1
|
Prajapat M, Maria A, Vidigal J. CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise. Nucleic Acids Res 2025; 53:gkae1138. [PMID: 39673524 PMCID: PMC11724307 DOI: 10.1093/nar/gkae1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/26/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Non-coding regulatory sequences play essential roles in adjusting gene output to cellular needs and are thus critical to animal development and health. Numerous such sequences have been identified in mammalian genomes ranging from transcription factors binding motifs to recognition sites for RNA-binding proteins and non-coding RNAs. The advent of CRISPR has raised the possibility of assigning functionality to individual endogenous regulatory sites by facilitating the generation of isogenic cell lines that differ by a defined set of genetic modifications. Here we investigate the usefulness of this approach to assign function to individual miRNA binding sites. We find that the process of generating isogenic pairs of mammalian cell lines with CRISPR-mediated mutations introduces extensive molecular and phenotypic variability between biological replicates confounding attempts at assigning function to the binding site. Our work highlights an important consideration when employing CRISPR editing to characterize non-coding regulatory sequences in cell lines and calls for the development and adoption of alternative strategies to address this question in the future.
Collapse
Affiliation(s)
- Mahendra K Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Andrea G Maria
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
3
|
Jun HJ, Paulo JA, Appleman VA, Yaron-Barir TM, Johnson JL, Yeo AT, Rogers VA, Kuang S, Varma H, Gygi SP, Trotman LC, Charest A. Pleiotropic tumor suppressive functions of PTEN missense mutations during gliomagenesis. iScience 2024; 27:111278. [PMID: 39660053 PMCID: PMC11629276 DOI: 10.1016/j.isci.2024.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
PTEN plays a crucial role in preventing the development of glioblastoma (GBM), a severe and untreatable brain cancer. In GBM, most PTEN deficiencies are missense mutations that have not been thoroughly examined. Here, we leveraged genetically modified mice and isogenic astrocyte cell cultures to investigate the role of clinically relevant mutations (G36E, L42R, C105F, and R173H) in the development of EGFR-driven GBM. We report that the loss of tumor suppression from these mutants is unrelated to their lipid phosphatase activity and rather relate to elevated localization at the cell membrane. Moreover, expression of these PTEN mutations heightened EGFR activity by sequestering EGFR within endomembranes longer and affected its signaling behavior. Through comprehensive studies on global protein phosphorylation and kinase library analyses in cells with the G36E and L42R PTEN mutations, we identified distinct cancer-promoting pathways activated by EGFR, offering targets for treating GBM with these PTEN alterations.
Collapse
Affiliation(s)
- Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria A. Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Tomer M. Yaron-Barir
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L. Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alan T. Yeo
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Vaughn A. Rogers
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Shan Kuang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Ge X, Shen Z, Yin Y. Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer. Cancer Cell Int 2024; 24:369. [PMID: 39522033 PMCID: PMC11549762 DOI: 10.1186/s12935-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression through diverse mechanisms, including regulation of protein localization, sequestration of miRNAs, recruitment of chromatin modifiers, and modulation of signaling pathways. Accumulating evidence highlights their pivotal roles in tumor initiation, progression, and the development of therapeutic resistance. In this review, we comprehensively summarized the existing literature to identify lncRNAs associated with treatment responses in non-small cell lung cancer (NSCLC). Specifically, we categorized these lncRNAs based on their mechanisms of action in mediating resistance to chemotherapy, targeted therapy, and radiotherapy. Our analysis revealed that aberrant expression of various lncRNAs contributes to the development, metastasis, and therapeutic resistance in NSCLC, ultimately leading to poor clinical outcomes. By elucidating the intricate mechanisms through which lncRNAs modulate therapeutic responses, this review aims to provide mechanistic insights into the heterogeneous treatment outcomes observed in NSCLC patients and unveil potential therapeutic targets for overcoming drug resistance.
Collapse
Affiliation(s)
- Xin Ge
- Peking University First Hospital, Beijing, 100034, China
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichu Shen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
5
|
Prajapat MK, Vidigal JA. CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611048. [PMID: 39282279 PMCID: PMC11398363 DOI: 10.1101/2024.09.03.611048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Non-coding regulatory sequences play essential roles in adjusting gene output to cellular needs and are thus critical to animal development and health. Numerous such sequences have been identified in mammalian genomes ranging from transcription factors binding motifs to recognition sites for RNA-binding proteins and non-coding RNAs. The advent of CRISPR has raised the possibility of assigning functionality to individual endogenous regulatory sites by facilitating the generation of isogenic cell lines that differ by a defined set of genetic modifications. Here we investigate the usefulness of this approach to assign function to individual miRNA binding sites. We find that the process of generating isogenic pairs of mammalian cell lines with CRISPR-mediated mutations introduces extensive molecular and phenotypic variability between biological replicates making any attempt of assigning function to the binding site essentially impossible. Our work highlights an important consideration when employing CRISPR editing to characterize non-coding regulatory sequences in cell lines and calls for the development and adoption of alternative strategies to address this question in the future.
Collapse
Affiliation(s)
- Mahendra K Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
7
|
Bergez-Hernández F, Irigoyen-Arredondo M, Martínez-Camberos A. A systematic review of mechanisms of PTEN gene down-regulation mediated by miRNA in prostate cancer. Heliyon 2024; 10:e34950. [PMID: 39144981 PMCID: PMC11320309 DOI: 10.1016/j.heliyon.2024.e34950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The Phosphatase and Tensin Homolog gene (PTEN) is pivotal in regulating diverse cellular processes, including growth, differentiation, proliferation, and cell survival, mainly by modulating the PI3K/AKT/mTOR pathway. Alterations in the expression of the PTEN gene have been associated with epigenetic mechanisms, particularly the regulation by small non-coding RNAs, such as miRNAs. Modifications in the expression levels of miRNAs that control PTEN have been shown to lead to its underexpression. This underexpression, in turn, impacts the PI3K/AKT/mTOR pathway, thereby influencing crucial mechanisms like proliferation and apoptosis, playing an important role in the initiation and progression of prostate cancer (PCa). Thus, we aimed to systematically reviewed available information concerning the regulation of PTEN mediated by miRNA in PCa. Methods Electronic databases were searched to identify studies assessing PTEN regulation via PCa miRNAs, the search included combination of the words microRNAs, PTEN and prostatic neoplasms. The quality assessment of the articles included was carried out using an adapted version of SYRCLE and CASP tool. Results We included 39 articles that measured the relative gene expression of miRNAs in PCa and their relationship with PTEN regulation. A total of 42 miRNAs were reported involved in the development and progression of PCa via PTEN dysregulation (34 miRNAs up-regulated and eight miRNAs down-regulated). Sixteen miRNAs were shown as the principal regulators for genetic interactions leading to carcinogenesis, being the miR-21 the most reported in PCa associated with PTEN down-regulation. We showed the silencing of PTEN could be promoted by a loop between miR-200b and DNMT1 or by direct targeting of PTEN by microRNAs, leading to the constitutive activation of PI3K/AKT/mTOR and interactions with intermediary genes support apoptosis inhibition, proliferation, invasion, and metastasis in PCa. Conclusion According to our review, dysregulation of PTEN mediated mainly by miR-21, -20a, -20b, -93, -106a, and -106b up-regulation has a central role in PCa development and could be potential biomarkers for diagnosis, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
| | | | - Alejandra Martínez-Camberos
- Laboratorio de Biomedicina y Biología Molecular. Lic. en Ciencias Biomédicas, Universidad Autónoma de Occidente. Av del Mar 1200, Tellerías, 82100, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
8
|
Qiu L, Li R, Wang Y, Lu Z, Tu Z, Liu H. PTEN inhibition enhances sensitivity of ovarian cancer cells to the poly (ADP-ribose) polymerase inhibitor by suppressing the MRE11-RAD50-NBN complex. Br J Cancer 2024; 131:577-588. [PMID: 38866962 PMCID: PMC11300449 DOI: 10.1038/s41416-024-02749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPis) can effectively treat ovarian cancer patients with defective homologous recombination (HR). Loss or dysfunction of PTEN, a typical tumour suppressor, impairs double-strand break (DSB) repair. Hence, we explored the possibility of inhibiting PTEN to induce HR deficiency (HRD) for PARPi application. METHODS Functional studies using PTEN inhibitor VO-OHpic and PARPi olaparib were performed to explore the molecular mechanisms in vitro and in vivo. RESULTS In this study, the combination of VO-OHpic with olaparib exhibited synergistic inhibitory effects on ovarian cancer cells was demonstrated. Furthermore, VO-OHpic was shown to enhance DSBs by reducing nuclear expression of PTEN and inhibiting HR repair through the modulation of MRE11-RAD50-NBN (MRN) complex, critical for DSB repair. TCGA and GTEx analysis revealed a strong correlation between PTEN and MRN in ovarian cancer. Mechanistic studies indicated that VO-OHpic reduced expression of MRN, likely by decreasing PTEN/E2F1-mediated transcription. Moreover, PTEN-knockdown inhibited expression of MRN, increased sensitivities to olaparib, and induced DSBs. In vivo experiments showed that the combination of VO-OHpic with olaparib exhibited enhanced inhibitory effects on tumour growth. CONCLUSIONS Collectively, this study highlights the potential of PTEN inhibitors in combination therapy with PARPis to create HRD for HRD-negative ovarian cancers.
