutic Sensitivity in Breast Cancer. Cancer Res 2024; 84:1382-1383. [PMID: 38330100 PMCID: PMC11065557 DOI: 10.1158/0008-5472.can-24-0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Over the past decade, studies have increasingly shed light on a reciprocal relationship between cellular metabolism and cell fate, meaning that a cell's lineage both drives and is governed by its specific metabolic features. A recent study by Zhang and colleagues, published in Cell Metabolism, describes a novel metabolic-epigenetic regulatory axis that governs lineage identity in triple-negative breast cancer (TNBC). Among the key findings, the authors demonstrate that the metabolic enzyme pyruvate kinase M2 (PKM2) directly binds to the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the nucleus to silence expression of a set of genes that includes the mitochondrial carnitine transporter SLC16A9. Perturbation of this metabolic-epigenetic regulatory mechanism induces a metabolic shift away from glycolysis and toward fatty acid oxidation. The ensuing influx of carnitine facilitates the deposition of the activating epigenetic mark H3K27Ac onto the promoter of GATA3, driving a committed luminal lineage state. Importantly, this metabolic-epigenetic axis represents a potentially targetable vulnerability for the treatment of TNBC, a subtype that currently lacks effective therapeutic strategies. These findings lend further support for the paradigm shift underlying our understanding of cancer metabolism: that a cellular fuel source functions not only to provide energy but also to direct the epigenetic regulation of cell fate.
Collapse
Affiliation(s)
- Matthew J. Bernard
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew S. Goldstein
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, US
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Wang X, Bai F, Liu X, Peng B, Xu X, Zhang H, Fu L, Zhu WG, Wang B, Pei XH. GATA3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in breast cancer. BMC Biol 2024; 22:85. [PMID: 38627785 PMCID: PMC11020915 DOI: 10.1186/s12915-024-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.
Collapse
Affiliation(s)
- Xuejie Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen, 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Fu
- Department of Pharmacology, Shenzhen University Medical School, Shenzhen, 518039, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
15
|
Yashar WM, Estabrook J, Holly HD, Somers J, Nikolova O, Babur Ö, Braun TP, Demir E. Predicting transcription factor activity using prior biological information. iScience 2024; 27:109124. [PMID: 38455978 PMCID: PMC10918219 DOI: 10.1016/j.isci.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Dysregulation of normal transcription factor activity is a common driver of disease. Therefore, the detection of aberrant transcription factor activity is important to understand disease pathogenesis. We have developed Priori, a method to predict transcription factor activity from RNA sequencing data. Priori has two key advantages over existing methods. First, Priori utilizes literature-supported regulatory information to identify transcription factor-target gene relationships. It then applies linear models to determine the impact of transcription factor regulation on the expression of its target genes. Second, results from a third-party benchmarking pipeline reveals that Priori detects aberrant activity from 124 single-gene perturbation experiments with higher sensitivity and specificity than 11 other methods. We applied Priori and other top-performing methods to predict transcription factor activity from two large primary patient datasets. Our work demonstrates that Priori uniquely discovered significant determinants of survival in breast cancer and identified mediators of drug response in leukemia.
Collapse
Affiliation(s)
- William M. Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joseph Estabrook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hannah D. Holly
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia Somers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Olga Nikolova
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Özgün Babur
- Computer Science Department, University of Massachusetts, Boston, MA 02125, USA
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Pacific Northwest National Laboratories, Richland, WA 99354, USA
| |
Collapse
|
16
|
Salem A, Wu Y, Albarracin CT, Middleton LP, Kalhor N, Peng Y, Huang X, Aung PP, Chen H, Sahin AA, Ding Q. A Comparative Evaluation of TRPS1 and GATA3 in adenoid cystic, secretory, and acinic cell carcinomas of the breast and salivary gland. Hum Pathol 2024; 145:42-47. [PMID: 38262580 DOI: 10.1016/j.humpath.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
GATA3 is the most used marker to determine tumors' breast origin, but its diagnostic value in triple-negative breast cancer (TNBC) is limited. The newly identified TRPS1 is highly sensitive and specific for breast carcinoma, especially TNBC. Here, we compared the utility of TRPS1 and GATA3 expression in a subset of salivary gland-type breast tumors (including adenoid cystic, acinic cell, and secretory carcinomas [AdCC, ACC, and SC, respectively]), and we compared TRPS1 and GATA3 expression of such tumors with head and neck (H&N) and AdCC of upper respiratory tumors. TRPS1 was strongly expressed in basaloid TNBC and AdCCs with solid components, including 100 % of mixed and solid breast AdCCs. However, TRPS1 was positive in only 50 % cribriform AdCCs. Expression patterns of TRPS1 in H&N and upper respiratory AdCC were similar. TRPS1 was positive in 30 % of H&N cribriform AdCCs but was strongly expressed in mixed AdCC (67 %) and solid AdCC (100 %). In the upper respiratory AdCCs, TRPS1 was positive in 58.4 % of cribriform AdCCs and positive in 100 % of AdCCs with solid components. On the contrary, GATA3 was negative in predominant AdCCs of the breast, H&N, and upper respiratory tract. These data show that GATA3 and TRPS1 expression varies AdCCs. In addition, TRPS1 and GATA3 expression patterns were similar SC and ACC of breast and H&N. Both markers were positive in SC and negative in ACC. Therefore, TRPS1 and GATA3 cannot be used to differentiate salivary gland-type carcinomas of breast origin from those of upper respiratory or H&N origin.
Collapse
Affiliation(s)
- Alireza Salem
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Constance T Albarracin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lavinia P Middleton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Peng
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao Huang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Hosseinzadeh L, Kikhtyak Z, Laven-Law G, Pederson SM, Puiu CG, D'Santos CS, Lim E, Carroll JS, Tilley WD, Dwyer AR, Hickey TE. The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol 2024; 25:44. [PMID: 38317241 PMCID: PMC10840202 DOI: 10.1186/s13059-023-03161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease. RESULTS The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer. CONCLUSIONS AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.
Collapse
Affiliation(s)
- Leila Hosseinzadeh
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Stephen M Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Caroline G Puiu
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Elgene Lim
- Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
18
|
Chen S, Long M, Li XY, Li QM, Pan LH, Luo JP, Zha XQ. Codonopsis lanceolata polysaccharide ameliorates high-fat diet induced-postpartum hypogalactia via stimulating prolactin receptor-mediated Jak2/Stat5 signaling. Int J Biol Macromol 2024; 259:129114. [PMID: 38181915 DOI: 10.1016/j.ijbiomac.2023.129114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
This study aims to investigate the ameliorative effect of Codonopsis lanceolata polysaccharide (PCL) on mice with hypogalatia induced by a high-fat diet (HFD) and the potential underlying mechanism. We found that oral administration of PCL demonstrated significant benefits in countering the negative effects of HFD, including weight gain, hepatic steatosis, mesenteric adipocyte hypertrophy, and abnormal glucose/lipid metabolism. In addition, PCL improved mammary gland development and enhanced lactogenesis performance. Histologically, PCL ameliorated the retardation of ductal growth, reduced mammary fat pad thickness, improved the incomplete linear encapsulation of luminal epithelium and myoepithelium, and increased the proliferation of mammary epithelial cells. Flow cytometry analysis showed that PCL mitigated the detrimental effects of HFD on mammary gland development by promoting the proliferation and differentiation of mammary epithelial cells. Mechanistic studies revealed that PCL upregulated the levels of prolactin (PRL) and its receptor (PRLR) in the mammary gland, activated JAK2/STAT5 signaling pathway, and increased the expression of p63, ERBB4, and NRG1. Overall, PCL can ameliorate HFD-induced hypogalactia by activating PRLR-mediated JAK2/STAT5 signaling. Our findings offer a methodological and theoretical foundation for investigating the functional constituents of traditional Chinese medicine in the treatment of hypogalactia.
