1
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Ribeiro JH, Etlioglu E, Buset J, Janssen A, Puype H, Berden L, Mbouombouo Mfossa AC, De Vos WH, Vermeirssen V, Baatout S, Rajan N, Quintens R. A human-specific, concerted repression of microcephaly genes contributes to radiation-induced growth defects in cortical organoids. iScience 2025; 28:111853. [PMID: 39967878 PMCID: PMC11834077 DOI: 10.1016/j.isci.2025.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Prenatal radiation-induced DNA damage poses a significant threat to neurodevelopment, resulting in microcephaly which primarily affects the cerebral cortex. So far, mechanistic studies were done in rodents. Here, we leveraged human cortical organoids to model fetal corticogenesis. Organoids were X-irradiated with moderate or high doses at different time points. Irradiation caused a dose- and time-dependent reduction in organoid size, which was more prominent in younger organoids. This coincided with a delayed and attenuated DNA damage response (DDR) in older organoids. Besides the DDR, radiation induced premature differentiation of neural progenitor cells (NPCs). Our transcriptomic analysis demonstrated a concerted p53-E2F4/DREAM-dependent repression of primary microcephaly genes, which was independently confirmed in cultured human NPCs and neurons. This was a human-specific feature, as it was not observed in mouse embryonic brains or primary NPCs. Thus, human cortical organoids are an excellent model for DNA damage-induced microcephaly and to uncover potentially targetable human-specific pathways.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Hanne Puype
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lisa Berden
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Laboratory for Neurophysiology, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | | | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Wilrijk, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Nicholas Rajan
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| |
Collapse
|
3
|
Takikawa M, Nakano A, Krishnaraj J, Tabata Y, Watanabe Y, Okabe A, Sakaguchi Y, Fujiki R, Mochizuki A, Tajima T, Sada A, Matsushita S, Wakabayashi Y, Araki K, Kaneda A, Ishikawa F, Sadaie M, Ohki R. Extrinsic induction of apoptosis and tumor suppression via the p53-Reprimo-Hippo-YAP/TAZ-p73 pathway. Proc Natl Acad Sci U S A 2025; 122:e2413126122. [PMID: 39913207 PMCID: PMC11831151 DOI: 10.1073/pnas.2413126122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 02/19/2025] Open
Abstract
Tumor progression is suppressed by inherent cellular mechanisms such as apoptosis. The p53 tumor suppressor gene is the most commonly mutated gene in human cancer and plays a pivotal role in tumor suppression. RPRM is a target gene of p53 known to be involved in tumor suppression, but its molecular function has remained elusive. Here, we report that Reprimo (the protein product of RPRM) is secreted and extrinsically induces apoptosis in recipient cells. We identified FAT1, FAT4, CELSR1, CELSR2, and CELSR3, members of the protocadherin family, as receptors for Reprimo. Subsequent analyses revealed that Reprimo acts upstream of the Hippo-YAP/TAZ-p73 axis and induces apoptosis by transactivating various proapoptotic genes. In vivo analyses further support the tumor-suppressive effects of secreted Reprimo. These findings identify the p53-Reprimo-Hippo-YAP/TAZ-p73 axis as an extrinsic apoptosis pathway that plays a crucial role in tumor suppression. Our finding of the innate tumor eliminator Reprimo and the downstream pathway offers a promising avenue for the pharmacological treatment of cancer.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba278-8510, Japan
| | - Airi Nakano
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
- Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki852-8523, Japan
| | - Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuko Tabata
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto606-8502, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
- Health and Disease Omics Center, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Yukiko Sakaguchi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Ami Mochizuki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Tomoko Tajima
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Akane Sada
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Shu Matsushita
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuichi Wakabayashi
- Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chuo-ku, Chiba260-8717, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Chuo-ku, Kumamoto860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo, Kumamoto860-8556, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
- Health and Disease Omics Center, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Mahito Sadaie
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba278-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| |
Collapse
|
4
|
Fan Y, Li Y, Luo X, Xiang S, Hu J, Zhan J, Chang W, Deng R, Ran X, Zhang Y, Cai Y, Zhu W, Wang H, Liu Z, Wang D. PTOV1 exerts pro-oncogenic role in colorectal cancer by modulating SQSTM1-mediated autophagic degradation of p53. J Transl Med 2025; 23:157. [PMID: 39905441 DOI: 10.1186/s12967-025-06179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Prostate Tumor Overexpressed 1 (PTOV1) is overexpressed and associated with malignant phenotypes in various types of tumors. However, the detailed roles of PTOV1 and its underlying mechanism in CRC remain unclear. METHODS The clinical significance of PTOV1 was assessed in clinical databases and CRC samples. The effects of PTOV1 on the tumor-associated phenotypes of CRC were detected by several in vitro assays and in vivo mouse models. Immunoprecipitation (IP) combined with protein mass spectrometry and Co-Immunoprecipitation (Co-IP) was used to identify p53 interacting with PTOV1. Immunofluorescence assay, western blot and transmission electron microscopy (TEM) analysis were used to evaluated the effects of PTOV1 on autophagy. RESULTS Here, we revealed that PTOV1 was highly expressed in human CRC tissues, especially at advanced stages, and associated with reduced survival time among CRC patients. The upregulated PTOV1 promoted cell proliferation, migration, invasion, tumor growth and metastasis of CRC cells in vitro and in vivo. At the molecular level, PTOV1 destabilized p53 by activating autophagy and recruiting p53 for the cargo receptor SQSTM1 directed autophagic degradation. There was a negative expression correlation between PTOV1 and p53 in CRC tissues. Moreover, p53 overexpression or SQSTM1 knockdown reversed the pro-tumor phenotypes of PTOV1 in CRC. CONCLUSION Our study unveils the oncogenic role of PTOV1 in CRC progression, which was achieved by promoting SQSTM1 directed autophagic degradation of p53. These findings highlight the potential of targeting the PTOV1-SQSTM1-p53 axis as a therapeutic approach for CRC.
Collapse
Affiliation(s)
- Yongli Fan
- Department of Oncology, the First Affiliated Hospital of Henan University, Kaifeng, 475000, China
| | - Yuqin Li
- Department of Medical Laboratory, Tongji Medical College, the Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiqi Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jingchun Zhan
- College of Anesthesiology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Weilong Chang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rui Deng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianwen Ran
- Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yize Zhang
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yudie Cai
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Zhu
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huifen Wang
- Gene Hospital of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhibo Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Di Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Fujii H, Okuma Y, Hirata M, Shinno Y, Yoshida T, Goto Y, Horinouchi H, Yamamoto N, Ohe Y. EGFR-Mutated Lung Adenocarcinoma With Li-Fraumeni Syndrome: The Imperative for Germline Testing in Patients With a Family History, a Case Report. JTO Clin Res Rep 2025; 6:100691. [PMID: 39906181 PMCID: PMC11791262 DOI: 10.1016/j.jtocrr.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Comprehensive genomic profiling (CGP) has progressed rapidly and plays an important role in advancing precision medicine in oncology. However, CGP provides opportunities for molecular-targeted therapy, but it also unveils incidental germline findings, posing challenges and opportunities in patient care. We present the case of a 32-year-old female patient, diagnosed with stage IVB lung adenocarcinoma harboring an EGFR p.L746_A750del, who was also subsequently diagnosed with Li-Fraumeni syndrome (LFS) through CGP testing. Remarkably, despite the presence of EGFR mutation, the response to EGFR-tyrosine kinase inhibitor was poor, whereas the response to cytotoxic anticancer drugs and immunotherapy was favorable. After the diagnosis of LFS, she underwent genetic counseling and has been screened for the development of a second cancer based on the Toronto protocol. This case highlights the importance of family history interviews and considering the practice of germline genomic testing for optimal management of lung cancer patients with a hereditary cancer syndrome such as LFS. Further research is warranted to delineate the impact of germline variants on treatment outcomes and secondary cancer prevention in lung cancer.