Collapse
Affiliation(s)
- Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ruyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- School of Health Medicine, Nantong Institute of Technology, Nantong, 226000, Jiangsu, China
| | - Yue Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Farazi MM, Jafarinejad-Farsangi S, Miri Karam Z, Gholizadeh M, Hadadi M, Yari A. Circular RNAs: Epigenetic regulators of PTEN expression and function in cancer. Gene 2024; 916:148442. [PMID: 38582262 DOI: 10.1016/j.gene.2024.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Epigenetic regulation of gene expression, without altering the DNA sequence, is involved in many normal cellular growth and division events, as well as diseases such as cancer. Epigenetics is no longer limited to DNA methylation, and histone modification, but regulatory non-coding RNAs (ncRNAs) also play an important role in epigenetics. Circular RNAs (circRNAs), single-stranded RNAs without 3' and 5' ends, have recently emerged as a class of ncRNAs that regulate gene expression. CircRNAs regulate phosphatase and tensin homolog (PTEN) expression at various levels of transcription, post-transcription, translation, and post-translation under their own regulation. Given the importance of PTEN as a tumor suppressor in cancer that inhibits one of the most important cancer pathways PI3K/AKT involved in tumor cell proliferation and survival, significant studies have been conducted on the regulatory role of circRNAs in relation to PTEN. These studies will be reviewed in this paper to better understand the function of this protein in cancer and explore new therapeutic approaches.
Collapse
Affiliation(s)
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Miri Karam
- Department of Medical Genetics, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Maryam Gholizadeh
- Institute of Bioinformatics, University of Medicine Greifswald, Greifwald, Germany
| | - Maryam Hadadi
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abolfazl Yari
- Endocrinology & Metabolism Research Center, Institute of Basic & Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
10
|
Lin HY, Tsai TN, Hsu KC, Hsu YM, Chiang LC, El-Shazly M, Chang KM, Lin YH, Tu SY, Lin TE, Du YC, Liu YC, Lu MC. From Sea to Science: Coral Aquaculture for Sustainable Anticancer Drug Development. Mar Drugs 2024; 22:323. [PMID: 39057432 PMCID: PMC11277741 DOI: 10.3390/md22070323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Marine natural products offer immense potential for drug development, but the limited supply of marine organisms poses a significant challenge. Establishing aquaculture presents a sustainable solution for this challenge by facilitating the mass production of active ingredients while reducing our reliance on wild populations and harm to local environments. To fully utilize aquaculture as a source of biologically active products, a cell-free system was established to target molecular components with protein-modulating activity, including topoisomerase II, HDAC, and tubulin polymerization, using extracts from aquaculture corals. Subsequent in vitro studies were performed, including MTT assays, flow cytometry, confocal microscopy, and Western blotting, along with in vivo xenograft models, to verify the efficacy of the active extracts and further elucidate their cytotoxic mechanisms. Regulatory proteins were clarified using NGS and gene modification techniques. Molecular docking and SwissADME assays were performed to evaluate the drug-likeness and pharmacokinetic and medicinal chemistry-related properties of the small molecules. The extract from Lobophytum crassum (LCE) demonstrated potent broad-spectrum activity, exhibiting significant inhibition of tubulin polymerization, and showed low IC50 values against prostate cancer cells. Flow cytometry and Western blotting assays revealed that LCE induced apoptosis, as evidenced by the increased expression of apoptotic protein-cleaved caspase-3 and the populations of early and late apoptotic cells. In the xenograft tumor experiments, LCE significantly suppressed tumor growth and reduced the tumor volume (PC3: 43.9%; Du145: 49.2%) and weight (PC3: 48.8%; Du145: 7.8%). Additionally, LCE inhibited prostate cancer cell migration, and invasion upregulated the epithelial marker E-cadherin and suppressed EMT-related proteins. Furthermore, LCE effectively attenuated TGF-β-induced EMT in PC3 and Du145 cells. Bioactivity-guided fractionation and SwissADME validation confirmed that LCE's main component, 13-acetoxysarcocrassolide (13-AC), holds greater potential for the development of anticancer drugs.
Collapse
Affiliation(s)
- Hung-Yu Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
- Division of Urology, Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Tsen-Ni Tsai
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lin-Chien Chiang
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Ken-Ming Chang
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Yu-Hsuan Lin
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Shang-Yi Tu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chi Du
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan
| |
Collapse
|
11
|
Cherfan C, Chebly A, Rezvani HR, Beylot-Barry M, Chevret E. Delving into the Metabolism of Sézary Cells: A Brief Review. Genes (Basel) 2024; 15:635. [PMID: 38790264 PMCID: PMC11121102 DOI: 10.3390/genes15050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Primary cutaneous lymphomas (PCLs) are a heterogeneous group of lymphoproliferative disorders caused by the accumulation of neoplastic T or B lymphocytes in the skin. Sézary syndrome (SS) is an aggressive and rare form of cutaneous T cell lymphoma (CTCL) characterized by an erythroderma and the presence of atypical cerebriform T cells named Sézary cells in skin and blood. Most of the available treatments for SS are not curative, which means there is an urgent need for the development of novel efficient therapies. Recently, targeting cancer metabolism has emerged as a promising strategy for cancer therapy. This is due to the accumulating evidence that metabolic reprogramming highly contributes to tumor progression. Genes play a pivotal role in regulating metabolic processes, and alterations in these genes can disrupt the delicate balance of metabolic pathways, potentially contributing to cancer development. In this review, we discuss the importance of targeting energy metabolism in tumors and the currently available data on the metabolism of Sézary cells, paving the way for potential new therapeutic approaches aiming to improve clinical outcomes for patients suffering from SS.
Collapse
Affiliation(s)
- Carel Cherfan
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
| | - Alain Chebly
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut P.O. Box 17-5208, Lebanon;
| | - Hamid Reza Rezvani
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
| | - Marie Beylot-Barry
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
- Dermatology Department, Centre Hospitalier Universitaire de Bordeaux, 33075 Bordeaux, France
| | - Edith Chevret
- BRIC, BoRdeaux Institute of onCology, UMR 1312, Inserm, Université de Bordeaux, 33000 Bordeaux, France; (C.C.); (H.R.R.); (M.B.-B.)
| |
Collapse
|
12
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
13
|
Wang Z, Zhang YX, Shi JZ, Yan Y, Zhao LL, Kou JJ, He YY, Xie XM, Zhang SJ, Pang XB. RNA m6A methylation and regulatory proteins in pulmonary arterial hypertension. Hypertens Res 2024; 47:1273-1287. [PMID: 38438725 DOI: 10.1038/s41440-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/12/2023] [Accepted: 01/27/2024] [Indexed: 03/06/2024]
Abstract
m6A (N6‑methyladenosine) is the most common and abundant apparent modification in mRNA of eukaryotes. The modification of m6A is regulated dynamically and reversibly by methyltransferase (writer), demethylase (eraser), and binding protein (reader). It plays a significant role in various processes of mRNA metabolism, including regulation of transcription, maturation, translation, degradation, and stability. Pulmonary arterial hypertension (PAH) is a malignant cardiopulmonary vascular disease characterized by abnormal proliferation of pulmonary artery smooth muscle cells. Despite the existence of several effective and targeted therapies, there is currently no cure for PAH and the prognosis remains poor. Recent studies have highlighted the crucial role of m6A modification in cardiovascular diseases. Investigating the role of RNA m6A methylation in PAH could provide valuable insights for drug development. This review aims to explore the mechanism and function of m6A in the pathogenesis of PAH and discuss the potential targeting of RNA m6A methylation modification as a treatment for PAH.
Collapse
Affiliation(s)
- Zhe Wang
- School of Pharmacy, Henan University, Henan, China
| | - Yi-Xuan Zhang
- Department of Anesthesiology, Huaihe Hospital of Henan University, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Henan, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Henan, China
| | - Jie-Jian Kou
- Department of Pharmacy, Huaihe Hospital of Henan University, Henan, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Henan, China.
| | - Si-Jin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | | |
Collapse
|
14
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
15
|
Zheng Q, Lu C, Yu L, Zhan Y, Chen Z. Exploring the metastasis-related biomarker and carcinogenic mechanism in liver cancer based on single cell technology. Heliyon 2024; 10:e27473. [PMID: 38509894 PMCID: PMC10950590 DOI: 10.1016/j.heliyon.2024.e27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal primary malignancy characterized by high invasion and migration. We aimed to explore the underlying metastasis-related mechanism supporting the development of HCC. Methods The dataset of single cell RNA-seq (GSE149614) were collected for cell clustering by using the Seurat R package, the FindAllMarkers function was used to find the highly expression and defined the cell cluster. The WebGestaltR package was used for the GO and KEGG function analysis of shared genes, the Gene Set Enrichment Analysis (GSVA) was performed by clusterProfiler R package, the hTFtarget database was used to identify the crucial transcription factors (TFs), the Genomics of Drug Sensitivity in Cancer (GDSC) database was used for the drug sensitivity analysis. Finally, the overexpression and trans-well assay was used for gene function analysis. Results We obtained 9 cell clusters from the scRNA-seq data, including the nature killer (NK)/T cells, Myeloid cells, Hepatocytes, Epithelial cells, Endothelial cells, Plasma B cells, Smooth muscle cells, B cells, Liver bud hepatic cells. Further cell ecological analysis indicated that the Hepatocytes and Endothelial cell cluster were closely related to the cancer metastasis. Subsequently, the NDUFA4L2-Hepatocyte, GTSE1-Hepatocyte, ENTPD1-Endothelial and NDUFA4L2-Endothelial were defined as metastasis-supporting cell clusters, in which the NDUFA4L2-Hepatocyte cells was closely related to angiogenesis, while the NDUFA4L2-Endothelial was related with the inflammatory response and complement response. The overexpression and trans-well assay displayed that NDUFA4L2 exhibited clearly metastasis-promoting role in HCC progression. Conclusion We identified and defined 4 metastasis-supporting cell clusters by using the single cell technology, the specify shared gene was observed and played crucial role in promoting cancer progression, our findings were expected to provide new insight in control cancer metastasis.