Collapse
Affiliation(s)
- Shun Chen
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Miao Long
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
19
|
Yadollahi Farsani M, Amini Farsani Z, Teimuri S, Kolahdouzan M, Eshraghi Samani R, Teimori H. Deregulation of miR-1245b-5p and miR-92a-3p and their potential target gene, GATA3, in epithelial-mesenchymal transition pathway in breast cancer. Cancer Rep (Hoboken) 2024; 7:e1955. [PMID: 38173189 PMCID: PMC10849934 DOI: 10.1002/cnr2.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small molecules that have prominent roles in tumor development and metastasis and can be used for diagnostic and therapeutic purposes. This study evaluated the expression of miR-92a-3p and miR-1245b-5p and their potential target gene, GATA3 in patients with breast cancer (BC). MATERIALS AND METHODS In the search for BC-related microRNAs, miR-124b-5p and miR-92a-3p were selected using Medline through PubMed, miR2disease, miRcancer and miRTarBase. Moreover, target gene GATA3 and their possible interaction in the regulating epithelial-mesenchymal transition (EMT) and invasion was evaluated using in silico tools including miRTarBase, TargetScan, STRING-db, and Cytoscape. The expression level of miR-92a-3p, miR1245b-5p, and GATA3 were assessed on extracted RNAs of tumor and nontumor tissues from 36 patients with BC using qPCR. Additionally, clinical-pathologic characteristics, such as tumor grade, tumor stage, lymph node were taken into consideration and the diagnostic power of these miRNAs and GATA3 was evaluated using the ROC curve analysis. RESULTS In silico evaluation of miR-92a-3p and miR-1245b-5p supports their potential association with EMT and invasion signaling pathways in BC pathogenesis. Comparing tumor tissues to nontumor tissues, we found a significant downregulation of miR-1245b-5p and miR-92a-3p and upregulation of GATA3. Patients with BC who had decreased miR-92a-3p expression also had higher rates of advanced stage/grade and ER expression, whereas decreased miR-1245b-5p expression was only linked to ER expression and was not associated with lymph node metastasis. The AUC of miR-1245b-5p, miR-92a-3p, and GATA3 using ROC curve was determined 0.6449 (p = .0239), 0.5980 (p = .1526), and 0.7415 (p < .0001), respectively, which showed a significant diagnostic accuracy of miR-1245b-5p and GATA3 between the BC patients and healthy individuals. CONCLUSION MiR-1245b-5p, miR-92a-3p, and GATA3 gene contribute to BC pathogenesis and they may be having potential regulatory roles in signaling pathways involved in invasion and EMT pathways in BC pathogenesis, as a result of these findings. More research is needed to determine the regulatory mechanisms that they control.
Collapse
Affiliation(s)
- Mahtab Yadollahi Farsani
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Zeinab Amini Farsani
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | | | - Mohsen Kolahdouzan
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Reza Eshraghi Samani
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
20
|
Zhang Y, Wu MJ, Lu WC, Li YC, Chang CJ, Yang JY. Metabolic switch regulates lineage plasticity and induces synthetic lethality in triple-negative breast cancer. Cell Metab 2024; 36:193-208.e8. [PMID: 38171333 DOI: 10.1016/j.cmet.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/23/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Metabolic reprogramming is key for cancer development, yet the mechanism that sustains triple-negative breast cancer (TNBC) cell growth despite deficient pyruvate kinase M2 (PKM2) and tumor glycolysis remains to be determined. Here, we find that deficiency in tumor glycolysis activates a metabolic switch from glycolysis to fatty acid β-oxidation (FAO) to fuel TNBC growth. We show that, in TNBC cells, PKM2 directly interacts with histone methyltransferase EZH2 to coordinately mediate epigenetic silencing of a carnitine transporter, SLC16A9. Inhibition of PKM2 leads to impaired EZH2 recruitment to SLC16A9, and in turn de-represses SLC16A9 expression to increase intracellular carnitine influx, programming TNBC cells to an FAO-dependent and luminal-like cell state. Together, these findings reveal a new metabolic switch that drives TNBC from a metabolically heterogeneous-lineage plastic cell state to an FAO-dependent-lineage committed cell state, where dual targeting of EZH2 and FAO induces potent synthetic lethality in TNBC.
Collapse
Affiliation(s)
- Yingsheng Zhang
- Department of Medicine and Biological Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA.
| | - Meng-Ju Wu
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Departments of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wan-Chi Lu
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Yi-Chuan Li
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chun Ju Chang
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan.
| | - Jer-Yen Yang
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan.
| |
Collapse
|
21
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
22
|
Qiang Z, Jubber I, Lloyd K, Cumberbatch M, Griffin J. Gene of the month: GATA3. J Clin Pathol 2023; 76:793-797. [PMID: 37726118 DOI: 10.1136/jcp-2023-209017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
GATA binding protein 3 (GATA3) is a zinc-finger pioneer transcription factor involved in diverse processes. GATA3 regulates gene expression through binding nucleosomal DNA and facilitating chromatin remodelling. Post-translational modifications modulate its activity. During development, GATA3 plays a key role in cell differentiation. Mutations in GATA3 are linked to breast and bladder cancer. GATA3 expression is a feature of the luminal subtype of bladder cancer and has implications for immune status and therapeutic response. It also has clinical relevance in squamous cell carcinomas and soft tissue sarcomas. This paper reviews the structure and function of GATA3, its role in cancer and its use and pitfalls as an immunohistochemical marker.
Collapse
Affiliation(s)
- Zekai Qiang
- Academic Urology Unit, The University of Sheffield, Sheffield, UK
| | - Ibrahim Jubber
- Academic Urology Unit, The University of Sheffield, Sheffield, UK
| | - Kirsty Lloyd
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Jon Griffin
- Academic Urology Unit, The University of Sheffield, Sheffield, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
23
|
Iglesia MD, Jayasinghe RG, Chen S, Terekhanova NV, Herndon JM, Storrs E, Karpova A, Zhou DC, Al Deen NN, Shinkle AT, Lu RJH, Caravan W, Houston A, Zhao Y, Sato K, Lal P, Street C, Rodrigues FM, Southard-Smith AN, Targino da Costa ALN, Zhu H, Mo CK, Crowson L, Fulton RS, Wyczalkowski MA, Fronick CC, Fulton LA, Sun H, Davies SR, Appelbaum EL, Chasnoff SE, Carmody M, Brooks C, Liu R, Wendl MC, Oh C, Bender D, Cruchaga C, Harari O, Bredemeyer A, Lavine K, Bose R, Margenthaler J, Held JM, Achilefu S, Ademuyiwa F, Aft R, Ma C, Colditz GA, Ju T, Oh ST, Fitzpatrick J, Hwang ES, Shoghi KI, Chheda MG, Veis DJ, Chen F, Fields RC, Gillanders WE, Ding L. Differential chromatin accessibility and transcriptional dynamics define breast cancer subtypes and their lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565031. [PMID: 37961519 PMCID: PMC10634973 DOI: 10.1101/2023.10.31.565031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.