Collapse
Affiliation(s)
- Hiroyuki Fujii
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo, Kyoto, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| |
Collapse
|
6
|
Falini B, Sorcini D, Perriello VM, Sportoletti P. Functions of the native NPM1 protein and its leukemic mutant. Leukemia 2025; 39:276-290. [PMID: 39690184 DOI: 10.1038/s41375-024-02476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML). Due to its unique biological and clinical features, NPM1-mutated AML is regarded as a distinct leukemia entity in the WHO 5th edition and ICC classifications of myeloid malignancies. The NPM1 mutant undergoes changes at the C-terminus of the protein that leads to its delocalization in the cytoplasm of the leukemic cells. Here, we focus also on its biological functions discussing the murine models of NPM1 mutations and the various mechanisms that occur at cytoplasmic and nuclear levels to promote and maintain NPM1-mutated AML.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
| | - Daniele Sorcini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
7
|
Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G, Sutherland KD. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025; 44:115-129. [PMID: 39567755 PMCID: PMC11725503 DOI: 10.1038/s41388-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer. Furthermore, we discuss potential approaches of targeting mutant p53 for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tianwei Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gemma Kelly
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Li C, Xu T, Hou G, Wang Y, Fu Q. DNA nanotechnology-based strategies for gastric cancer diagnosis and therapy. Mater Today Bio 2025; 30:101459. [PMID: 39866794 PMCID: PMC11762204 DOI: 10.1016/j.mtbio.2025.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC. With the advent of nanotechnology, researchers continue to explore new possibilities for accurate diagnosis and effective treatment. One such breakthrough is the application of DNA nanotechnology. In this paper, the application of exciting DNA nanomaterials in the diagnosis and treatment of GC is discussed in depth. Firstly, the biomarkers related to GC and the diagnostic strategies related to DNA nanotechnology are summarized. Second, the latest research progress of DNA nanomaterials in the GC targeted therapy are summarized. Finally, the challenges and opportunities of DNA nanomaterials in the research and clinical application of GC are prospected.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Tongyang Xu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Guopeng Hou
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Yin Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Qinrui Fu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| |
Collapse
|
9
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025:10.1038/s44319-025-00375-y. [PMID: 39875582 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Tseng YH, Tran TTM, Tsai Chang J, Huang YT, Nguyen AT, Chang IYF, Chen YT, Hsieh HW, Juang YL, Chang PMH, Huang TY, Chang YC, Chen YM, Liu H, Huang CYF. Utilizing TP53 hotspot mutations as effective predictors of gemcitabine treatment outcome in non-small-cell lung cancer. Cell Death Discov 2025; 11:26. [PMID: 39870629 PMCID: PMC11772833 DOI: 10.1038/s41420-025-02300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/11/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis. In addition, clinical data from NSCLC patients were collected to evaluate both their TP53 status and their response to gemcitabine, thereby facilitating further validation. Subsequently, NSCLC cell lines with different TP53 status (A549 and H1299) were subjected to gemcitabine treatment to investigate the association between TP53 mutations and gemcitabine response. According to the dataset, NSCLC cell lines carrying TP53 mutations displayed heightened sensitivity to gemcitabine. From a clinical standpoint, patients exhibiting TP53 hotspot mutations demonstrated prolonged overall survival upon gemcitabine treatment. In vitro, overexpressing various hotspot TP53 mutations significantly sensitized H1299 cells to gemcitabine. Moreover, the knockdown of TP53 in A549 cells notably augmented sensitivity to gemcitabine treatment, as evidenced by cell viability and reproductive cell death assays. Conversely, the overexpression of wild-type TP53 in H1299 cells led to an increased resistance against gemcitabine. Gemcitabine is a treatment option for patients with non-small cell lung cancer (NSCLC) who carry TP53 hotspot mutations. This potential effectiveness might arise from its ability to disrupt DNA damage repair processes, leading to G2/M phase cell cycle arrest or an augmentation of mitotic abnormalities, eventually cause cell death. As a result, when planning treatment strategies for NSCLC patients possessing TP53 hotspot mutations, gemcitabine should be considered to incorporate into the indication.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Trieu Thi My Tran
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Yu-Tang Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Anh Thuc Nguyen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan National Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Ian Yi-Feng Chang
- Taiwan National Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Taiwan National Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hao-Wen Hsieh
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yue-Li Juang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yi Huang
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hsuan Liu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Chong Hin Loon Memorial Cancer and Biotherapy Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
11
|
Yuan J, Jiang Y, Chen F, Li T, Zeng Z, Ruan S, Yan J, Lu J, Li Q, Yuan J, Tong Q. Clinical implications of DNA ploidy, stroma, and nucleotyping in predicting peritoneal metastasis risk for gastric cancer. BMC Cancer 2025; 25:144. [PMID: 39863844 PMCID: PMC11762900 DOI: 10.1186/s12885-025-13564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer peritoneal metastasis lacks effective predictive indices. This article retrospectively explored predictive values of DNA ploidy, stroma, and nucleotyping in gastric cancer peritoneal metastasis. METHODS A comprehensive analysis was conducted on specimens obtained from 80 gastric cancer patients who underwent gastric resection at the Department of Gastrointestinal Surgery of Wuhan University Renmin Hospital. Tumor tissues were sectioned and stained. DNA ploidy, stroma, and nucleotyping were quantified using microscopy and digital analysis software. Data analysis was employed by Pearson Chi-square, continuous correction Chi-square, and binary logistic regression. RESULTS Using both univariate and multivariate analysis, pathological T stage and nucleotyping exhibited a positive correlation with peritoneal metastasis. DNA ploidy and stroma showed a positive correlation in univariate analysis. Chi-square tests demonstrated a positive correlation of DNA ploidy, stroma, and nucleotyping with peritoneal metastasis. The combined application of these three indicators displayed heightened predictive value for peritoneal metastasis. Non-diploid status, high stroma, and chromosomal heterogeneity emerged as positive factors for peritoneal metastasis in gastric cancer. CONCLUSIONS DNA ploidy, stroma, and nucleotyping prove to be predictive factors for peritoneal metastasis, with enhanced predictive efficacy when combined in pairs.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yue Jiang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin, 300100, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shasha Ruan
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, 430060, Hubei, China
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiatong Lu
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Li
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Li H, Yang Y, Li B, Yang J, Liu P, Gao Y, Zhang M, Ning G. Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis. Orthop Surg 2025. [PMID: 39846237 DOI: 10.1111/os.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA. METHODS This study identified differentially expressed genes (DEGs) by comparing gene expression levels between normal and KOA samples from the GEO database. Subsequently, we intersected the DEGs with aging-related circadian rhythm genes to obtain a set of aging-associated circadian rhythm genes differentially expressed in KOA. Next, we conducted Mendelian randomization (MR) analysis, using the differentially expressed aging-related circadian rhythm genes in KOA as the exposure factors, their SNPs as instrumental variables, and KOA as the outcome event, to explore the causal relationship between these genes and KOA. We then performed Gene Set Enrichment Analysis (GSEA) to investigate the pathways associated with the selected biomarkers, conducted immune infiltration analysis, built a competing endogenous RNA (ceRNA) network, and performed molecular docking studies. Additionally, the findings and functional roles of the biomarkers were further validated through experiments on human cartilage tissue and cell models. RESULTS A total of 75 differentially expressed aging-circadian rhythm related genes between the normal group and the KOA group were identified by difference analysis, primarily enriched in the circadian rhythm pathway. Two biomarkers (PFKFB4 and DDIT4) were screened by MR analysis. Then, immune infiltration analysis showed significant differences in three types of immune cells (resting dendritic cells, resting mast cells, and M2 macrophages), between the normal and KOA groups. Drug prediction and molecular docking results indicated stable binding of PFKFB4 to estradiol and bisphenol_A, while DDIT4 binds stably to nortriptyline and trimipramine. Finally, cell lines with stable expression of the biomarkers were established by lentiviral infection and resistance screening, Gene expression was significantly elevated in overexpressing cells of PFKFB4 and DDIT4 and reversed the proliferation and migration ability of cells after IL-1β treatment. CONCLUSIONS Two diagnostic and therapeutic biomarkers associated with aging-circadian rhythm in KOA were identified. Functional analysis, molecular mechanism exploration, and experimental validation further elucidated their roles in KOA, offering novel perspectives for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Yuze Yang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| | - Jiaju Yang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Pengyu Liu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Yuanpeng Gao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Min Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China
| |
Collapse
|
13
|