Collapse
Affiliation(s)
- Qiuxiang Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Cuiping Lu
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Ying Zhan
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Zhiyong Chen
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| |
Collapse
|
16
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
An G, Park J, Song J, Hong T, Song G, Lim W. Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy. Exp Mol Med 2024; 56:40-50. [PMID: 38172597 PMCID: PMC10834980 DOI: 10.1038/s12276-023-01137-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Dynamic interactions between organelles are responsible for a variety of intercellular functions, and the endoplasmic reticulum (ER)-mitochondrial axis is recognized as a representative interorganelle system. Several studies have confirmed that most proteins in the physically tethered sites between the ER and mitochondria, called mitochondria-associated ER membranes (MAMs), are vital for intracellular physiology. MAM proteins are involved in the regulation of calcium homeostasis, lipid metabolism, and mitochondrial dynamics and are associated with processes related to intracellular stress conditions, such as oxidative stress and unfolded protein responses. Accumulating evidence has shown that, owing to their extensive involvement in cellular homeostasis, alterations in the ER-mitochondrial axis are one of the etiological factors of tumors. An in-depth understanding of MAM proteins and their impact on cell physiology, particularly in cancers, may help elucidate their potential as diagnostic and therapeutic targets for cancers. For example, the modulation of MAM proteins is utilized not only to target diverse intracellular signaling pathways within cancer cells but also to increase the sensitivity of cancer cells to anticancer reagents and regulate immune cell activities. Therefore, the current review summarizes and discusses recent advances in research on the functional roles of MAM proteins and their characteristics in cancers from a diagnostic perspective. Additionally, this review provides insights into diverse therapeutic strategies that target MAM proteins in various cancer types.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
18
|
Nguele Meke F, Bai Y, Ruiz-Avila D, Carlock C, Ayub J, Miao J, Hu Y, Li Q, Zhang ZY. Inhibition of PRL2 Upregulates PTEN and Attenuates Tumor Growth in Tp53-deficient Sarcoma and Lymphoma Mouse Models. CANCER RESEARCH COMMUNICATIONS 2024; 4:5-17. [PMID: 38047587 PMCID: PMC10764713 DOI: 10.1158/2767-9764.crc-23-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The phosphatases of regenerating liver (PRL) are oncogenic when overexpressed. We previously found that PRL2 deletion increases PTEN, decreases Akt activity, and suppresses tumor development in a partial Pten-deficient mouse model. The current study aims to further establish the mechanism of PTEN regulation by PRL2 and expand the therapeutic potential for PTEN augmentation mediated by PRL2 inhibition in cancers initiated without PTEN alteration. The TP53 gene is the most mutated tumor suppressor in human cancers, and heterozygous or complete deletion of Tp53 in mice leads to the development of sarcomas and thymic lymphomas, respectively. There remains a lack of adequate therapies for the treatment of cancers driven by Tp53 deficiency or mutations. We show that Prl2 deletion leads to PTEN elevation and attenuation of Akt signaling in sarcomas and lymphomas developed in Tp53 deficiency mouse models. This results in increased survival and reduced tumor incidence because of impaired tumor cell proliferation. In addition, inhibition of PRL2 with a small-molecule inhibitor phenocopies the effect of genetic deletion of Prl2 and reduces Tp53 deficiency-induced tumor growth. Taken together, the results further establish PRL2 as a negative regulator of PTEN and highlight the potential of PRL2 inhibition for PTEN augmentation therapy in cancers with wild-type PTEN expression. SIGNIFICANCE Prl2 deletion attenuates Tp53 deficiency-induced tumor growth by increasing PTEN and reducing Akt activity. Targeting Tp53-null lymphoma with PRL inhibitors lead to reduced tumor burden, providing a therapeutic approach via PTEN augmentation.
Collapse
Affiliation(s)
- Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Diego Ruiz-Avila
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Colin Carlock
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinan Ayub
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Yanyang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Department of Chemistry, Purdue University, West Lafayette, Indiana
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| |
Collapse
|
19
|
Sun L, Ke M, Yin M, Zeng Y, Ji Y, Hu Y, Fu S, Zhang C. Extracellular vesicle-encapsulated microRNA-296-3p from cancer-associated fibroblasts promotes ovarian cancer development through regulation of the PTEN/AKT and SOCS6/STAT3 pathways. Cancer Sci 2024; 115:155-169. [PMID: 37972389 PMCID: PMC10823290 DOI: 10.1111/cas.16014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), as important components of the tumor microenvironment, can regulate intercellular communication and tumor development by secreting extracellular vesicles (EVs). However, the role of CAF-derived EVs in ovarian cancer has not been fully elucidated. Here, using an EV-microRNA sequencing analysis, we reveal specific overexpression of microRNA (miR)-296-3p in activated CAF-derived EVs, which can be transferred to tumor cells to regulate the malignant phenotypes of ovarian cancer cells. Moreover, overexpression of miR-296-3p significantly promotes the proliferation, migration, invasion, and drug resistance of ovarian cancer cells in vitro, as well as tumor growth in vivo, while its inhibition has the opposite effects. Further mechanistic studies reveal that miR-296-3p promotes ovarian cancer progression by directly targeting PTEN and SOCS6 and activating AKT and STAT3 signaling pathways. Importantly, increased expression of miR-296-3p encapsulated in plasma EVs is closely correlated with tumorigenesis and chemoresistance in patients with ovarian cancer. Our results highlight the cancer-promoting role of CAF-derived EVs carrying miR-296-3p in ovarian cancer progression for the first time, and suggest that miR-296-3p encapsulated in CAF-derived EVs could be a diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Luyao Sun
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Department of BiologyHainan Medical UniversityHaikouChina
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Mengyuan Yin
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying Zeng
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yutong Ji
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yiming Hu
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| | - Chunyu Zhang
- Laboratory of Medical Genetics, School of MedicineSouth China University of TechnologyGuangzhouChina
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of EducationHarbinChina
| |
Collapse
|
20
|
Colasanti GB, Troiano E, De Sensi AG, Di Sarno L, Renieri A, Mondanelli N, Giannotti S. A Reverse Shoulder Arthroplasty Implantation With Custom-Made Humerus and Intraoperative GPS Navigation in a Rare Case of Unilateral Hip and Shoulder Dysplasia Associated With a Bone Marrow Mosaic PTEN Truncating Variant: Case Report. J Shoulder Elb Arthroplast 2023; 7:24715492231211123. [PMID: 38021086 PMCID: PMC10631308 DOI: 10.1177/24715492231211123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Joint dysplasias always represent a great challenge for prosthetic surgeons. The common altered anatomical landmarks and the subversion of the anatomy of soft tissues surrounding the dysplastic joint are problems that can cause difficulties if approached with standard methods. Together with the resolution of functional issues related to dysplasia, the understanding of the underlying cause is fundamental. DNA analysis is generally performed via blood sampling; however, this might lead to misdiagnosis in case mosaicism is not detected in blood components. The etiology of genetic diseases can be further examined by means of whole exome sequencing and the detection of somatic mosaicism, recognized as a fundamental contributor to genetic diseases themselves. In this study, the clinical case of a patient suffering from a rare unilateral dysplasia localized to the left coxo-femoral and glenohumeral joint and treated at our center for reverse shoulder arthroplasty is reported. By virtue of the glenohumeral anatomical peculiarities, we had to devise a hybrid custom-made and navigated approach by means of a custom-made prosthetic stem and dedicated patient-specific instrumentation, using intraoperative GPS navigation for glenoid prosthesis. In addition, a genetic study was conducted on intraoperatively harvested bone marrow, which proved to be crucial in understanding the epigenetic basis of dysplasia. In fact, the patient resulted negative in blood but positive for a truncating variant of PTEN c.781C > T (p.(Gln261 *)) in 12% of the sequence analyzed in the bone marrow.