Collapse
|
24
|
Huang J, Zhang JL, Ang L, Li MC, Zhao M, Wang Y, Wu Q. Proposing a novel molecular subtyping scheme for predicting distant recurrence-free survival in breast cancer post-neoadjuvant chemotherapy with close correlation to metabolism and senescence. Front Endocrinol (Lausanne) 2023; 14:1265520. [PMID: 37900131 PMCID: PMC10602753 DOI: 10.3389/fendo.2023.1265520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
Background High relapse rates remain a clinical challenge in the management of breast cancer (BC), with distant recurrence being a major driver of patient deterioration. To optimize the surveillance regimen for distant recurrence after neoadjuvant chemotherapy (NAC), we conducted a comprehensive analysis using bioinformatics and machine learning approaches. Materials and methods Microarray data were retrieved from the GEO database, and differential expression analysis was performed with the R package 'Limma'. We used the Metascape tool for enrichment analyses, and 'WGCNA' was utilized to establish co-expression networks, selecting the soft threshold power with the 'pickSoftThreshold' algorithm. We integrated ten machine learning algorithms and 101 algorithm combinations to identify key genes associated with distant recurrence in BC. Unsupervised clustering was performed with the R package 'ConsensusCluster Plus'. To further screen the key gene signature of residual cancer burden (RCB), multiple knockdown studies were analyzed with the Genetic Perturbation Similarity Analysis (GPSA) database. Single-cell RNA sequencing (scRNA-seq) analysis was conducted through the Tumour Immune Single-cell Hub (TISCH) database, and the XSum algorithm was used to screen candidate small molecule drugs based on the Connectivity Map (CMAP) database. Molecular docking processes were conducted using Schrodinger software. GMT files containing gene sets associated with metabolism and senescence were obtained from GSEA MutSigDB database. The GSVA score for each gene set across diverse samples was computed using the ssGSEA function implemented in the GSVA package. Results Our analysis, which combined Limma, WGCNA, and machine learning approaches, identified 16 RCB-relevant gene signatures influencing distant recurrence-free survival (DRFS) in BC patients following NAC. We then screened GATA3 as the key gene signature of high RCB index using GPSA analysis. A novel molecular subtyping scheme was developed to divide patients into two clusters (C1 and C2) with different distant recurrence risks. This molecular subtyping scheme was found to be closely associated with tumor metabolism and cellular senescence. Patients in cluster C2 had a poorer DRFS than those in cluster C1 (HR: 4.04; 95% CI: 2.60-6.29; log-rank test p < 0.0001). High GATA3 expression, high levels of resting mast cell infiltration, and a high proportion of estrogen receptor (ER)-positive patients contributed to better DRFS in cluster C1. We established a nomogram based on the N stage, RCB class, and molecular subtyping. The ROC curve for 5-year DRFS showed excellent predictive value (AUC=0.91, 95% CI: 0.95-0.86), with a C-index of 0.85 (95% CI: 0.81-0.90). Entinostat was identified as a potential small molecule compound to reverse high RCB after NAC. We also provided a comprehensive review of the EDCs exposures that potentially impact the effectiveness of NAC among BC patients. Conclusion This study established a molecular classification scheme associated with tumor metabolism and cancer cell senescence to predict RCB and DRFS in BC patients after NAC. Furthermore, GATA3 was identified and validated as a key gene associated with BC recurrence.
Collapse
Affiliation(s)
- Jin Huang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian-Lin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Ang
- Department of Pathology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Ming-Cong Li
- Department of Pathology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Min Zhao
- Department of Pathology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yao Wang
- Digestive Endoscopy Department, Jiangsu Provincial People’s Hospital, The First Afliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
25
|
Niu M, Zhang Y, Luo J, Sinson JC, Thompson AM, Zong C. Characterization of Cancer Evolution Landscape Based on Accurate Detection of Somatic Mutations in Single Tumor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561356. [PMID: 37873375 PMCID: PMC10592685 DOI: 10.1101/2023.10.09.561356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Accurate detection of somatic mutations in single tumor cells is greatly desired as it allows us to quantify the single-cell mutation burden and construct the mutation-based phylogenetic tree. Here we developed scNanoSeq chemistry and profiled 842 single cells from 21 human breast cancer samples. The majority of the mutation-based phylogenetic trees comprise a characteristic stem evolution followed by the clonal sweep. We observed the subtype-dependent lengths in the stem evolution. To explain this phenomenon, we propose that the differences are related to different reprogramming required for different subtypes of breast cancer. Furthermore, we reason that the time that the tumor-initiating cell took to acquire the critical clonal-sweep-initiating mutation by random chance set the time limit for the reprogramming process. We refer to this model as a reprogramming and critical mutation co-timing (RCMC) subtype model. Next, in the sweeping clone, we observed that tumor cells undergo a branched evolution with rapidly decreasing selection. In the most recent clades, effectively neutral evolution has been reached, resulting in a substantially large number of mutational heterogeneities. Integrative analysis with 522-713X ultra-deep bulk whole genome sequencing (WGS) further validated this evolution mode. Mutation-based phylogenetic trees also allow us to identify the early branched cells in a few samples, whose phylogenetic trees support the gradual evolution of copy number variations (CNVs). Overall, the development of scNanoSeq allows us to unveil novel insights into breast cancer evolution.
Collapse
|
26
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Multi-modal transcriptomic analysis unravels enrichment of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.558960. [PMID: 37873432 PMCID: PMC10592858 DOI: 10.1101/2023.09.30.558960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. It manifests along multiple phenotypic axes and decoding the interconnections among these different axes is crucial to understand its molecular origins and to develop novel therapeutic strategies to control it. Here, we use multi-modal transcriptomic data analysis - bulk, single-cell and spatial transcriptomics - from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity - two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. These patterns were inherent in methylation profiles, suggesting an epigenetic crosstalk between EMT and lineage plasticity in breast cancer. Mathematical modelling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes recapitulate and thus elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and to identify possible interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Current affiliation: Feinberg School of Medicine, Northwestern University, Chicago, 60611, USA
| | - Beatriz P San Juan
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Arpita G Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Christine L Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- University of New South Wales, UNSW Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
27
|
Sun H, Ding Q, Sahin AA. Immunohistochemistry in the Diagnosis and Classification of Breast Tumors. Arch Pathol Lab Med 2023; 147:1119-1132. [PMID: 37490413 DOI: 10.5858/arpa.2022-0464-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 07/27/2023]
Abstract
CONTEXT.— In the clinical practice of breast pathology, immunohistochemistry (IHC) of different markers is widely used for the diagnosis and classification of breast lesions. OBJECTIVE.— To provide an overview of currently used and recently identified IHC stains that have been implemented in the field of diagnostic breast pathology. DATA SOURCES.— Data were obtained from literature review and clinical experience of the authors as breast pathologists. CONCLUSIONS.— In the current review, we summarize the common uses of IHC stains for diagnosing different types of breast lesions, especially invasive and noninvasive breast lesions, and benign and malignant spindle cell lesions. In addition, the cutting-edge knowledge of diagnostic carcinoma markers will lead us to further understand the different types of breast carcinoma and differentiate breast carcinomas from other carcinomas of similar morphology. Knowing the strengths and limitations of these markers is essential to the clinical practice of breast pathology.
Collapse
Affiliation(s)
- Hongxia Sun
- From the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Qingqing Ding
- From the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Aysegul A Sahin
- From the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
28
|
Lin S, Margueron R, Charafe-Jauffret E, Ginestier C. Disruption of lineage integrity as a precursor to breast tumor initiation. Trends Cell Biol 2023; 33:887-897. [PMID: 37061355 DOI: 10.1016/j.tcb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Increase in lineage infidelity and/or imbalance is frequently observed around the earliest stage of breast tumor initiation. In response to disruption of homeostasis, differentiated cells can partially lose their identity and gain cellular plasticity, a process involving epigenome landscape remodeling. This increase of cellular plasticity may promote the malignant transformation of breast tumors and fuel their heterogeneity. Here, we review recent studies that have yield insights into important regulators of lineage integrity and mechanisms that trigger mammary epithelial lineage derail, and evaluate their impacts on breast tumor development.
