1
|
Balaghi N, Fernandez-Gonzalez R. Waves of change: Dynamic actomyosin networks in embryonic development. Curr Opin Cell Biol 2024; 91:102435. [PMID: 39378575 DOI: 10.1016/j.ceb.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
As animals develop, molecules, cells, and cell ensembles move in beautifully orchestrated choreographies. Movement at each of these scales requires generation of mechanical force. In eukaryotic cells, the actomyosin cytoskeleton generates mechanical forces. Continuous advances in in vivo microscopy have enabled visualization and quantitative assessment of actomyosin dynamics and force generation, within and across cells, in living embryos. Recent studies reveal that actomyosin networks can form periodic waves in vivo. Here, we highlight contributions of actomyosin waves to molecular transport, cell movement, and cell coordination in developing embryos.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada. https://twitter.com/negberry
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
2
|
Barberi L, Kruse K. Localized spatiotemporal dynamics in active fluids. Phys Rev E 2024; 110:054409. [PMID: 39690636 DOI: 10.1103/physreve.110.054409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 10/02/2024] [Indexed: 12/19/2024]
Abstract
From cytoskeletal networks to tissues, many biological systems behave as active materials. Their composition and stress generation is affected by chemical reaction networks. In such systems, the coupling between mechanics and chemistry enables self-organization, for example, into waves. Recently, contractile mechanochemical systems have been shown to be able to spontaneously develop localized spatial patterns. Here, we show that these localized patterns can present intrinsic spatiotemporal dynamics, including oscillations and chaotic-like dynamics. We discuss their physical origin and bifurcation structure.
Collapse
|
3
|
Kruse K, Berthoz R, Barberi L, Reymann AC, Riveline D. Actomyosin clusters as active units shaping living matter. Curr Biol 2024; 34:R1045-R1058. [PMID: 39437723 DOI: 10.1016/j.cub.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stress generation by the actin cytoskeleton shapes cells and tissues. Despite impressive progress in live imaging and quantitative physical descriptions of cytoskeletal network dynamics, the connection between processes at molecular scales and spatiotemporal patterns at the cellular scale is still unclear. Here, we review studies reporting actomyosin clusters of micrometre size and with lifetimes of several minutes in a large number of organisms, ranging from fission yeast to humans. Such structures have also been found in reconstituted systems in vitro and in theoretical analyses of cytoskeletal dynamics. We propose that tracking these clusters could provide a simple readout for characterising living matter. Spatiotemporal patterns of clusters could serve as determinants of morphogenetic processes that have similar roles in diverse organisms.
Collapse
Affiliation(s)
- Karsten Kruse
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland.
| | - Rémi Berthoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Luca Barberi
- Departments of Theoretical Physics and Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1204 Geneva, Switzerland
| | - Anne-Cécile Reymann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67404 Illkirch CEDEX, France; Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, F-67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, F-67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
4
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
5
|
Molnar K, Suman SK, Eichelbrenner J, Plancke CN, Robin FB, Labouesse M. Conditional nmy-1 and nmy-2 alleles establish that nonmuscle myosins are required for late Caenorhabditis elegans embryonic elongation. Genetics 2024; 228:iyae109. [PMID: 39053622 DOI: 10.1093/genetics/iyae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The elongation of Caenorhabditis elegans embryos allows examination of mechanical interactions between adjacent tissues. Muscle contractions during late elongation induce the remodeling of epidermal circumferential actin filaments through mechanotransduction. Force inputs from the muscles deform circumferential epidermal actin filament, which causes them to be severed, eventually reformed, and shortened. This squeezing force drives embryonic elongation. We investigated the possible role of the nonmuscle myosins NMY-1 and NMY-2 in this process using nmy-1 and nmy-2 thermosensitive alleles. Our findings show these myosins act redundantly in late elongation, since double nmy-2(ts); nmy-1(ts) mutants immediately stop elongation when raised to 25°C. Their inactivation does not reduce muscle activity, as measured from epidermis deformation, suggesting that they are directly involved in the multistep process of epidermal remodeling. Furthermore, NMY-1 and NMY-2 inactivation is reversible when embryos are kept at the nonpermissive temperature for a few hours. However, after longer exposure to 25°C double mutant embryos fail to resume elongation, presumably because NMY-1 was seen to form protein aggregates. We propose that the two C. elegans nonmuscle myosin II act during actin remodeling either to bring severed ends or hold them.
Collapse
Affiliation(s)
- Kelly Molnar
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Shashi Kumar Suman
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Jeanne Eichelbrenner
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Camille N Plancke
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - François B Robin
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| | - Michel Labouesse
- Laboratoire de Biologie du Développement-UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 7-9 quai Saint Bernard 75005 Paris, France
| |
Collapse
|
6
|
Alvarez YD, van der Spuy M, Wang JX, Noordstra I, Tan SZ, Carroll M, Yap AS, Serralbo O, White MD. A Lifeact-EGFP quail for studying actin dynamics in vivo. J Cell Biol 2024; 223:e202404066. [PMID: 38913324 PMCID: PMC11194674 DOI: 10.1083/jcb.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we report the generation of a transgenic Lifeact-EGFP quail line for the investigation of actin organization and dynamics during morphogenesis in vivo. This transgenic avian line allows for the high-resolution visualization of actin structures within the living embryo, from the subcellular filaments that guide cell shape to the supracellular assemblies that coordinate movements across tissues. The unique suitability of avian embryos to live imaging facilitates the investigation of previously intractable processes during embryogenesis. Using high-resolution live imaging approaches, we present the dynamic behaviors and morphologies of cellular protrusions in different tissue contexts. Furthermore, through the integration of live imaging with computational segmentation, we visualize cells undergoing apical constriction and large-scale actin structures such as multicellular rosettes within the neuroepithelium. These findings not only enhance our understanding of tissue morphogenesis but also demonstrate the utility of the Lifeact-EGFP transgenic quail as a new model system for live in vivo investigations of the actin cytoskeleton.
Collapse
Affiliation(s)
- Yanina D. Alvarez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marise van der Spuy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Xiong Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Siew Zhuan Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Murron Carroll
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Olivier Serralbo
- Commonwealth Scientific and Industrial Research (CSIRO) Health and Biosecurity, Geelong, Australia
| | - Melanie D. White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. Curr Biol 2024; 34:2132-2146.e5. [PMID: 38688282 PMCID: PMC11111359 DOI: 10.1016/j.cub.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.
Collapse
Affiliation(s)
- Jonathan A Jackson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Graduate Program in Biophysics, Harvard University, 86 Brattle Street, Cambridge, MA 02138, USA
| | - Marlis Denk-Lobnig
- Department of Biophysics, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109, USA
| | - Katherine A Kitzinger
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Li S, Liu ZY, Li H, Zhou S, Liu J, Sun N, Yang KF, Dougados V, Mangeat T, Belguise K, Feng XQ, Liu Y, Wang X. Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation. Nat Commun 2024; 15:3000. [PMID: 38589403 PMCID: PMC11001887 DOI: 10.1038/s41467-024-47236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.