Collapse
Affiliation(s)
- Giovanni Battista Colasanti
- Department of Medicine Surgery and Neurosciences, University of Siena, Siena, Italy
- Section of Orthopedics, Azienda Ospedaliero-Universitaria Senese, Policlinico Santa Maria alle Scotte, Siena, Italy
| | - Elisa Troiano
- Department of Medicine Surgery and Neurosciences, University of Siena, Siena, Italy
- Section of Orthopedics, Azienda Ospedaliero-Universitaria Senese, Policlinico Santa Maria alle Scotte, Siena, Italy
| | - Alice Giulia De Sensi
- Department of Medicine Surgery and Neurosciences, University of Siena, Siena, Italy
- Section of Orthopedics, Azienda Ospedaliero-Universitaria Senese, Policlinico Santa Maria alle Scotte, Siena, Italy
| | - Laura Di Sarno
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Nicola Mondanelli
- Department of Medicine Surgery and Neurosciences, University of Siena, Siena, Italy
- Section of Orthopedics, Azienda Ospedaliero-Universitaria Senese, Policlinico Santa Maria alle Scotte, Siena, Italy
| | - Sefano Giannotti
- Department of Medicine Surgery and Neurosciences, University of Siena, Siena, Italy
- Section of Orthopedics, Azienda Ospedaliero-Universitaria Senese, Policlinico Santa Maria alle Scotte, Siena, Italy
| |
Collapse
|
21
|
Zhao JL, Yang J, Li K, Chen Y, Tang M, Zhu HL, Nie CL, Yuan Z, Zhao XY. Abrogation of ATR function preferentially augments cisplatin-induced cytotoxicity in PTEN-deficient breast cancer cells. Chem Biol Interact 2023; 385:110740. [PMID: 37802411 DOI: 10.1016/j.cbi.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Targeting replication stress response is currently emerging as new therapeutic strategy for cancer treatment, based on monotherapy and combination approaches. As a key sensor in response to DNA damage, ataxia telangiectasia and rad3-related (ATR) kinase has become a potential therapeutic target as tumor cells are to rely heavily on ATR for survival. The tumor suppressor phosphatase and tensin homolog (PTEN) plays a crucial role in maintaining chromosome integrity. Although ATR inhibition was recently confirmed to show a synergistic inhibitory effect in PTEN-deficient triple-negative breast cancer cells, the molecular mechanism needs to be further elucidated. Additionally, whether the PTEN-deficient breast cancer cells are more preferentially sensitized than PTEN-wild type breast cancer cells to cisplatin plus ATR inhibitor remains unanswered. We demonstrate PTEN dysfunction promotes the killing effect of ATR blockade through the use of RNA interference for PTEN and a highly selective ATR inhibitor VE-821, and certify that VE-821 (1.0 μmol/L) aggravates cytotoxicity of cisplatin on breast cancer cells, especially PTEN-null MDA-MB-468 cells which show more chemoresistance than PTEN-expressing MDA-MB-231 cells. The co-treatment with VE-821 and cisplatin significantly reduced cell viability and proliferative capacity compared with cisplatin mono-treatment (P < 0.05). The increased cytotoxic activity is tied to the enhanced poly (ADP-ribose) polymerase (PARP) cleavage and consequently cell death due to the decrease in phosphorylation levels of checkpoint kinases 1 and 2 (CHK1/2), the reduction of radiation sensitive 51 (RAD51) foci and the increase in phosphorylation of the histone variant H2AX (γ-H2AX) foci (P < 0.05) as well. Together, these findings suggest combination therapy of ATR inhibitor and cisplatin may offer a potential therapeutic strategy for breast tumors.
Collapse
Affiliation(s)
- Jian-Lei Zhao
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jun Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Li Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chun-Lai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin-Yu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
23
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
24
|
Feng T, Zhao R, Zhang H, Sun F, Hu J, Wang M, Qi M, Liu L, Gao L, Xiao Y, Zhen J, Chen W, Wang L, Han B. Reciprocal negative feedback regulation of ATF6α and PTEN promotes prostate cancer progression. Cell Mol Life Sci 2023; 80:292. [PMID: 37715829 PMCID: PMC11073217 DOI: 10.1007/s00018-023-04940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/18/2023]
Abstract
Phosphatase and tensin homolog (PTEN) loss tightly correlates with prostate cancer (PCa) progression and metastasis. Inactivation of PTEN leads to abnormal activation of PI3K/AKT pathway. However, results from clinical trials with AKT inhibitors in PCa have been largely disappointing. Identification of novel regulators of PTEN in PTEN-dysfunctional PCa is urgently needed. Here we demonstrated that the expression level of PTEN is inversely correlated with the signature score of unfolded protein response (UPR) in PCa. Importantly, PTEN suppresses the activity of ATF6α, via interacting to de-phosphorylate ATF6α and consequently inhibiting its nuclear translocation. Conversely, ATF6α promotes the ubiquitination and degradation of PTEN by inducing CHIP expression. Thus, ATF6α and PTEN forms a negative feedback loop during PCa progression. Combination of ATF6α inhibitor with AKT inhibitor suppresses tumor cell proliferation and xenograft growth. Importantly, this study highlighted ATF6α as a therapeutic vulnerability in PTEN dysfunctional PCa.
Collapse
Affiliation(s)
- Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ru Zhao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Meng Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Mei Qi
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ling Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yabo Xiao
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Junhui Zhen
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Lin Wang
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, NHC Key Laboratory of Biotechnology Drugs, Key Lab for Rare and Uncommon Diseases of Shandong Province, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
25
|
Suh KJ, Ryu MH, Zang DY, Bae WK, Lee HS, Oh HJ, Kang M, Kim JW, Kim BJ, Mortimer PGS, Kim HJ, Lee KW. AZD8186 in Combination With Paclitaxel in Patients With Advanced Gastric Cancer: Results From a Phase Ib/II Study (KCSG ST18-20). Oncologist 2023; 28:e823-e834. [PMID: 37036671 PMCID: PMC10485284 DOI: 10.1093/oncolo/oyad059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Loss of PTEN function leads to increased PI3Kβ signaling. AZD8186, a selective PI3Kβ/δ inhibitor, has shown anti-tumor activity in PTEN-deficient preclinical models. Although the combination of AZD8186 and paclitaxel was well tolerated, limited clinical efficacy was observed in advanced gastric cancer with PTEN loss. METHODS In the phase Ib dose-escalation, subjects with advanced solid tumors received oral AZD8186 (60 mg or 120 mg; twice daily (BID); 5 days on/2 days off) plus intravenous paclitaxel (70 mg/m2 or 80 mg/m2; days 1, 8, and 15) every 4 weeks. In the phase II part, MRGC patients with PTEN loss or PTEN/PIK3CB gene abnormality were enrolled and received recommended phase II dose (RP2D) of AZD8186 plus paclitaxel. Primary endpoints were to determine maximum tolerated dose (MTD) and RP2D in phase Ib and 4-month progression-free survival (PFS) rate in phase II. RESULTS In phase Ib, both MTD and RP2D were determined at paclitaxel 80 mg/m2 and AZD8186 120 mg BID. In phase II, 18 patients were enrolled [PTEN loss (n = 18) and PIK3CB mutation (n = 1)]. The 4-month PFS rate was 18.8% (3 of 16 evaluable patients) and further enrollment stopped due to futility. CONCLUSION Although the combination of AZD8186 and paclitaxel was well tolerated, limited clinical efficacy was observed.ClinicalTrials.gov Identifier: NCT04001569.
Collapse
Affiliation(s)
- Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Zang
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Bum Jun Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | | | | | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
27
|
Engel BJ, Paolillo V, Uddin MN, Gonzales KA, McGinnis KM, Sutton MN, Patnana M, Grindel BJ, Gores GJ, Piwnica-Worms D, Beretta L, Pisaneschi F, Gammon ST, Millward SW. Gender Differences in a Mouse Model of Hepatocellular Carcinoma Revealed Using Multi-Modal Imaging. Cancers (Basel) 2023; 15:3787. [PMID: 37568603 PMCID: PMC10417617 DOI: 10.3390/cancers15153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
The worldwide incidence of hepatocellular carcinoma (HCC) continues to rise, in part due to poor diet, limited exercise, and alcohol abuse. Numerous studies have suggested that the loss or mutation of PTEN plays a critical role in HCC tumorigenesis through the activation of the PI3K/Akt signaling axis. The homozygous knockout of PTEN in the livers of mice results in the accumulation of fat (steatosis), inflammation, fibrosis, and eventually progression to HCC. This phenotype bears a striking similarity to non-alcoholic steatohepatitis (NASH) which is thought to occupy an intermediate stage between non-alcoholic fatty liver disease (NAFLD), fibrosis, and HCC. The molecular and physiological phenotypes that manifest during the transition to HCC suggest that molecular imaging could provide a non-invasive screening platform to identify the hallmarks of HCC initiation prior to the presentation of clinical disease. We have carried out longitudinal imaging studies on the liver-specific PTEN knockout mouse model using CT, MRI, and multi-tracer PET to interrogate liver size, steatosis, inflammation, and apoptosis. In male PTEN knockout mice, significant steatosis was observed as early as 3 months using both magnetic resonance spectroscopy (MRS) and computed tomography (CT). Enhanced uptake of the apoptosis tracer 18F-TBD was also observed in the livers of male PTEN homozygous knockout mice between 3 and 4 months of age relative to heterozygous knockout controls. Liver uptake of the inflammation tracer [18F]4FN remained relatively low and constant over 7 months in male PTEN homozygous knockout mice, suggesting the suppression of high-energy ROS/RNS with PTEN deletion relative to heterozygous males where the [18F]4FN liver uptake was elevated at early and late time points. All male PTEN homozygous mice developed HCC lesions by month 10. In contrast to the male cohort, only 20% (2 out of 10) of female PTEN homozygous knockout mice developed HCC lesions by month 10. Steatosis was significantly less pronounced in the female PTEN homozygous knockout mice relative to males and could not accurately predict the eventual occurrence of HCC. As with the males, the [18F]4FN uptake in female PTEN homozygous knockout mice was low and constant throughout the time course. The liver uptake of 18F-TBD at 3 and 4.5 months was higher in the two female PTEN knockout mice that would eventually develop HCC and was the most predictive imaging biomarker for HCC in the female cohort. These studies demonstrate the diagnostic and prognostic role of multi-modal imaging in HCC mouse models and provide compelling evidence that disease progression in the PTEN knockout model is highly dependent on gender.