Collapse
Affiliation(s)
- Shuheng Lin
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, Sorbonne University, Paris, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| |
Collapse
|
29
|
Popov H, Ghenev P, Stoyanov GS. Role of GATA3 in Early-Stage Urothelial Bladder Carcinoma Local Recurrence. Cureus 2023; 15:e44998. [PMID: 37829946 PMCID: PMC10565122 DOI: 10.7759/cureus.44998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
Background One of the most characteristic features of non-invasive urothelial carcinoma (UC) is its high recurrence rate. Guanine-adenine-thymine-adenine nucleotide sequence-binding protein 3 (GATA3), as a transcription factor, correlates with urothelial differentiation and has been reported with poor prognosis in high-grade UC and recurrence in breast malignancies. As such, we set out to study the specifics of GATA3 in non-invasive UC, emphasizing on prediction for recurrence. Methods The cohort comprised 163 patients, with a follow-up period of five years, including 109 pTa cases and 54 pT1 cases. Immunohistochemical expression of GATA3 was assessed using a histo score (H-score). Kaplan-Meier test was conducted for the time to recurrence, according to the level of expression of GATA3 and the indicators studied. Receiver operating characteristic (ROC) curve analysis was done to determine the role of accuracy and specificity of predictability of the indicators. Results Recurrence within the follow-up period was noted in 41.72% of cases. No recurrence relationship was established for age and gender. GATA3 expression showed a varying H-score. Using ROC curve analysis, a cut-off value of 155 divided UC expression levels into low and high, with a sensitivity of 72.7% and specificity of 78.7% (area under the curve=0.800, 95% confidence interval: 0.696-0.904, p<0.001), further showing an association between high levels of nuclear expression and risk of local recurrence (p<0.0001). Conclusion Herein we have described the sensitivity of high GATA3 expression in non-invasive UC of the urinary bladder and its relation to local recurrence, independent of gender, age, tumor differentiation, and stage.
Collapse
Affiliation(s)
- Hristo Popov
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Peter Ghenev
- General and Clinical Pathology, Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | | |
Collapse
|
30
|
Bota EC, Koumoundourou D, Ravazoula P, Zolota V, Psachoulia C, Kardari M, Karampitsakos T, Tzouvelekis A, Tzelepi V, Sampsonas F. A comprehensive analysis of GATA3 expression in carcinomas of various origins with emphasis on lung carcinomas. Monaldi Arch Chest Dis 2023; 94. [PMID: 37667882 DOI: 10.4081/monaldi.2023.2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/06/2023] Open
Abstract
GATA3 is a transcription factor involved in the embryogenesis of multiple human tissues and organs and in maintaining cell differentiation and tissue homeostasis in the adult organism. GATA3 is also involved in carcinogenesis and is regarded as a sensitive marker for urothelial and breast carcinomas, although its expression in carcinomas of non-breast/urothelial origin has been frequently reported. In this study, we sought to examine the extent and intensity of GATA3 expression in various carcinomas, mainly lung, urothelial, breast, and various other primary sites. Patients with breast carcinoma (n=40), carcinoma of the urinary bladder/renal pelvis (n=40), lung carcinoma (n=110), and various other origins (n=45) were included in the study. 165 patients had a primary tumor diagnosis, and 70 cases had a metastatic tumor diagnosis. Our results showed that GATA3 expression was significantly more common in carcinomas of the breast, urinary bladder, and renal pelvis compared to all other origins. All primary and 93% of metastatic urinary bladder carcinomas and 94% of primary and 80% of metastatic breast carcinomas expressed GATA3. Expression was lower in the non-urothelial histology of urinary primaries and in triple-negative breast carcinomas (TNBC). Focal staining, mostly faint, was seen in 5.6% of the primary lung adenocarcinomas and 35% of the primary lung squamous cell carcinomas. More extensive and intense staining was seen in 3.7% of the primary lung adenocarcinomas and 12% of the primary lung squamous cell carcinomas. Expression, mostly focal, was also seen in 30% of the metastatic lung carcinomas. Finally, high expression was seen in 12.5% of the other tumors (one metastatic pancreatic carcinoma, one metastatic salivary gland adenocarcinoma not otherwise specified, one metastatic squamous cell carcinoma of the skin, one primary uterine cervix serous carcinoma, and one squamous cell carcinoma of the head and neck), and focal expression was present in another 22% of them. No ideal cut-off for positivity for GATA3 staining could be identified, as increasing the cut-off in either the extent or the intensity of staining increased specificity but decreased sensitivity. In conclusion, our study shows that although GATA3 staining is very helpful in everyday practice in determining the breast/urothelial origin of carcinomas, there are two caveats to its use: the first is that nonclassical histologies of urothelial carcinomas and TNBC may be negative for the marker, and secondly, carcinomas of various origins may show (although rarely) intense positivity.
Collapse
Affiliation(s)
| | | | | | - Vasiliki Zolota
- Department of Pathology and Cytopathology, University Hospital of Patras; Department of Pathology, University of Patras.
| | | | - Maria Kardari
- Department of Pathology and Cytopathology, University Hospital of Patras.
| | | | | | - Vasiliki Tzelepi
- Department of Pathology and Cytopathology, University Hospital of Patras; Department of Pathology, University of Patras.
| | | |
Collapse
|
31
|
Abraham M, Lak MA, Gurz D, Nolasco FOM, Kondraju PK, Iqbal J. A Narrative Review of Breastfeeding and Its Correlation With Breast Cancer: Current Understanding and Outcomes. Cureus 2023; 15:e44081. [PMID: 37750138 PMCID: PMC10518059 DOI: 10.7759/cureus.44081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
Breastfeeding has been extensively studied in relation to breast cancer risk. The results of the reviewed studies consistently show a decreased risk of breast cancer associated with breastfeeding, especially for 12 months or longer. This protective effect is attributed to hormonal, immunological, and physiological changes during lactation. Breastfeeding also appears to have a greater impact on reducing breast cancer risk in premenopausal women and specific breast cancer subtypes. Encouraging breastfeeding has dual benefits: benefiting infants and reducing breast cancer risk long-term. Healthcare professionals should provide evidence-based guidance on breastfeeding initiation, duration, and exclusivity, while public health policies should support breastfeeding by creating enabling environments. This review examines the existing literature and analyzes the correlation between breastfeeding and breast cancer risk.
Collapse
Affiliation(s)
- Merin Abraham
- Department of Internal Medicine, Kasturba Medical College, Manipal, IND
| | - Muhammad Ali Lak
- Department of Internal Medicine, Combined Military Hospital, Lahore, PAK
| | - Danyel Gurz
- Department of Internal Medicine, Combined Military Hospital, Lahore, PAK
| | | | | | - Javed Iqbal
- Department of Neurosurgery, Mayo Hospital, Lahore, PAK
| |
Collapse
|
32
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
33
|
Vergara-Gerónimo CA, León-Del-Rio A, Rodríguez-Dorantes M, Camacho-Carranza R, Ostrosky-Wegman P, Salazar AM. Arsenic reduces the GATA3 expression associated with an increase in proliferation and migration of mammary epithelial cell line MCF-10A. Toxicol Appl Pharmacol 2023; 472:116573. [PMID: 37269932 DOI: 10.1016/j.taap.2023.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Arsenic is associated with the development of breast cancer. However, the molecular mechanisms of arsenic induction of breast cancer are not fully defined. Interaction with zinc finger (ZnF) motifs in proteins is one of the proposed mechanisms of arsenic toxicity. GATA3 is a transcription factor that regulates the transcription of genes associated with cell proliferation, cell differentiation and the epithelial-mesenchymal transition (EMT) in mammary luminal cells. Given that GATA3 possesses two ZnF motifs essential for the function of this protein and that arsenic could alter the function of GATA3 through interaction with these structural motifs, we evaluated the effect of sodium arsenite (NaAsO2) on GATA3 function and its relevance in the development of arsenic-induced breast cancer. Breast cell lines derived from normal mammary epithelium (MCF-10A), hormone receptor-positive and hormone receptor negative breast cancer cells (T-47D and MDA-MB-453, respectively) were used. We observed a reduction on GATA3 protein levels at non-cytotoxic concentrations of NaAsO2 in MCF-10A and T-47D, but not in MDA-MB-453 cells. This reduction was associated with an increase in cell proliferation and cell migration in MCF-10A, but not in T-47D or MDA-MB-453 cells. The evaluation of cell proliferation and EMT markers indicate that the reduction on GATA3 protein levels by arsenic, disrupts the function of this transcription factor. Our data indicate that GATA3 is a tumor suppressor in the normal mammary epithelium and that arsenic could act as an initiator of breast cancer by disrupting the function of GATA3.
