1
|
Guzmán A, Rosales-Torres AM, Medina-Moctezuma ZB, González-Aretia D, Hernández-Coronado CG. Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review. Gen Comp Endocrinol 2024; 357:114593. [PMID: 39047797 DOI: 10.1016/j.ygcen.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.
Collapse
Affiliation(s)
- A Guzmán
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - A M Rosales-Torres
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - Z B Medina-Moctezuma
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - D González-Aretia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - C G Hernández-Coronado
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Lin JLJ, Yuan HS. Lipid-Binding Regions within PKC-Related Serine/Threonine Protein Kinase N1 (PKN1) Required for Its Regulation. Biochemistry 2024; 63:743-753. [PMID: 38441874 PMCID: PMC10956426 DOI: 10.1021/acs.biochem.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
PKC-related serine/threonine protein kinase N1 (PKN1) is a protease/lipid-activated protein kinase that acts downstream of the RhoA and Rac1 pathways. PKN1 comprises unique regulatory, hinge region, and PKC homologous catalytic domains. The regulatory domain harbors two homologous regions, i.e., HR1 and C2-like. HR1 consists of three heptad repeats (HR1a, HR1b, and HR1c), with PKN1-(HR1a) hosting an amphipathic high-affinity cardiolipin-binding site for phospholipid interactions. Cardiolipin and C18:1 oleic acid are the most potent lipid activators of PKN1. PKN1-(C2) contains a pseudosubstrate sequence overlapping that of C20:4 arachidonic acid. However, the cardiolipin-binding site(s) within PKN1-(C2) and the respective binding properties remain unclear. Herein, we reveal (i) that the primary PKN1-(C2) sequence contains conserved amphipathic cardiolipin-binding motif(s); (ii) that trimeric PKN1-(C2) predominantly adopts a β-stranded conformation; (iii) that two distinct types of cardiolipin (or phosphatidic acid) binding occur, with the hydrophobic component playing a key role at higher salt levels; (iv) the multiplicity of C18 fatty acid binding to PKN1-(C2); and (v) the relevance of our lipid-binding parameters for PKN1-(C2) in terms of kinetic parameters previously determined for the full-length PKN1 enzyme. Thus, our discoveries create opportunities to design specific mammalian cell inhibitors that disrupt the localization of membrane-associated PKN1 signaling molecules.
Collapse
Affiliation(s)
- Jason L. J. Lin
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Biochemistry and Molecular Biology, University
of Melbourne, Victoria 3010, Australia
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Lolicato F, Nickel W, Haucke V, Ebner M. Phosphoinositide switches in cell physiology - From molecular mechanisms to disease. J Biol Chem 2024; 300:105757. [PMID: 38364889 PMCID: PMC10944118 DOI: 10.1016/j.jbc.2024.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
4
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Zerihun M, Rubin SJS, Silnitsky S, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part II: Peptides as Allosteric Protein Kinase C Modulators Targeting Protein-Protein Interactions. Int J Mol Sci 2023; 24:17504. [PMID: 38139336 PMCID: PMC10743673 DOI: 10.3390/ijms242417504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Human protein kinases are highly-sought-after drug targets, historically harnessed for treating cancer, cardiovascular disease, and an increasing number of autoimmune and inflammatory conditions. Most current treatments involve small molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP-binding pocket. As a result, these compounds are often poorly selective and highly toxic. Part I of this series reviews the role of PKC isoforms in various human diseases, featuring cancer and cardiovascular disease, as well as translational examples of PKC modulation applied to human health and disease. In the present Part II, we discuss alternative allosteric binding mechanisms for targeting PKC, as well as novel drug platforms, such as modified peptides. A major goal is to design protein kinase modulators with enhanced selectivity and improved pharmacological properties. To this end, we use molecular docking analysis to predict the mechanisms of action for inhibitor-kinase interactions that can facilitate the development of next-generation PKC modulators.
Collapse
Affiliation(s)
- Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed 1311502, Israel; (M.Z.); (S.S.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed 1311502, Israel; (M.Z.); (S.S.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed 1311502, Israel; (M.Z.); (S.S.)
| |
Collapse
|
6
|
Phadnis VV, Snider J, Varadharajan V, Ramachandiran I, Deik AA, Lai ZW, Kunchok T, Eaton EN, Sebastiany C, Lyakisheva A, Vaccaro KD, Allen J, Yao Z, Wong V, Geng B, Weiskopf K, Clish CB, Brown JM, Stagljar I, Weinberg RA, Henry WS. MMD collaborates with ACSL4 and MBOAT7 to promote polyunsaturated phosphatidylinositol remodeling and susceptibility to ferroptosis. Cell Rep 2023; 42:113023. [PMID: 37691145 PMCID: PMC10591818 DOI: 10.1016/j.celrep.2023.113023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner. Mechanistically, MMD physically interacts with both ACSL4 and MBOAT7, two enzymes that catalyze sequential steps to incorporate AA in phosphatidylinositol (PI) lipids. Thus, MMD increases the flux of AA into PI, resulting in heightened cellular levels of AA-PI and other AA-containing phospholipid species. This molecular mechanism points to a pro-ferroptotic role for MBOAT7 and AA-PI, with potential therapeutic implications, and reveals that MMD is an important regulator of cellular lipid metabolism.
Collapse
Affiliation(s)
- Vaishnavi V Phadnis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Elinor Ng Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Anna Lyakisheva
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kyle D Vaccaro
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Juliet Allen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Betty Geng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kipp Weiskopf
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Mediterranean Institute for Life Sciences, 21000 Split, Croatia
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Jones AC, Kornev AP, Weng JH, Manning G, Taylor SS, Newton AC. Single-residue mutation in protein kinase C toggles between cancer and neurodegeneration. Biochem J 2023; 480:1299-1316. [PMID: 37551632 PMCID: PMC10586763 DOI: 10.1042/bcj20220397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Conventional protein kinase C (cPKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent the accumulation of aberrantly active enzyme. Here, we examine how a highly conserved residue in the C1A domain of cPKC isozymes permits quality-control degradation when mutated to histidine in cancer (PKCβ-R42H) and blocks down-regulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (PKCγ-R41P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and down-regulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.
Collapse
Affiliation(s)
- Alexander C. Jones
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92093, U.S.A
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| | | | - Susan S. Taylor
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, La Jolla, CA 92093, U.S.A
| |
Collapse
|
8
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
9
|
Jones AC, Kornev AP, Weng JH, Manning G, Taylor SS, Newton AC. Single-residue mutation in protein kinase C toggles between cancer and neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532226. [PMID: 36993163 PMCID: PMC10055082 DOI: 10.1101/2023.03.16.532226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Conventional protein kinase C (PKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent accumulation of aberrantly active enzyme. Here, we examine how a single residue in the C1A domain of PKCβ, arginine 42 (R42), permits quality-control degradation when mutated to histidine in cancer (R42H) and blocks downregulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (R42P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and downregulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity to that of WT. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.