Collapse
Affiliation(s)
- Brian J. Engel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vincenzo Paolillo
- Cyclotron Radiochemistry Facility, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Md. Nasir Uddin
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kristyn A. Gonzales
- Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathryn M. McGinnis
- Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Margie N. Sutton
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Madhavi Patnana
- Department of Abdominal Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian J. Grindel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - David Piwnica-Worms
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven W. Millward
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Cao L, Ma X, Zhang J, Yang C, Rong P, Wang W. PTEN-related risk classification models for predicting prognosis and immunotherapy response of hepatocellular carcinoma. Discov Oncol 2023; 14:134. [PMID: 37470852 DOI: 10.1007/s12672-023-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION PTEN often mutates in tumors, and its manipulation is suggested to be used in the development of preclinical tools in cancer research. This study aims to explore the biological impact of gene expression related to PTEN mutations and to develop a prognostic classification model based on the heterogeneity of PTEN expression, and to explore its sensitivity as an indicator of prognosis and molecular and biologic features in hepatocellular carcinoma (HCC). MATERIAL AND METHODS RNA-seq data and mutation data of the LIHC cohort sample downloaded from The Cancer Genome Atlas (TCGA). The HCC samples were grouped according to the mean expression of PTEN, and the tumor microenvironment (TME) was evaluated by ESTIMATE and ssGSEA. The prognostic classification model related to PTEN were constructed by COX and LASSO regression analysis of differentially expressed genes (DEGs) between PTEN-high and -low expressed group. RESULTS The expression of PTEN was affected by copy number variation (CNV) and negatively correlated with immune score, IFNγ score and immune cell infiltration. 1281 DEGs were detected between PTEN-high and PTEN-low expressed group, 8 of the DEGs were finally filtered for developing a prognosis classification model. This model showed better prognostic value than other clinicopathological parameters, and the prediction accuracy of prognosis and ICB treatment for immunotherapy cohorts was better than that of TIDE model. CONCLUSIONS This study demonstrated the effect of CNV on PTEN expression and the negative immune correlation of PTEN, and constructed a classification model related to the expression of PTEN, which was of guiding significance for evaluating prognostic results of HCC patients and ICB treatment response of cancer immunotherapy cohorts.
Collapse
Affiliation(s)
- Lu Cao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
- Postdoctoral Research Station of Special Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
| | - Juan Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
| | - Cejun Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China.
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410005, China.
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, 410005, China.
| |
Collapse
|
29
|
Aldabbas R, Shaker OG, Ismail MF, Fathy N. miRNA-559 and MTDH as possible diagnostic markers of psoriasis: Role of PTEN/AKT/FOXO pathway in disease pathogenesis. Mol Cell Biochem 2023; 478:1427-1438. [PMID: 36348199 PMCID: PMC10209283 DOI: 10.1007/s11010-022-04599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Psoriasis is a persistent, inflammatory, autoimmune skin disorder which can be elicited by genetic and environmental factors. Several microRNAs (miRNAs) that are abnormally expressed in psoriasis have emerged as an interesting candidate in psoriasis pathogenesis. However, the expression profile and function of miRNA-559, and its direct target metadherin (MTDH), in psoriasis need to be further illuminated. This study intended to assess miRNA-559 and MTDH levels in skin and sera of psoriatic patients and to investigate their clinical significance in an attempt for developing novel distinct tools for early diagnosis of psoriasis. Moreover, this study aimed at exploring participation of miRNA-559 in regulating MTDH/PTEN/AKT pathway in psoriasis. Expression levels of miRNA-559, AKT, FOXO1 and PTEN were measured by real-time qRT-PCR, whereas MTDH and p27 levels were assessed by ELISA in lesional, non-lesional tissues and serum of 20 psoriatic patients and 20 matching controls. Correlation study was conducted between different parameters. The diagnostic performance of miRNA-559 and MTDH in psoriasis was estimated by receiver operating characteristic (ROC) curve analysis. Expression of miRNA-559 in psoriatic patients was significantly downregulated in both lesional tissues and serum as compared to controls. Conversely, MTDH protein level showed significant increase in both tissues and serum of psoriatic patients and was inversely correlated with miRNA-559 level. Meanwhile, levels of PTEN, AKT and FOXO1 were dramatically changed in psoriatic patients compared to controls. Furthermore, serum miRNA-559 and MTDH displayed comparable diagnostic accuracy in discriminating psoriatic patients from controls. Yet, miRNA-559 demonstrated superior diagnostic performance than MTDH in psoriasis diagnosis. Together, the current findings provide the first suggestion of a new mechanism by which downregulation of miRNA-559 might induce proliferation in psoriasis through modulating PTEN/AKT/FOXO1 pathway by positive regulation of MTDH. Thus, miRNA-559 and MTDH might be proposed as promising diagnostic biomarkers of psoriasis.
Collapse
Affiliation(s)
- Rana Aldabbas
- PHD Student at Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, 11562 Egypt
| | - Manal F. Ismail
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562 Egypt
| | - Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562 Egypt
| |
Collapse
|
30
|
van Ree JH, Jeganathan KB, Fierro Velasco RO, Zhang C, Can I, Hamada M, Li H, Baker DJ, van Deursen JM. Hyperphosphorylated PTEN exerts oncogenic properties. Nat Commun 2023; 14:2983. [PMID: 37225693 PMCID: PMC10209192 DOI: 10.1038/s41467-023-38740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of β-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Li H, Gigi L, Zhao D. CHD1, a multifaceted epigenetic remodeler in prostate cancer. Front Oncol 2023; 13:1123362. [PMID: 36776288 PMCID: PMC9909554 DOI: 10.3389/fonc.2023.1123362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Chromatin remodeling proteins contribute to DNA replication, transcription, repair, and recombination. The chromodomain helicase DNA-binding (CHD) family of remodelers plays crucial roles in embryonic development, hematopoiesis, and neurogenesis. As the founding member, CHD1 is capable of assembling nucleosomes, remodeling chromatin structure, and regulating gene transcription. Dysregulation of CHD1 at genetic, epigenetic, and post-translational levels is common in malignancies and other human diseases. Through interacting with different genetic alterations, CHD1 possesses the capabilities to exert oncogenic or tumor-suppressive functions in context-dependent manners. In this Review, we summarize the biochemical properties and dysregulation of CHD1 in cancer cells, and then discuss CHD1's roles in different contexts of prostate cancer, with an emphasis on its crosstalk with diverse signaling pathways. Furthermore, we highlight the potential therapeutic strategies for cancers with dysregulated CHD1. At last, we discuss current research gaps in understanding CHD1's biological functions and molecular basis during disease progression, as well as the modeling systems for biology study and therapeutic development.
Collapse
Affiliation(s)
- Haoyan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loraine Gigi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Texas A&M School of Public Health, Texas A&M University, College Station, TX, United States
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
Huang Q, Baudis M. Candidate targets of copy number deletion events across 17 cancer types. Front Genet 2023; 13:1017657. [PMID: 36726722 PMCID: PMC9885371 DOI: 10.3389/fgene.2022.1017657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Genome variation is the direct cause of cancer and driver of its clonal evolution. While the impact of many point mutations can be evaluated through their modification of individual genomic elements, even a single copy number aberration (CNA) may encompass hundreds of genes and therefore pose challenges to untangle potentially complex functional effects. However, consistent, recurring and disease-specific patterns in the genome-wide CNA landscape imply that particular CNA may promote cancer-type-specific characteristics. Discerning essential cancer-promoting alterations from the inherent co-dependency in CNA would improve the understanding of mechanisms of CNA and provide new insights into cancer biology and potential therapeutic targets. Here we implement a model using segmental breakpoints to discover non-random gene coverage by copy number deletion (CND). With a diverse set of cancer types from multiple resources, this model identified common and cancer-type-specific oncogenes and tumor suppressor genes as well as cancer-promoting functional pathways. Confirmed by differential expression analysis of data from corresponding cancer types, the results show that for most cancer types, despite dissimilarity of their CND landscapes, similar canonical pathways are affected. In 25 analyses of 17 cancer types, we have identified 19 to 169 significant genes by copy deletion, including RB1, PTEN and CDKN2A as the most significantly deleted genes among all cancer types. We have also shown a shared dependence on core pathways for cancer progression in different cancers as well as cancer type separation by genome-wide significance scores. While this work provides a reference for gene specific significance in many cancers, it chiefly contributes a general framework to derive genome-wide significance and molecular insights in CND profiles with a potential for the analysis of rare cancer types as well as non-coding regions.