Collapse
Affiliation(s)
- Cristian A Vergara-Gerónimo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Alfonso León-Del-Rio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | | | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico.
| |
Collapse
|
34
|
Solanki R, Gupta P, Sood A, Mittal BR. Breast Metastasis Arising from Ileal Neuroendocrine Tumor: an Unusual Presentation. Nucl Med Mol Imaging 2023; 57:201-205. [PMID: 37483871 PMCID: PMC10359227 DOI: 10.1007/s13139-023-00792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Neuroendocrine tumors (NETs) up to 80% may have metastatic disease to lymph nodes, liver, and bones upon diagnosis due to their indolent course and benign nature. However, metastasis to the breast from gastropancreatic-neuroendocrine tumors (GEP-NETs) is unusual and rarely reported. Furthermore, such metastases may mimic a primary breast carcinoma clinically and radiologically. This case report illustrates an unusual presentation of metastasis to the right breast in addition to liver, pancreas, and lymph nodal metastases in a patient with ileal NET who was operated upon 5 years back. The metastases were detected by somatostatin receptor-based imaging and post-therapy scan which was confirmed by cytology and immunocytochemistry.
Collapse
Affiliation(s)
- Ritanshu Solanki
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Parikshaa Gupta
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
35
|
Han Y, Yang W, Ma Q, Cai Z, Yang Y, Gou J, Yuan T, Zhang M, Zhang B. Case Report: Systemic treatment for breast and vulvar metastases from resected rectal signet ring cell carcinoma. Front Oncol 2023; 13:1213888. [PMID: 37483522 PMCID: PMC10359816 DOI: 10.3389/fonc.2023.1213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Background Breast and vulvar metastases from rectal signet ring cell carcinoma (SRCC) represent a rare and obscure clinical entity associated with poor survival. Managing patients with metastatic rectal SRCC is extremely challenging due to the absence of high-quality evidence. Case presentation A 26-year-old woman presented with progressively worsening anal pain, constipation, and hematochezia for approximately two years. Following the diagnosis of locally advanced rectal cancer (cT3N0-1M0), she received neoadjuvant chemotherapy with modified FOLFOX6 regimen and underwent laparoscopic abdominoperineal resection. Metastases to the breast and vulva developed during postoperative chemotherapy. Genetic testing revealed RAS/BRAF wild-type and microsatellite instability (MSI)-low status. Though sequential administration of irinotecan plus tegafur and tegafur plus raltitrexed-based chemotherapy in combination with bevacizumab, the disease progressed rapidly. Sadly, the patient passed away 15 months after initial diagnosis due to rapidly progressive disease. Conclusion Rectal SRCC is associated with younger on-set, aggressive behaviors, and worse survival outcomes. Due to poor cohesiveness, SRCC tends to develop metastases. A patient's medical history and immunohistochemical staining (such as CK20, CK7, and CDX-2) can aid in identifying the tumor origin of breast and vulvar metastases. Mutations and signaling pathways predominant in the tumorigenesis of SRCC remains unveiled. There is poor effect of conventional chemotherapies, targeted and immunotherapies for colorectal adenocarcinoma on SRCC, so novel therapies are needed to treat this patient population.
Collapse
Affiliation(s)
- Yihui Han
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Ma
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Shangjin Hospital, Sichuan University, Chengdu, China
| | - Zhaolun Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Yang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Shangjin Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junhe Gou
- Department of Pathology, West China Shangjin Hospital, Sichuan University, Chengdu, China
| | - Tao Yuan
- Department of Anesthesiology, West China Shangjin Hospital, Sichuan University, Chengdu, China
| | - Mingming Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Shangjin Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Song Y, Fioramonti M, Bouvencourt G, Dubois C, Blanpain C, Van Keymeulen A. Cell type and stage specific transcriptional, chromatin and cell-cell communication landscapes in the mammary gland. Heliyon 2023; 9:e17842. [PMID: 37456014 PMCID: PMC10339025 DOI: 10.1016/j.heliyon.2023.e17842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
The mammary gland (MG) is composed of three main epithelial lineages, the basal cells (BC), the estrogen receptor (ER) positive luminal cells (ER+ LC), and the ER negative LC (ER- LC). Defining the cell identity of each lineage and how it is modulated throughout the different stages of life is important to understand how these cells function and communicate throughout life. Here, we used transgenic mice specifically labelling ER+ LC combined to cell surface markers to isolate with high purity the 3 distinct cell lineages of the mammary gland and defined their expression profiles and chromatin landscapes by performing bulk RNAseq and ATACseq of these isolated populations in puberty, adulthood and mid-pregnancy. Our analysis identified conserved genes, ligands and transcription factor (TF) associated with a specific lineage throughout life as well as genes, ligands and TFs specific for a particular stage of the MG. In summary, our study identified genes and TF network associated with the identity, function and cell-cell communication of the different epithelial lineages of the MG at different stages of life.