Collapse
Affiliation(s)
- Shun Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Zong-Yuan Liu
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ningwei Sun
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Kai-Fu Yang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Vanessa Dougados
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Mangeat
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| | - Yiyao Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, 610072, Chengdu, Sichuan, P.R. China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
9
|
Tajvidi Safa B, Huang C, Kabla A, Yang R. Active viscoelastic models for cell and tissue mechanics. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231074. [PMID: 38660600 PMCID: PMC11040246 DOI: 10.1098/rsos.231074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behaviour, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behaviour at different length scales into classic viscoelastic models by either adding an active tension-generating element or adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.
Collapse
Affiliation(s)
- Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE68588, USA
| | - Changjin Huang
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Alexandre Kabla
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, UK
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE68588, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI48824, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
10
|
Fluks M, Collier R, Walewska A, Bruce AW, Ajduk A. How great thou ART: biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies. Front Cell Dev Biol 2024; 12:1342905. [PMID: 38425501 PMCID: PMC10902081 DOI: 10.3389/fcell.2024.1342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Rebecca Collier
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Agnieszka Walewska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alexander W. Bruce
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Rosa-Birriel C, Malin J, Hatini V. Medioapical contractile pulses coordinated between cells regulate Drosophila eye morphogenesis. J Cell Biol 2024; 223:e202304041. [PMID: 38126997 PMCID: PMC10737437 DOI: 10.1083/jcb.202304041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/31/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Lattice cells (LCs) in the developing Drosophila retina change shape before attaining final form. Previously, we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here, we describe another factor, the assembly of a Rho1-dependent medioapical actomyosin ring formed by nodes linked by filaments that contract the apical cell area. Cell area contraction alternates with relaxation, generating pulsatile changes in cell area that exert force on neighboring LCs. Moreover, Rho1 signaling is sensitive to mechanical changes, becoming active when tension decreases and cells expand, while the negative regulator RhoGAP71E accumulates when tension increases and cells contract. This results in cycles of cell area contraction and relaxation that are reciprocally synchronized between adjacent LCs. Thus, mechanically sensitive Rho1 signaling controls pulsatile medioapical actomyosin contraction and coordinates cell behavior across the epithelium. Disrupting the kinetics of pulsing can lead to developmental errors, suggesting this process controls cell shape and tissue integrity during epithelial morphogenesis of the retina.
Collapse
Affiliation(s)
- Christian Rosa-Birriel
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, and Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
| | - Jacob Malin
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, and Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
| | - Victor Hatini
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, and Program in Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Karkali K, Pastor-Pareja JC, Martin-Blanco E. JNK signaling and integrins cooperate to maintain cell adhesion during epithelial fusion in Drosophila. Front Cell Dev Biol 2024; 11:1034484. [PMID: 38264353 PMCID: PMC10803605 DOI: 10.3389/fcell.2023.1034484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The fusion of epithelial sheets is an essential and conserved morphogenetic event that requires the maintenance of tissue continuity. This is secured by membrane-bound or diffusible signals that instruct the epithelial cells, in a coordinated fashion, to change shapes and adhesive properties and when, how and where to move. Here we show that during Dorsal Closure (DC) in Drosophila, the Jun kinase (JNK) signaling pathway modulates integrins expression and ensures tissue endurance. An excess of JNK activity, as an outcome of a failure in the negative feedback implemented by the dual-specificity phosphatase Puckered (Puc), promotes the loss of integrins [the ß-subunit Myospheroid (Mys)] and amnioserosa detachment. Likewise, integrins signal back to the pathway to regulate the duration and strength of JNK activity. Mys is necessary for the regulation of JNK activity levels and in its absence, puc expression is downregulated and JNK activity increases.
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Jose Carlos Pastor-Pareja
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (IN-CSIC), Alicante, Spain
| | - Enrique Martin-Blanco
- Instituto de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
13
|
Collinet C, Bailles A, Dehapiot B, Lecuit T. Mechanical regulation of substrate adhesion and de-adhesion drives a cell-contractile wave during Drosophila tissue morphogenesis. Dev Cell 2024; 59:156-172.e7. [PMID: 38103554 PMCID: PMC10783558 DOI: 10.1016/j.devcel.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
During morphogenesis, mechanical forces induce large-scale deformations; yet, how forces emerge from cellular contractility and adhesion is unclear. In Drosophila embryos, a tissue-scale wave of actomyosin contractility coupled with adhesion to the surrounding vitelline membrane drives polarized tissue invagination. We show that this process emerges subcellularly from the mechanical coupling between myosin II activation and sequential adhesion/de-adhesion to the vitelline membrane. At the wavefront, integrin clusters anchor the actin cortex to the vitelline membrane and promote activation of myosin II, which in turn enhances adhesion in a positive feedback. Following cell detachment, cortex contraction and advective flow amplify myosin II. Prolonged contact with the vitelline membrane prolongs the integrin-myosin II feedback, increases integrin adhesion, and thus slows down cell detachment and wave propagation. The angle of cell detachment depends on adhesion strength and sets the tensile forces required for detachment. Thus, we document how the interplay between subcellular mechanochemical feedback and geometry drives tissue morphogenesis.
Collapse
Affiliation(s)
- Claudio Collinet
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France.
| | - Anaïs Bailles
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France
| | - Benoit Dehapiot
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems, Campus de Luminy Case 907, 13288 Marseille, France; Collège de France, 11 Place Marcelin Berthelot, Paris, France.
| |
Collapse
|
14
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Zhang Y, Fodor É. Pulsating Active Matter. PHYSICAL REVIEW LETTERS 2023; 131:238302. [PMID: 38134789 DOI: 10.1103/physrevlett.131.238302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
We reveal that the mechanical pulsation of locally synchronized particles is a generic route to propagate deformation waves. We consider a model of dense repulsive particles whose activity drives periodic change in size of each individual. The dynamics is inspired by biological tissues where cells consume fuel to sustain active deformation. We show that the competition between repulsion and synchronization triggers an instability which promotes a wealth of dynamical patterns, ranging from spiral waves to defect turbulence. We identify the mechanisms underlying the emergence of patterns, and characterize the corresponding transitions. By coarse-graining the dynamics, we propose a hydrodynamic description of an assembly of pulsating particles, and discuss an analogy with reaction-diffusion systems.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Étienne Fodor
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
16
|
Barberi L, Kruse K. Localized States in Active Fluids. PHYSICAL REVIEW LETTERS 2023; 131:238401. [PMID: 38134762 DOI: 10.1103/physrevlett.131.238401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
Biological active matter is typically tightly coupled to chemical reaction networks affecting its assembly-disassembly dynamics and stress generation. We show that localized states can emerge spontaneously if assembly of active matter is regulated by chemical species that are advected with flows resulting from gradients in the active stress. The mechanochemical localized patterns form via a subcritical bifurcation and for parameter values for which patterns do not exist in absence of the advective coupling. Our work identifies a generic mechanism underlying localized cellular patterns.