Collapse
Affiliation(s)
- Qingyao Huang
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Baudis
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
33
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
34
|
Yakovlev VA, Sullivan SA, Fields EC, Temkin SM. PARP inhibitors in the treatment of ARID1A mutant ovarian clear cell cancer: PI3K/Akt1-dependent mechanism of synthetic lethality. Front Oncol 2023; 13:1124147. [PMID: 36910637 PMCID: PMC9992988 DOI: 10.3389/fonc.2023.1124147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme involved in the repair of DNA single-strand breaks (SSB). The recent development of poly(ADP-ribose) polymerase inhibitors (PARPi) results from over 45 years of studies. When the activity of PARP1 or PARP2 is compromised, DNA SSB lesions are unresolved and can be converted to DNA double-strand breaks (DSBs) by the cellular transcription mechanisms. ARID1A (also called BAF250a) is an important component of the mammalian Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex. ARID1A gene demonstrates >50% of mutation rate in ovarian clear-cell carcinomas (OCCC). Mutated or downregulated ARID1A significantly compromises the Homologous Recombination Repair (HRR) of DNA DSB. Results The present study demonstrated that downregulated or mutated ARID1A attenuates DNA HRR through stimulation of the PI3K/Akt1 pathway and makes tumor cells highly sensitive to PARPi and PARPi/ionizing radiation (IR) combination. We showed that PI3K/Akt1 pathway plays an important role in the sensitization of cancer cell lines with compromised function of ARID1A to PARPi treatment. Discussion We believe that using of PARPi monotherapy or in combination with radiation therapy is an appealing strategy for treating ARID1A-mutated cancers, as well as many other types of PI3K/Akt1-driven cancers.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stephanie A Sullivan
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Emma C Fields
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah M Temkin
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
35
|
Higa N, Akahane T, Yokoyama S, Makino R, Yonezawa H, Uchida H, Takajo T, Kirishima M, Hamada T, Noguchi N, Otsuji R, Kuga D, Nagasaka S, Yamahata H, Yamamoto J, Yoshimoto K, Tanimoto A, Hanaya R. Favorable prognostic impact of phosphatase and tensin homolog alterations in wild-type isocitrate dehydrogenase and telomerase reverse transcriptase promoter glioblastoma. Neurooncol Adv 2023; 5:vdad078. [PMID: 37528810 PMCID: PMC10390081 DOI: 10.1093/noajnl/vdad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background Telomerase reverse transcriptase promoter (TERTp) mutations are a biological marker of glioblastoma; however, the prognostic significance of TERTp mutational status is controversial. We evaluated this impact by retrospectively analyzing the outcomes of patients with isocitrate dehydrogenase (IDH)- and TERTp-wild-type glioblastomas. Methods Using custom next-generation sequencing, we analyzed 208 glioblastoma samples harboring wild-type IDH. Results TERTp mutations were detected in 143 samples (68.8%). The remaining 65 (31.2%) were TERTp-wild-type. Among the TERTp-wild-type glioblastoma samples, we observed a significant difference in median progression-free survival (18.6 and 11.4 months, respectively) and overall survival (not reached and 15.7 months, respectively) in patients with and without phosphatase and tensin homolog (PTEN) loss and/or mutation. Patients with TERTp-wild-type glioblastomas with PTEN loss and/or mutation were younger and had higher Karnofsky Performance Status scores than those without PTEN loss and/or mutation. We divided the patients with TERTp-wild-type into 3 clusters using unsupervised hierarchical clustering: Good (PTEN and TP53 alterations; lack of CDKN2A/B homozygous deletion and platelet-derived growth factor receptor alpha (PDGFRA) alterations), intermediate (PTEN alterations, CDKN2A/B homozygous deletion, lack of PDGFRA, and TP53 alterations), and poor (PDGFRA and TP53 alterations, CDKN2A/B homozygous deletion, and lack of PTEN alterations) outcomes. Kaplan-Meier survival analysis indicated that these clusters significantly correlated with the overall survival of TERTp-wild-type glioblastoma patients. Conclusions Here, we report that PTEN loss and/or mutation is the most useful marker for predicting favorable outcomes in patients with IDH- and TERTp-wild-type glioblastomas. The combination of 4 genes, PTEN, TP53, CDKN2A/B, and PDGFRA, is important for the molecular classification and individual prognosis of patients with IDH- and TERTp-wild-type glioblastomas.
Collapse
Affiliation(s)
- Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Seiya Yokoyama
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryutaro Makino
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagasaka
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Yamahata
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihide Tanimoto
- Corresponding Authors: Akihide Tanimoto, MD, PhD, Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-City, Kagoshima 890-8544, Japan ()
| | - Ryosuke Hanaya
- Ryosuke Hanaya, MD, PhD, Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-City, Kagoshima 890-8520, Japan ()
| |
Collapse
|
36
|
Sun F, Hao W, Meng X, Xu D, Li X, Zheng K, Yu Y, Wang D, Pan W. Polyene phosphatidylcholine ameliorates synovial inflammation: involvement of PTEN elevation and glycolysis suppression. Mol Biol Rep 2023; 50:687-696. [PMID: 36370296 DOI: 10.1007/s11033-022-08043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Synovial inflammation, characterized by the activation of synovial fibroblasts (SFs), is a crucial factor to drive the progression of rheumatoid arthritis (RA). Polyene phosphatidylcholine (PPC), the classic hepatoprotective drug, has been reported to ameliorate arthritis in animals. However, the molecular mechanism remains poorly understood. METHODS AND RESULTS: Using in vitro primary synovial fibroblast (SFs) culture system, we revealed that phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, mediates the anti-inflammatory effect of PPC in lipopolysaccharide (LPS)-stimulated primary SFs. PPC decreased the production of TNF-α and IL-6 production while elevating the level of IL-10 and TGF-β. Furthermore, PPC up-regulated the expression of PTEN, but inhibited the expression of p-AKT (ser473) and PI3K-p85α. Moreover, pre-treatment of SF1670 (the inhibitor of PTEN) or 740Y-P (the agonist of AKT/PI3K pathways) partially abrogated the anti-inflammatory effect of PPC. In addition, PPC could inhibit the expression of GLUT4, a key transporter of glucose that fuels the glycolysis, which is accompanied by the expression downregualtion of glycolytic enzymes PFKFB3 and PKM2. Furthermore, PPC could reduce ROS production and mitochondrial membrane potential in LPS-stimulated SFs and MH7A cell line. CONCLUSION The present study supported that PPC can alleviate synovial inflammation, which involves in the elevation of PTEN and blockage of glycolysis.
Collapse
Affiliation(s)
- Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Wenting Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xianran Meng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
37
|
Fornari F, Giovannini C, Piscaglia F, Gramantieri L. Animal Models of Hepatocellular Carcinoma: Current Applications in Clinical Research. J Hepatocell Carcinoma 2022; 9:1263-1278. [PMID: 36523954 PMCID: PMC9744868 DOI: 10.2147/jhc.s347946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2025] Open
Abstract
In the last decade, relevant advances have occurred in the treatment of hepatocellular carcinoma (HCC), with novel drugs entering the clinical practice, among which tyrosine kinase inhibitors (TKIs) such as lenvatinib, cabozantinib and regorafenib, and immune checkpoint inhibitors (ICPIs) either alone or in combination with VEGF inhibitors. Clinical trials have driven the introduction of such novel molecules into the clinics but, at present, no biomarker drives the choice of first-line options, which relies only upon clinical and imaging assessment. Remarkably, clinical and imaging-based evaluations do not consider the huge heterogeneity of HCC and do not allow to realize the potential of personalized treatments. Preclinical research still does not inform the design of clinical trials, even though many animal models mimicking specific subgroups of HCC are available and might provide relevant information. Although animal models directly informing the clinical practice, such as patients-derived xenografts, are not used to help the choice of treatment in advanced HCC, however, the preclinical research can count on a wide range of valuable models. Here we will review some HCC models which might turn informative for specific questions in defined patient subgroups, and we will describe recent preclinical studies for the mechanistic evaluation of immunotherapy-based treatment approaches. To this aim, we will mainly focus on two issues: (i) HCC models informative on NAFLD-NASH HCC and (ii) HCC models helping to elucidate mechanisms underneath immunotherapy. We have chosen these two settings since they represent, respectively, the most rapidly arising cause of chronic liver disease (CLD) and HCC in western countries and the most promising therapeutic option for advanced HCC.