Collapse
|
10
|
Yang Z, Liu J, Zhu X, Yang F, Zhang Q, Shah HA. FragDPI: a novel drug-protein interaction prediction model based on fragment understanding and unified coding. FRONTIERS OF COMPUTER SCIENCE 2022; 17:175903. [PMID: 36532946 PMCID: PMC9745276 DOI: 10.1007/s11704-022-2163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/11/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Prediction of drug-protein binding is critical for virtual drug screening. Many deep learning methods have been proposed to predict the drug-protein binding based on protein sequences and drug representation sequences. However, most existing methods extract features from protein and drug sequences separately. As a result, they can not learn the features characterizing the drug-protein interactions. In addition, the existing methods encode the protein (drug) sequence usually based on the assumption that each amino acid (atom) has the same contribution to the binding, ignoring different impacts of different amino acids (atoms) on the binding. However, the event of drug-protein binding usually occurs between conserved residue fragments in the protein sequence and atom fragments of the drug molecule. Therefore, a more comprehensive encoding strategy is required to extract information from the conserved fragments. In this paper, we propose a novel model, named FragDPI, to predict the drug-protein binding affinity. Unlike other methods, we encode the sequences based on the conserved fragments and encode the protein and drug into a unified vector. Moreover, we adopt a novel two-step training strategy to train FragDPI. The pre-training step is to learn the interactions between different fragments using unsupervised learning. The fine-tuning step is for predicting the binding affinities using supervised learning. The experiment results have illustrated the superiority of FragDPI. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available for this article at 10.1007/s11704-022-2163-9 and is accessible for authorized users.
Collapse
Affiliation(s)
- Zhihui Yang
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Juan Liu
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Xuekai Zhu
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Feng Yang
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Qiang Zhang
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Hayat Ali Shah
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
11
|
Teng M, Young DW, Tan Z. The Pursuit of Enzyme Activation: A Snapshot of the Gold Rush. J Med Chem 2022; 65:14289-14304. [PMID: 36265019 DOI: 10.1021/acs.jmedchem.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A range of enzymes drive human physiology, and their activities are tightly regulated through numerous signaling pathways. Depending on the context, these pathways may activate or inhibit an enzyme as a way to ensure proper execution of cellular functions. From a drug discovery and development perspective, pharmacological inhibition of enzymes has been a focus of interest, as many diseases are associated with the upregulation of enzyme function. On the other hand, however, pharmacological activation of enzymes such as kinases and phosphatases has been of increasing interest. In this review, we discuss seven case studies that highlight pharmacological activation strategy, describe the binding modes and pharmacology of the activators, and comment on how this on-demand activation strategy complements the commonly pursued inhibition strategy, thus jointly enabling bidirectional modulation of specific target of interest. Going forward, we expect activators to play important roles as chemical probes and drug leads.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Damian W Young
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Department of Pathology & Immunology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Pilo CA, Baffi TR, Kornev AP, Kunkel MT, Malfavon M, Chen DH, Rossitto LA, Chen DX, Huang LC, Longman C, Kannan N, Raskind WH, Gonzalez DJ, Taylor SS, Gorrie G, Newton AC. Mutations in protein kinase Cγ promote spinocerebellar ataxia type 14 by impairing kinase autoinhibition. Sci Signal 2022; 15:eabk1147. [PMID: 36166510 PMCID: PMC9810342 DOI: 10.1126/scisignal.abk1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spinocerebellar ataxia type 14 (SCA14) is a neurodegenerative disease caused by germline variants in the diacylglycerol (DAG)/Ca2+-regulated protein kinase Cγ (PKCγ), leading to Purkinje cell degeneration and progressive cerebellar dysfunction. Most of the identified mutations cluster in the DAG-sensing C1 domains. Here, we found with a FRET-based activity reporter that SCA14-associated PKCγ mutations, including a previously undescribed variant, D115Y, enhanced the basal activity of the kinase by compromising its autoinhibition. Unlike other mutations in PKC that impair its autoinhibition but lead to its degradation, the C1 domain mutations protected PKCγ from such down-regulation. This enhanced basal signaling rewired the brain phosphoproteome, as revealed by phosphoproteomic analysis of cerebella from mice expressing a human SCA14-associated H101Y mutant PKCγ transgene. Mutations that induced a high basal activity in vitro were associated with earlier average age of onset in patients. Furthermore, the extent of disrupted autoinhibition, but not agonist-stimulated activity, correlated with disease severity. Molecular modeling indicated that almost all SCA14 variants not within the C1 domain were located at interfaces with the C1B domain, suggesting that mutations in and proximal to the C1B domain are a susceptibility for SCA14 because they uniquely enhance PKCγ basal activity while protecting the enzyme from down-regulation. These results provide insight into how PKCγ activation is modulated and how deregulation of the cerebellar phosphoproteome by SCA14-associated mutations affects disease progression.
Collapse
Affiliation(s)
- Caila A. Pilo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Timothy R. Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Maya T. Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mario Malfavon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dong-Hui Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA 92037, USA
| | - Daniel X. Chen
- Department of Neurology, University of Washington Seattle, WA 98195, USA
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Cheryl Longman
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wendy H. Raskind
- Department of Medicine/Medical Genetics, University of Washington Seattle, WA 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA 98195, USA
- Mental Illness Research, Education and Clinical Center, Department of Veterans Affairs, Seattle, WA 98108, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| | - George Gorrie
- Queen Elizabeth University Hospital, Glasgow, Scotland G51 4TF, United Kingdom
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Mutations Affecting Genes in the Proximal T-Cell Receptor Signaling Pathway in Peripheral T-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14153716. [PMID: 35954378 PMCID: PMC9367541 DOI: 10.3390/cancers14153716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The advent of next-generation sequencing (NGS) has allowed rapid advances in genomic studies on the pathogenesis and biology of peripheral T-cell lymphoma (PTCL). Recurrent mutations and fusions in genes related to the proximal TCR signaling pathway have been identified and show an important pathogenic role in PTCL. In this review, we summarize the genomic alterations in TCR signaling identified in different subgroups of PTCL patients and the functional impact of these alterations on TCR signaling and downstream pathways. We also discuss novel agents that could target TCR-related mutations and may hold promise for improving the treatment of PTCL. Abstract Peripheral T-cell lymphoma (PTCL) comprises a heterogeneous group of mature T-cell malignancies. Recurrent activating mutations and fusions in genes related to the proximal TCR signaling pathway have been identified in preclinical and clinical studies. This review summarizes the genetic alterations affecting proximal TCR signaling identified from different subgroups of PTCL and the functional impact on TCR signaling and downstream pathways. These genetic abnormalities include mostly missense mutations, occasional indels, and gene fusions involving CD28, CARD11, the GTPase RHOA, the guanine nucleotide exchange factor VAV1, and kinases including FYN, ITK, PLCG1, PKCB, and PI3K subunits. Most of these aberrations are activating mutations that can potentially be targeted by inhibitors, some of which are being tested in clinical trials that are briefly outlined in this review. Finally, we focus on the molecular pathology of recently identified subgroups of PTCL-NOS and highlight the unique genetic profiles associated with PTCL-GATA3.
Collapse
|
14
|
Pilo CA, Newton AC. Two Sides of the Same Coin: Protein Kinase C γ in Cancer and Neurodegeneration. Front Cell Dev Biol 2022; 10:929510. [PMID: 35800893 PMCID: PMC9253466 DOI: 10.3389/fcell.2022.929510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
Protein kinase C (PKC) isozymes transduce myriad signals within the cell in response to the generation of second messengers from membrane phospholipids. The conventional isozyme PKCγ reversibly binds Ca2+ and diacylglycerol, which leads to an open, active conformation. PKCγ expression is typically restricted to neurons, but evidence for its expression in certain cancers has emerged. PKC isozymes have been labeled as oncogenes since the discovery that they bind tumor-promoting phorbol esters, however, studies of cancer-associated PKC mutations and clinical trial data showing that PKC inhibitors have worsened patient survival have reframed PKC as a tumor suppressor. Aberrant expression of PKCγ in certain cancers suggests a role outside the brain, although whether PKCγ also acts as a tumor suppressor remains to be established. On the other hand, PKCγ variants associated with spinocerebellar ataxia type 14 (SCA14), a neurodegenerative disorder characterized by Purkinje cell degeneration, enhance basal activity while preventing phorbol ester-mediated degradation. Although the basis for SCA14 Purkinje cell degeneration remains unknown, studies have revealed how altered PKCγ activity rewires cerebellar signaling to drive SCA14. Importantly, enhanced basal activity of SCA14-associated mutants inversely correlates with age of onset, supporting that enhanced PKCγ activity drives SCA14. Thus, PKCγ activity should likely be inhibited in SCA14, whereas restoring PKC activity should be the goal in cancer therapies. This review describes how PKCγ activity can be lost or gained in disease and the overarching need for a PKC structure as a powerful tool to predict the effect of PKCγ mutations in disease.