Collapse
Affiliation(s)
- Luca Barberi
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
- NCCR for Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
17
|
Jackson JA, Denk-Lobnig M, Kitzinger KA, Martin AC. Change in RhoGAP and RhoGEF availability drives transitions in cortical patterning and excitability in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565883. [PMID: 37986763 PMCID: PMC10659369 DOI: 10.1101/2023.11.06.565883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. While mechanisms have been established for individual cells' dynamic behaviors, mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a RhoGEF and RhoGAP pair whose relocalization from nucleus to cortex results in actomyosin waves in egg chambers. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly and RhoGAP recruitment by ~4 seconds. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types.
Collapse
Affiliation(s)
- Jonathan A. Jackson
- Department of Biology, Massachusetts Institute of Technology
- Graduate Program in Biophysics, Harvard University
| | | | | | - Adam C. Martin
- Department of Biology, Massachusetts Institute of Technology
- Lead contact
| |
Collapse
|
18
|
Sun F, Fang C, Shao X, Gao H, Lin Y. A mechanism-based theory of cellular and tissue plasticity. Proc Natl Acad Sci U S A 2023; 120:e2305375120. [PMID: 37871208 PMCID: PMC10622945 DOI: 10.1073/pnas.2305375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Plastic deformation in cells and tissues has been found to play crucial roles in collective cell migration, cancer metastasis, and morphogenesis. However, the fundamental question of how plasticity is initiated in individual cells and then propagates within the tissue remains elusive. Here, we develop a mechanism-based theory of cellular and tissue plasticity that accounts for all key processes involved, including the activation and development of active contraction at different scales as well as the formation of endocytic vesicles on cell junctions and show that this theory achieves quantitative agreement with all existing experiments. Specifically, it reveals that, in response to optical or mechanical stimuli, the myosin contraction and thermal fluctuation-assisted formation and pinching of endocytic vesicles could lead to permanent shortening of cell junctions and that such plastic constriction can stretch neighboring cells and trigger their active contraction through mechanochemical feedbacks and eventually their plastic deformations as well. Our theory predicts that endocytic vesicles with a size around 1 to 2 µm will most likely be formed and a higher irreversible shortening of cell junctions could be achieved if a long stimulation is split into multiple short ones, all in quantitative agreement with experiments. Our analysis also shows that constriction of cells in tissue can undergo elastic/unratcheted to plastic/ratcheted transition as the magnitude and duration of active contraction increases, ultimately resulting in the propagation of plastic deformation waves within the monolayer with a constant speed which again is consistent with experimental observations.
Collapse
Affiliation(s)
- Fuqiang Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
| | - Chao Fang
- School of Science, Harbin Institute of Technology, Shenzhen518055, China
| | - Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, China
| | - Huajian Gao
- College of Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
19
|
Ramos AP, Szalapak A, Ferme LC, Modes CD. From cells to form: A roadmap to study shape emergence in vivo. Biophys J 2023; 122:3587-3599. [PMID: 37243338 PMCID: PMC10541488 DOI: 10.1016/j.bpj.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Organogenesis arises from the collective arrangement of cells into progressively 3D-shaped tissue. The acquisition of a correctly shaped organ is then the result of a complex interplay between molecular cues, responsible for differentiation and patterning, and the mechanical properties of the system, which generate the necessary forces that drive correct shape emergence. Nowadays, technological advances in the fields of microscopy, molecular biology, and computer science are making it possible to see and record such complex interactions in incredible, unforeseen detail within the global context of the developing embryo. A quantitative and interdisciplinary perspective of developmental biology becomes then necessary for a comprehensive understanding of morphogenesis. Here, we provide a roadmap to quantify the events that lead to morphogenesis from imaging to image analysis, quantification, and modeling, focusing on the discrete cellular and tissue shape changes, as well as their mechanical properties.
Collapse
Affiliation(s)
| | - Alicja Szalapak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | | | - Carl D Modes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
20
|
Michael C, Pancaldi F, Britton S, Kim OV, Peshkova AD, Vo K, Xu Z, Litvinov RI, Weisel JW, Alber M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun Biol 2023; 6:869. [PMID: 37620422 PMCID: PMC10449797 DOI: 10.1038/s42003-023-05240-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
While blood clot formation has been relatively well studied, little is known about the mechanisms underlying the subsequent structural and mechanical clot remodeling called contraction or retraction. Impairment of the clot contraction process is associated with both life-threatening bleeding and thrombotic conditions, such as ischemic stroke, venous thromboembolism, and others. Recently, blood clot contraction was observed to be hindered in patients with COVID-19. A three-dimensional multiscale computational model is developed and used to quantify biomechanical mechanisms of the kinetics of clot contraction driven by platelet-fibrin pulling interactions. These results provide important biological insights into contraction of platelet filopodia, the mechanically active thin protrusions of the plasma membrane, described previously as performing mostly a sensory function. The biomechanical mechanisms and modeling approach described can potentially apply to studying other systems in which cells are embedded in a filamentous network and exert forces on the extracellular matrix modulated by the substrate stiffness.
Collapse
Affiliation(s)
- Christian Michael
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Oleg V Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering and Mechanics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Khoi Vo
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
21
|
Balaghi N, Erdemci-Tandogan G, McFaul C, Fernandez-Gonzalez R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev Cell 2023:S1534-5807(23)00238-1. [PMID: 37295436 DOI: 10.1016/j.devcel.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Gonca Erdemci-Tandogan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Christopher McFaul
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
22
|
Wang J, Fu Y, Huang W, Biswas R, Banerjee A, Broussard JA, Zhao Z, Wang D, Bjerke G, Raghavan S, Yan J, Green KJ, Yi R. MicroRNA-205 promotes hair regeneration by modulating mechanical properties of hair follicle stem cells. Proc Natl Acad Sci U S A 2023; 120:e2220635120. [PMID: 37216502 PMCID: PMC10235966 DOI: 10.1073/pnas.2220635120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Stiffness and actomyosin contractility are intrinsic mechanical properties of animal cells required for the shaping of tissues. However, whether tissue stem cells (SCs) and progenitors located within SC niche have different mechanical properties that modulate their size and function remains unclear. Here, we show that hair follicle SCs in the bulge are stiff with high actomyosin contractility and resistant to size change, whereas hair germ (HG) progenitors are soft and periodically enlarge and contract during quiescence. During activation of hair follicle growth, HGs reduce contraction and more frequently enlarge, a process that is associated with weakening of the actomyosin network, nuclear YAP accumulation, and cell cycle reentry. Induction of miR-205, a novel regulator of the actomyosin cytoskeleton, reduces actomyosin contractility and activates hair regeneration in young and old mice. This study reveals the control of tissue SC size and activities by spatiotemporally compartmentalized mechanical properties and demonstrates the possibility to stimulate tissue regeneration by fine-tuning cell mechanics.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuheng Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Wenmao Huang
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
| | - Avinanda Banerjee
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Zhihai Zhao
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Glen Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore560065, India
- A*Star Skin Research Institute of Singapore, Singapore138648, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore117411, Singapore
| | - Kathleen J. Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
23
|
Rosa C, Malin J, Hatini V. Medioapical contractile pulses coordinated between cells regulate Drosophila eye morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.529936. [PMID: 36993651 PMCID: PMC10055172 DOI: 10.1101/2023.03.17.529936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lattice cells (LCs) in the developing Drosophila retina constantly move and change shape before attaining final forms. Previously we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here we describe a second contributing factor, the assembly of a medioapical actomyosin ring composed of nodes linked by filaments that attract each other, fuse, and contract the LCs' apical area. This medioapical actomyosin network is dependent on Rho1 and its known effectors. Apical cell area contraction alternates with relaxation, generating pulsatile changes in apical cell area. Strikingly, cycles of contraction and relaxation of cell area are reciprocally synchronized between adjacent LCs. Further, in a genetic screen, we identified RhoGEF2 as an activator of these Rho1 functions and RhoGAP71E/C-GAP as an inhibitor. Thus, Rho1 signaling regulates pulsatile medioapical actomyosin contraction exerting force on neighboring cells, coordinating cell behavior across the epithelium. This ultimately serves to control cell shape and maintain tissue integrity during epithelial morphogenesis of the retina.