Collapse
Affiliation(s)
- Francesca Fornari
- Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Catia Giovannini
- Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
38
|
Zou Z, Zhang B, Li Z, Lei L, Sun G, Jiang X, Guan J, Zhang Y, Xu S, Li Q. KBTBD7 promotes non-small cell lung carcinoma progression by enhancing ubiquitin-dependent degradation of PTEN. Cancer Med 2022; 11:4544-4554. [PMID: 35499228 PMCID: PMC9741964 DOI: 10.1002/cam4.4794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 02/03/2023] Open
Abstract
The Kelch repeat and BTB domain containing 7 (KBTBD7) was first cloned in 2010. Its function as a transcriptional activator and a substrate adaptor during the ubiquitination process was soon found. KBTBD7 was shown to be involved in excessive inflammation after myocardial infarction, brain development, and neurofibromin stability. However, studies on the role of KBTBD7 in solid tumors, especially lung cancer, are still lacking. Therefore, in this study, we investigate the role of KBTBD7 in non-small cell lung cancer (NSCLC). Immunohistochemical staining of 102 paired NSCLC and peritumoral normal specimens indicated that KBTBD7 was highly expressed in NSCLC tissues and positively correlated with the histological type, P-TNM stage, lymph node metastasis, and tumor size. KBTBD7 was also well-expressed in NSCLC cell lines, and downregulation of KBTBD7 resulted in inhibition of NSCLC cell proliferation and invasion. Further investigation showed that KBTBD7 enhanced ubiquitin-dependent degradation of PTEN, thus activating EGFR/PI3K/AKT signaling and promoting NSCLC cell proliferation and invasion by regulating CCNE1, CDK4, P27, ZEB-1, Claudin-1, ROCK1, MMP-9, and E-cadherin protein levels. Our results indicate that KBTBD7 may be a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zifang Zou
- Department of Thoracic SurgeryThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Bo Zhang
- Department of PathologyFirst Affiliated Hospital of Dalian Medical UniversityDalianPeople's Republic of China
| | - Zhihan Li
- Department of PathologyThe Second Hospital of Dalian Medical UniversityDalianPeople's Republic of China
| | - Lei Lei
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Guanghao Sun
- Department of Thoracic SurgeryThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Xizi Jiang
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Jingqian Guan
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Yao Zhang
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Shun Xu
- Department of Thoracic SurgeryThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Qingchang Li
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| |
Collapse
|
39
|
The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med 2022; 54:1814-1821. [PMID: 36385557 PMCID: PMC9723170 DOI: 10.1038/s12276-022-00887-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
PTEN is among the most commonly lost or mutated tumor suppressor genes in human cancer. PTEN, a bona fide lipid phosphatase that antagonizes the highly oncogenic PI3K-AKT-mTOR pathway, is considered a major dose-dependent tumor suppressor. Although PTEN function can be compromised by genetic mutations in inherited syndromes and cancers, posttranslational modifications of PTEN may also play key roles in the dynamic regulation of its function. Notably, deregulated ubiquitination and deubiquitination lead to detrimental impacts on PTEN levels and subcellular partitioning, promoting tumorigenesis. While PTEN can be targeted by HECT-type E3 ubiquitin ligases for nuclear import and proteasomal degradation, studies have shown that several deubiquitinating enzymes, including HAUSP/USP7, USP10, USP11, USP13, OTUD3 and Ataxin-3, can remove ubiquitin from ubiquitinated PTEN in cancer-specific contexts and thus reverse ubiquitination-mediated PTEN regulation. Researchers continue to reveal the precise molecular mechanisms by which cancer-specific deubiquitinases of PTEN regulate its roles in the pathobiology of cancer, and new methods of pharmacologically for modulating PTEN deubiquitinases are critical areas of investigation for cancer treatment and prevention. Here, we assess the mechanisms and functions of deubiquitination as a recently appreciated mode of PTEN regulation and review the link between deubiquitinases and PTEN reactivation and its implications for therapeutic strategies.
Collapse
|
40
|
Perevalova AM, Kobelev VS, Sisakyan VG, Gulyaeva LF, Pustylnyak VO. Role of Tumor Suppressor PTEN and Its Regulation in Malignant Transformation of Endometrium. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1310-1326. [PMID: 36509719 DOI: 10.1134/s0006297922110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tumor-suppressive effects of PTEN are well-known, but modern evidence suggest that they are not limited to its ability to inhibit pro-oncogenic PI3K/AKT signaling pathway. Features of PTEN structure facilitate its interaction with substrates of different nature and display its activity in various ways both in the cytoplasm and in cell nuclei, which makes it possible to take a broader look at its ability to suppress tumor growth. The possible mechanisms of the loss of PTEN effects are also diverse - PTEN can be regulated at many levels, leading to change in the protein activity or its amount in the cell, while their significance for the development of malignant tumors has yet to be studied. Here we summarize the current data on the PTEN structure, its functions and changes in its regulatory mechanisms during malignant transformation of the cells, focusing on one of the most sensitive to the loss of PTEN types of malignant tumors - endometrial cancer.
Collapse
Affiliation(s)
| | - Vyacheslav S Kobelev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| | - Virab G Sisakyan
- Novosibirsk Regional Oncology Center, Novosibirsk, 630108, Russia
| | - Lyudmila F Gulyaeva
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| | - Vladimir O Pustylnyak
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
41
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
42
|
Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN. Semin Cancer Biol 2022; 85:43-51. [PMID: 34129913 PMCID: PMC8665946 DOI: 10.1016/j.semcancer.2021.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Members of the HECT family of E3 ubiquitin ligases have emerged as prominent regulators of PTEN function, subcellular localization and levels. In turn this unfolding regulatory network is allowing for the identification of genes directly involved in both tumorigenesis at large and cancer susceptibility syndromes. While the complexity of this regulatory network is still being unraveled, these new findings are paving the way for novel therapeutic modalities for cancer prevention and therapy as well as for other diseases. Here we will review the signal transduction and therapeutic implications of the cross-talk between HECT family members and PTEN.
Collapse
Affiliation(s)
- Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA.
| | - Pier Paolo Pandolfi
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV89502, USA.
| |
Collapse
|
43
|
Tsai PJ, Lai YH, Manne RK, Tsai YS, Sarbassov D, Lin HK. Akt: a key transducer in cancer. J Biomed Sci 2022; 29:76. [PMID: 36180910 PMCID: PMC9526305 DOI: 10.1186/s12929-022-00860-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023] Open
Abstract
Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.
Collapse
Affiliation(s)
- Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Dos Sarbassov
- Biology Department, School of Sciences and Humanities, and National Laboratory Astana, Nazarbayev University, Nur-Sultan City, 010000, Kazakhstan.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
44
|
Chen JL, Miller DT, Schmidt LS, Malkin D, Korf BR, Eng C, Kwiatkowski DJ, Giannikou K. Mosaicism in Tumor Suppressor Gene Syndromes: Prevalence, Diagnostic Strategies, and Transmission Risk. Annu Rev Genomics Hum Genet 2022; 23:331-361. [PMID: 36044908 DOI: 10.1146/annurev-genom-120121-105450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.
Collapse
Affiliation(s)
- Jillian L Chen
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Boston University School of Medicine, Boston, Massachusetts, USA
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Division of Hematology and Oncology, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
45
|
Li X, Bu F, Ma S, Cananzi F, Zhao Y, Xiao M, Min L, Luo C. The Janus-faced role of TRPM2-S in retroperitoneal liposarcoma via increasing ROS levels. Cell Commun Signal 2022; 20:128. [PMID: 36008839 PMCID: PMC9404563 DOI: 10.1186/s12964-022-00873-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retroperitoneal liposarcoma (RPLS) is a specific soft tissue sarcoma with a high recurrence rate. The short isoform of transient receptor potential cation channel subfamily M member 2 (TRPM2-S) plays an important role in the regulation of reactive oxygen species (ROS). However, the association between TRPM2-S and RPLS and its underlying mechanisms remains unclear. METHODS The expression of both TRPM2-S and TRPM2-L in RPLS tissues was verified by kimmunohistochemistry (IHC). The regulation on Ca2+ influx by TRPM2-S was evaluated by Fluo-4 AM staining. The effect of TRPM2-S on cell proliferation and apoptosis was tested by 5-Ethynyl-2'-deoxyuridine (EdU) staining and Flow cytometry respectively. The level of cellular ROS was assessed by the DCFH-DA probe. Different concentrations of H2O2 were used to provide oxidative stress on RPLS cells. The underlying mechanisms were further explored by Western blotting. RESULTS The IHC assays showed that TRPM2-S, but not TRPM2-L, was prognostic in RPLS. Low TRPM2-S level was associated with poor disease-free survival (DFS). Calcium influx signal intensity was significantly decreased under TRPM2-S overexpression, which resulted in a decrease in the levels of FOXO3a and PTEN. Correspondingly, the levels of pERK, pAKT, pP65, pGSK-3β, Bcl-2, and β-catenin were upregulated, and cellular ROS was gently increased under TRPM2-S overexpression. Moreover, TRPM2-S slightly promoted cell proliferation and inhibited apoptosis of RPLS cell lines under normoxia, but largely increased apoptosis rates under oxidative stress. The cleaved caspase3 was significantly upregulated by TRPM2-S overexpression under oxidative stress. N-Acetyl-L-cysteine (NAC), a small molecule antioxidant, could largely rescue RPLS cells from the apoptosis induced by H2O2. CONCLUSION TRPM2-S exerts Janus-faced effects in RPLS by increasing the ROS levels via inhibition on FOXO3a, which promotes cell proliferation under normoxia but induces apoptosis under oxidative stress. Video abstract.
Collapse
Affiliation(s)
- Xiangji Li
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Shixiang Ma
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China
| | - Ferdinando Cananzi
- Department of Biomedical Sciences, Humanitas University, 20089, Milan, Italy
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Mengmeng Xiao
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China.