Dyson HJ, Wright PE. How does p53 work? Regulation by the intrinsically disordered domains. Trends Biochem Sci 2025; 50:9-17. [PMID: 39578215 PMCID: PMC11698644 DOI: 10.1016/j.tibs.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Defects in the tumor suppressor protein p53 are found in the majority of cancers. The p53 protein (393 amino acids long) contains the folded DNA-binding domain (DBD) and tetramerization domain (TET), with the remainder of the sequence being intrinsically disordered. Since cancer-causing mutations occur primarily in the DBD, this has been the focus of most of the research on p53. However, recent reports show that the disordered N-terminal activation domain (NTAD) and C-terminal regulatory domain (CTD) function synergistically with the DBD to regulate p53 activity. We propose a mechanistic model in which intermolecular and intramolecular interactions of the disordered regions, modulated by post-translational modifications, perform a central role in the regulation and activation of p53 in response to cellular stress.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Jeyagaran A, Urbanczyk M, Carvajal-Berrio D, Baldissera T, Kaiser PD, Kuhlburger L, Czemmel S, Nahnsen S, Duffy GP, Brucker SY, Layland SL, Schenke-Layland K. ECM Proteins Nidogen-1 and Decorin Restore Functionality of Human Islets of Langerhans upon Hypoxic Conditions. Adv Healthc Mater 2025; 14:e2403017. [PMID: 39511898 PMCID: PMC11730087 DOI: 10.1002/adhm.202403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Transplantation of donor islets of Langerhans is a potential therapeutic approach for patients with diabetes mellitus; however, its success is limited by islet death and dysfunction during the initial hypoxic conditions at the transplantation site. This highlights the need to support the donor islets in the days post-transplantation until the site is vascularized. It was previously demonstrated that the extracellular matrix (ECM) proteins nidogen-1 (NID1) and decorin (DCN) improve the functionality and survival of the β-cell line, EndoC-βH3, and the viability of human islets post-isolation. To advance the use of these ECM proteins toward a clinical application and elucidate the mechanisms of action in primary islets, the study assesses the effects of ECM proteins NID1 and DCN on isolated human donor islets cultured in normoxic and hypoxic conditions. NID1- and DCN-treatment restore β-cell functionality of human donor islets in a hypoxic environment through upregulation of genes involved in glycolytic pathways and reducing DNA fragmentation in hypoxic conditions comparable to normoxic control islets. The results demonstrate that the utilization of NID1 or DCN with islets of Langerhans may have the potential to overcome the hypoxia-induced cell death observed post-transplantation and improve transplant outcomes.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Daniel Carvajal-Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Teresa Baldissera
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Laurence Kuhlburger
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, 72076, Arkansas, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, 72076, Arkansas, Germany
| | - Garry P Duffy
- Discipline of Anatomy and the Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Advanced Materials for Biomedical Engineering (AMBER), Trinity College Dublin & National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Sara Y Brucker
- Department of Women's Health Tübingen, University of Tübingen, 72076, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department of Women's Health Tübingen, University of Tübingen, 72076, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| |
Collapse
|
15
|
Taisei Ito, Ohuchi K, Kurita H, Murakami T, Takizawa S, Fujimaki A, Murata J, Oida Y, Hozumi I, Kitaichi K, Inden M. Neuroprotective effects of activated fibroblast growth factor receptor 1 via the suppression of p53 accumulation against poly-PR-mediated toxicity. Biochem Biophys Res Commun 2025; 743:151181. [PMID: 39693933 DOI: 10.1016/j.bbrc.2024.151181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
A GGGGCC hexanucleotide repeat expansion (HRE) within the C9orf72 gene is a major causative factor in amyotrophic lateral sclerosis (ALS). This aberrant HRE results in the generation of five distinct dipeptide repeat proteins (DPRs). Among the DPRs, poly-PR accumulates in the nucleus and exhibits particularly strong toxicity to motor and cortical neurons. Fibroblast growth factor receptor 1 (FGFR1) is known to promote neurogenesis and inhibit apoptosis in neurons. Nevertheless, there has been no previous report of its neuroprotective effects against poly-PR toxicity. The objective of this study was to investigate the neuroprotective effects of FGFR1 activation in poly-PR-expressing NSC34 motor neuron-like cells. RT-qPCR analysis in NSC34 cells showed that Fgfr1 was the most highly expressed member of the Fgfr family in NSC34 cells. The activation of FGFR1 by FGF2, a common ligand for all FGFRs, exerted neuroprotective effects against the toxicity of poly-PR. Additionally, FGFR1 activation was observed to enhance cell viability through the PI3K-AKT pathway, while the contribution of the MEK-ERK pathway was found to be limited. Furthermore, FGFR1 activation suppressed the accumulation of p53 protein and promoted its degradation through increased murine double minute 2 (MDM2), an E3 ubiquitin ligase that targets p53. The neuroprotective effects were attenuated by PD173074, a selective FGFR1 inhibitor or Nutlin-3a, an inhibitor of the p53-MDM2 interaction. Overall, these findings suggest that FGFR1 activation provides neuroprotection against poly-PR toxicity. Consequently, this study suggests the potential utility of FGFR1 activation as a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Taisei Ito
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan; Laboratory of Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Takanori Murakami
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | | | - Ayaka Fujimaki
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Junya Murata
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Yasuhisa Oida
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Japan.
| |
Collapse
|
16
|
Du K, Shu J, Wu J, Liu N, Ma H, Jiang J, He Y, Wu X. Inorganic arsenic modulates cell apoptosis by regulating Argonaute 2 expression via the p53 pathway. Toxicol Res (Camb) 2025; 14:tfae231. [PMID: 39802611 PMCID: PMC11711588 DOI: 10.1093/toxres/tfae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA). The results showed that silencing AGO2 not only reduced cell viability but also intensified apoptosis, highlighting its role in activating the p53 pathway. This was further supported by increased phosphorylation of p53 at Ser392 and Thr55, reinforcing AGO2's involvement in apoptotic processes. The study underscores the potential of AGO2 as a therapeutic target in arsenic-related pathologies and highlights the critical need for managing occupational exposure to arsenic.
Collapse
Affiliation(s)
- Kunyu Du
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
- The 1 Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan 650032, China
| | - Jingkui Shu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
- The 1 Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan 650032, China
| | - Jintao Wu
- The 1 Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan 650032, China
| | - Na Liu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - He Ma
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - Jinyun Jiang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - Yuefeng He
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - Xinan Wu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| |
Collapse
|
17
|
Xu J, Liu W, Yao Y, Knowles TPJ, Zhang ZG, Zhang YL. Liquid-liquid phase separation in hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1454587. [PMID: 39777266 PMCID: PMC11703843 DOI: 10.3389/fcell.2024.1454587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) drives the formation of membraneless intracellular compartments within both cytoplasm and nucleus. These compartments can form distinct physicochemical environments, and in particular display different concentrations of proteins, RNA, and macromolecules compared to the surrounding cytosol. Recent studies have highlighted the significant role of aberrant LLPS in cancer development and progression, impacting many core processes such as oncogenic signalling pathways, transcriptional dysregulation, and genome instability. In hepatocellular carcinoma (HCC), aberrant formation of biomolecular condensates has been observed in a number of preclinical models, highlighting their significance as an emerging factor in understanding cancer biology and its molecular underpinnings. In this review, we summarize emerging evidence and recent advances in understanding the role of LLPS in HCC, with a particular focus on the regulation and dysregulation of cytoplasmic and nuclear condensates in cancer cells. We finally discuss how an emerging understanding of phase separation processes in HCC opens up new potential treatment avenues.
Collapse
Affiliation(s)
- Jianguo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wangwang Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Yao
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Mou K, Wang H, Zhu S, Luo J, Wang J, Peng L, Lei Y, Zhang Y, Huang S, Zhao H, Li G, Xiang L, Luo Y. Comprehensive analysis of the prognostic and immunological role of cavins in non-small cell lung cancer. BMC Cancer 2024; 24:1525. [PMID: 39695458 DOI: 10.1186/s12885-024-13280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer. However, the expression and prognostic value of cavins in non-small cell lung cancer (NSCLC) remain unexplored. In this study, the expression, survival data, immune infiltration, and functional enrichment of cavins in patients with NSCLC were investigated using multiple databases. Furthermore, different subtypes of cavin-binding proteins were identified through protein-protein interaction networks and k-means clustering. The results showed that the expression of Cavin-1-3 in NSCLC tissues was significantly lower than that in normal tissues, and that Cavin-2 is the major subtype of cavin that inhibits NSCLC progression. It regulates downstream signaling pathways, modulates the infiltration of immune cells and influences the prognosis of NSCLC. Related experiments also confirmed that Cavin-2 promotes the proliferation and metastasis of NSCLC cells. These findings suggest that cavins and their binding proteins may be novel biomarkers for NSCLC prognosis and immunotherapy, providing new treatment options for NSCLC.
Collapse
Affiliation(s)
- Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunke Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shike Huang
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Huarong Zhao
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Gang Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
19
|
Qiu L, Ma Z, Wu X. Mutant p53-Mediated Tumor Secretome: Bridging Tumor Cells and Stromal Cells. Genes (Basel) 2024; 15:1615. [PMID: 39766882 PMCID: PMC11675497 DOI: 10.3390/genes15121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor secretome comprises the totality of protein factors secreted by various cell components within the tumor microenvironment, serving as the primary medium for signal transduction between tumor cells and between tumor cells and stromal cells. The deletion or mutation of the p53 gene leads to alterations in cellular secretion characteristics, contributing to the construction of the tumor microenvironment in a cell non-autonomous manner. This review discusses the critical roles of mutant p53 in regulating the tumor secretome to remodel the tumor microenvironment, drive tumor progression, and influence the plasticity of cancer-associated fibroblasts (CAFs) as well as the dynamics of tumor immunity by focusing on both secreted protein expression and secretion pathways. The aim is to provide new insights for targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (L.Q.); (Z.M.)