Collapse
Affiliation(s)
- Caila A. Pilo
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
16
|
Wang M, Sciorillo A, Read S, Divsalar DN, Gyampoh K, Zu G, Yuan Z, Mounzer K, Williams DE, Montaner LJ, de Voogd N, Tietjen I, Andersen RJ. Ansellone J, a Potent in Vitro and ex Vivo HIV-1 Latency Reversal Agent Isolated from a Phorbas sp. Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2022; 85:1274-1281. [PMID: 35522580 DOI: 10.1021/acs.jnatprod.1c01225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Five new minor sesterterpenoids, ansellones H (4), I (5), J (6), and K (7) and phorone C (8), have been isolated from a Phorbas sp. marine sponge collected in British Columbia. Their structures have been elucidated by detailed analysis of NMR and MS data. Ansellone J (6) and phorone C (8) are potent in vitro HIV-1 latency reversal agents that are more potent than the reference compound and control protein kinase C activator prostratin (3). The most potent Phorbas sesterterpenoid, ansellone J (6), was evaluated for HIV latency reversal in a primary cell context using CD4+ T cells obtained directly from four combination antiretroviral therapy-suppressed donors with HIV. To a first approximation, ansellone J (6) induced HIV latency reversal at levels similar to prostratin (3) ex vivo, but at a 10-fold lower concentration.
Collapse
Affiliation(s)
- Meng Wang
- Departments of Chemistry and Earth Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Amanda Sciorillo
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Silven Read
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Donya Naz Divsalar
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kwasi Gyampoh
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Guorui Zu
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Karam Mounzer
- Jonathan Lax Immune Disorders Treatment Center, Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania 19107, United States
| | - David E Williams
- Departments of Chemistry and Earth Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Luis J Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicole de Voogd
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
17
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Levina A, Fleming KD, Burke JE, Leonard TA. Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Nat Commun 2022; 13:1874. [PMID: 35387990 PMCID: PMC8986801 DOI: 10.1038/s41467-022-29368-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
Abstract
3-phosphoinositide-dependent kinase 1 (PDK1) is an essential serine/threonine protein kinase, which plays a crucial role in cell growth and proliferation. It is often referred to as a 'master' kinase due to its ability to activate at least 23 downstream protein kinases implicated in various signaling pathways. In this study, we have elucidated the mechanism of phosphoinositide-driven PDK1 auto-activation. We show that PDK1 trans-autophosphorylation is mediated by a PIP3-mediated face-to-face dimer. We report regulatory motifs in the kinase-PH interdomain linker that allosterically activate PDK1 autophosphorylation via a linker-swapped dimer mechanism. Finally, we show that PDK1 is autoinhibited by its PH domain and that positive cooperativity of PIP3 binding drives switch-like activation of PDK1. These results imply that the PDK1-mediated activation of effector kinases, including Akt, PKC, Sgk, S6K and RSK, many of whom are not directly regulated by phosphoinositides, is also likely to be dependent on PIP3 or PI(3,4)P2.
Collapse
Affiliation(s)
- Aleksandra Levina
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Baffi TR, Newton AC. Protein kinase C: release from quarantine by mTORC2. Trends Biochem Sci 2022; 47:518-530. [DOI: 10.1016/j.tibs.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/31/2023]
|
20
|
Pokorny D, Truebestein L, Fleming KD, Burke JE, Leonard TA. In vitro reconstitution of Sgk3 activation by phosphatidylinositol 3-phosphate. J Biol Chem 2021; 297:100919. [PMID: 34181950 PMCID: PMC8318898 DOI: 10.1016/j.jbc.2021.100919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Serum- and glucocorticoid-regulated kinase 3 (Sgk3) is a serine/threonine protein kinase activated by the phospholipid phosphatidylinositol 3-phosphate (PI3P) downstream of growth factor signaling via class I phosphatidylinositol 3-kinase (PI3K) signaling and by class III PI3K/Vps34-mediated PI3P production on endosomes. Upregulation of Sgk3 activity has recently been linked to a number of human cancers; however, the precise mechanism of activation of Sgk3 is unknown. Here, we use a wide range of cell biological, biochemical, and biophysical techniques, including hydrogen-deuterium exchange mass spectrometry, to investigate the mechanism of activation of Sgk3 by PI3P. We show that Sgk3 is regulated by a combination of phosphorylation and allosteric activation. We demonstrate that binding of Sgk3 to PI3P via its regulatory phox homology (PX) domain induces large conformational changes in Sgk3 associated with its activation and that the PI3P-binding pocket of the PX domain of Sgk3 is sequestered in its inactive conformation. Finally, we reconstitute Sgk3 activation via Vps34-mediated PI3P synthesis on phosphatidylinositol liposomes in vitro. In addition to identifying the mechanism of Sgk3 activation by PI3P, our findings open up potential therapeutic avenues in allosteric inhibitor development to target Sgk3 in cancer.
Collapse
Affiliation(s)
- Daniel Pokorny
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Sehgal P, Mathew S, Sivadas A, Ray A, Tanwar J, Vishwakarma S, Ranjan G, Shamsudheen KV, Bhoyar RC, Pateria A, Leonard E, Lalwani M, Vats A, Pappuru RR, Tyagi M, Jakati S, Sengupta S, B K B, Chakrabarti S, Kaur I, Motiani RK, Scaria V, Sivasubbu S. LncRNA VEAL2 regulates PRKCB2 to modulate endothelial permeability in diabetic retinopathy. EMBO J 2021; 40:e107134. [PMID: 34180064 PMCID: PMC8327952 DOI: 10.15252/embj.2020107134] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial‐associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta‐b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2‐mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA‐mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.
Collapse
Affiliation(s)
- Paras Sehgal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Samatha Mathew
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ambily Sivadas
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Arjun Ray
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,Laboratory of Calciomics and Systemic Pathophysiology, Regional Center for Biotechnology, Faridabad, India
| | - Sushma Vishwakarma
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Gyan Ranjan
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - K V Shamsudheen
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Abhishek Pateria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Elvin Leonard
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mukesh Lalwani
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Archana Vats
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rajeev R Pappuru
- Kannuri Santhamma Centre for Retina and Vitreous, L V Prasad Eye Institute, Hyderabad, India
| | - Mudit Tyagi
- Kannuri Santhamma Centre for Retina and Vitreous, L V Prasad Eye Institute, Hyderabad, India
| | - Saumya Jakati
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Binukumar B K
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Center for Biotechnology, Faridabad, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
22
|
Ezzanad A, Gómez-Oliva R, Escobar-Montaño F, Díez-Salguero M, Geribaldi-Doldan N, Dominguez-Garcia S, Botubol-Ares JM, Reyes CDL, Durán-Patrón R, Nunez-Abades P, Macías-Sánchez AJ, Castro C, Hernández-Galán R. Phorbol Diesters and 12-Deoxy-16-hydroxyphorbol 13,16-Diesters Induce TGFα Release and Adult Mouse Neurogenesis. J Med Chem 2021; 64:6070-6084. [PMID: 33945688 DOI: 10.1021/acs.jmedchem.1c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A small library of phorbol 12,13-diesters bearing low lipophilicity ester chains was prepared as potential neurogenic agents in the adult brain. They were also used in a targeted UHPLC-HRMS screening of the latex of Euphorbia resinifera. Two new 12-deoxy-16-hydroxyphorbol 13,16-diesters were isolated, and their structures were deduced using two-dimensional NMR spectroscopy and NOE experiments. The ability of natural and synthetic compounds to stimulate transforming growth factor alpha (TFGα) release, to increase neural progenitor cell proliferation, and to stimulate neurogenesis was evaluated. All compounds that facilitated TGFα release promoted neural progenitor cell proliferation. The presence of two acyloxy moieties on the tigliane skeleton led to higher levels of activity, which decreased when a free hydroxyl group was at C-12. Remarkably, the compound bearing isobutyryloxy groups was the most potent on the TGFα assay and at inducing neural progenitor cell proliferation in vitro, also leading to enhanced neurogenesis in vivo when administered intranasally to mice.
