1
|
Lombardi S, Zilocchi M, Nicsanu R, Barabino SML. Emerging connections: Poly(ADP-ribose), FET proteins and RNA in the regulation of DNA damage condensates. DNA Repair (Amst) 2025; 150:103846. [PMID: 40381401 DOI: 10.1016/j.dnarep.2025.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Our genome is exposed to thousands of DNA lesions every day, posing a significant threat to cellular viability. To deal with these lesions, cells have evolved sophisticated repair mechanisms collectively known as the DNA damage response. DNA double-strand breaks (DSBs) are very cytotoxic damages, and their repair requires the precise and coordinated recruitment of multiple repair factors to form nuclear foci. Recent research highlighted that these repair structures behave as biomolecular condensates, i.e. membraneless compartments with liquid-like properties. The formation of condensates is driven by weak, multivalent interactions among proteins and nucleic acids, and recent studies highlighted the roles of poly(ADP-ribose) (PAR) and RNA in regulating DSBs-related condensates. Additionally, the FET family of RNA-binding proteins (including FUS, EWS and TAF15), has emerged as a critical player in the DNA damage response, with recent evidence suggesting that FET proteins support the formation and dynamics of repair condensates. Notably, phase separation of FET proteins is implicated also in their pathological functions in cancer biology, highlighting the pervasive role of condensation. This review will provide an overview of biomolecular condensates at DSBs, focusing on the interplay among PAR and RNA in the spatiotemporal regulation of FET proteins at repair complexes. We will also discuss the role of FET condensates in cancer biology and how they are targeted for therapeutic purposes. The study of biomolecular condensates holds great promise for advancing our understanding of key cellular processes and developing novel therapeutic strategies, but requires careful consideration of potential challenges.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Mara Zilocchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Roland Nicsanu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Silvia Maria Luisa Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| |
Collapse
|
2
|
Levis MJ, Hamadani M, Logan BR, Jones RJ, Singh AK, Litzow MR, Wingard JR, Papadopoulos EB, Perl AE, Soiffer RJ, Ustun C, Oshima MU, Uy GL, Waller EK, Vasu S, Solh M, Mishra A, Muffly LS, Kim HJ, Stelljes M, Najima Y, Onozawa M, Thomson K, Nagler A, Wei AH, Marcucci G, Chen C, Hasabou N, Rosales M, Hill J, Gill SC, Nuthethi R, King D, Mendizabal A, Devine SM, Horowitz MM, Chen YB. Measurable residual disease and posttransplantation gilteritinib maintenance for patients with FLT3-ITD-mutated AML. Blood 2025; 145:2138-2148. [PMID: 39775763 DOI: 10.1182/blood.2024025154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT BMT CTN (Blood and Marrow Transplant Clinical Trials Network) 1506 ("MORPHO") was a randomized study of gilteritinib compared with placebo as maintenance therapy after hematopoietic cell transplantation (HCT) for patients with FLT3-ITD-mutated acute myeloid leukemia (AML). A key secondary end point was to determine the impact on survival of before and/or after HCT measurable residual disease (MRD), as determined using a highly sensitive assay for FLT3-ITD mutations. Generally, gilteritinib maintenance therapy was associated with improved relapse-free survival (RFS) for participants with detectable peri-HCT MRD, whereas no benefit was evident for those lacking detectable MRD. We conducted a post hoc analysis of the data and found that the level of MRD detected with this approach correlated remarkably with RFS and relapse risk, and that MRD detectable at any level negatively affected RFS. In the placebo arm, 42.2% of participants with detectable FLT3-ITD MRD relapsed compared with 13.4% of those without detectable MRD. We found that 14.8% of participants had multiple FLT3-ITD clones detected as MRD and had worse survival irrespective of treatment arm. Finally, we examined the kinetics of FLT3-ITD clonal relapse or eradication and found that participants on the placebo arm with detectable MRD relapsed rapidly after HCT, often within a few weeks. MRD-positive participants on the gilteritinib arm relapsed either with FLT3 wild-type clones (assessed by capillary electrophoresis), after cessation of gilteritinib with persistent MRD, or on progression of multiclonal disease. These data demonstrate the potential of FLT3-ITD MRD to guide therapy with gilteritinib for this subtype of AML. This trial was registered at www.clinicaltrials.gov as #NCT02997202.