| |
Collapse
|
20
|
Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, Li J. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int J Mol Sci 2024; 25:12928. [PMID: 39684639 DOI: 10.3390/ijms252312928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor. It regulates processes including cell cycle checkpoints, DNA repair and apoptosis, thereby preventing the spread of damaged DNA and maintaining genome integrity. On the one hand, p53 can initiate cell cycle arrest and induce cells to enter the G1/S and G2/M checkpoints, preventing cells with damaged DNA from continuing to proliferate and gaining time for DNA repair. At the same time, p53 can promote the activation of DNA repair pathways, including base excision repair, nucleotide excision repair and other repair pathways, to ensure the integrity of genetic material. If the damage is too severe to repair, p53 will trigger the apoptosis process to eliminate potential cancer risks in time. p53 also plays a pivotal role in cancer progression. Mutations in the p53 gene are frequently found in many cancers, and the mutated p53 not only loses its normal tumor suppressor function but may even acquire pro-cancer activity. Therefore, we also discuss therapeutic strategies targeting the p53 pathway, such as the use of small-molecule drugs to restore the function of wild-type p53, the inhibition of negative regulatory factors and synthetic lethality approaches for p53-deficient tumors. This review therefore highlights the important role of p53 in maintaining genomic stability and its potential in therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuxuan Long
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
21
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Pan Y, Chen H, Fu J, Zhang J, Wang P, Chen R, Geng S, Che J, Dong X, Zhou Y, Huang W. Discovery of N-Benzylpiperidinol derivatives as USP7 inhibitors against Hematology. Bioorg Chem 2024; 153:107807. [PMID: 39293304 DOI: 10.1016/j.bioorg.2024.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
USP7 has been recognized as a potential target for the treatment of hematologic malignancies by stabilizing multiple cancer-relevant proteins. Nevertheless, drug-like USP7 inhibitors are still lacking. Herein, compound J21 (USP7 IC50: 41.35 ± 2.16 nM) was discovered based on the structure of L55 and its co-crystal complex with USP7. Additionally, J21 exhibited greater metabolic stability (T1/2: 1.25 h, Cmax: 394.1 ± 48.3 ng/mL, and AUC0-t: 597.8 ± 44.8 ng/mL∙h) compared to L55. These findings may further pave the way for the development of USP7 inhibitors for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Youlu Pan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China
| | - Haifeng Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingfeng Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Peipei Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Runmei Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China
| | - Shuangshuang Geng
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China.
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China.
| |
Collapse
|
23
|
Bai B, An X, Qu Q, Liu X, Liu Y, Wei L. The clinical features and prognostic implications of the co-mutated TP53 gene in advanced non-small cell lung cancer. Clin Transl Oncol 2024; 26:3236-3245. [PMID: 38872053 DOI: 10.1007/s12094-024-03533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND TP53 is a frequently mutated oncogene within non-small cell lung cancer (NSCLC). However, the clinical and prognostic significance of co-mutations in TP53 in patients with advanced NSCLC has not been fully elucidated. METHODS A total of 174 patients with advanced NSCLC were enrolled in this study. All patients were subjected to sequencing analysis of tumor-related genes and information such as PD-L1 expression, TMB, and co-mutation changes were collected. Patients were categorized into TP53 mutant and TP53 wild-type groups according to their TP53 mutation status and then statistically analyzed. RESULTS TP53 mutations were the most common among all patients, accounting for 56.32%, followed by epidermal growth factor receptor mutations at 48.27%. The most common mutation sites in the TP53 mutation group were exons 5-8.TP53 mutations were significantly associated with PD-L1 and TMB levels. Univariate Cox analysis showed that gender and EGFR mutation affected the prognosis of TP53-mutated NSCLC patients, and multivariate Cox regression analysis identified EGFR mutation as an independent risk factor. The OS of NSCLC patients in the TP53 mutation group was significantly shorter than that of the TP53wt group. Survival curves in the TP53/EGFR combined mutation group showed that patients with combined EGFR mutation had a lower survival rate. DISCUSSION TP53 mutations are associated with different clinical indicators and have important implications in clinical treatment. TP53 is a poor prognostic factor for NSCLC patients, and TP53/EGFR co-mutation will affect the survival time of patients. TP53/EGFR co-mutation may be a new prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Bing Bai
- Tai'an City Central Hospital (Tai'an Central Hospital Affiliated to Qingdao University, Mount Taishan Medical Center), Tai'an, 271000, Shandong, China
| | - Xia An
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Qinghui Qu
- Yutai County People's Hospital, Jining, 272300, Shandong, China
| | - Xin Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China.
| | - Yuanyuan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 336 Taishan Street, Taishan District, Tai'an, 271000, Shandong, China
| |
Collapse
|
24
|
Tian X, Zhu Z, Li W, Zhang J, Han B. Identification and characterization of a novel upstream promoter of zebrafish p53 gene. Mol Biol Rep 2024; 52:15. [PMID: 39589571 DOI: 10.1007/s11033-024-10112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND It is widely acknowledged that the p53 gene can be expressed as multiple isoforms with different functions, however the transcriptional mechanism of p53 still needs further investigation. Here we identified an elevated transcription signal about 3.6 kb upstream of the p53 promoter in cold acclimated zebrafish ZF4 cells. METHODS AND RESULTS Through rapid amplification of cDNA ends (RACE), an unreported p53 transcript was cloned, which is transcribed from a novel upstream promoter about 3.6 kb from the canonical p53 promoter. This Novel p53 transcript includes a novel 5'untranslated region (5'UTR) transcribed from the - 3.6 kb region, which is followed by the coding sequences (CDS) encoding wild type (WT) p53 protein. This Novel p53 transcript showed remarkably enhanced stability than WT p53 and Δ113p53 mRNAs, when its novel 5'UTR showed the lowest translation efficiency in luciferase assay. Novel p53 transcript is differentially expressed in various tissues and during different stages of embryonic development of zebrafish. Novel p53 transcript also showed different responses to different stimuli. CONCLUSIONS A novel upstream promoter about 3.6 kb from the canonical P1 promoter of zebrafish p53 gene was found, which transcribes a novel p53 transcript that contains a new 5'UTR and the CDS encoding WT p53 protein. The findings of our study will enhance the current knowledge on the regulation and functionality of the p53 gene in fish.
Collapse
Affiliation(s)
- Xiaoying Tian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhongqiu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenjuan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
25
|
Klein SM, Bozko M, Toennießen A, Rangno D, Bozko P. High p53 Protein Level Is a Negative Prognostic Marker for Pancreatic Adenocarcinoma. Int J Mol Sci 2024; 25:12307. [PMID: 39596373 PMCID: PMC11594790 DOI: 10.3390/ijms252212307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive types of cancer. Among different mechanisms generally believed to be important for the development of cancer, aberrant regulation of the p53 protein is a well-known and common feature for many cancer entities. Our work aims to analyze the impact of p53 deregulation and proteins encoded by p53 target genes on the survival of patients suffering from pancreatic adenocarcinoma. We, therefore, focused on the analysis of the selected collective for the TP53 mutation status, the p53 protein level, their correlation, and possible impacts on the prognosis/survival. We compared and analyzed a set of 123 patients. We have extracted information regarding the TP53 mutation status, p53 protein levels, the level of proteins encoded by prominent p53 target genes, and information on the overall survival. Survival analyses were displayed by Kaplan-Meier plots, using the log-rank test, in order to check for statistical significance. Protein levels were compared using the Mann-Whitney Test. We did not find any statistically significant correlation between the TP53 mutation status and the survival of the patients. Moreover, we have not found any significant correlation between the protein amount of prominent p53 target genes and the patients' survival. However, we see a significant correlation between the p53 protein level in cancer samples and the overall survival of pancreatic adenocarcinoma patients: patients having tumors with a p53 protein level within the upper quartile of all measured cases show a significantly reduced survival compared to the rest of the patients. Thus, in pancreatic adenocarcinoma, the p53 protein level is a relevant marker for prognosis, and cancers having a high p53 protein amount show a shortened patients' survival. In contrast, for this cancer entity, the TP53 mutation status or the protein amount of prominent p53 target genes on their own seems not to have a significant impact on survival.
Collapse
Affiliation(s)
- Sebastian M. Klein
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Universität Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- M3 Research Institute, University Tübingen, 72076 Tübingen, Germany
| | - Maria Bozko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | | | - Dennis Rangno
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Universität Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Universität Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- M3 Research Institute, University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Manzanero-Ortiz S, Franco M, Laxmeesha M, Carmena A. Drosophila p53 tumor suppressor directly activates conserved asymmetric stem cell division regulators. iScience 2024; 27:111118. [PMID: 39524346 PMCID: PMC11546965 DOI: 10.1016/j.isci.2024.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
p53 is the most mutated tumor suppressor gene in human cancers. Besides p53 classical functions inducing cell-cycle arrest and apoptosis in stressed cells, additional p53 non-canonical roles in unstressed cells have emerged over the past years, including the mode of stem cell division regulation. However, the mechanisms by which p53 impacts on this process remain elusive. Here, we show that Drosophila p53 controls asymmetric stem cell division (ASCD), a key process in development, cancer and adult tissue homeostasis, by transcriptionally activating Numb, Brat, and Traf4 ASCD regulators. p53 knockout caused failures in their localization in dividing neural stem cells, as well as a significant decrease in their expression levels. Moreover, p53 directly bound numb, brat, and Traf4 regulatory regions. Remarkably, human and mice genes related to Drosophila brat (TRIM32) and Traf4 (TRAF4) were recently identified in a meta-analysis of transcriptomic and ChIP-seq datasets as predicted conserved p53 targets.