Collapse
Affiliation(s)
- Abdellah Ezzanad
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Felipe Escobar-Montaño
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Mónica Díez-Salguero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain
| | | | - Samuel Dominguez-Garcia
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - José Manuel Botubol-Ares
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Carolina de Los Reyes
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Antonio J Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain.,Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11002 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), 11009 Cádiz, Spain.,Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
23
|
Baffi TR, Lordén G, Wozniak JM, Feichtner A, Yeung W, Kornev AP, King CC, Del Rio JC, Limaye AJ, Bogomolovas J, Gould CM, Chen J, Kennedy EJ, Kannan N, Gonzalez DJ, Stefan E, Taylor SS, Newton AC. mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Sci Signal 2021; 14:eabe4509. [PMID: 33850054 PMCID: PMC8208635 DOI: 10.1126/scisignal.abe4509] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCβII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Charles C King
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jason C Del Rio
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ameya J Limaye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Julius Bogomolovas
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christine M Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Lemos Duarte M, Trimbake NA, Gupta A, Tumanut C, Fan X, Woods C, Ram A, Gomes I, Bobeck EN, Schechtman D, Devi LA. High-throughput screening and validation of antibodies against synaptic proteins to explore opioid signaling dynamics. Commun Biol 2021; 4:238. [PMID: 33619305 PMCID: PMC7900253 DOI: 10.1038/s42003-021-01744-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Antibodies represent powerful tools to examine signal transduction pathways. Here, we present a strategy integrating multiple state-of-the-art methods to produce, validate, and utilize antibodies. Focusing on understudied synaptic proteins, we generated 137 recombinant antibodies. We used yeast display antibody libraries from the B cells of immunized rabbits, followed by FACS sorting under stringent conditions to identify high affinity antibodies. The antibodies were validated by high-throughput functional screening, and genome editing. Next, we explored the temporal dynamics of signaling in single cells. A subset of antibodies targeting opioid receptors were used to examine the effect of treatment with opiates that have played central roles in the worsening of the 'opioid epidemic.' We show that morphine and fentanyl exhibit differential temporal dynamics of receptor phosphorylation. In summary, high-throughput approaches can lead to the identification of antibody-based tools required for an in-depth understanding of the temporal dynamics of opioid signaling.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
| | - Nikita A Trimbake
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
- Regeneron Pharmaceutical, 777 Old Saw Mill River Rd, Tarrytown, NY, 10591, USA
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
| | | | - Xiaomin Fan
- AvantGen Inc., 6162 Nancy Ridge Dr #150, San Diego, CA, 92121, USA
| | - Catherine Woods
- AvantGen Inc., 6162 Nancy Ridge Dr #150, San Diego, CA, 92121, USA
| | - Akila Ram
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Deborah Schechtman
- Department of Biochemistry, University of São Paulo, 748 Av Prof Lineu Prestes, room 1208 Cidade Universitaria, São Paulo, SP, 05508000, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA.
| |
Collapse
|
25
|
Rajapaksha H, Pandithavidana DR, Dahanayake JN. Demystifying Chronic Kidney Disease of Unknown Etiology (CKDu): Computational Interaction Analysis of Pesticides and Metabolites with Vital Renal Enzymes. Biomolecules 2021; 11:261. [PMID: 33578980 PMCID: PMC7916818 DOI: 10.3390/biom11020261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease of unknown etiology (CKDu) has been recognized as a global non-communicable health issue. There are many proposed risk factors for CKDu and the exact reason is yet to be discovered. Understanding the inhibition or manipulation of vital renal enzymes by pesticides can play a key role in understanding the link between CKDu and pesticides. Even though it is very important to take metabolites into account when investigating the relationship between CKDu and pesticides, there is a lack of insight regarding the effects of pesticide metabolites towards CKDu. In this study, a computational approach was used to study the effects of pesticide metabolites on CKDu. Further, interactions of selected pesticides and their metabolites with renal enzymes were studied using molecular docking and molecular dynamics simulation studies. It was evident that some pesticides and metabolites have affinity to bind at the active site or at regulatory sites of considered renal enzymes. Another important discovery was the potential of some metabolites to have higher binding interactions with considered renal enzymes compared to the parent pesticides. These findings raise the question of whether pesticide metabolites may be a main risk factor towards CKDu.
Collapse
Affiliation(s)
| | | | - Jayangika N. Dahanayake
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya 11600, Western Province, Sri Lanka; (H.R.); (D.R.P.)
| |
Collapse
|
26
|
Lippert LG, Ma N, Ritt M, Jain A, Vaidehi N, Sivaramakrishnan S. Kinase inhibitors allosterically disrupt a regulatory interaction to enhance PKCα membrane translocation. J Biol Chem 2021; 296:100339. [PMID: 33508318 PMCID: PMC7949123 DOI: 10.1016/j.jbc.2021.100339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 10/28/2022] Open
Abstract
The eukaryotic kinase domain has multiple intrinsically disordered regions whose conformation dictates kinase activity. Small molecule kinase inhibitors (SMKIs) rely on disrupting the active conformations of these disordered regions to inactivate the kinase. While SMKIs are selected for their ability to cause this disruption, the allosteric effects of conformational changes in disordered regions is limited by a lack of dynamic information provided by traditional structural techniques. In this study, we integrated multiscale molecular dynamics simulations with FRET sensors to characterize a novel allosteric mechanism that is selectively triggered by SMKI binding to the protein kinase Cα domain. The indole maleimide inhibitors BimI and sotrastaurin were found to displace the Gly-rich loop (G-loop) that normally shields the ATP-binding site. Displacement of the G-loop interferes with a newly identified, structurally conserved binding pocket for the C1a domain on the N lobe of the kinase domain. This binding pocket, in conjunction with the N-terminal regulatory sequence, masks a diacylglycerol (DAG) binding site on the C1a domain. SMKI-mediated displacement of the G-loop released C1a and exposed the DAG binding site, enhancing protein kinase Cα translocation both to synthetic lipid bilayers and to live cell membranes in the presence of DAG. Inhibitor chemotype determined the extent of the observed allosteric effects on the kinase domain and correlated with the extent of membrane recruitment. Our findings demonstrate the allosteric effects of SMKIs beyond the confines of kinase catalytic conformation and provide an integrated computational-experimental paradigm to investigate parallel mechanisms in other kinases.