Collapse
|
24
|
Zhu H, Oâ Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533016. [PMID: 36993262 PMCID: PMC10055118 DOI: 10.1101/2023.03.16.533016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A much-studied example is ventral furrow formation in Drosophila , marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principle resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos, this catastrophic outcome is averted by pulsatile myosin time-dependence, a time-averaging effect that rescues furrowing. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
|
25
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
26
|
Fan H, Barnes C, Hwang H, Zhang K, Yang J. Precise modulation of embryonic development through optogenetics. Genesis 2022; 60:e23505. [PMID: 36478118 PMCID: PMC9847014 DOI: 10.1002/dvg.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
Collapse
Affiliation(s)
- Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Barnes
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| |
Collapse
|
27
|
Guru A, Saravanan S, Sharma D, Narasimha M. The microtubule end-binding proteins EB1 and Patronin modulate the spatiotemporal dynamics of myosin and pattern pulsed apical constriction. Development 2022; 149:284823. [PMID: 36440630 DOI: 10.1242/dev.199759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/31/2022] [Indexed: 11/29/2022]
Abstract
Apical constriction powers amnioserosa contraction during Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generates pulsed apical constrictions during early closure. Persistent apicomedial and circumapical actomyosin complexes drive unpulsed constrictions that follow. Here, we show that the microtubule end-binding proteins EB1 and Patronin pattern constriction dynamics and contraction kinetics by coordinating the balance of actomyosin forces in the apical plane. We find that microtubule growth from moving Patronin platforms governs the spatiotemporal dynamics of apicomedial myosin through the regulation of RhoGTPase signaling by transient EB1-RhoGEF2 interactions. We uncover the dynamic reorganization of a subset of short non-centrosomally nucleated apical microtubules that surround the coalescing apicomedial myosin complex, trail behind it as it moves and disperse as the complex dissolves. We demonstrate that apical microtubule reorganization is sensitive to Patronin levels. Microtubule depolymerization compromised apical myosin enrichment and altered constriction dynamics. Together, our findings uncover the importance of reorganization of an intact apical microtubule meshwork, by moving Patronin platforms and growing microtubule ends, in enabling the spatiotemporal modulation of actomyosin contractility and, through it, apical constriction.
Collapse
Affiliation(s)
- Anwesha Guru
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Surat Saravanan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Deepanshu Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Maithreyi Narasimha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
28
|
Najma B, Varghese M, Tsidilkovski L, Lemma L, Baskaran A, Duclos G. Competing instabilities reveal how to rationally design and control active crosslinked gels. Nat Commun 2022; 13:6465. [PMID: 36309493 PMCID: PMC9617906 DOI: 10.1038/s41467-022-34089-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
How active stresses generated by molecular motors set the large-scale mechanics of the cell cytoskeleton remains poorly understood. Here, we combine experiments and theory to demonstrate how the emergent properties of a biomimetic active crosslinked gel depend on the properties of its microscopic constituents. We show that an extensile nematic elastomer exhibits two distinct activity-driven instabilities, spontaneously bending in-plane or buckling out-of-plane depending on its composition. Molecular motors play a dual antagonistic role, fluidizing or stiffening the gel depending on the ATP concentration. We demonstrate how active and elastic stresses are set by each component, providing estimates for the active gel theory parameters. Finally, activity and elasticity were manipulated in situ with light-activable motor proteins, controlling the direction of the instability optically. These results highlight how cytoskeletal stresses regulate the self-organization of living matter and set the foundations for the rational design and optogenetic control of active materials.
Collapse
Affiliation(s)
- Bibi Najma
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lev Tsidilkovski
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Linnea Lemma
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Guillaume Duclos
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
29
|
Thiagarajan R, Bhat A, Salbreux G, Inamdar MM, Riveline D. Pulsations and flows in tissues as two collective dynamics with simple cellular rules. iScience 2022; 25:105053. [PMID: 36204277 PMCID: PMC9531052 DOI: 10.1016/j.isci.2022.105053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/23/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Collective motions of epithelial cells are essential for morphogenesis. Tissues elongate, contract, flow, and oscillate, thus sculpting embryos. These tissue level dynamics are known, but the physical mechanisms at the cellular level are unclear. Here, we demonstrate that a single epithelial monolayer of MDCK cells can exhibit two types of local tissue kinematics, pulsations and long range coherent flows, characterized by using quantitative live imaging. We report that these motions can be controlled with internal and external cues such as specific inhibitors and substrate friction modulation. We demonstrate the associated mechanisms with a unified vertex model. When cell velocity alignment and random diffusion of cell polarization are comparable, a pulsatile flow emerges whereas tissue undergoes long-range flows when velocity alignment dominates which is consistent with cytoskeletal dynamics measurements. We propose that environmental friction, acto-myosin distributions, and cell polarization kinetics are important in regulating dynamics of tissue morphogenesis. Two collective cell motions, pulsations and flows, coexist in MDCK monolayers Each collective movement is identified using divergence and velocity correlations Motion is controlled by the regulation of substrate friction and cytoskeleton A vertex model recapitulates the motion by tuning velocity and polarity alignment
Collapse
Affiliation(s)
- Raghavan Thiagarajan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Alka Bhat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | | | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Corresponding author
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de Strasbourg, Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Corresponding author
| |
Collapse
|
30
|
De O, Rice C, Zulueta-Coarasa T, Fernandez-Gonzalez R, Ward RE. Septate junction proteins are required for cell shape changes, actomyosin reorganization and cell adhesion during dorsal closure in Drosophila. Front Cell Dev Biol 2022; 10:947444. [PMID: 36238688 PMCID: PMC9553006 DOI: 10.3389/fcell.2022.947444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Septate junctions (SJs) serve as occluding barriers in invertebrate epithelia. In Drosophila, at least 30 genes are required for the formation or maintenance of SJs. Interestingly, loss-of-function mutations in core SJ components are embryonic lethal, with defects in developmental events such as head involution and dorsal closure (DC) that occur prior to the formation of a mature SJ, indicating a role for these proteins in mid-embryogenesis independent of their occluding function. To understand this novel function in development, we examined loss-of-function mutations in three core SJ proteins during the process of DC. DC occurs during mid-embryogenesis to seal a dorsal gap in the epidermis following germ band retraction. Closure is driven by contraction of the extraembryonic amnioserosa cells that temporarily cover the dorsal surface and by cell shape changes (elongation) of lateral epidermal cells that bring the contralateral sheets together at the dorsal midline. Using live imaging and examination of fixed tissues, we show that early events in DC occur normally in SJ mutant embryos, but during later closure, coracle, Macroglobulin complement-related and Neurexin-IV mutant embryos exhibit slower rates of closure and display aberrant cells shapes in the dorsolateral epidermis, including dorsoventral length and apical surface area. SJ mutant embryos also show mild defects in actomyosin structures along the leading edge, but laser cutting experiments suggest similar tension and viscoelastic properties in SJ mutant versus wild type epidermis. In a high percentage of SJ mutant embryos, the epidermis tears free from the amnioserosa near the end of DC and live imaging and immunostaining reveal reduced levels of E-cadherin, suggesting that defective adhesion may be responsible for these tears. Supporting this notion, reducing E-cadherin by half significantly enhances the penetrance of DC defects in coracle mutant embryos.