Collapse
Affiliation(s)
- Sandra Manzanero-Ortiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Mahima Laxmeesha
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| |
Collapse
|
27
|
McElhinney K, Irnaten M, O’Callaghan J, O’Brien C. p53 and the E3 Ubiquitin Ligase MDM2 in Glaucomatous Lamina Cribrosa Cells. Int J Mol Sci 2024; 25:12173. [PMID: 39596239 PMCID: PMC11595009 DOI: 10.3390/ijms252212173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Lamina cribrosa (LC) cells play an integral role in extracellular matrix remodeling and fibrosis in human glaucoma. LC cells bear similarities to myofibroblasts that adopt an apoptotic-resistant, proliferative phenotype, a process linked to dysregulation of tumor suppressor-gene p53 pathways, including ubiquitin-proteasomal degradation via murine-double-minute-2 (MDM2). Here, we investigate p53 and MDM2 in glaucomatous LC cells. Primary human LC cells were isolated from glaucomatous donor eyes (GLC) and age-matched normal controls (NLC) (n = 3 donors/group). LC cells were cultured under standard conditions ± 48-h treatment with p53-MDM2-interaction inhibitor RG-7112. Markers of p53-MDM2, fibrosis, and apoptosis were analyzed by real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Cellular proliferation and viability were assessed using colorimetric methyl-thiazolyl-tetrazolium salt assays (MTS/MTT). In GLC versus NLC cells, protein expression of p53 was significantly decreased (p < 0.05), MDM2 was significantly increased, and immunofluorescence showed reduced p53 and increased MDM2 expression in GLC nuclei. RG-7112 treatment significantly increased p53 and significantly decreased MDM2 gene and protein expression. GLC cells had significantly increased protein expression of αSMA, significantly decreased caspase-3 protein expression, and significantly increased proliferation after 96 h. RG-7112 treatment significantly decreased COL1A1 and αSMA, significantly increased BAX and caspase-3 gene expression, and significantly decreased proliferation in GLC cells. MTT-assay showed equivocal cellular viability in NLC/GLC cells with/without RG-7112 treatment. Our data suggests that proliferation and the ubiquitin-proteasomal pathway are dysregulated in GLC cells, with MDM2-led p53 protein degradation negatively impacting its protective role.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Jeffrey O’Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College, University of Dublin, D02 PN40 Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
28
|
Cui J, Makita Y, Okamura T, Ikeda C, Fujiwara SI, Tominaga K. Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells. J Funct Biomater 2024; 15:333. [PMID: 39590537 PMCID: PMC11595556 DOI: 10.3390/jfb15110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral cavity. Photodynamic therapy (PDT) is a new alternative for the treatment of diseases using photosensitizers (PS) and light. In this study, we used a photosensitizer complex (Ce6-MnNPs-Chlorin e6 combined with up-conversion nanoparticles NaYF4:Yb/Er/Mn) to investigate the therapeutic effectiveness of this treatment against oral cancer cells. We also investigated the mechanism of action of near-infrared light PDT (NIR-PDT) combined with the Ce6-MnNPs. After determining a suitable concentration of Ce6-MnNPs using an MTT assay, human oral squamous cell carcinoma cells (HSC-3) were treated with NIR-PDT with Ce6-MnNPs. We examined the characteristics of Ce6-MnNPs by transmission electron microscopy (TEM); a zeta potential and particle size analyzer; Fourier-transform infrared spectroscopy (FTIR); cell viability by MTT assay; and apoptosis by FITC-Annexin V/PI assay. The mitochondrial membrane potential (MMP), apoptosis-related mRNA level (Bax and Bcl-2) and p53 protein were also researched. NIR-PDT with 0.5 ng/µL Ce6-MnNPs inhibited the proliferation of HSC-3 (p < 0.05). After treatment with NIR-PDT, changes in the mitochondrial membrane potential and apoptosis occurred (p < 0.01). The ratio of Bax/Bcl-2 and p53-positive cells increased (p < 0.01). These results suggest that this treatment can induce apoptosis of oral cancer cells.
Collapse
Affiliation(s)
- Jinhao Cui
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Tomoharu Okamura
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Chihoko Ikeda
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Shin-ichi Fujiwara
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Kazuya Tominaga
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| |
Collapse
|
29
|
Hyun K, Ahn J, Kim H, Kim J, Kim YI, Park HS, Roeder RG, Lee JE, Kim J. The BAF complex enhances transcription through interaction with H3K56ac in the histone globular domain. Nat Commun 2024; 15:9614. [PMID: 39511190 PMCID: PMC11544104 DOI: 10.1038/s41467-024-53981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Histone post-translational modifications play pivotal roles in eukaryotic gene expression. To date, most studies have focused on modifications in unstructured histone N-terminal tail domains and their binding proteins. However, transcriptional regulation by chromatin-effector proteins that directly recognize modifications in histone globular domains has yet to be clearly demonstrated, despite the richness of their multiple modifications. Here, we show that the ATP-dependent chromatin-remodeling BAF complex stimulates p53-dependent transcription through direct interaction with H3K56ac located on the lateral surface of the histone globular domain. Mechanistically, the BAF complex recognizes nucleosomal H3K56ac via the DPF domain in the DPF2 subunit and exhibits enhanced nucleosome-remodeling activity in the presence of H3K56ac. We further demonstrate that a defect in H3K56ac-BAF complex interaction leads to impaired p53-dependent gene expression and DNA damage responses. Our study provides direct evidence that histone globular domain modifications participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hyoungmin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - J Eugene Lee
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
30
|
Bhamidipati D, Schram AM. Emerging Tumor-Agnostic Molecular Targets. Mol Cancer Ther 2024; 23:1544-1554. [PMID: 39279103 DOI: 10.1158/1535-7163.mct-23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | - Alison M Schram
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
31
|
Lv Y, Deng Y, Feng J, Liu J, Yang M, Pu Z, Zhang S, Wu Z, Ji N, Park DM, Hao S. NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression. Mol Cancer Ther 2024; 23:1586-1596. [PMID: 39039948 DOI: 10.1158/1535-7163.mct-23-0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/24/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.
Collapse
Affiliation(s)
- Yifan Lv
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuxuan Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jinqiu Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mingxu Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Deric M Park
- Division of Neuro-Oncology, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Xu H, Wang T, Nie H, Sun Q, Jin C, Yang S, Chen Z, Wang X, Tang J, Feng Y, Sun Y. USP36 promotes colorectal cancer progression through inhibition of p53 signaling pathway via stabilizing RBM28. Oncogene 2024; 43:3442-3455. [PMID: 39343961 PMCID: PMC11573713 DOI: 10.1038/s41388-024-03178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Colorectal cancer (CRC) stands as the second most common cause of cancer-related mortality globally and p53, a widely recognized tumor suppressor, contributes to the development of CRC. Ubiquitin-specific protease 36 (USP36), belonging to the deubiquitinating enzyme family, is involved in tumor progression across multiple cancers. However, the underlying molecular mechanism in which USP36 regulates p53 signaling pathway in CRC is unclear. Here, our study revealed that USP36 was increased in CRC tissues and associated with unfavorable prognosis. Functionally, elevated USP36 could promote proliferation, migration, and invasion of CRC cells in vitro and in vivo. Mechanistically, USP36 could interact with and stabilize RBM28 via deubiquitination at K162 residue. Further, upregulated RBM28 could bind with p53 to suppress its transcriptional activity and therefore inactivate p53 signaling pathway. Collectively, our investigation identified the novel USP36/RBM28/p53 axis and its involvement in promoting cell proliferation and metastasis in CRC, which presents a promising therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Hengjie Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Tuo Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Hongxu Nie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Qingyang Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Chi Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Sheng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Zhihao Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Xiaowei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| |
Collapse
|
33
|
Alshammari QA, Alshammari SO, Alshammari A, Alfarhan M, Baali FH. Unraveling the mechanisms of glioblastoma’s resistance: investigating the influence of tumor suppressor p53 and non-coding RNAs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024. [DOI: 10.1007/s00210-024-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
|
34
|
Lin S, Cai K, Feng S, Lin Z. Identification of m5C-Related gene diagnostic biomarkers for sepsis: a machine learning study. Front Genet 2024; 15:1444003. [PMID: 39540021 PMCID: PMC11558340 DOI: 10.3389/fgene.2024.1444003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Sepsis is a serious condition that occurs when the body's response to infection becomes uncontrolled, resulting in a high risk of death. Despite improvements in healthcare, identifying sepsis early is difficult because of its diverse nature and the absence of distinct biomarkers. Recent studies suggest that 5-methylcytosine (m5C)-related genes play a significant role in immune responses, yet their diagnostic potential in sepsis remains unexplored. Methods This research combined and examined four sepsis-related datasets (GSE95233, GSE57065, GSE100159, and GSE65682) sourced from the Gene Expression Omnibus (GEO)database to discover m5C-related genes with differential expression. Various machine learning methods, such as decision tree, random forest, and XGBoost, were utilized in identifying crucial hub genes. Receiver Operating Characteristic (ROC) curve analysis was used to assess the diagnostic accuracy of these genetic markers. Additionally, single-gene enrichment and immune infiltration analyses were conducted to investigate the underlying mechanisms involving these hub genes in sepsis. Results Three hub genes, DNA Methyltransferase 1 (DNMT1), tumor protein P53 (TP53), and toll-like receptor 8 (TLR8), were identified and validated for their diagnostic efficacy, showing area under the curve (AUC) values above 0.7 in both test and validation sets. Enrichment analyses revealed that these genes are involved in key pathways such as p53 signaling and Toll-like receptor signaling. Immune infiltration analysis indicated significant correlations between hub genes and various immune cell types, suggesting their roles in modulating immune responses during sepsis. Conclusion The study highlights the diagnostic potential of m5C-related genes in sepsis and their involvement in immune regulation. These findings offer new insights into sepsis pathogenesis and suggest that DNMT1, TP53, and TLR8 could serve as valuable biomarkers for early diagnosis. Further studies should prioritize validating these biomarkers in clinical settings and investigating their potential for therapy.