Collapse
Affiliation(s)
- Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
37
|
Liu X, Bai F, Wang Y, Wang C, Chan HL, Zheng C, Fang J, Zhu WG, Pei XH. Loss of function of GATA3 regulates FRA1 and c-FOS to activate EMT and promote mammary tumorigenesis and metastasis. Cell Death Dis 2023; 14:370. [PMID: 37353480 PMCID: PMC10290069 DOI: 10.1038/s41419-023-05888-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Basal-like breast cancers (BLBCs) are among the most aggressive cancers, partly due to their enrichment of cancer stem cells (CSCs). Breast CSCs can be generated from luminal-type cancer cells via epithelial-mesenchymal transition (EMT). GATA3 maintains luminal cell fate, and its expression is lost or reduced in BLBCs. However, deletion of Gata3 in mice or cells results in early lethality or proliferative defects. It is unknown how loss-of-function of GATA3 regulates EMT and CSCs in breast cancer. We report here that haploid loss of Gata3 in mice lacking p18Ink4c, a cell cycle inhibitor, up-regulates Fra1, an AP-1 family protein that promotes mesenchymal traits, and downregulates c-Fos, another AP-1 family protein that maintains epithelial fate, leading to activation of EMT and promotion of mammary tumor initiation and metastasis. Depletion of Gata3 in luminal tumor cells similarly regulates Fra1 and c-Fos in activation of EMT. GATA3 binds to FOSL1 (encoding FRA1) and FOS (encoding c-FOS) loci to repress FOSL1 and activate FOS transcription. Deletion of Fra1 or reconstitution of Gata3, but not reconstitution of c-Fos, in Gata3 deficient tumor cells inhibits EMT, preventing tumorigenesis and/or metastasis. In human breast cancers, GATA3 expression is negatively correlated with FRA1 and positively correlated with c-FOS. Low GATA3 and FOS, but high FOSL1, are characteristics of BLBCs. Together, these data provide the first genetic evidence indicating that loss of function of GATA3 in mammary tumor cells activates FOSL1 to promote mesenchymal traits and CSC function, while concurrently repressing FOS to lose epithelial features. We demonstrate that FRA1 is required for the activation of EMT in GATA3 deficient tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
| | - Yuchan Wang
- Gansu Dian Medical Laboratory, Lanzhou, 730000, China
| | - Chuying Wang
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ho Lam Chan
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Chenglong Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jian Fang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
38
|
Zhou Y, Ye Z, Wei W, Zhang M, Huang F, Li J, Cai C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen Med 2023; 8:23. [PMID: 37130846 PMCID: PMC10154328 DOI: 10.1038/s41536-023-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
39
|
Anstine LJ, Majmudar PR, Aponte A, Singh S, Zhao R, Weber-Bonk KL, Abdul-Karim FW, Valentine M, Seachrist DD, Grennel-Nickelson KE, Cuellar-Vite L, Sizemore GM, Sizemore ST, Webb BM, Thompson CL, Keri RA. TLE3 Sustains Luminal Breast Cancer Lineage Fidelity to Suppress Metastasis. Cancer Res 2023; 83:997-1015. [PMID: 36696357 PMCID: PMC10089698 DOI: 10.1158/0008-5472.can-22-3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Breast cancer subtypes and their phenotypes parallel different stages of the mammary epithelial cell developmental hierarchy. Discovering mechanisms that control lineage identity could provide novel avenues for mitigating disease progression. Here we report that the transcriptional corepressor TLE3 is a guardian of luminal cell fate in breast cancer and operates independently of the estrogen receptor. In luminal breast cancer, TLE3 actively repressed the gene-expression signature associated with highly aggressive basal-like breast cancers (BLBC). Moreover, maintenance of the luminal lineage depended on the appropriate localization of TLE3 to its transcriptional targets, a process mediated by interactions with FOXA1. By repressing genes that drive BLBC phenotypes, including SOX9 and TGFβ2, TLE3 prevented the acquisition of a hybrid epithelial-mesenchymal state and reduced metastatic capacity and aggressive cellular behaviors. These results establish TLE3 as an essential transcriptional repressor that sustains the more differentiated and less metastatic nature of luminal breast cancers. Approaches to induce TLE3 expression could promote the acquisition of less aggressive, more treatable disease states to extend patient survival. SIGNIFICANCE Transcriptional corepressor TLE3 actively suppresses SOX9 and TGFβ transcriptional programs to sustain the luminal lineage identity of breast cancer cells and to inhibit metastatic progression.
Collapse
Affiliation(s)
- Lindsey J. Anstine
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Parth R. Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Amy Aponte
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Salendra Singh
- Department of Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Ran Zhao
- Department of Qualitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Fadi W. Abdul-Karim
- Department of Pathology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mitchell Valentine
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Darcie D. Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Gina M. Sizemore
- Department of Radiation Oncology and the James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Steven T. Sizemore
- Department of Radiation Oncology and the James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Bryan M. Webb
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Cheryl L. Thompson
- Department of Public Health Sciences and the Penn State Cancer Institute, Hershey, Pennsylvania
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
40
|
Zheng C, Wei Y, Zhang P, Xu L, Zhang Z, Lin K, Hou J, Lv X, Ding Y, Chiu Y, Jain A, Islam N, Malovannaya A, Wu Y, Ding F, Xu H, Sun M, Chen X, Chen Y. CRISPR/Cas9 screen uncovers functional translation of cryptic lncRNA-encoded open reading frames in human cancer. J Clin Invest 2023; 133:e159940. [PMID: 36856111 PMCID: PMC9974104 DOI: 10.1172/jci159940] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
Emerging evidence suggests that cryptic translation within long noncoding RNAs (lncRNAs) may produce novel proteins with important developmental/physiological functions. However, the role of this cryptic translation in complex diseases (e.g., cancer) remains elusive. Here, we applied an integrative strategy combining ribosome profiling and CRISPR/Cas9 screening with large-scale analysis of molecular/clinical data for breast cancer (BC) and identified estrogen receptor α-positive (ER+) BC dependency on the cryptic ORFs encoded by lncRNA genes that were upregulated in luminal tumors. We confirmed the in vivo tumor-promoting function of an unannotated protein, GATA3-interacting cryptic protein (GT3-INCP) encoded by LINC00992, the expression of which was associated with poor prognosis in luminal tumors. GTE-INCP was upregulated by estrogen/ER and regulated estrogen-dependent cell growth. Mechanistically, GT3-INCP interacted with GATA3, a master transcription factor key to mammary gland development/BC cell proliferation, and coregulated a gene expression program that involved many BC susceptibility/risk genes and impacted estrogen response/cell proliferation. GT3-INCP/GATA3 bound to common cis regulatory elements and upregulated the expression of the tumor-promoting and estrogen-regulated BC susceptibility/risk genes MYB and PDZK1. Our study indicates that cryptic lncRNA-encoded proteins can be an important integrated component of the master transcriptional regulatory network driving aberrant transcription in cancer, and suggests that the "hidden" lncRNA-encoded proteome might be a new space for therapeutic target discovery.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Longyong Xu
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA
| | - Kangyu Lin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yao Ding
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Anna Malovannaya
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core and
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center
- Genetics and Epigenetics Program, and
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
41
|
DiDonna SC, Nagornyuk A, Adhikari N, Takada M, Takaku M. P4HTM: A Novel Downstream Target of GATA3 in Breast Cancer. RESEARCH SQUARE 2023:rs.3.rs-2622989. [PMID: 36909571 PMCID: PMC10002838 DOI: 10.21203/rs.3.rs-2622989/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Breast cancer continues to be a major cause of death among women. The GATA3 gene is often overexpressed in breast cancer and is widely used to support a diagnosis. However, lower expression of GATA3 has been linked to poorer prognosis along with frequent gene mutations. Therefore, the role of GATA3 in breast cancer appears to be context specific. This study aims to identify a new downstream target of GATA3 to better understand its regulatory network. Clinical data analysis identified the prolyl 4-hydroxylase transmembrane protein (P4HTM) as one of the most highly co-expressed genes with GATA3. Immunohistochemical staining of breast tumors confirms co-expression between GATA3 and P4HTM at the protein level. Similar to GATA3, P4HTM expression levels are linked to patient prognosis, with lower levels indicating poorer survival. Genomics data found that GATA3 binds to the P4HTM locus, and that ectopic expression of GATA3 in basal breast cancer cells increases the P4HTM transcript level. These results collectively suggest that P4HTM is a novel downstream target of GATA3 in breast cancer and is involved in tumor progression.
Collapse
Affiliation(s)
- Sarah C DiDonna
- University of North Dakota School of Medicine and Health Sciences
| | - Aerica Nagornyuk
- University of North Dakota School of Medicine and Health Sciences
| | - Neeta Adhikari
- University of North Dakota School of Medicine and Health Sciences
| | | | - Motoki Takaku
- University of North Dakota School of Medicine and Health Sciences
| |
Collapse
|
42
|
Darwish T, Bomeisl P, Mangla A. An Atypical Rash on the Chest. JAMA Oncol 2023; 9:273-274. [PMID: 36580294 DOI: 10.1001/jamaoncol.2022.6126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 71-year-old man presented with a rapidly progressing rash and swelling of the left side of the chest wall. What is your diagnosis?