Collapse
Affiliation(s)
- Mark J Levis
- Division of Hematologic Malignancies and Bone Marrow Transplant, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Department of Medicine, Center for International Blood and Marrow Transplant Research/Medical College of Wisconsin, Milwaukee, WI
| | - Brent R Logan
- Division of Hematology and Oncology, Department of Medicine, Center for International Blood and Marrow Transplant Research/Medical College of Wisconsin, Milwaukee, WI
| | - Richard J Jones
- Division of Hematologic Malignancies and Bone Marrow Transplant, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Anurag K Singh
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas, Kansas City, KS
| | - Mark R Litzow
- Division of Hematology and Transplant Center, Mayo Clinic, Rochester, MN
| | - John R Wingard
- Department of Medicine, University of Florida, Gainesville, FL
| | | | - Alexander E Perl
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Celalettin Ustun
- Division of Hematology Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL
| | | | - Geoffrey L Uy
- Department of Medicine, Washington University, St. Louis, MO
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Sumithira Vasu
- Division of Hematology, The Ohio State University, Columbus, OH
| | - Melhem Solh
- Bone Marrow Transplant, Acute Leukemia, and Immunotherapy Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - Asmita Mishra
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Lori S Muffly
- Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA
| | - Hee-Je Kim
- Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Matthias Stelljes
- Department of Medicine/Hematology and Oncology, University of Münster, Münster, Germany
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Kirsty Thomson
- Department of Hematology, University College Hospital, London, United Kingdom
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Andrew H Wei
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, The Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research and The University of Melbourne, Melbourne, Australia
| | - Guido Marcucci
- Division of Hematology and Oncology, Department of Medicine, Beckman Research Institute of City of Hope, Duarte, CA
| | - Caroline Chen
- Astellas Pharma Global Development, Inc, Northbrook, IL
| | - Nahla Hasabou
- Astellas Pharma Global Development, Inc, Northbrook, IL
| | - Matt Rosales
- Astellas Pharma Global Development, Inc, Northbrook, IL
| | - Jason Hill
- Astellas Pharma Global Development, Inc, Northbrook, IL
| | | | | | | | | | | | - Mary M Horowitz
- Division of Hematology and Oncology, Department of Medicine, Center for International Blood and Marrow Transplant Research/Medical College of Wisconsin, Milwaukee, WI
| | - Yi-Bin Chen
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
3
|
Zuriaga MA, Fuster JJ. Clonal haematopoiesis of indeterminate potential: an emerging risk factor for type 2 diabetes and related complications. Diabetologia 2025; 68:920-929. [PMID: 40064675 DOI: 10.1007/s00125-025-06393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/23/2025] [Indexed: 04/25/2025]
Abstract
The accumulation of acquired somatic mutations is a natural consequence of ageing, but the pathophysiological implications of these mutations beyond cancer are only beginning to be understood. Most somatic mutations are functionally neutral, but a few may confer a competitive advantage to a stem cell, driving its clonal expansion. When such a mutation arises in haematopoietic stem cells, it leads to clonal haematopoiesis, in which a significant proportion of blood cells originate from the mutant stem cell and share the same mutation. Clonal haematopoiesis of indeterminate potential (CHIP), a specific subset of clonal haematopoiesis driven by myeloid leukaemia-related somatic mutations, has been linked to a higher risk of various age-related conditions, particularly CVD, by exacerbating inflammatory responses. Emerging evidence suggests that CHIP may also contribute to the pathogenesis of type 2 diabetes and some of its complications. This review synthesises current knowledge on CHIP and its potential as a novel risk factor for type 2 diabetes, highlighting the need for further research to clarify this relationship and to explore its potential value in developing personalised preventive care strategies for type 2 diabetes and related conditions.