Collapse
Affiliation(s)
- Oindrila De
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Clinton Rice
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States
| | | | | | - Robert E Ward
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
31
|
Akatay AA, Wu T, Djakbarova U, Thompson C, Cocucci E, Zandi R, Rudnick J, Kural C. Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension. Front Mol Biosci 2022; 9:959737. [PMID: 36213118 PMCID: PMC9532848 DOI: 10.3389/fmolb.2022.959737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Internalization of clathrin-coated vesicles from the plasma membrane constitutes the major endocytic route for receptors and their ligands. Dynamic and structural properties of endocytic clathrin coats are regulated by the mechanical properties of the plasma membrane. Here, we used conventional fluorescence imaging and multiple modes of structured illumination microscopy (SIM) to image formation of endocytic clathrin coats within live cells and tissues of developing fruit fly embryos. High resolution in both spatial and temporal domains allowed us to detect and characterize distinct classes of clathrin-coated structures. Aside from the clathrin pits and plaques detected in distinct embryonic tissues, we report, for the first time, formation of giant coated pits (GCPs) that can be up to two orders of magnitude larger than the canonical pits. In cultured cells, we show that GCP formation is induced by increased membrane tension. GCPs take longer to grow but their mechanism of curvature generation is the same as the canonical pits. We also demonstrate that GCPs split into smaller fragments during internalization. Considering the supporting roles played by actin filament dynamics under mechanically stringent conditions that slow down completion of clathrin coats, we suggest that local changes in the coat curvature driven by actin machinery can drive splitting and internalization of GCPs.
Collapse
Affiliation(s)
- Ahmet Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Umidahan Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Cristopher Thompson
- Department of Physics, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA, United States
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, CA, United States
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Comert Kural,
| |
Collapse
|
32
|
Goligorsky MS. OSCILLATORS IN THE MICROVASCULATURE - GLYCOCALYX AND BEYOND. Am J Physiol Cell Physiol 2022; 323:C432-C438. [PMID: 35759436 PMCID: PMC9359649 DOI: 10.1152/ajpcell.00170.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The growing recognition of abundance of oscillating functions in biological systems has motivated this brief overview which narrows down on the microvasculature. Specifically, it encompasses self-sustained oscillations of blood flow, hematocrit and viscosity at bifurcations; their effects on the oscillations of endothelial glycocalyx, mechanotransduction and its termination to prime endothelial cells for the subsequent mechanical signaling event; oscillating affinity of hyaluronan-CD44 binding domain; spontaneous contractility of actomyosin complexes in the cortical actin web, its effects on the tension of the plasma membrane; reversible effects of sirtuin-1 on endothelial glycocalyx; and effects of plasma membrane tension on endo-and exocytosis. Some potential interactions between those oscillators - their coupling - are discussed together with their transition into chaotic movements. Future in-depth understanding of the oscillatory activities in the microvasculature could serve as a guide to its chronotherapy under pathological conditions.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College at the Touro University, Valhalla, NY
| |
Collapse
|
33
|
Harmand N, Dervaux J, Poulard C, Hénon S. Thickness of epithelia on wavy substrates: measurements and continuous models. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:53. [PMID: 35661937 DOI: 10.1140/epje/s10189-022-00206-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
We measured the thickness of MDCK epithelia grown on substrates with a sinusoidal profile. We show that while at long wavelength the profile of the epithelium follows that of the substrate, at short wavelengths cells are thicker in valleys than on ridges. This is reminiscent of the so-called «healing length in the case of a thin liquid film wetting a rough solid substrate. We explore the ability of continuum mechanics models to account for these observations. Modeling the epithelium as a thin liquid film, with surface tension, does not fully account for the measurements. Neither does modeling the epithelium as a thin incompressible elastic film. On the contrary, the addition of an apical active stress gives satisfactory agreement with measurements, with one fitting parameter, the ratio between the active stress and the elastic modulus.
Collapse
Affiliation(s)
- Nicolas Harmand
- Université Paris Cité, CNRS, Matiére et Systémes Complexes, UMR 7057,, Paris, France
| | - Julien Dervaux
- Université Paris Cité, CNRS, Matiére et Systémes Complexes, UMR 7057,, Paris, France
| | - Christophe Poulard
- Laboratoire de Physique des Solides, CNRS, UMR 8502, Université Paris-Saclay, Orsay, France
| | - Sylvie Hénon
- Université Paris Cité, CNRS, Matiére et Systémes Complexes, UMR 7057,, Paris, France.
| |
Collapse
|
34
|
Pancaldi F, Kim OV, Weisel JW, Alber M, Xu Z. Computational Biomechanical Modeling of Fibrin Networks and Platelet-Fiber Network Interactions. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22:100369. [PMID: 35386550 PMCID: PMC8979495 DOI: 10.1016/j.cobme.2022.100369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrin deformation and interaction of fibrin with other blood components play critical roles in hemostasis and thrombosis. In this review, computational and mathematical biomechanical models of fibrin network deformation and contraction at different spatio-temporal scales as well as challenges in developing and calibrating multiscale models are discussed. There are long standing challenges. For instance, applicability of models to identify and test potential mechanisms of the biomechanical processes mediating interactions between platelets and fiber networks in blood clot stretching and contraction needs to be examined carefully. How the structural and mechanical properties of major blood clot components influences biomechanical responses of the entire clot subjected to external forces, such as blood flow or vessel wall deformations needs to be investigated thoroughly.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Oleg V. Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN 46556, USA
| |
Collapse
|
35
|
Thiagarajan R, Inamdar MM, Riveline D. Interplay between cell height variations and planar pulsations in epithelial monolayers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:49. [PMID: 35587840 DOI: 10.1140/epje/s10189-022-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Biological tissues change their shapes through collective interactions of cells. This coordination sets length and time scales for dynamics where precision is essential, in particular during morphogenetic events. However, how these scales emerge remains unclear. Here, we address this question using the pulsatile domains observed in confluent epithelial MDCK monolayers where cells exhibit synchronous contraction and extension cycles of [Formula: see text] h duration and [Formula: see text] length scale. We report that the monolayer thickness changes gradually in space and time by more than twofold in order to counterbalance the contraction and extension of the incompressible cytoplasm. We recapitulate these pulsatile dynamics using a continuum model and show that incorporation of cell stiffness dependent height variations is critical both for generating temporal pulsations and establishing the domain size. We propose that this feedback between height and mechanics could be important in coordinating the length scales of tissue dynamics.