Collapse
Affiliation(s)
- Lisa G Lippert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Abhinandan Jain
- The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
27
|
Bioactive Ether Lipids: Primordial Modulators of Cellular Signaling. Metabolites 2021; 11:metabo11010041. [PMID: 33430006 PMCID: PMC7827237 DOI: 10.3390/metabo11010041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
The primacy of lipids as essential components of cellular membranes is conserved across taxonomic domains. In addition to this crucial role as a semi-permeable barrier, lipids are also increasingly recognized as important signaling molecules with diverse functional mechanisms ranging from cell surface receptor binding to the intracellular regulation of enzymatic cascades. In this review, we focus on ether lipids, an ancient family of lipids having ether-linked structures that chemically differ from their more prevalent acyl relatives. In particular, we examine ether lipid biosynthesis in the peroxisome of mammalian cells, the roles of selected glycerolipids and glycerophospholipids in signal transduction in both prokaryotes and eukaryotes, and finally, the potential therapeutic contributions of synthetic ether lipids to the treatment of cancer.
Collapse
|
28
|
Al-Attar R, Storey KB. RAGE against the stress: Mitochondrial suppression in hypometabolic hearts. Gene 2020; 761:145039. [PMID: 32777527 DOI: 10.1016/j.gene.2020.145039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
The wood frog (Rana sylvatica) can tolerate full body freezing in winter. As a protective response, wood frogs dehydrate their cells and accumulate large quantities of glucose as an intracellular cryoprotectant. Freezing causes ischemia since blood delivery to organs is interrupted. Fascinatingly, wood frogs can tolerate dehydration, extreme hyperglycemia, and anoxia independently of freezing. In response to low oxygen levels, wood frogs strategically reduce their metabolic rates and allocate the finite amount of intracellular fuel available to pro-survival processes while reducing or interrupting all others. In this study, the involvement of advanced glycation end products (AGEs) and the high mobility group box 1 (HMGB1) protein in activating RAGE (AGE receptor) were investigated. The results show that freezing, anoxia and dehydration induced the expression of total HMGB1 and its acetylation in the heart. RAGE levels were induced in response to all stress conditions, which resulted in differential regulation of the ETS1 transcription factor. While the nuclear localization of total ETS1 was not affected, the DNA binding activity of total and its active form increased in response to freezing and dehydration but not in response to anoxia. Current results indicate that ETS1 acts as a transcriptional activator for peroxiredoxin 1 in response to freezing but acts as a transcriptional repressor of several nuclear-encoded mitochondrial genes in response to all stresses. Altogether, current results show that the HMGB1/RAGE axis may activate ETS1 and that this activation could result in both transcriptional activation and/or repression in a stress-dependent manner.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada.
| |
Collapse
|
29
|
Gupte TM, Ritt M, Sivaramakrishnan S. ER/K-link-Leveraging a native protein linker to probe dynamic cellular interactions. Methods Enzymol 2020; 647:173-208. [PMID: 33482988 PMCID: PMC8009693 DOI: 10.1016/bs.mie.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ER/K α-helices are a subset of single alpha helical domains, which exhibit unusual stability as isolated protein secondary structures. They adopt an elongated structural conformation, while regulating the frequency of interactions between proteins or polypeptides fused to their ends. Here we review recent advances on the structure, stability and function of ER/K α-helices as linkers (ER/K linkers) in native proteins. We describe methodological considerations in the molecular cloning, protein expression and measurement of interaction strengths, using sensors incorporating ER/K linkers. We highlight biological insights obtained over the last decade by leveraging distinct biophysical features of ER/K-linked sensors. We conclude with the outlook for the use of ER/K linkers in the selective modulation of dynamic cellular interactions.
Collapse
Affiliation(s)
- Tejas M Gupte
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
30
|
Jones AC, Taylor SS, Newton AC, Kornev AP. Hypothesis: Unifying model of domain architecture for conventional and novel protein kinase C isozymes. IUBMB Life 2020; 72:2584-2590. [PMID: 33166426 DOI: 10.1002/iub.2401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 12/26/2022]
Abstract
Protein kinase C (PKC) family members are multi-domain proteins whose function is exquisitely tuned by interdomain interactions that control the spatiotemporal dynamics of their signaling. Despite extensive mechanistic studies on this family of enzymes, no structure of a full-length enzyme that includes all domains has been solved. Here, we take into account the biochemical mechanisms that control autoinhibition, the properties of each individual domain, and previous structural studies to propose a unifying model for the general architecture of PKC family members. This model shows how the C2 domains of conventional and novel PKC isozymes, which have different topologies and different positions in the primary structure, can occupy the same position in the tertiary structure of the kinase. This common architecture of conventional and novel PKC isozymes provides a framework for understanding how disease-associated mutations impair PKC function.
Collapse
Affiliation(s)
- Alexander C Jones
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Biomedical Sciences Graduate Program, University of California, La Jolla, California, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158614. [PMID: 31927141 PMCID: PMC7347429 DOI: 10.1016/j.bbalip.2020.158614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Ulrich Hammerling
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
32
|
Ether lipid metabolism by AADACL1 regulates platelet function and thrombosis. Blood Adv 2020; 3:3818-3828. [PMID: 31770438 DOI: 10.1182/bloodadvances.2018030767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 09/28/2019] [Indexed: 12/25/2022] Open
Abstract
We previously reported the discovery of a novel lipid deacetylase in platelets, arylacetamide deacetylase-like 1 (AADACL1/NCEH1), and that its inhibition impairs agonist-induced platelet aggregation, Rap1 GTP loading, protein kinase C (PKC) activation, and ex vivo thrombus growth. However, precise mechanisms by which AADACL1 impacts platelet signaling and function in vivo are currently unknown. Here, we demonstrate that AADACL1 regulates the accumulation of ether lipids that impact PKC signaling networks crucial for platelet activation in vitro and in vivo. Human platelets treated with the AADACL1 inhibitor JW480 or the AADACL1 substrate 1-O-hexadecyl-2-acetyl-sn-glycerol (HAG) exhibited decreased platelet aggregation, granule secretion, Ca2+ flux, and PKC phosphorylation. Decreased aggregation and secretion were rescued by exogenous adenosine 5'-diphosphate, indicating that AADACL1 likely functions to induce dense granule secretion. Experiments with P2Y12-/- and CalDAG GEFI-/- mice revealed that the P2Y12 pathway is the predominate target of HAG-mediated inhibition of platelet aggregation. HAG itself displayed weak agonist properties and likely mediates its inhibitory effects via conversion to a phosphorylated metabolite, HAGP, which directly interacted with the C1a domains of 2 distinct PKC isoforms and blocked PKC kinase activity in vitro. Finally, AADACL1 inhibition in rats reduced platelet aggregation, protected against FeCl3-induced arterial thrombosis, and delayed tail bleeding time. In summary, our data support a model whereby AADACL1 inhibition shifts the platelet ether lipidome to an inhibitory axis of HAGP accumulation that impairs PKC activation, granule secretion, and recruitment of platelets to sites of vascular damage.