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| | - Chenghua Luo
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China.
| |
Collapse
|
46
|
Liu X, Cui Y, Li J, Guan C, Cai S, Ding J, Shen J, Guan Y. Phosphatase and Tensin Homology Deleted on Chromosome 10 Inhibitors Promote Neural Stem Cell Proliferation and Differentiation. Front Pharmacol 2022; 13:907695. [PMID: 35774615 PMCID: PMC9237411 DOI: 10.3389/fphar.2022.907695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Phosphatase and tensin homology deleted on chromosome 10 (PTEN) is a tumor suppressor gene. Its encoded protein has phosphatase and lipid phosphatase activities, which regulate the growth, differentiation, migration, and apoptosis of cells. The catalytic activity of PTEN is crucial for controlling cell growth under physiological and pathological conditions. It not only affects the survival and proliferation of tumor cells, but also inhibits a variety of cell regeneration processes. The use of PTEN inhibitors is being explored as a potentially beneficial therapeutic intervention for the repair of injuries to the central nervous system. PTEN influences the proliferation and differentiation of NSCs by regulating the expression and phosphorylation of downstream molecular protein kinase B (Akt) and the mammalian target of rapamycin (mTOR). However, the role of PTEN inhibitors in the Akt/mTOR signaling pathway in NSC proliferation and differentiation is unclear. Dipotassium bisperoxo (picolinoto) oxovanadate (V) [bpv(pic)] is a biologically active vanadium compound that blocks PTEN dephosphorylation and suppresses its activity, and has been used as a PTEN lipid phosphatase inhibitor. Here, bpv(pic) intervention was found to significantly increase the number of rat NSCs, as determined by bromodeoxyuridine staining and the cell counting kit-8, and to increase the percentage of neurons undergoing differentiation, as shown by immunofluorescence staining. Bpv(pic) intervention also significantly increased PTEN and mTOR expression, as shown by real-time PCR analysis and western blotting. In conclusion, PTEN inhibitor bpv(pic) promotes the proliferation and differentiation of NSCs into neurons.
Collapse
Affiliation(s)
- Xiaojiang Liu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Yiqiu Cui
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Jun Li
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Cheng Guan
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Shu Cai
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Jinrong Ding
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yixiang Guan
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
- *Correspondence: Yixiang Guan,
| |
Collapse
|
47
|
Choudhury AD, Higano CS, de Bono JS, Cook N, Rathkopf DE, Wisinski KB, Martin-Liberal J, Linch M, Heath EI, Baird RD, García-Carbacho J, Quintela-Fandino M, Barry ST, de Bruin EC, Colebrook S, Hawkins G, Klinowska T, Maroj B, Moorthy G, Mortimer PG, Moschetta M, Nikolaou M, Sainsbury L, Shapiro GI, Siu LL, Hansen AR. A Phase I Study Investigating AZD8186, a Potent and Selective Inhibitor of PI3Kβ/δ, in Patients with Advanced Solid Tumors. Clin Cancer Res 2022; 28:2257-2269. [PMID: 35247924 PMCID: PMC9662946 DOI: 10.1158/1078-0432.ccr-21-3087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To characterize safety and tolerability of the selective PI3Kβ inhibitor AZD8186, identify a recommended phase II dose (RP2D), and assess preliminary efficacy in combination with abiraterone acetate or vistusertib. PATIENTS AND METHODS This phase I open-label study included patients with advanced solid tumors, particularly prostate cancer, triple-negative breast cancer, and squamous non-small cell lung cancer. The study comprised four arms: (i) AZD8186 monotherapy dose finding; (ii) monotherapy dose expansion; (iii) AZD8186/abiraterone acetate (with prednisone); and (iv) AZD8186/vistusertib. The primary endpoints were safety, tolerability, and identification of the RP2D of AZD8186 monotherapy and in combination. Secondary endpoints included pharmacokinetics (PK), pharmacodynamics, and tumor and prostate-specific antigen (PSA) responses. RESULTS In total, 161 patients were enrolled. AZD8186 was well tolerated across all study arms, the most common adverse events being gastrointestinal symptoms. In the monotherapy dose-finding arm, four patients experienced dose-limiting toxicities (mainly rash). AZD8186 doses of 60-mg twice daily [BID; 5 days on, 2 days off (5:2)] and 120-mg BID (continuous and 5:2 dosing) were taken into subsequent arms. The PKs of AZD8186 were dose proportional, without interactions with abiraterone acetate or vistusertib, and target inhibition was observed in plasma and tumor tissue. Monotherapy and combination therapy showed preliminary evidence of limited antitumor activity by imaging and, in prostate cancer, PSA reduction. CONCLUSIONS AZD8186 monotherapy had an acceptable safety and tolerability profile, and combination with abiraterone acetate/prednisone or vistusertib was also tolerated. There was preliminary evidence of antitumor activity, meriting further exploration of AZD8186 in subsequent studies in PI3Kβ pathway-dependent cancers.
Collapse
Affiliation(s)
- Atish D. Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Celestia S. Higano
- Department of Medical Oncology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Johann S. de Bono
- Drug Development Unit, The Institute of Cancer Research and Royal Marsden, London, United Kingdom
| | - Natalie Cook
- The Christie NHS Foundation Trust and The University of Manchester, Manchester, United Kingdom
| | - Dana E. Rathkopf
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Kari B. Wisinski
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Juan Martin-Liberal
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mark Linch
- University College London (UCL) Cancer Institute and UCL Hospital, London, United Kingdom
| | - Elisabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Javier García-Carbacho
- Department of Medical Oncology (Hospital Clinic Barcelona)/Translational Genomics and Targeted Therapies in Solid Tumors (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | | - Brijesh Maroj
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ganesh Moorthy
- Clinical Pharmacology & Quantitative Pharmacology (CPQP), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, Massachusetts
| | | | | | | | - Liz Sainsbury
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lillian L. Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Corresponding Author: Aaron R. Hansen, Princess Margaret Cancer Center, 700 University Avenue, Suite 7-623, Toronto, ON M5G 1×6, Canada. E-mail:
| |
Collapse
|
48
|
Yang Q, Lv S, Zhu H, Zhang L, Li H, Song S. A Potential Research Target for Scleral Remodeling: Effect of MiR-29a on Scleral Fibroblasts. Ophthalmic Res 2022; 65:566-574. [PMID: 35605595 DOI: 10.1159/000525189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The purpose of this study was to determine whether miR-29a regulates cell survival and apoptosis and the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), MMP-2, and collagen I in scleral fibroblasts. METHODS We transfected scleral fibroblasts with the miR-29a mimic and inhibitor. The effects of miR-29a on cell proliferation and apoptosis were determined using the CCK-8 assay and flow cytometry, respectively. Quantitative polymerase chain reaction (qPCR) was used to determine whether miR-29a regulates the mRNA levels of PTEN, MMP-2, and collagen I. The protein expression of PTEN, MMP-2, and collagen I was also assessed by western blot analysis. RESULTS The results of CCK-8 showed that, at 0, 24, 48, and 72 h after transfection, the relative optical density values in the mimic group were 0.233 ± 0.005, 0.380 ± 0.008, 0.650 ± 0.040, and 0.906 ± 0.032, and in the inhibitor group were 0.272 ± 0.011, 0.393 ± 0.029, 0.597 ± 0.059, and 0.950 ± 0.101, respectively. The flow cytometry results showed that the apoptosis rates of each group were as follows: the mimic group (0.043 ± 0.007), the NC group (0.040 ± 0.006), the inhibitor group (0.032 ± 0.003), the inhibitor NC group (0.027 ± 0.010), the lipofectamine group (0.027 ± 0.005), and the blank group (0.031 ± 0.009). The qPCR results indicated that in the mimic group, PTEN (0.795 ± 0.182, p = 0.2783), MMP-2 (0.621 ± 0.105, p = 0.0033), and COL1A1 (0.271 ± 0.100, p = 0.0002) expression decreased, whereas in the inhibitor group, PTEN (1.211 ± 0.100, p = 0.2614), MMP-2 (1.161 ± 0.053, p = 0.1190), and COL1A1 (1.7040 ± 0.093, p = 0.0003) increased. Western blot analysis showed that in the mimic group, the expression of PTEN (0.392 ± 0.039, p < 0.0001), MMP-2 (0.577 ± 0.017, p < 0.0001), and COL1A1 (0.072 ± 0.006, p < 0.0001) protein decreased, whereas in the inhibitor group, PTEN (1.043 ± 0.042, p = 0.9413), MMP-2 (1.397 ± 0.075, p = 0.0002), and COL1A1 (1.935 ± 0.081, p < 0.0001) expression increased. CONCLUSION MiR-29a inhibits the expression of PTEN, MMP-2, and collagen I on scleral fibroblasts, which may provide a basis studies in sclera.
Collapse
Affiliation(s)
- Qianying Yang
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China,
| | - Sha Lv
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Huirong Zhu
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liming Zhang
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shengfang Song
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
49
|
Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu P, Zhang X. The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications. Front Pharmacol 2022; 13:871560. [PMID: 35571098 PMCID: PMC9092499 DOI: 10.3389/fphar.2022.871560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Reprogramming of cellular energy metabolism is considered an emerging feature of cancer. Mitochondrial metabolism plays a crucial role in cancer cell proliferation, survival, and metastasis. As a major mitochondrial NAD+-dependent deacetylase, sirtuin3 (SIRT3) deacetylates and regulates the enzymes involved in regulating mitochondrial energy metabolism, including fatty acid oxidation, the Krebs cycle, and the respiratory chain to maintain metabolic homeostasis. In this article, we review the multiple roles of SIRT3 in various cancers, and systematically summarize the recent advances in the discovery of its activators and inhibitors. The roles of SIRT3 vary in different cancers and have cell- and tumor-type specificity. SIRT3 plays a unique function by mediating interactions between mitochondria and intracellular signaling. The critical functions of SIRT3 have renewed interest in the development of small molecule modulators that regulate its activity. Delineation of the underlying mechanism of SIRT3 as a critical regulator of cell metabolism and further characterization of the mitochondrial substrates of SIRT3 will deepen our understanding of the role of SIRT3 in tumorigenesis and progression and may provide novel therapeutic strategies for cancer targeting SIRT3.
Collapse
Affiliation(s)
- Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiyi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Linlin Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
50
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|