Collapse
Affiliation(s)
- Raghavan Thiagarajan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France.
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
| |
Collapse
|
36
|
Lv Z, Zhang N, Zhang X, Großhans J, Kong D. The Lateral Epidermis Actively Counteracts Pulling by the Amnioserosa During Dorsal Closure. Front Cell Dev Biol 2022; 10:865397. [PMID: 35652100 PMCID: PMC9148979 DOI: 10.3389/fcell.2022.865397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Dorsal closure is a prominent morphogenetic process during Drosophila embryogenesis, which involves two epithelial tissues, that is, the squamous amnioserosa and the columnar lateral epidermis. Non-muscle myosin II-driven constriction in the amnioserosa leads to a decrease in the apical surface area and pulls on the adjacent lateral epidermis, which subsequently moves dorsally. The pull by the amnioserosa becomes obvious in an elongation of the epidermal cells, especially of those in the first row. The contribution of the epidermal cell elongation has remained unclear to dorsal closure. Cell elongation may be a mere passive consequence or an active response to the pulling by the amnioserosa. Here, we found that the lateral epidermis actively responds. We analyzed tensions within tissues and cell junctions by laser ablation before and during dorsal closure, the elliptical and dorsal closure stages, respectively. Furthermore, we genetically and optochemically induced chronic and acute cell contraction, respectively. In this way, we found that tension in the epidermis increased during dorsal closure. A correspondingly increased tension was not observed at individual junctions, however. Junctional tension even decreased during dorsal closure in the epidermis. We strikingly observed a strong increase of the microtubule amount in the epidermis, while non-muscle myosin II increased in both tissues. Our data suggest that the epidermis actively antagonizes the pull from the amnioserosa during dorsal closure and the increased microtubules might help the epidermis bear part of the mechanical force.
Collapse
Affiliation(s)
- Zhiyi Lv
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Xiaozhu Zhang
- MOE Key Laboratory of Advanced Micro-Structured Materials and School of Physics Science and Engineering, Tongji University, Shanghai, China
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Institute for Theoretical Physics and Center for Advancing Electronics Dresden (cfaed), Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, Marburg, Germany
- *Correspondence: Deqing Kong,
| |
Collapse
|
37
|
Yamaguchi N, Knaut H. Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo. Development 2022; 149:dev200647. [PMID: 35587444 PMCID: PMC9188754 DOI: 10.1242/dev.200647] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
Moore RP, Fogerson SM, Tulu US, Yu JW, Cox AH, Sican MA, Li D, Legant WR, Weigel AV, Crawford JM, Betzig E, Kiehart DP. Super-resolution microscopy reveals actomyosin dynamics in medioapical arrays. Mol Biol Cell 2022; 33:ar94. [PMID: 35544300 DOI: 10.1091/mbc.e21-11-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, super-resolution approaches (grazing incidence structured illumination, GI-SIM and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in Drosophila. In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane. The arrays condense as cells contract, drawing the domes into the plane of the junctional belts. As condensation continues, individual filaments are no longer uniformly apparent. As cells expand, arrays of actomyosin are again resolved - some F-actin turnover likely occurs, but a large fraction of existing filaments rearrange. In morphologically isotropic cells, actin filaments are randomly oriented and during contraction, are drawn together but remain essentially randomly oriented. In anisotropic cells, largely parallel actin filaments are drawn closer to one another. Our images offer unparalleled resolution of F-actin in embryonic tissue show that medioapical arrays are tightly apposed to the plasma membrane, are continuous with meshworks of lamellar F-actin and thereby constitute modified cell cortex. In concert with other tagged array components, super-resolution imaging of live specimens will offer new understanding of cortical architecture and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Regan P Moore
- Biology Department, Duke University, Durham, NC, 27708, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | | | - U Serdar Tulu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Jason W Yu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Amanda H Cox
- Biology Department, Duke University, Durham, NC, 27708, USA
| | | | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
39
|
Cavanaugh KE, Staddon MF, Chmiel TA, Harmon R, Budnar S, Yap AS, Banerjee S, Gardel ML. Force-dependent intercellular adhesion strengthening underlies asymmetric adherens junction contraction. Curr Biol 2022; 32:1986-2000.e5. [PMID: 35381185 PMCID: PMC9123775 DOI: 10.1016/j.cub.2022.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022]
Abstract
Tissue morphogenesis arises from the culmination of changes in cell-cell junction length. Mechanochemical signaling in the form of RhoA underlies these ratcheted contractions, which occur asymmetrically. The underlying mechanisms of asymmetry remain unknown. We use optogenetically controlled RhoA in model epithelia together with biophysical modeling to uncover the mechanism lending to asymmetric vertex motion. Using optogenetic and pharmacological approaches, we find that both local and global RhoA activation can drive asymmetric junction contraction in the absence of tissue-scale patterning. We find that standard vertex models with homogeneous junction properties are insufficient to recapitulate the observed junction dynamics. Furthermore, these experiments reveal a local coupling of RhoA activation with E-cadherin accumulation. This motivates a coupling of RhoA-mediated increases in tension and E-cadherin-mediated adhesion strengthening. We then demonstrate that incorporating this force-sensitive adhesion strengthening into a continuum model is successful in capturing the observed junction dynamics. Thus, we find that a force-dependent intercellular "clutch" at tricellular vertices stabilizes vertex motion under increasing tension and is sufficient to generate asymmetries in junction contraction.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michael F Staddon
- Center for Systems Biology Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Theresa A Chmiel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Robert Harmon
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Srikanth Budnar
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, James Franck Institute, Department of Physics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
40
|
Yang Y, Jiang H. Intercellular water exchanges trigger soliton-like waves in multicellular systems. Biophys J 2022; 121:1610-1618. [PMID: 35395246 PMCID: PMC9117941 DOI: 10.1016/j.bpj.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Oscillations and waves are ubiquitous in living cellular systems. Generations of these spatiotemporal patterns are generally attributed to some mechanochemical feedbacks. Here, we treat cells as open systems, i.e., water and ions can pass through the cell membrane passively or actively, and reveal a new origin of wave generation. We show that osmotic shocks above a shock threshold will trigger self-sustained cell oscillations and result in long-range waves propagating without decrement, a phenomenon that is analogous to the excitable medium. The traveling wave propagates along the intercellular osmotic pressure gradient, and its wave speed scales with the magnitude of intercellular water flows. Furthermore, we also find that the traveling wave exhibits several hallmarks of solitary waves. Together, our findings predict a new mechanism of wave generation in living multicellular systems. The ubiquity of intercellular water exchanges implies that this mechanism may be relevant to a broad class of systems.