Collapse
Affiliation(s)
- Tarneem Darwish
- Department of Pathology, University Hospitals, Cleveland, Ohio
| | - Phillip Bomeisl
- Department of Pathology, University Hospitals, Cleveland, Ohio
| | - Ankit Mangla
- Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, Ohio
| |
Collapse
|
43
|
Hu B, Zou X, Yu Y, Jiang Y, Xu H. METTL3 promotes SMSCs chondrogenic differentiation by targeting the MMP3, MMP13, and GATA3. Regen Ther 2023; 22:148-159. [PMID: 36793308 PMCID: PMC9923043 DOI: 10.1016/j.reth.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/30/2023] Open
Abstract
Objective Synovium-derived mesenchymal stem cells (SMSCs) are multipotential non-hematopoietic progenitor cells that can differentiate into various mesenchymal lineages in adipose and bone tissue, especially in chondrogenesis. Post-transcriptional methylation modifications are relative to the various biological development procedures. N6-methyladenosine (m6A) methylation has been identified as one of the abundant widespread post-transcriptional modifications. However, the connection between the SMSCs differentiation and m6A methylation remains unknown and needs further exploration. Methods SMSCs were derived from synovial tissues of the knee joint of male Sprague-Dawley (SD) rats. In the chondrogenesis of SMSCs, m6A regulators were detected by quantitative real-time PCR (RT-PCR) and Western blot (WB). We observed the situation that the knockdown of m6A "writer" protein methyltransferase-like (METTL)3 in the chondrogenesis of SMSCs. We also mapped the transcript-wide m6A landscape in chondrogenic differentiation of SMSCs and combined RNA-seq and MeRIP-seq in SMSCs by the interference of METTL3. Results The expression of m6A regulators were regulated in the chondrogenesis of SMSCs, only METTL3 is the most significant factor. In addition, after the knockdown of METTL3, MeRIP-seq and RNA-seq technology were applied to analyze the transcriptome level in SMSCs. 832 DEGs displayed significant changes, consisting of 438 upregulated genes and 394 downregulated genes. DEGs were enriched in signaling pathways regulating the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and ECM-receptor interaction via Kyoto Encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The findings of this study indicate a difference in transcripts of MMP3, MMP13, and GATA3 containing consensus m6A motifs required for methylation by METTL3. Further, the reduction of METTL3 decreased the expression of MMP3, MMP13, and GATA3. Conclusion These findings confirm the molecular mechanisms of METTL3-mediated m6A post-transcriptional change in the modulation of SMSCs differentiating into chondrocytes, thus highlighting the potential therapeutic effect of SMSCs for cartilage regeneration.
Collapse
Affiliation(s)
- Bin Hu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangjie Zou
- Department of Orthopedics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,Corresponding authors. Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,Corresponding authors. Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Ricks-Santi LJ, Fredenburg K, Rajaei M, Esnakula A, Naab T, McDonald JT, Kanaan Y. Characterization of GATA3 and Mammaglobin in breast tumors from African American women. RESEARCH SQUARE 2023:rs.3.rs-2463961. [PMID: 36747860 PMCID: PMC9901030 DOI: 10.21203/rs.3.rs-2463961/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GATA3 and Mammaglobin are often used in the clinic to identify metastases of mammary origin due to their robust and diffuse expression in mammary tissue. However, the expression of these markers has not been well characterized in tumors from African American women. The goal of this study was to characterize and evaluate the expression of GATA3 and mammaglobin breast tumors from African American women and determine their association with clinicopathological outcomes including breast cancer subtypes. Tissue microarrays (TMAs) were constructed from well preserved, morphologically representative tumors in archived formalin-fixed, paraffin-embedded (FFPE) surgical blocks from 202 patients with primary invasive ductal carcinoma. Mammaglobin, and GATA3 expression was assessed using immunohistochemistry (IHC). Univariate analysis was carried out to determine the association between expression of GATA3, mammaglobin and clinicopathological characteristics. Kaplan-Meier estimates of overall survival and disease-free survival were also plotted and a log-rank test performed to compare estimates among groups. GATA3 expression showed statistically significant association with lower grade (p<0.001), ER-positivity (p<0.001), PR-positivity (p<0.001), and the luminal subtype (p<0.001). Mammaglobin expression was also significantly associated with lower grade (p=0.031), ER-positivity (p=0.007), and PR-positivity (p=0.022). There was no association with recurrence-free or overall survival. Our results confirm that GATA3 and mammaglobin demonstrate expression predominantly in luminal breast cancers from African American women. Markers with improved specificity and sensitivity are warranted given the high prevalence of triple negative breast cancer in the group.
Collapse
Affiliation(s)
- Luisel J. Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Kristianna Fredenburg
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL
| | - Moein Rajaei
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Ashwin Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Tammey Naab
- Department of Pathology, Howard University Hospital, Washington, DC
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington D.C
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC
| |
Collapse
|
45
|
Jia R, Xu L, Sun D, Han B. Genetic marker identification of SEC13 gene for milk production traits in Chinese holstein. Front Genet 2023; 13:1065096. [PMID: 36685890 PMCID: PMC9846039 DOI: 10.3389/fgene.2022.1065096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
SEC13 homolog, nuclear pore and COPII coat complex component (SEC13) is the core component of the cytoplasmic COPII complex, which mediates material transport from the endoplasmic reticulum to the Golgi complex. Our preliminary work found that SEC13 gene was differentially expressed in dairy cows during different stages of lactation, and involved in metabolic pathways of milk synthesis such as citric acid cycle, fatty acid, starch and sucrose metabolisms, so we considered that the SEC13 might be a candidate gene affecting milk production traits. In this study, we detected the polymorphisms of SEC13 gene and verified their genetic effects on milk yield and composition traits in a Chinese Holstein cow population. By sequencing the whole coding and partial flanking regions of SEC13, we found four single nucleotide polymorphisms (SNPs). Subsequent association analysis showed that these four SNPs were significantly associated with milk yield, fat yield, protein yield or protein percentage in the first and second lactations (p ≤.0351). We also found that two SNPs in SEC13 formed one haplotype block by Haploview4.2, and the block was significantly associated with milk yield, fat yield, fat percentage, protein yield or protein percentage (p ≤ .0373). In addition, we predicted the effect of SNP on 5'region on transcription factor binding sites (TFBSs), and found that the allele A of 22:g.54362761A>G could bind transcription factors (TFs) GATA5, GATA3, HOXD9, HOXA10, CDX1 and Hoxd13; and further dual-luciferase reporter assay verified that the allele A of this SNP inhibited the fluorescence activity. We speculate that the A allele of 22:g.54362761A>G might inhibit the transcriptional activity of SEC13 gene by binding the TFs, which may be a cause mutation affecting the formation of milk production traits in dairy cows. In summary, we proved that SEC13 has a significant genetic effect on milk production traits and the identified significant SNPs could be used as candidate genetic markers for GS SNP chips development; on the other hand, we verified the transcriptional regulation of 22:g.54362761A>G on SEC13 gene, providing research direction for further function validation tests.
Collapse
Affiliation(s)
- Ruike Jia
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
- National Dairy Innovation Center, Hohhot, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Aylon Y, Furth N, Mallel G, Friedlander G, Nataraj NB, Dong M, Hassin O, Zoabi R, Cohen B, Drendel V, Salame TM, Mukherjee S, Harpaz N, Johnson R, Aulitzky WE, Yarden Y, Shema E, Oren M. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat Commun 2022; 13:7199. [PMID: 36443319 PMCID: PMC9705295 DOI: 10.1038/s41467-022-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.