Collapse
Affiliation(s)
- María A Zuriaga
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain.
| |
Collapse
|
4
|
Shahar Gabay T, Stolero N, Rabhun N, Sabah R, Raz O, Neumeier Y, Marx Z, Tao L, Biezuner T, Amir S, Adar R, Levy R, Chapal-Ilani N, Evtiugina N, Shlush LI, Shapiro E, Yehudai-Resheff S, Zuckerman T. GMP-like and MLP-like Subpopulations of Hematopoietic Stem and Progenitor Cells Harboring Mutated EZH2 and TP53 at Diagnosis Promote Acute Myeloid Leukemia Relapse: Data of Combined Molecular, Functional, and Genomic Single-Stem-Cell Analyses. Int J Mol Sci 2025; 26:4224. [PMID: 40362463 PMCID: PMC12072498 DOI: 10.3390/ijms26094224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) is associated with unfavorable patient outcomes primarily related to disease relapse. Since specific types of leukemic hematopoietic stem and progenitor cells (HSPCs) are suggested to contribute to AML propagation, this study aimed to identify and explore relapse-initiating HSPC subpopulations present at diagnosis, using single-cell analysis (SCA). We developed unique high-resolution techniques capable of tracking single-HSPC-derived subclones during AML evolution. Each subclone was evaluated for chemo-resistance, in vivo leukemogenic potential, mutational profile, and the cell of origin. In BM samples of 15 AML patients, GMP-like and MLP-like HSPC subpopulations were identified as prevalent at relapse, exhibiting chemo-resistance to commonly used chemotherapy agents cytosine arabinoside (Ara-C) and daunorubicin. Reconstruction of phylogenetic lineage trees combined with genetic analysis of single HSPCs and single-HSPC-derived subclones demonstrated two distinct clusters, originating from MLP-like or GMP-like subpopulations, observed both at diagnosis and relapse. These subpopulations induced leukemia development ex vivo and in vivo. Genetic SCA showed that these relapse-related subpopulations harbored mutated EZH2 and TP53, detected already at diagnosis. This study, using combined molecular, functional, and genomic analyses at the level of single cells, identified patient-specific chemo-resistant HSPC subpopulations at the time of diagnosis, promoting AML relapse.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Humans
- Enhancer of Zeste Homolog 2 Protein/genetics
- Single-Cell Analysis/methods
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Tumor Suppressor Protein p53/genetics
- Mutation
- Animals
- Male
- Female
- Middle Aged
- Mice
- Recurrence
- Adult
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Aged
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Tal Shahar Gabay
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
| | - Nofar Stolero
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
| | - Niv Rabhun
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
| | - Rawan Sabah
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
| | - Ofir Raz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Yaara Neumeier
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Zipora Marx
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Liming Tao
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Tamir Biezuner
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Shiran Amir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Rivka Adar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Ron Levy
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Noa Chapal-Ilani
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Natalia Evtiugina
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
| | - Liran I. Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot 761001, Israel; (T.B.); (N.C.-I.); (L.I.S.)
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel; (O.R.); (Y.N.); (L.T.); (R.L.); (E.S.)
| | - Shlomit Yehudai-Resheff
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
| | - Tsila Zuckerman
- Hematology Research Center, Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel; (T.S.G.); (R.S.); (S.Y.-R.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 3109601, Israel
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
5
|
Elhodaky M, Duckett D, Santana-Santos L, Oh TS, Abaza Y, Sukhanova M, Lu X, Vormittag-Nocito ER, Jennings LJ, Gao J. Clinicopathological and global methylation profiling of acute myeloid leukemia with mutations in NPM1 and clonal hematopoiesis-related genes. Leuk Lymphoma 2025:1-8. [PMID: 40276909 DOI: 10.1080/10428194.2025.2495105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Recent studies suggest that nucleophosmin 1 (NPM1)-mutated acute myeloid leukemia (NPM1-AML) often arises from clonal hematopoiesis (CH) involving mutations in DTA genes (DNMT3A, TET2, ASXL1), which can persist during remission. This research evaluates the clinical implications of molecular profiling of CH-related DTA genes in NPM1-AML by comparing clinical features, treatment outcomes, and methylation patterns with those of NPM1-AML lacking DTA mutations. Findings show NPM1-AML with DTA mutations exhibited higher WBC/peripheral blood blast counts, a lower incidence of extramedullary disease, more frequent IDH2 but less FLT3-TKD mutations. However, no significant differences in clinical characteristics such as age, treatment response, or disease outcome between the groups were seen. Additionally, despite variations in methylation profiles based on disease status, no distinct differences between DTA-positive and negative groups were observed. Notably, three probes, including one linked to the FAM65B promoter, effectively differentiated disease states, highlighting the potential role of FAM65B in leukemogenesis and patient survival.