Collapse
Affiliation(s)
- Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
41
|
Hernández-Del-Valle M, Valencia-Expósito A, López-Izquierdo A, Casanova-Ferrer P, Tarazona P, Martín-Bermudo MD, Míguez DG. A coarse-grained approach to model the dynamics of the actomyosin cortex. BMC Biol 2022; 20:90. [PMID: 35459165 PMCID: PMC9034637 DOI: 10.1186/s12915-022-01279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Background The dynamics of the actomyosin machinery is at the core of many important biological processes. Several relevant cellular responses such as the rhythmic compression of the cell cortex are governed, at a mesoscopic level, by the nonlinear interaction between actin monomers, actin crosslinkers, and myosin motors. Coarse-grained models are an optimal tool to study actomyosin systems, since they can include processes that occur at long time and space scales, while maintaining the most relevant features of the molecular interactions. Results Here, we present a coarse-grained model of a two-dimensional actomyosin cortex, adjacent to a three-dimensional cytoplasm. Our simplified model incorporates only well-characterized interactions between actin monomers, actin crosslinkers and myosin, and it is able to reproduce many of the most important aspects of actin filament and actomyosin network formation, such as dynamics of polymerization and depolymerization, treadmilling, network formation, and the autonomous oscillatory dynamics of actomyosin. Conclusions We believe that the present model can be used to study the in vivo response of actomyosin networks to changes in key parameters of the system, such as alterations in the attachment of actin filaments to the cell cortex. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-022-01279-2).
Collapse
Affiliation(s)
- Miguel Hernández-Del-Valle
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - Antonio López-Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pau Casanova-Ferrer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pedro Tarazona
- IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica Teórica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Maria D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
42
|
The Tbx6 Transcription Factor Dorsocross Mediates Dpp Signaling to Regulate Drosophila Thorax Closure. Int J Mol Sci 2022; 23:ijms23094543. [PMID: 35562934 PMCID: PMC9104307 DOI: 10.3390/ijms23094543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022] Open
Abstract
Movement and fusion of separate cell populations are critical for several developmental processes, such as neural tube closure in vertebrates or embryonic dorsal closure and pupal thorax closure in Drosophila. Fusion failure results in an opening or groove on the body surface. Drosophila pupal thorax closure is an established model to investigate the mechanism of tissue closure. Here, we report the identification of T-box transcription factor genes Dorsocross (Doc) as Decapentaplegic (Dpp) targets in the leading edge cells of the notum in the late third instar larval and early pupal stages. Reduction of Doc in the notum region results in a thorax closure defect, similar to that in dpp loss-of-function flies. Nine genes are identified as potential downstream targets of Doc in regulating thorax closure by molecular and genetic screens. Our results reveal a novel function of Doc in Drosophila development. The candidate target genes provide new clues for unravelling the mechanism of collective cell movement.
Collapse
|
43
|
Condensation of the Drosophila nerve cord is oscillatory and depends on coordinated mechanical interactions. Dev Cell 2022; 57:867-882.e5. [PMID: 35413236 DOI: 10.1016/j.devcel.2022.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
During development, organs reach precise shapes and sizes. Organ morphology is not always obtained through growth; a classic counterexample is the condensation of the nervous system during Drosophila embryogenesis. The mechanics underlying such condensation remain poorly understood. Here, we characterize the condensation of the embryonic ventral nerve cord (VNC) at both subcellular and tissue scales. This analysis reveals that condensation is not a unidirectional continuous process but instead occurs through oscillatory contractions. The VNC mechanical properties spatially and temporally vary, and forces along its longitudinal axis are spatially heterogeneous. We demonstrate that the process of VNC condensation is dependent on the coordinated mechanical activities of neurons and glia. These outcomes are consistent with a viscoelastic model of condensation, which incorporates time delays and effective frictional interactions. In summary, we have defined the progressive mechanics driving VNC condensation, providing insights into how a highly viscous tissue can autonomously change shape and size.
Collapse
|
44
|
Özgüç Ö, de Plater L, Kapoor V, Tortorelli AF, Clark AG, Maître JL. Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol 2022; 20:e3001593. [PMID: 35324889 PMCID: PMC8982894 DOI: 10.1371/journal.pbio.3001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis. During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Varun Kapoor
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Athilingam T, Parihar SS, Bhattacharya R, Rizvi MS, Kumar A, Sinha P. Proximate larval epidermal cell layer generates forces for Pupal thorax closure in Drosophila. Genetics 2022; 221:6528854. [PMID: 35166774 PMCID: PMC9071563 DOI: 10.1093/genetics/iyac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
During tissue closures, such as embryonic dorsal closure in Drosophila melanogaster, a proximate extra-embryonic layer, amnioserosa, generates forces that drive migration of the flanking lateral embryonic epidermis, thereby zip-shutting the embryo. Arguably, this paradigm of tissue closure is also recapitulated in mammalian wound healing wherein proximate fibroblasts transform into contractile myofibroblasts, develop cell junctions, and form a tissue layer de novo: contraction of the latter then aids in wound closure. Given this parallelism between disparate exemplars, we posit a general principle of tissue closure via proximate cell layer-generated forces. Here, we have tested this hypothesis in pupal thorax closure wherein 2 halves of the presumptive adult thorax of Drosophila, the contralateral heminotal epithelia, migrate over an underlying larval epidermal cell layer. We show that the proximate larval epidermal cell layer promotes thorax closure by its active contraction, orchestrated by its elaborate actomyosin network-driven epithelial cell dynamics, cell delamination, and death-the latter being prefigured by the activation of caspases. Larval epidermal cell dynamics generate contraction forces, which when relayed to the flanking heminota-via their mutual integrin-based adhesions-mediate thorax closure. Compromising any of these contraction force-generating mechanisms in the larval epidermal cell layer slows down heminotal migration, while loss of its relay to the flanking heminota abrogates the thorax closure altogether. Mathematical modeling further reconciles the biophysical underpinning of this emergent mechanism of thorax closure. Revealing mechanism of thorax closure apart, these findings show conservation of an essential principle of a proximate cell layer-driven tissue closure.