Collapse
Affiliation(s)
- Yael Aylon
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noa Furth
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Giuseppe Mallel
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Gilgi Friedlander
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nishanth Belugali Nataraj
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Meng Dong
- grid.502798.10000 0004 0561 903XDr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Rawan Zoabi
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Benjamin Cohen
- grid.13992.300000 0004 0604 7563Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vanessa Drendel
- grid.416008.b0000 0004 0603 4965Department of Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Tomer Meir Salame
- grid.13992.300000 0004 0604 7563Flow Cytometry Unit, Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Saptaparna Mukherjee
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nofar Harpaz
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Randy Johnson
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Walter E. Aulitzky
- grid.416008.b0000 0004 0603 4965Department of Hematology, Oncology and Palliative Medicine, Robert Bosch Hospital, Stuttgart, Germany
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Efrat Shema
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Moshe Oren
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
47
|
Wang X, Langevin AM, Houghton PJ, Zheng S. Genomic disparities between cancers in adolescent and young adults and in older adults. Nat Commun 2022; 13:7223. [PMID: 36433963 PMCID: PMC9700745 DOI: 10.1038/s41467-022-34959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cancers cause significant mortality and morbidity in adolescents and young adults (AYAs), but their biological underpinnings are incompletely understood. Here, we analyze clinical and genomic disparities between AYAs and older adults (OAs) in more than 100,000 cancer patients. We find significant differences in clinical presentation between AYAs and OAs, including sex, metastasis rates, race and ethnicity, and cancer histology. In most cancer types, AYA tumors show lower mutation burden and less genome instability. Accordingly, most cancer genes show less mutations and copy number changes in AYAs, including the noncoding TERT promoter mutations. However, CTNNB1 and BRAF mutations are consistently overrepresented in AYAs across multiple cancer types. AYA tumors also exhibit more driver gene fusions that are frequently observed in pediatric cancers. We find that histology is an important contributor to genetic disparities between AYAs and OAs. Mutational signature analysis of hypermutators shows stronger endogenous mutational processes such as MMR-deficiency but weaker exogenous processes such as tobacco exposure in AYAs. Finally, we demonstrate a panoramic view of clinically actionable genetic events in AYA tumors.
Collapse
Affiliation(s)
- Xiaojing Wang
- grid.267309.90000 0001 0629 5880Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880MD Anderson Mays Cancer Center, UT Health San Antonio, San Antonio, TX USA
| | - Anne-Marie Langevin
- grid.267309.90000 0001 0629 5880MD Anderson Mays Cancer Center, UT Health San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880Department of Pediatrics, UT Health San Antonio, San Antonio, TX USA
| | - Peter J. Houghton
- grid.267309.90000 0001 0629 5880Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880MD Anderson Mays Cancer Center, UT Health San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX USA
| | - Siyuan Zheng
- grid.267309.90000 0001 0629 5880Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX USA ,grid.267309.90000 0001 0629 5880MD Anderson Mays Cancer Center, UT Health San Antonio, San Antonio, TX USA
| |
Collapse
|
48
|
Wu Y, Zhang D, Ye S, Liu Q, Huang B. Parabolic relationship between SMAD3 expression level and the reprogramming efficiency of goat induced mammary epithelial cells. Front Cell Dev Biol 2022; 10:1002874. [PMID: 36313568 PMCID: PMC9614088 DOI: 10.3389/fcell.2022.1002874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Mammary epithelial cells are the only cells of mammary glands with lactation capacity. They are closely related to mammary development and milk yield. Our earlier studies showed that the transformation of goat fibroblasts into induced mammary epithelial cells (iMECs) was closely correlated with SMAD3 overexpression. Therefore, we further explored the role of SMAD3 on iMECs reprogramming in this study. The SMAD3 gene was overexpressed in goat ear fibroblasts using the tetracycline-induced expression method. The outcomes demonstrated that goat ear fibroblasts can be converted into iMECs by overexpressing the SMAD3 gene. In contrast, it was discovered that SMAD3 downregulation by RNA interference significantly decrease the reprogramming efficiency of iMECs. These results show that SMAD3 plays a key regulatory role in the reprogramming of iMECs. Surprisingly, we also found a parabolic relationship between SMAD3 expression level and iMECs reprogramming efficiency, and that the reprogramming efficiency was maximum when the addition of doxycycline concentration was 5 μg/ml. In light of this, our findings may offer new perspectives on the regulatory mechanism governing mammary epithelial cell fate in goats as well as a fresh approach to studying mammary development and differentiation in vitro.
Collapse
Affiliation(s)
- Yulian Wu
- Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-8 Bioresources, Guangxi University, Nanning, China
- School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Zhang
- Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-8 Bioresources, Guangxi University, Nanning, China
- School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Quanhui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-8 Bioresources, Guangxi University, Nanning, China
- School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ben Huang
- Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-8 Bioresources, Guangxi University, Nanning, China
- School of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Ben Huang, ,
| |
Collapse
|
49
|
FOXA1 in Breast Cancer: A Luminal Marker with Promising Prognostic and Predictive Impact. Cancers (Basel) 2022; 14:cancers14194699. [PMID: 36230619 PMCID: PMC9564251 DOI: 10.3390/cancers14194699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The present review focuses on the function of the forkhead protein FOXA1 in breast cancer (BC) in relation to steroid hormone receptors. We explored the currently available analytic approaches for FOXA1 assessment both at gene and protein levels, comparing the differences between the available techniques used for its diagnostic assessment. In addition, we elaborated on data regarding the prognostic and predictive role of this marker in BC based on several studies that evaluated its expression in relation to the outcome and/or response to therapy. FOXA1, similar to the androgen receptor (AR), may have a dual role in BC according to hormonal status. In luminal cancers, its expression contributes to a better prognosis, while in triple-negative breast cancers (TNBC), it implies an adverse outcome. Consequently, we observed that FOXA1-positive expression in a neoadjuvant setting may predict a lack of response in luminal BC as opposed to TNBC, in which FOXA1 allegedly increases its chemosensitivity. In conclusion, considering its accessible and convenient identification by immunohistochemistry, its important impact on prognosis, and its suitability to identify patients with different responses to chemotherapy, we propose that FOXA1 could be tested in routine diagnostics as an additional prognostic and predictive marker in BC.
Collapse
|
50
|
Al-Khaldi S, Almohanna F, Barnawi R, Fallatah M, Islam SS, Ghebeh H, Al-Alwan M. Fascin is essential for mammary gland lactogenesis. Dev Biol 2022; 492:25-36. [PMID: 36152869 DOI: 10.1016/j.ydbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/29/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
Fascin expression has commonly been observed in certain subtypes of breast cancer, where its expression is associated with poor clinical outcome. However, its role in normal mammary gland development has not been elucidated. Here, we used a fascin knockout mouse model to assess its role in normal mammary gland morphogenesis and lactation. Fascin knockout was not embryonically lethal, and its effect on the litter size or condition at birth was minimal. However, litter survival until the weaning stage significantly depended on fascin expression solely in the nursing dams. Accordingly, pups that nursed from fascin-/- dams had smaller milk spots in their abdomen, suggesting a lactation defect in the nursing dams. Mammary gland whole-mounts of pregnant and lactating fascin-/- mice showed significantly reduced side branching and alveologenesis. Despite a typical composition of basal, luminal, and stromal subsets of mammary cells and normal ductal architecture of myoepithelial and luminal layers, the percentage of alveolar progenitors (ALDH+) in fascin-/- epithelial fraction was significantly reduced. Further in-depth analyses of fascin-/- mammary glands showed a significant reduction in the expression of Elf5, the master regulator of alveologenesis, and a decrease in the activity of its downstream target p-STAT5. In agreement, there was a significant reduction in the expression of the milk proteins, whey acidic protein (WAP), and β-casein in fascin-/- mammary glands. Collectively, our data demonstrate, for the first time, the physiological role of fascin in normal mammary gland lactogenesis, an addition that could reveal its contribution to breast cancer initiation and progression.
Collapse
Affiliation(s)
- Samiyah Al-Khaldi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia.
| | | | | | - Mohannad Fallatah
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia.
| | - Syed S Islam
- Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| |
Collapse
|