Collapse
Affiliation(s)
- Mostafa Elhodaky
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Drew Duckett
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lucas Santana-Santos
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Timothy S Oh
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yasmin Abaza
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lawrence J Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
McConville M, Thomas T, Beckner R, Kroger B, Valadez C, Chook YM, Chung S, Liszczak G. A germline ETV6 mutation disrupts hematopoiesis via de novo creation of a nuclear export signal. SCIENCE ADVANCES 2025; 11:eadu4058. [PMID: 40238870 PMCID: PMC12002123 DOI: 10.1126/sciadv.adu4058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Germline mutations in the transcriptional regulator ETV6 are a root cause of familial inherited thrombocytopenia and predispose carriers to myelodysplastic syndromes and acute leukemias. Here, we report that the ETV6 P214L mutation creates an XPO1-dependent nuclear export signal to cause protein mislocalization. Strategies to disrupt XPO1 nuclear export activity fully restore ETV6 P214L protein nuclear localization and transcription regulation activity, establishing XPO1-dependent mislocalization as a critical mechanism underscoring ETV6 P214L dysfunction. Mechanistic insight inspired the design of "humanized" ETV6 mice in which the germline P214L mutation is sufficient to elicit severe defects in thrombopoiesis and hematopoietic stem cell maintenance and survival in animals. These studies define a unique mechanism by which the ETV6 P214L mutation exerts a dominant negative effect on protein function and reveal critical mutation-dependent disruptions to hematopoiesis that underlie disease phenotypes.
Collapse
Affiliation(s)
- Michael McConville
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Dallas, TX, USA
| | - Toby Thomas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan Beckner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Dallas, TX, USA
| | - Benjamin Kroger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Valadez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Glen Liszczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Dallas, TX, USA
| |
Collapse
|
7
|
Yao Y, Liu YY, Li JF, Chen YS, Shi L, Shen Y, Yang LL, Yang Q. Indoleamine 2,3-dioxygenase 1 alters the proportions of B cell subpopulations in the microenvironment of acute myeloid leukemia. MOLECULAR BIOMEDICINE 2025; 6:23. [PMID: 40234305 PMCID: PMC12000501 DOI: 10.1186/s43556-025-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Acute myeloid leukemia (AML), the most common leukemia in adults, exhibits immune escape characteristics like solid tumors. The expression of indoleamine 2,3-dioxygenase 1 (IDO1), a well-recognized immune checkpoint, has been detected in AML blast cells and is associated with poor clinical outcome. Although an imbalance of B cell subpopulations exists in AML patients' bone marrow microenvironment, the role of B cells and their interaction with IDO1 in AML have yet to be elucidated. Herein, with bioinformatic analysis, we found the close correlations between IDO1 expression and survival and B cell subpopulation proportions in AML patients. Further, our investigation into IDO1 expression and activity, B cell subpopulation proportions and immunosuppressive interleukin-10 (IL-10) level in AML cells and clinical samples revealed significant findings. Using a co-culture system of healthy human PBMCs and AML cell lines, we demonstrated that high IDO1 expression in AML cells could alter the proportions of total B, regulatory B and memory B cells, and increased the level of IL-10. Finally, with the IDO1 inhibitor RY103 designed by our laboratory, we found that IDO1 inhibition had good anti-leukemic effect and restored the abnormal proportions of B cell subpopulations in AML mice. Our study is the first to reveal the modulation of IDO1 on B cell subpopulations in AML, making a significant breakthrough in understanding the immune escape mechanisms of AML. Application of IDO1 inhibitor, such as RY103, targeting the imbalance of B cell subpopulations can lead to innovative treatments for AML.