Collapse
|
33
|
Heckman CA, Biswas T, Dimick DM, Cayer ML. Activated Protein Kinase C (PKC) Is Persistently Trafficked with Epidermal Growth Factor (EGF) Receptor. Biomolecules 2020; 10:E1288. [PMID: 32906765 PMCID: PMC7563713 DOI: 10.3390/biom10091288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
Protein kinase Cs (PKCs) are activated by lipids in the plasma membrane and bind to a scaffold assembled on the epidermal growth factor (EGF) receptor (EGFR). Understanding how this complex is routed is important, because this determines whether EGFR is degraded, terminating signaling. Here, cells were preincubated in EGF-tagged gold nanoparticles, then allowed to internalize them in the presence or absence of a phorbol ester PKC activator. PKC colocalized with EGF-tagged nanoparticles within 5 min and migrated with EGFR-bearing vesicles into the cell. Two conformations of PKC-epsilon were distinguished by different primary antibodies. One, thought to be enzymatically active, was on endosomes and displayed a binding site for antibody RR (R&D). The other, recognized by Genetex green (GG), was soluble, on actin-rich structures, and loosely bound to vesicles. During a 15-min chase, EGF-tagged nanoparticles entered large, perinuclear structures. In phorbol ester-treated cells, vesicles bearing EGF-tagged nanoparticles tended to enter this endocytic recycling compartment (ERC) without the GG form. The correlation coefficient between the GG (inactive) and RR conformations on vesicles was also lower. Thus, active PKC has a Charon-like function, ferrying vesicles to the ERC, and inactivation counteracts this function. The advantage conferred on cells by aggregating vesicles in the ERC is unclear.
Collapse
Affiliation(s)
- Carol A. Heckman
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Tania Biswas
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Douglas M. Dimick
- Department of Physics & Astronomy, 104 Overman Hall, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Marilyn L. Cayer
- Center for Microscopy & Microanalysis, 217 Life Science Building, Bowling Green State University, Bowling Green, OH 43403, USA;
| |
Collapse
|
34
|
Reinhardt R, Truebestein L, Schmidt HA, Leonard TA. It Takes Two to Tango: Activation of Protein Kinase D by Dimerization. Bioessays 2020; 42:e1900222. [PMID: 31997382 DOI: 10.1002/bies.201900222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/10/2020] [Indexed: 12/23/2022]
Abstract
The recent discovery and structure determination of a novel ubiquitin-like dimerization domain in protein kinase D (PKD) has significant implications for its activation. PKD is a serine/threonine kinase activated by the lipid second messenger diacylglycerol (DAG). It is an essential and highly conserved protein that is implicated in plasma membrane directed trafficking processes from the trans-Golgi network. However, many open questions surround its mechanism of activation, its localization, and its role in the biogenesis of cargo transport carriers. In reviewing this field, the focus is primarily on the mechanisms that control the activation of PKD at precise locations in the cell. In light of the new structural findings, the understanding of the mechanisms underlying PKD activation is critically evaluated, with particular emphasis on the role of dimerization in PKD autophosphorylation, and the provenance and recognition of the DAG that activates PKD.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter, 1030, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| |
Collapse
|
35
|
Chalupska D, Różycki B, Klima M, Boura E. Structural insights into Acyl-coenzyme A binding domain containing 3 (ACBD3) protein hijacking by picornaviruses. Protein Sci 2019; 28:2073-2079. [PMID: 31583778 DOI: 10.1002/pro.3738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/20/2023]
Abstract
Many picornaviruses hijack the Golgi resident Acyl-coenzyme A binding domain containing 3 (ACBD3) protein in order to recruit the phosphatidylinositol 4-kinase B (PI4KB) to viral replication organelles (ROs). PI4KB, once recruited and activated by ACBD3 protein, produces the lipid phosphatidylinositol 4-phosphate (PI4P), which is a key step in the biogenesis of viral ROs. To do so, picornaviruses use their small nonstructural protein 3A that binds the Golgi dynamics domain of the ACBD3 protein. Here, we present the analysis of the highly flexible ACBD3 proteins and the viral 3A protein in solution using small-angle X-ray scattering and computer simulations. Our analysis revealed that both the ACBD3 protein and the 3A:ACBD3 protein complex have an extended and flexible conformation in solution.
Collapse
Affiliation(s)
- Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bartosz Różycki
- Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
36
|
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Int J Mol Sci 2019; 20:ijms20153774. [PMID: 31375023 PMCID: PMC6696403 DOI: 10.3390/ijms20153774] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Molecular dynamics simulations have emerged as a powerful tool to study biological systems at varied length and timescales. The conventional all-atom molecular dynamics simulations are being used by the wider scientific community in routine to capture the conformational dynamics and local motions. In addition, recent developments in coarse-grained models have opened the way to study the macromolecular complexes for time scales up to milliseconds. In this review, we have discussed the principle, applicability and recent development in coarse-grained models for biological systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art examples of protein folding and structure prediction, self-assembly of complexes, membrane systems and carbohydrates fiber models. The multiscale simulation approaches have also been discussed in the context of their emerging role in unravelling hierarchical level information of biosystems. We conclude this review with the future scope of coarse-grained simulations as a constantly evolving tool to capture the dynamics of biosystems.
Collapse
|
37
|
Blanco FA, Czikora A, Kedei N, You Y, Mitchell GA, Pany S, Ghosh A, Blumberg PM, Das J. Munc13 Is a Molecular Target of Bryostatin 1. Biochemistry 2019; 58:3016-3030. [PMID: 31243993 PMCID: PMC6620733 DOI: 10.1021/acs.biochem.9b00427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Bryostatin
1 is a natural macrolide shown to improve neuronal connections and
enhance memory in mice. Its mechanism of action is largely attributed
to the modulation of novel and conventional protein kinase Cs (PKCs)
by binding to their regulatory C1 domains. Munc13-1 is a C1 domain-containing
protein that shares common endogenous and exogenous activators with
novel and conventional PKC subtypes. Given the essential role of Munc13-1
in the priming of synaptic vesicles and neuronal transmission overall,
we explored the potential interaction between bryostatin 1 and Munc13-1.
Our results indicate that in vitro bryostatin 1 binds
to both the isolated C1 domain of Munc13-1 (Ki = 8.07 ± 0.90 nM) and the full-length Munc13-1 protein
(Ki = 0.45 ± 0.04 nM). Furthermore,
confocal microscopy and immunoblot analysis demonstrated that in intact
HT22 cells bryostatin 1 mimics the actions of phorbol esters, a previously
established class of Munc13-1 activators, and induces plasma membrane
translocation of Munc13-1, a hallmark of its activation. Consistently,
bryostatin 1 had no effect on the Munc13-1H567K construct
that is insensitive to phorbol esters. Effects of bryostatin 1 on
the other Munc13 family members, ubMunc13-2 and bMunc13-2, resembled
those of Munc13-1 for translocation. Lastly, we observed an increased
level of expression of Munc13-1 following a 24 h incubation with bryostatin
1 in both HT22 and primary mouse hippocampal cells. This study characterizes
Munc13-1 as a molecular target of bryostatin 1. Considering the crucial
role of Munc13-1 in neuronal function, these findings provide strong
support for the potential role of Munc13s in the actions of bryostatin
1.