Collapse
Affiliation(s)
- Siming Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kexin Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaodan Feng
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhihong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
36
|
Xu L, Fan X, He Y, Xia X, Zhang J. Design, Synthesis, and Biological Evaluation of Lysine-Stapled Peptide Inhibitors of p53-MDM2/MDMX Interactions with Potent Antitumor Activity In Vivo. J Med Chem 2024; 67:17893-17904. [PMID: 39300610 DOI: 10.1021/acs.jmedchem.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We introduce novel lysine-stapled peptide inhibitors targeting p53-MDM2/MDMX interactions. Leveraging the model peptides pDI (LTFEHYWAQLTS) and PMI-M3 (LTFLEYWAQLMQ) as starting points, a series of lysine-stapled analogues were designed and synthesized. Through in vitro cell assay screening, two lead compounds, SPDI-48-T1 and SPMI-48-T3, were identified for their excellent antiproliferation activity. Fluorescence polarization assays revealed that both compounds exhibited strong binding affinities against MDM2 and MDMX, ascertained by Kd values within the low micromolar spectrum. Further characterization of SPDI-48-T1 and SPMI-48-T3 demonstrated that SPDI-48-T1 possessed superior cell permeability and serum stability. Notably, SPDI-48-T1 displayed a dose-dependent suppression of tumor growth in an HCT116 xenograft mouse model. Our findings indicate that SPDI-48-T1 holds promise as a lead compound for further development as an anticancer agent by modulating p53-MDM2/MDMX interactions. Additionally, this study also proved that the lysine stapling strategy may serve as a robust approach for generating peptide ligands targeting other protein-protein interactions.
Collapse
Affiliation(s)
- Lei Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xin Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yi He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xuefeng Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Jinqiang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
- Chongqing University Industrial Technology Research Institute, Chongqing 401329, People's Republic of China
| |
Collapse
|
37
|
Gautam P, Ciuta I, Teif VB, Sinha SK. Predicting p53-dependent cell transitions from thermodynamic models. J Chem Phys 2024; 161:135101. [PMID: 39356070 DOI: 10.1063/5.0225166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
A cell's fate involves transitions among its various states, each defined by a distinct gene expression profile governed by the topology of gene regulatory networks, which are affected by 3D genome organization. Here, we develop thermodynamic models to determine the fate of a malignant cell as governed by the tumor suppressor p53 signaling network, taking into account long-range chromatin interactions in the mean-field approximation. The tumor suppressor p53 responds to stress by selectively triggering one of the potential transcription programs that influence many layers of cell signaling. These range from p53 phosphorylation to modulation of its DNA binding affinity, phase separation phenomena, and internal connectivity among cell fate genes. We use the minimum free energy of the system as a fundamental property of biological networks that influences the connection between the gene network topology and the state of the cell. We constructed models based on network topology and equilibrium thermodynamics. Our modeling shows that the binding of phosphorylated p53 to promoters of target genes can have properties of a first order phase transition. We apply our model to cancer cell lines ranging from breast cancer (MCF-7), colon cancer (HCT116), and leukemia (K562), with each one characterized by a specific network topology that determines the cell fate. Our results clarify the biological relevance of these mechanisms and suggest that they represent flexible network designs for switching between developmental decisions.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
38
|
Miao J, Gao L, Liu X, Cai W, Chen L, Chen M, Sun Y. Exploring the therapeutic mechanisms of Yikang decoction in polycystic ovary syndrome: an integration of GEO datasets, network pharmacology, and molecular dynamics simulations. Front Med (Lausanne) 2024; 11:1455964. [PMID: 39421869 PMCID: PMC11484630 DOI: 10.3389/fmed.2024.1455964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Objective The incidence of Polycystic Ovary Syndrome (PCOS) is increasing annually. This study aims to investigate the therapeutic mechanisms of Yikang Decoction (YKD) in the treatment of PCOS through the integration of GEO datasets, network pharmacology, and dynamic simulation. Methods Active ingredients of YKD and their targets were collected from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. Disease-relevant targets for PCOS were retrieved from several databases, including GeneCards, OMIM, PharmGKB, DrugBank, and GEO. The underlying pathways associated with the overlapping targets between YKD and PCOS were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The mechanisms of interaction between the core targets and components were further explored through molecular docking and molecular dynamics simulations (MD). Results 139 potential active components and 315 targets of YKD were identified. A topological analysis of the PPI network revealed 10 core targets. These targets primarily participated in the regulation of biological processes, including cell metabolism, apoptosis, and cell proliferation. The pathways associated with treating PCOS encompassed PI3K-Akt signaling pathway, Lipid and atherosclerosis, MAPK signaling pathways, and Endocrine resistance signaling pathways. Moreover, molecular docking and MD have been shown to reveal a good binding capacity between active compounds and screening targets. Conclusion This study systematically investigates the multi-target mechanisms of YKD in the treatment of PCOS, with preliminary verification provided through molecular docking and MD. The findings offer compelling evidence supporting the efficacy of YKD in treating PCOS.
Collapse
Affiliation(s)
- Jiang Miao
- Department of Pharmacy, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - LiXuan Gao
- Department of Rehabilitation Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Xi Liu
- Wuyanling National Natural Reserve Administrative of Zhejiang, Wenzhou, China
| | - Wenpin Cai
- Department of Laboratory Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Lei Chen
- Department of Pharmacy, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Mojinzi Chen
- Department of Chinese Internal Medicine, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Yun Sun
- Department of Gynaecology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
39
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Takahashi S, Sato N, Kaneko K, Masuda N, Kawai M, Hirakawa H, Nomizu T, Iwata H, Ueda A, Ishikawa T, Bando H, Inoue Y, Ueno T, Ohno S, Kubo M, Yamauchi H, Okamoto M, Tokunaga E, Kamigaki S, Aogi K, Komatsu H, Kitada M, Uemoto Y, Toyama T, Yamamoto Y, Yamashita T, Yanagawa T, Yamashita H, Matsumoto Y, Toi M, Miyashita M, Ishida T, Fujishima F, Sato S, Yamaguchi T, Takahashi F, Ishioka C. TP53 signature predicts pathological complete response after neoadjuvant chemotherapy for breast cancer: Observational and confirmational study using prospective study cohorts. Transl Oncol 2024; 48:102060. [PMID: 39047382 PMCID: PMC11325231 DOI: 10.1016/j.tranon.2024.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The TP53 signature is considered a predictor of neoadjuvant chemotherapy (NAC) response and prognostic factor in breast cancer. The objective of this study was to confirm TP53 signature can predict pathological complete response (pCR) and prognosis in cohorts of breast cancer patients who received NAC in prospective studies. Development cohorts (retrospective [n = 37] and prospective [n = 216] cohorts) and validation cohorts (NAC administered prospective study cohorts [n = 407] and retrospective perioperative chemotherapy (PC)-naïve, hormone receptor (HrR)-positive cohort [PC-naïve_HrR+ cohort] [n = 322]) were used. TP53 signature diagnosis kit was developed using the development cohorts. TP53 signature predictability for pCR and the relationship between recurrence-free survival (RFS), overall survival (OS), and the TP53 signature were analyzed. The pCR rate of the mutant (mt) signature group was significantly higher than that of the wild-type (wt) signature group (odds ratio, 5.599; 95 % confidence interval = 1.876-16.705; P = 0.0008). The comparison of the RFS and OS between the HrR+ and HER2- subgroup of the NAC cohort and of the PC-naïve_HrR+ cohort indicated that the RFS and OS benefit of NAC was greater in the mt signature group than in the wt signature group. From post hoc analyses, the RFS and OS benefit from adding capecitabine to FEC+T as NAC might be observed only in the mt signature group. The TP53 signature can predict the pCR after NAC, and the RFS and OS benefit from NAC may be greater in the mt signature group than in the wt signature group.