Collapse
Affiliation(s)
- Thamarailingam Athilingam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Saurabh S Parihar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Rachita Bhattacharya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohd S Rizvi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amit Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India,Corresponding author: Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
46
|
Yao B, Donoughe S, Michaux J, Munro E. Modulating RhoA effectors induces transitions to oscillatory and more wavelike RhoA dynamics in C. elegans zygotes. Mol Biol Cell 2022; 33:ar58. [PMID: 35138935 PMCID: PMC9265151 DOI: 10.1091/mbc.e21-11-0542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pulsatile RhoA dynamics underlie a wide range of cell and tissue behaviors. The circuits that produce these dynamics in different cells share common architectures based on fast positive and delayed negative feedback through F-actin, but they can produce very different spatiotemporal patterns of RhoA activity. However, the underlying causes of this variation remain poorly understood. Here we asked how this variation could arise through modulation of actin network dynamics downstream of active RhoA in early C. elegans embryos. We find that perturbing two RhoA effectors - formin and anillin - induce transitions from non-recurrent focal pulses to either large noisy oscillatory pulses (formin depletion) or noisy oscillatory waves (anillin depletion). In both cases these transitions could be explained by changes in local F-actin levels and depletion dynamics, leading to changes in spatial and temporal patterns of RhoA inhibition. However, the underlying mechanisms for F-actin depletion are distinct, with different dependencies on myosin II activity. Thus, modulating actomyosin network dynamics could shape the spatiotemporal dynamics of RhoA activity for different physiological or morphogenetic functions. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Baixue Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
47
|
Abstract
Biological systems display a rich phenomenology of states that resemble the physical states of matter - solid, liquid and gas. These phases result from the interactions between the microscopic constituent components - the cells - that manifest in macroscopic properties such as fluidity, rigidity and resistance to changes in shape and volume. Looked at from such a perspective, phase transitions from a rigid to a flowing state or vice versa define much of what happens in many biological processes especially during early development and diseases such as cancer. Additionally, collectively moving confluent cells can also lead to kinematic phase transitions in biological systems similar to multi-particle systems where the particles can interact and show sub-populations characterised by specific velocities. In this Perspective we discuss the similarities and limitations of the analogy between biological and inert physical systems both from theoretical perspective as well as experimental evidence in biological systems. In understanding such transitions, it is crucial to acknowledge that the macroscopic properties of biological materials and their modifications result from the complex interplay between the microscopic properties of cells including growth or death, neighbour interactions and secretion of matrix, phenomena unique to biological systems. Detecting phase transitions in vivo is technically difficult. We present emerging approaches that address this challenge and may guide our understanding of the organization and macroscopic behaviour of biological tissues.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix Marseille Univ, CNRS, UMR 7288, IBDM, Turing Center for Living Systems, Marseille, France.
| | - Vikas Trivedi
- European Molecular Biology Laboratory (EMBL), Barcelona, 08003, Spain.
- EMBL Heidelberg, Developmental Biology Unit, Heidelberg, 69117, Germany.
| |
Collapse
|
48
|
Selvaggi L, Ackermann M, Pasakarnis L, Brunner D, Aegerter CM. Force measurements of Myosin II waves at the yolk surface during Drosophila dorsal closure. Biophys J 2022; 121:410-420. [PMID: 34971619 PMCID: PMC8822616 DOI: 10.1016/j.bpj.2021.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
The mechanical properties and the forces involved during tissue morphogenesis have been the focus of much research in the last years. Absolute values of forces during tissue closure events have not yet been measured. This is also true for a common force-producing mechanism involving Myosin II waves that results in pulsed cell surface contractions. Our patented magnetic tweezer, CAARMA, integrated into a spinning disk confocal microscope, provides a powerful explorative tool for quantitatively measuring forces during tissue morphogenesis. Here, we used this tool to quantify the in vivo force production of Myosin II waves that we observed at the dorsal surface of the yolk cell in stage 13 Drosophila melanogaster embryos. In addition to providing for the first time to our knowledge quantitative values on an active Myosin-driven force, we elucidated the dynamics of the Myosin II waves by measuring their periodicity in both absence and presence of external perturbations, and we characterized the mechanical properties of the dorsal yolk cell surface.
Collapse
Affiliation(s)
- Lara Selvaggi
- Physik-Institut, Universität Zürich, Zürich, Switzerland,Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland
| | | | - Laurynas Pasakarnis
- Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland
| | - Damian Brunner
- Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland
| | - Christof M. Aegerter
- Physik-Institut, Universität Zürich, Zürich, Switzerland,Department of Molecular Life Science, Universität Zürich, Zürich, Switzerland,Corresponding author
| |
Collapse
|
49
|
Stability bounds of a delay visco-elastic rheological model with substrate friction. J Math Biol 2021; 83:71. [PMID: 34870766 DOI: 10.1007/s00285-021-01699-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 10/24/2022]
Abstract
Cells and tissues exhibit sustained oscillatory deformations during remodelling, migration or embryogenesis. Although it has been shown that these oscillations correlate with intracellular biochemical signalling, the role of these oscillations is as yet unclear, and whether they may trigger drastic cell reorganisation events or instabilities remains unknown. Here, we present a rheological model that incorporates elastic, viscous and frictional components, and that is able to generate oscillatory response through a delay adaptive process of the rest-length. We analyse its stability as a function of the model parameters and deduce analytical bounds of the stable domain. While increasing values of the delay and remodelling rate render the model unstable, we also show that increasing friction with the substrate destabilises the oscillatory response. This fact was unexpected and still needs to be verified experimentally. Furthermore, we numerically verify that the extension of the model with non-linear deformation measures is able to generate sustained oscillations converging towards a limit cycle. We interpret this sustained regime in terms of non-linear time varying stiffness parameters that alternate between stable and unstable regions of the linear model. We also note that this limit cycle is not present in the linear model. We study the phase diagram and the bifurcations of the non-linear model, based on our conclusions on the linear one. Such dynamic analysis of the delay visco-elastic model in the presence of friction is absent in the literature for both linear and non-linear rheologies. Our work also shows how increasing values of some parameters such as delay and friction decrease its stability, while other parameters such as stiffness stabilise the oscillatory response.
Collapse
|
50
|
Barrera-Velázquez M, Ríos-Barrera LD. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biol Open 2021; 10:bio058760. [PMID: 34842274 PMCID: PMC8649640 DOI: 10.1242/bio.058760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissues build complex structures like lumens and microvilli to carry out their functions. Most of the mechanisms used to build these structures rely on cells remodelling their apical plasma membranes, which ultimately constitute the specialised compartments. In addition to apical remodelling, these shape changes also depend on the proper attachment of the basal plasma membrane to the extracellular matrix (ECM). The ECM provides cues to establish apicobasal polarity, and it also transduces forces that allow apical remodelling. However, physical crosstalk mechanisms between basal ECM attachment and the apical plasma membrane remain understudied, and the ones described so far are very diverse, which highlights the importance of identifying the general principles. Here, we review apicobasal crosstalk of two well-established models of membrane remodelling taking place during Drosophila melanogaster embryogenesis: amnioserosa cell shape oscillations during dorsal closure and subcellular tube formation in tracheal cells. We discuss how anchoring to the basal ECM affects apical architecture and the mechanisms that mediate these interactions. We analyse this knowledge under the scope of other morphogenetic processes and discuss what aspects of apicobasal crosstalk may represent widespread phenomena and which ones are used to build subsets of specialised compartments.
Collapse
Affiliation(s)
- Mariana Barrera-Velázquez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
- Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis Daniel Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|