Collapse
Affiliation(s)
- Francisco A Blanco
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Satyabrata Pany
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Anamitra Ghosh
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy , University of Houston , Houston , Texas 77204 , United States
| |
Collapse
|
38
|
Yang Y, Shu C, Li P, Igumenova TI. Structural Basis of Protein Kinase Cα Regulation by the C-Terminal Tail. Biophys J 2019; 114:1590-1603. [PMID: 29642029 DOI: 10.1016/j.bpj.2017.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/07/2017] [Accepted: 12/21/2017] [Indexed: 10/17/2022] Open
Abstract
Protein kinase C (PKC) isoenzymes are multi-modular proteins activated at the membrane surface to regulate signal transduction processes. When activated by second messengers, PKC undergoes a drastic conformational and spatial transition from the inactive cytosolic state to the activated membrane-bound state. The complete structure of either state of PKC remains elusive. We demonstrate, using NMR spectroscopy, that the isolated Ca2+-sensing membrane-binding C2 domain of the conventional PKCα interacts with a conserved hydrophobic motif of the kinase C-terminal region, and we report a structural model of the complex. Our data suggest that the C-terminal region plays a dual role in regulating the PKC activity: activating, through sensitization of PKC to intracellular Ca2+ oscillations; and auto-inhibitory, through its interaction with a conserved positively charged region of the C2 domain.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Chang Shu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
39
|
Mehjabin R, Chen L, Huang R, Zhu D, Yang C, Li Y, Liao L, He L, Zhu Z, Wang Y. Expression and localization of grass carp pkc-θ (protein kinase C theta) gene after its activation. FISH & SHELLFISH IMMUNOLOGY 2019; 87:788-795. [PMID: 30716520 DOI: 10.1016/j.fsi.2019.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Haemorrhagic disease caused by grass carp reovirus (GCRV) can result in large-scale death of young grass carp, leading to irreparable economic losses that seriously affect large-scale breeding. Protein kinase C (PKC, also known as PRKC) represents a family of serine/threonine protein kinases that includes multiple isozymes in many species. Among these, PKC-θ (PKC theta, also written as PRKCQ) is a novel isoform, mainly expressed in T cells, that is known to be involved in immune system function in mammals. To date, no research on immunological functions of fish Pkc-θ has been reported. To address this issue, we cloned the grass carp pkc-θ gene. Phylogenetic and syntenic analysis showed that this gene is the most evolutionarily conserved relative to zebrafish. Real-time quantitative PCR (RT-qPCR) indicated that pkc-θ was expressed at high levels in the gills and spleen of healthy grass carp. Infection with GCRV down regulated pkc-θ expression in the gills and spleen. Gene products that function upstream and downstream of pkc-θ were up regulated in the gill, but were down-regulated in the spleen. These results suggest that direct or indirect targeting of pkc-θ by GCRV may help the virus evade host immune defences in the spleen. Phorbol ester (PMA) treatment of Jurkat T cells induced translocation of grass carp Pkc-θ from the cytoplasm to the plasma membrane. This response to PMA suggests evolutionary conservation of an immune response function in fish Pkc-θ, as well as conservation of its sequence and structural domains. This study expanded our knowledge of the fish PKC gene family, and explored the role of pkc-θ in function of the grass carp immune system, providing new insights which may facilitate further studies of its biological functions.
Collapse
Affiliation(s)
- Rumana Mehjabin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
40
|
Abstract
Protein kinase C (PKC) isozymes belong to a family of Ser/Thr kinases whose activity is governed by reversible release of an autoinhibitory pseudosubstrate. For conventional and novel isozymes, this is effected by binding the lipid second messenger, diacylglycerol, but for atypical PKC isozymes, this is effected by binding protein scaffolds. PKC shot into the limelight following the discovery in the 1980s that the diacylglycerol-sensitive isozymes are "receptors" for the potent tumor-promoting phorbol esters. This set in place a concept that PKC isozymes are oncoproteins. Yet three decades of cancer clinical trials targeting PKC with inhibitors failed and, in some cases, worsened patient outcome. Emerging evidence from cancer-associated mutations and protein expression levels provide a reason: PKC isozymes generally function as tumor suppressors and their activity should be restored, not inhibited, in cancer therapies. And whereas not enough activity is associated with cancer, variants with enhanced activity are associated with degenerative diseases such as Alzheimer's disease. This review describes the tightly controlled mechanisms that ensure PKC activity is perfectly balanced and what happens when these controls are deregulated. PKC isozymes serve as a paradigm for the wisdom of Confucius: "to go beyond is as wrong as to fall short."
Collapse
Affiliation(s)
- Alexandra C Newton
- a Department of Pharmacology , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
41
|
Schober R, Waldherr L, Schmidt T, Graziani A, Stilianu C, Legat L, Groschner K, Schindl R. STIM1 and Orai1 regulate Ca 2+ microdomains for activation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1079-1091. [PMID: 30408546 DOI: 10.1016/j.bbamcr.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Since calcium (Ca2+) regulates a large variety of cellular signaling processes in a cell's life, precise control of Ca2+ concentrations within the cell is essential. This enables the transduction of information via Ca2+ changes in a time-dependent and spatially defined manner. Here, we review molecular and functional aspects of how the store-operated Ca2+ channel Orai1 creates spatiotemporal Ca2+ microdomains. The architecture of this channel is unique, with a long helical pore and a six-fold symmetry. Energetic barriers within the Ca2+ channel pathway limit permeation to allow an extensive local Ca2+ increase in close proximity to the channel. The precise timing of the Orai1 channel function is controlled by direct binding to STIM proteins upon Ca2+ depletion in the endoplasmic reticulum. These induced Ca2+ microdomains are tailored to, and sufficient for, triggering long-term activation processes, such as transcription factor activation and subsequent gene regulation. We describe the principles of spatiotemporal activation of the transcription factor NFAT and compare its signaling characteristics to those of the autophagy regulating transcription factors, MITF and TFEB.
Collapse
Affiliation(s)
- Romana Schober
- Institute for Biophysics, Johannes Kepler University Linz, A-4040 Linz, Austria.
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Annarita Graziani
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Clemens Stilianu
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Lorenz Legat
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
42
|
Bottaro S, Lindorff-Larsen K. Biophysical experiments and biomolecular simulations: A perfect match? Science 2018; 361:355-360. [DOI: 10.1126/science.aat4010] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A fundamental challenge in biological research is achieving an atomic-level description and mechanistic understanding of the function of biomolecules. Techniques for biomolecular simulations have undergone substantial developments, and their accuracy and scope have expanded considerably. Progress has been made through an increasingly tight integration of experiments and simulations, with experiments being used to refine simulations and simulations used to interpret experiments. Here we review the underpinnings of this progress, including methods for more efficient conformational sampling, accuracy of the physical models used, and theoretical approaches to integrate experiments and simulations. These developments are enabling detailed studies of complex biomolecular assemblies.
Collapse
|
43
|
Berlow RB. A Dual Regulatory Role for the Disordered C-Terminus of Protein Kinase Cα. Biophys J 2018; 114:1513-1514. [PMID: 29642021 DOI: 10.1016/j.bpj.2018.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022] Open
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
44
|
Różycki B, Cazade PA, O'Mahony S, Thompson D, Cieplak M. The length but not the sequence of peptide linker modules exerts the primary influence on the conformations of protein domains in cellulosome multi-enzyme complexes. Phys Chem Chem Phys 2018; 19:21414-21425. [PMID: 28758665 DOI: 10.1039/c7cp04114d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellulosomes are large multi-protein catalysts produced by various anaerobic microorganisms to efficiently degrade plant cell-wall polysaccharides down into simple sugars. X-ray and physicochemical structural characterisations show that cellulosomes are composed of numerous protein domains that are connected by unstructured polypeptide segments, yet the properties and possible roles of these 'linker' peptides are largely unknown. We have performed coarse-grained and all-atom molecular dynamics computer simulations of a number of cellulosomal linkers of different lengths and compositions. Our data demonstrates that the effective stiffness of the linker peptides, as quantified by the equilibrium fluctuations in the end-to-end distances, depends primarily on the length of the linker and less so on the specific amino acid sequence. The presence of excluded volume - provided by the domains that are connected - dampens the motion of the linker residues and reduces the effective stiffness of the linkers. Simultaneously, the presence of the linkers alters the conformations of the protein domains that are connected. We demonstrate that short, stiff linkers induce significant rearrangements in the folded domains of the mini-cellulosome composed of endoglucanase Cel8A in complex with scaffoldin ScafT (Cel8A-ScafT) of Clostridium thermocellum as well as in a two-cohesin system derived from the scaffoldin ScaB of Acetivibrio cellulolyticus. We give experimentally testable predictions on structural changes in protein domains that depend on the length of linkers.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
45
|
Yang H, Staveness D, Ryckbosch SM, Axtman AD, Loy BA, Barnes AB, Pande VS, Schaefer J, Wender PA, Cegelski L. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS CENTRAL SCIENCE 2018; 4:89-96. [PMID: 29392180 PMCID: PMC5785774 DOI: 10.1021/acscentsci.7b00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 05/05/2023]
Abstract
Bryostatin 1 (henceforth bryostatin) is in clinical trials for the treatment of Alzheimer's disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC) target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC-ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR) solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc) is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog) was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.