Collapse
Affiliation(s)
- Shin Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan; Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuaki Sato
- Department of Breast Oncology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Kouji Kaneko
- Department of Breast Oncology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Norikazu Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masaaki Kawai
- Department of Breast Surgery, Miyagi Cancer Center Hospital, Miyagi, Japan; Department of Surgery I, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | | | - Tadashi Nomizu
- Department of Surgery, Hoshi General Hospital, Fukushima, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Ai Ueda
- Department of Breast Oncology and Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Takashi Ishikawa
- Department of Breast Oncology and Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Hiroko Bando
- Breast and Endocrine Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuka Inoue
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Ueno
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinji Ohno
- Breast Oncology Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Kubo
- Department of Breast Surgical Oncology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Masahiro Okamoto
- Department of Breast Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Eriko Tokunaga
- Department of Breast Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shunji Kamigaki
- Department of Surgery, Sakai Municipal Hospital, Sakai, Japan
| | - Kenjiro Aogi
- Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Hideaki Komatsu
- Department of Surgery, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Masahiro Kitada
- Breast Disease Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Yasuaki Uemoto
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Toshinari Yamashita
- Department of Breast Surgery and Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takehiro Yanagawa
- Department of Breast Surgery, Kansai Rosai Hospital, Amagasaki, Japan
| | - Hiroko Yamashita
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshiaki Matsumoto
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Satoko Sato
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takuhiro Yamaguchi
- Division of Biostatistics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiaki Takahashi
- Division of Medical Engineering, Department of Information Science, Iwate Medical University, Yahaba, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan; Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
41
|
Gener-Ricos G, Bewersdorf JP, Loghavi S, Bataller A, Goldberg AD, Sasaki K, Famulare C, Takahashi K, Issa GC, Borthakur G, Kadia TM, Short NJ, Senapati J, Carter BZ, Patel KP, Kantarjian H, Andreeff M, Stein EM, DiNardo CD. TP53 Y220C mutations in patients with myeloid malignancies. Leuk Lymphoma 2024; 65:1511-1515. [PMID: 38856690 DOI: 10.1080/10428194.2024.2363440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Georgina Gener-Ricos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan P Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aaron D Goldberg
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Koji Sasaki
- Department of Leukemia, UT MD Anderson Cancer Center, Houston, USA
| | - Christopher Famulare
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
42
|
Aquino LVCD, Olindo SL, Silva YLFE, Oliveira LRMD, Moura YBF, Rodrigues ALR, Praxedes ÉA, Oliveira MFD, Silva AR, Pereira AF. Cryopreservation and passaging optimization for Galea spixii (Wagler, 1831) adult skin fibroblast lines: A step forward in species management and genetic studies. Acta Histochem 2024; 126:152185. [PMID: 39059228 DOI: 10.1016/j.acthis.2024.152185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND In vitro culture of fibroblasts is a technique based on cell isolation, physiological characterization, and cryopreservation. This technique has not been described for Galea spixii, therefore, it can be used to learn about its cellular biology and genetic diversity. OBJECTIVE We established fibroblast lines of six G. spixii individuals from several passages (second, fifth, eighth, and tenth) and cryopreserved them. METHODS Fibroblasts recovered from skin biopsies were identified based on morphology, immunocytochemistry, and karyotyping. The cells were analyzed for morphology, ultrastructure, viability, proliferation, metabolism, oxidative stress, bioenergetic potential, and apoptosis before and after cryopreservation. RESULTS After the eighth passage, the fibroblasts showed morphological and karyotypic changes, although their viability, metabolism, and proliferation did not change. An increase in oxidative stress and bioenergetic potential from the fifth to the eighth passages were also observed. Post cryopreservation, cell damage with respect to the ultrastructure, viability, proliferative rate, apoptotic levels, oxidative stress, and bioenergetic potential were verified. CONCLUSION Fibroblasts up to the tenth passage could be cultured in vitro. However, cells at the fifth passage were of better quality to be used for reproductive techniques. Additionally, optimization of the cryopreservation protocol is essential to improve the physiological parameters of these cells.
Collapse
Affiliation(s)
| | - Samara Lima Olindo
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | | | | | | | | | - Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil. erikaalmeida-@hotmail.com
| | - Moacir Franco de Oliveira
- Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasma Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | | |
Collapse
|
43
|
Guo W, Ren Y, Qiu X. FBXO2 promotes the progression of papillary thyroid carcinoma through the p53 pathway. Sci Rep 2024; 14:22574. [PMID: 39343799 PMCID: PMC11439943 DOI: 10.1038/s41598-024-73455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Emerging evidence have demonstrated that F-box only protein 2 (FBXO2) is intimately associated with malignant tumor development and occurrence. However, neither the functions nor the molecular mechanisms underlying FBXO2 have been determined in the papillary thyroid carcinoma (PTC). The quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry were carried out to detect the FBXO2 expression in PTC tissues. CCK-8 assay, EdU assay and flow cytometry were used to assess cell proliferation, cell cycle and apoptosis. The trans-well assay was conducted to determine the cell invasiveness. The effect of FBXO2 on PTC cell proliferation in vivo was observed through a subcutaneous tumor formation experiment in nude mice. Immunoprecipitation were conducted to detect the interaction between FBXO2 and p53. The ubiquitination assays were conducted to assess the regulation of p53 ubiquitination by FBXO2. FBXO2 was overexpressed in both PTC tissues and cell lines. FBXO2 expression positively correlated with PTC tumor size, lymphatic metastasis, and extramembranous invasion. Furthermore, silencing FBXO2 inhibited PTC cell proliferation and promoted apoptosis. The overexpression of FBXO2 significantly promotes PTC cell proliferation. Mechanistic studies revealed that FBXO2 could directly bind to p53 and promote its ubiquitination degradation. Knockdown of p53 partially reversed the progression arrest induced by FBXO2 Knockdown in PTC cells. FBXO2 knockdown inhibited PTC cell proliferation and promoted apoptosis by targeting p53 for ubiquitination and degradation. This process represents a research foundation for its diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Wenke Guo
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaoqiang Ren
- Department of Urology, Fenyang Hospital of Shanxi Province, Lüliang, Shanxi, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
44
|
Yin D, Xiong R, Yang Z, Feng J, Liu W, Li S, Li M, Ruan H, Li J, Li L, Lai L, Guo X. Mapping Full Conformational Transition Dynamics of Intrinsically Disordered Proteins Using a Single-Molecule Nanocircuit. ACS NANO 2024. [PMID: 39276130 DOI: 10.1021/acsnano.4c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Intrinsically disordered proteins (IDPs) are emerging therapeutic targets for human diseases. However, probing their transient conformations remains challenging because of conformational heterogeneity. To address this problem, we developed a biosensor using a point-functionalized silicon nanowire (SiNW) that allows for real-time sampling of single-molecule dynamics. A single IDP, N-terminal transactivation domain of tumor suppressor protein p53 (p53TAD1), was covalently conjugated to the SiNW through chemical engineering, and its conformational transition dynamics was characterized as current fluctuations. Furthermore, when a globular protein ligand in solution bound to the targeted p53TAD1, protein-protein interactions could be unambiguously distinguished from large-amplitude current signals. These proof-of-concept experiments enable semiquantitative, realistic characterization of the structural properties of IDPs and constitute the basis for developing a valuable tool for protein profiling and drug discovery in the future.
Collapse
Affiliation(s)
- Dongbao Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Ruoyao Xiong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Zhiheng Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Jianfei Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Wenzhe Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Shiyun Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Hao Ruan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
- National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
45
|
Holst-Hansen T, Nielsen PY, Jensen MH, Mandrup-Poulsen T, Trusina A. Tipping-point transition from transient to persistent inflammation in pancreatic islets. NPJ Syst Biol Appl 2024; 10:102. [PMID: 39266581 PMCID: PMC11393080 DOI: 10.1038/s41540-024-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with a systemic increase in the pro-inflammatory cytokine IL-1β. While transient exposure to low IL-1β concentrations improves insulin secretion and β-cell proliferation in pancreatic islets, prolonged exposure leads to impaired insulin secretion and collective β-cell death. IL-1 is secreted locally by islet-resident macrophages and β-cells; however, it is unknown if and how the two opposing modes may emerge at single islet level. We investigated the duality of IL-1β with a quantitative in silico model of the IL-1 regulatory network in pancreatic islets. We find that the network can produce either transient or persistent IL-1 responses when induced by pro-inflammatory and metabolic cues. This suggests that the duality of IL-1 may be regulated at the single islet level. We use two core feedbacks in the IL-1 regulation to explain both modes: First, a fast positive feedback in which IL-1 induces its own production through the IL-1R/IKK/NF-κB pathway. Second, a slow negative feedback where NF-κB upregulates inhibitors acting at different levels along the IL-1R/IKK/NF-κB pathway-IL-1 receptor antagonist and A20, among others. A transient response ensues when the two feedbacks are balanced. When the positive feedback dominates over the negative, islets transit into the persistent inflammation mode. Consistent with several observations, where the size of islets was implicated in its inflammatory state, we find that large islets and islets with high density of IL-1β amplifying cells are more prone to transit into persistent IL-1β mode. Our results are likely not limited to IL-1β but are general for the combined effect of multiple pro-inflammatory cytokines and chemokines. Generalizing complex regulations in terms of two feedback mechanisms of opposing nature and acting on different time scales provides a number of testable predictions. Taking islet architecture and cellular heterogeneity into consideration, further dynamic monitoring and experimental validation in actual islet samples will be crucial to verify the model predictions and enhance its utility in clinical applications.