Collapse
Affiliation(s)
- Hao Yang
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Daryl Staveness
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven M. Ryckbosch
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alison D. Axtman
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Brian A. Loy
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander B. Barnes
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Vijay S. Pande
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jacob Schaefer
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Paul A. Wender
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
46
|
Czikora A, Pany S, You Y, Saini AS, Lewin NE, Mitchell GA, Abramovitz A, Kedei N, Blumberg PM, Das J. Structural determinants of phorbol ester binding activity of the C1a and C1b domains of protein kinase C theta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1046-1056. [PMID: 29317197 DOI: 10.1016/j.bbamem.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Amandeep S Saini
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Adelle Abramovitz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
47
|
Das J, Kedei N, Kelsey JS, You Y, Pany S, Mitchell GA, Lewin NE, Blumberg PM. Critical Role of Trp-588 of Presynaptic Munc13-1 for Ligand Binding and Membrane Translocation. Biochemistry 2018; 57:732-741. [PMID: 29244485 DOI: 10.1021/acs.biochem.7b00764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Munc13-1 is a presynaptic active-zone protein essential for neurotransmitter release and presynaptic plasticity in the brain. This multidomain scaffold protein contains a C1 domain that binds to the activator diacylglycerol/phorbol ester. Although the C1 domain bears close structural homology with the C1 domains of protein kinase C (PKC), the tryptophan residue at position 22 (588 in the full-length Munc13-1) occludes the activator binding pocket, which is not the case for PKC. To elucidate the role of this tryptophan, we generated W22A, W22K, W22D, W22Y, and W22F substitutions in the full-length Munc13-1, expressed the GFP-tagged constructs in Neuro-2a cells, and measured their membrane translocation in response to phorbol ester treatment by imaging of the live cells using confocal microscopy. The extent of membrane translocation followed the order, wild-type > W22K > W22F > W22Y > W22A > W22D. The phorbol ester binding affinity of the wild-type Munc13-1C1 domain and its mutants was phosphatidylserine (PS)-dependent following the order, wild-type > W22K > W22A ≫ W22D in both 20% and 100% PS. Phorbol ester affinity was higher for Munc13-1 than the C1 domain. While Munc13-1 translocated to the plasma membrane, the C1 domain translocated to internal membranes in response to phorbol ester. Molecular dynamics (80 ns) studies reveal that Trp-22 is relatively less flexible than the homologous Trp-22 of PKCδ and PKCθ. Results are discussed in terms of the overall negative charge state of the Munc13-1C1 domain and its possible interaction with the PS-rich plasma membrane. This study shows that Trp-588 is an important structural element for ligand binding and membrane translocation in Munc13-1.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Noemi Kedei
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Jessica S Kelsey
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Satyabrata Pany
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Gary A Mitchell
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Nancy E Lewin
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Peter M Blumberg
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| |
Collapse
|
48
|
Kelsey JS, Géczy T, Kaler CJ, Blumberg PM. The C1 domain of Vav3, a novel potential therapeutic target. Cell Signal 2017; 40:133-142. [PMID: 28927664 PMCID: PMC5651187 DOI: 10.1016/j.cellsig.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/22/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Vav1/2/3 comprise a protein family with guanyl nucleotide exchange activity for Rho and Rac as well as with motifs conferring adapter activity. Biologically, Vav1 plays a critical role in hematologic cell signaling, whereas Vav2/3 have a wider tissue distribution, but all 3 Vav proteins are implicated in cancer development. A structural feature of Vav1/2/3 is the presence of an atypical C1 domain, which possesses close structural homology to the typical C1 domains of protein kinase C but which fails to bind the second messenger diacylglycerol or the potent analogs, the phorbol esters. Previously, we have shown that five residues in the Vav1 C1 domain are responsible for its lack of phorbol ester binding. Here, we show that the lack of phorbol ester binding of Vav3 has a similar basis. We then explore the consequences of phorbol ester binding to a modified Vav3 in which the C1 domain has been altered to allow phorbol ester binding. We find both disruption of the guanyl nucleotide exchange activity of the modified Vav 3 as well as a shift in localization to the membrane upon phorbol ester treatment. This change in localization is associated with altered interactions with other signaling proteins. The studies provide a first step in assessing the potential for the design of custom C1 domain targeted molecules selective for the atypical C1 domains of Vav family proteins.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tamás Géczy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher J Kaler
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Heinisch JJ, Rodicio R. Protein kinase C in fungi—more than just cell wall integrity. FEMS Microbiol Rev 2017; 42:4562651. [DOI: 10.1093/femsre/fux051] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
|
50
|
Lee S, Devamani T, Song HD, Sandhu M, Larsen A, Sommese R, Jain A, Vaidehi N, Sivaramakrishnan S. Distinct structural mechanisms determine substrate affinity and kinase activity of protein kinase Cα. J Biol Chem 2017; 292:16300-16309. [PMID: 28821615 PMCID: PMC5625059 DOI: 10.1074/jbc.m117.804781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Indexed: 11/06/2022] Open
Abstract
Protein kinase Cα (PKCα) belongs to the family of AGC kinases that phosphorylate multiple peptide substrates. Although the consensus sequence motif has been identified and used to explain substrate specificity for PKCα, it does not inform the structural basis of substrate-binding and kinase activity for diverse substrates phosphorylated by this kinase. The transient, dynamic, and unstructured nature of this protein-protein interaction has limited structural mapping of kinase-substrate interfaces. Here, using multiscale MD simulation-based predictions and FRET sensor-based experiments, we investigated the conformational dynamics of the kinase-substrate interface. We found that the binding strength of the kinase-substrate interaction is primarily determined by long-range columbic interactions between basic (Arg/Lys) residues located N-terminally to the phosphorylated Ser/Thr residues in the substrate and by an acidic patch in the kinase catalytic domain. Kinase activity stemmed from conformational flexibility in the region C-terminal to the phosphorylated Ser/Thr residues. Flexibility of the substrate-kinase interaction enabled an Arg/Lys two to three amino acids C-terminal to the phosphorylated Ser/Thr to prime a catalytically active conformation, facilitating phosphoryl transfer to the substrate. The structural mechanisms determining substrate binding and catalytic activity formed the basis of diverse binding affinities and kinase activities of PKCα for 14 substrates with varying degrees of sequence conservation. Our findings provide insight into the dynamic properties of the kinase-substrate interaction that govern substrate binding and turnover. Moreover, this study establishes a modeling and experimental method to elucidate the structural dynamics underlying substrate selectivity among eukaryotic kinases.
Collapse
Affiliation(s)
- Sangbae Lee
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Titu Devamani
- the Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, and
| | - Hyun Deok Song
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Manbir Sandhu
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Adrien Larsen
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Ruth Sommese
- the Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, and
| | - Abhinandan Jain
- the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
| | - Nagarajan Vaidehi
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010,
| | - Sivaraj Sivaramakrishnan
- the Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, and
| |
Collapse
|