Collapse
Affiliation(s)
| | - Pernille Yde Nielsen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Bakhanashvili M. The Role of Tumor Suppressor p53 Protein in HIV-Host Cell Interactions. Cells 2024; 13:1512. [PMID: 39329696 PMCID: PMC11429533 DOI: 10.3390/cells13181512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The virus-host relationship is indispensable for executing successful viral infection. The pathogenesis of HIV is determined by an intricate interaction between the host and the virus for the regulation of HIV infection, thereby influencing various aspects, including the regulation of signaling pathways. High mutation rates and population heterogeneity characterize HIV with consequences for viral pathogenesis and the potential to escape the immune system and anti-viral inhibitors used in therapy. The origin of the high mutation rates exhibited by HIV may be attributed to a limited template-copied fidelity that likely operates in the cytoplasm. HIV-1 infection induces upregulation and activation of tumor suppressor p53 protein in the early stages of HIV-1 infection. p53 plays a multifaceted role in the context of HIV infection, thereby affecting viral replication. p53 is involved in maintaining genetic integrity, actively participating in various DNA repair processes through its various biochemical activities and via its ability to interact with components of the repair machinery. This report focuses on the impact of the p53 protein on the HIV-1 reverse transcription process while incorporating various incorrect and non-canonical nucleotides. The presence of functional host-coded p53 protein with proofreading-repair activities in the cytoplasm may lead to various biological outcomes.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
47
|
Dzhemileva LU, D'yakonov VA, Egorova KS, Ananikov VP. Mechanisms of cytotoxicity in six classes of ionic liquids: Evaluating cell cycle impact and genotoxic and apoptotic effects. CHEMOSPHERE 2024; 364:142964. [PMID: 39074667 DOI: 10.1016/j.chemosphere.2024.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Ionic liquids (ILs), earlier praised for their eco-friendliness, have emerged as key chemicals in advancing green chemistry, catalysis, solvent development, and more. However, the discovery of their notable toxicity has led to a controversial reputation of ILs and has shifted the research landscape towards understanding their biological impacts. The present study examines the mechanism of cytotoxicity of 32 ILs across six classes, highlighting their effects on the cell cycle of the Jurkat cell line. Focusing on five ILs with pronounced cytotoxicity, we uncover their genotoxic effects and their role in inducing apoptosis. Our findings suggest intricate interplay between the extrinsic and intrinsic apoptotic pathways at different time points after exposure to ILs. Moreover, the ILs studied displayed marked genotoxicity, likely stemming from the accumulation of double-strand DNA breaks in the Jurkat cells. This investigation offers a comprehensive view on interactions of ILs with eukaryotic cells, thereby providing new guidelines for developing safer pharmaceutical and industrial applications of these chemicals. The results not only broaden and enhance the previous perceptions but also open new avenues in research, emphasizing the dual potential of ILs in innovation and safety, and marking a significant step towards integrating chemical innovations with biological safety.
Collapse
Affiliation(s)
- Lilya U Dzhemileva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A D'yakonov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
48
|
Zhou XP, Xing JP, Sun LB, Tian SQ, Luo R, Liu WH, Song XY, Gao SH. Molecular characteristics and systemic treatment options of liposarcoma: A systematic review. Biomed Pharmacother 2024; 178:117204. [PMID: 39067161 DOI: 10.1016/j.biopha.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Liposarcoma (LPS) is a rare soft tissue sarcoma that develops from the differentiation of fat cells, typically occurring in the lower extremities and retroperitoneal space. Depending on its histological morphology and molecular changes, LPS can be divided into various subtypes, each exhibiting distinct biological behaviors. During treatment, especially for LPS arising in the retroperitoneum, the extent and quality of the initial surgery are critically important. Treatment strategies must be tailored to the specific type of LPS. Over the past few decades, the treatment of LPS has undergone numerous advancements, with new therapeutic approaches such as targeted drugs and immunotherapies continually emerging. This paper reviews the biological characteristics, molecular alterations, as well as surgical and pharmacological treatments of various LPS subtypes, with the aim of enhancing clinicians' understanding and emphasizing the importance of individualized precision therapy. With a deeper understanding of the biological characteristics and molecular alterations of LPS, future treatment trends are likely to focus more on developing personalized treatment plans to better address the various types of LPS.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Sheng-Qi Tian
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Ran Luo
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
49
|
Diaz Escarcega R, Murambadoro K, Valencia R, Moruno-Manchon JF, Furr Stimming EE, Jung SY, Tsvetkov AS. Sphingosine kinase 2 regulates protein ubiquitination networks in neurons. Mol Cell Neurosci 2024; 130:103948. [PMID: 38909878 DOI: 10.1016/j.mcn.2024.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
Two sphingosine kinase isoforms, sphingosine kinase 1 (SPHK1) and sphingosine kinase 2 (SPHK2), synthesize the lipid sphingosine-1-phosphate (S1P) by phosphorylating sphingosine. SPHK1 is a cytoplasmic kinase, and SPHK2 is localized to the nucleus and other organelles. In the cytoplasm, the SPHK1/S1P pathway modulates autophagy and protein ubiquitination, among other processes. In the nucleus, the SPHK2/S1P pathway regulates transcription. Here, we hypothesized that the SPHK2/S1P pathway governs protein ubiquitination in neurons. We found that ectopic expression of SPHK2 increases ubiquitinated substrate levels in cultured neurons and pharmacologically inhibiting SPHK2 decreases protein ubiquitination. With mass spectrometry, we discovered that inhibiting SPHK2 affects lipid and synaptic protein networks as well as a ubiquitin-dependent protein network. Several ubiquitin-conjugating and hydrolyzing proteins, such as the E3 ubiquitin-protein ligases HUWE1 and TRIP12, the E2 ubiquitin-conjugating enzyme UBE2Z, and the ubiquitin-specific proteases USP15 and USP30, were downregulated by SPHK2 inhibition. Using RNA sequencing, we found that inhibiting SPHK2 altered lipid and neuron-specific gene networks, among others. Genes that encode the corresponding proteins from the ubiquitin-dependent protein network that we discovered with mass spectrometry were not affected by inhibiting SPHK2, indicating that the SPHK2/S1P pathway regulates ubiquitination at the protein level. We also show that both SPHK2 and HUWE1 were upregulated in the striatum of a mouse model of Huntington's disease, the BACHD mice, indicating that our findings are relevant to neurodegenerative diseases. Our results identify SPHK2/S1P as a novel regulator of protein ubiquitination networks in neurons and provide a new target for developing therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, United States of America
| | - Karen Murambadoro
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, United States of America
| | - Ricardo Valencia
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, United States of America
| | - Jose Felix Moruno-Manchon
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, United States of America
| | - Erin E Furr Stimming
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, United States of America
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, United States of America.
| | - Andrey S Tsvetkov
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, United States of America; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, United States of America; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX 77030, United States of America.
| |
Collapse
|
50
|
Moyen Uddin Pk M, O'Sullivan J, Sayful Islam M, Shahangir Biswas M, Arbia L, Pervin R, Rahman M. Investigating the Anticancer Effects of Pleurotus ostreatus Polysaccharide on G0/G1 Cell Cycle Arrest and Apoptosis in Ehrlich Ascites Carcinoma Cells. Chem Biodivers 2024; 21:e202400897. [PMID: 38970566 DOI: 10.1002/cbdv.202400897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
Cancer is one of the leading causes of mortality worldwide. Despite the advancement of cancer treatment by various means including surgery, chemotherapy etc, cancer is still a challenging disease to manage. This study was undertaken to investigate extraction, purification, structural elucidation, and the potential anti-cancer effects of Pleurotus ostreatus polysaccharide (POP). The anti-cancer activities were performed on the Ehrlich Ascites Carcinoma Cell Line. The results demonstrated that the MW of POP was154649.8 Da with homopolysaccharide composed of D-glucose units, featuring (1→6)-α-D-Glcp backbone with O-6 branches and T-α-D-Glcp terminations. and the yield was 6.27 %. The antitumor activity assessment demonstrated significant cytotoxicity of POP against Ehrlich Ascites Carcinoma (EAC) cells, with an IC50 of 121.801 μg mL, supported by LDH release analysis. POP inhibited cell migration, invasion, and colony formation, indicating its potential as an anti-cancer agent. POP elicited the apoptotic activity with the upregulation of Caspase-9 and Bax, and downregulation of Bcl-2. The DNA fragmentation assay further confirmed apoptosis-mediated DNA degradations. Additionally, POP-induced cell cycle arrest at the G0/G1 phase, by altering the expression of p53, Cyclin D, and Cdk4 proteins. So, Pleurotus ostreatus polysaccharide (POP) showed significant cytotoxicity on Ehrlich Ascites Carcinoma cells, indicating potential as an anti-cancer agent.
Collapse
Affiliation(s)
- Md Moyen Uddin Pk
- Institute of Biological Sciences, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Jane O'Sullivan
- Department of Anaesthesiology and Critical Care, Tallaght University Hospital, Dublin, Ireland
| | - Mohammad Sayful Islam
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Mohammad Shahangir Biswas
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj, 6751, Bangladesh
| | - Lubatul Arbia
- Department of Biochemistry & Molecular Biology, Primeasia University, Dhaka-1213, Bangladesh
| | - Rumana Pervin
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Matiar Rahman
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|