Collapse
MESH Headings
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Tumor Microenvironment/immunology
- Animals
- Interleukin-10/metabolism
- Mice
- Cell Line, Tumor
- Male
- Female
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Middle Aged
- Adult
Collapse
Affiliation(s)
- Yu Yao
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yu-Ying Liu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Jian-Feng Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun-Shuo Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Shi
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yang Shen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Li-Li Yang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Qing Yang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
| |
Collapse
|
8
|
Elmenawi S, Fawzy M. 15 Years Old ALK Gene from Birth to Adolescence; Where to in NBL. Curr Oncol Rep 2025; 27:431-445. [PMID: 40064818 PMCID: PMC11976753 DOI: 10.1007/s11912-025-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE OF REVIEW This review provides a comprehensive understanding of the ALK gene, encompassing its prevalence, genetic alterations, and significance in neuroblastoma diagnosis, outcome prediction, and targeted therapy utilization. The insights presented aim to inform future research directions and clinical practices in this field. RECENT FINDINGS High risk neuroblastoma, comprising approximately 50% of all cases, presents a particularly poor prognosis. In 2008, the discovery of ALK aberrations in neuroblastoma marked a significant breakthrough, leading to the recognition of ALK as a target for tumors with activating ALK alterations. This discovery has paved the way for the development of various ALK inhibitors, which have shown promising clinical efficacy. ALK amplification, often observed alongside MYCN amplification, has been associated with unfavorable outcomes in patients. Activating mutations in the kinase domain of ALK, particularly at hotspot positions F1174, R1275, and F1245, have been identified. These mutations can occur at clonal or subclonal levels, posing challenges for early detection and potentially influencing disease progression and therapy resistance. The availability of ALK inhibitors, initially developed for adult cancers, has expedited the translation of this knowledge into targeted therapies for neuroblastoma. However, resistance to ALK inhibitors can emerge as a result of treatment or preexist as subclones within the tumor prior to therapy. Future trials should focus on identifying additional targets complementing ALK inhibition to enhance treatment efficacy and overcome acquired resistance. Furthermore, the utilization of circulating tumor DNA as a non-invasive approach for longitudinal monitoring of ALK-positive neuroblastoma patients, in combination with radiographic evaluation of treatment response, holds promise for understanding dynamic tumor changes over time.
Collapse
Affiliation(s)
- Salma Elmenawi
- Clinical Research Department, Children's Cancer Hospital Egypt, 57357, 1-Sekket Elemam-Sayeda Zeinab, Cairo, Egypt.
| | - Mohamed Fawzy
- Pediatric Oncology Department, Children's Cancer Hospital Egypt, 57357, 1-Sekket Elemam-Sayeda Zeinab, Cairo, Egypt
- Pediatric Oncology Department, National Cancer Institute, Cairo, Egypt
| |
Collapse
|
9
|
Yanai H, McNeely T, Ayyar S, Leone M, Zong L, Park B, Beerman I. DNA methylation drives hematopoietic stem cell aging phenotypes after proliferative stress. GeroScience 2025; 47:1873-1886. [PMID: 39390312 PMCID: PMC11978565 DOI: 10.1007/s11357-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Aging of hematopoietic stem cells (HSCs) is implicated in various aging phenotypes, including immune dysfunction, anemia, and malignancies. The role of HSC proliferation in driving these aging phenotypes, particularly under stress conditions, remains unclear. Therefore, we induced forced replications of HSCs in vivo by a cyclical treatment with low-dose fluorouracil (5FU) and examined the impact on HSC aging. Our findings show that proliferative stress induces several aging phenotypes, including altered leukocyte counts, decreased lymphoid progenitors, accumulation of HSCs with high expression of Slamf1, and reduced reconstitution potential, without affecting stem cell self-renewal capacity. The divisional history of HSCs was imprinted in the DNA methylome, consistent with functional decline. Specifically, DNA methylation changes included global hypermethylation in non-coding regions and similar frequencies of hypo- and hyper-methylation at promoter regions, particularly affecting genes targeted by the PRC2 complex. Importantly, initial forced replication promoted DNA damage repair accumulated with age, but continuous proliferative stress led to the accumulation of double-strand breaks, independent of functional decline. Overall, our results suggest that HSC proliferation can drive some aging phenotypes primarily through epigenetic mechanisms, including DNA methylation changes.
Collapse
Affiliation(s)
- Hagai Yanai
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Taylor McNeely
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Saipriya Ayyar
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Michael Leone
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Le Zong
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute On Aging, NIH, 251 Bayview Blvd, Suite 100/10C220, Baltimore, MD, 21224, USA.
| |
Collapse
|
10
|
Aguirre LE, Ball S, Jain A, Ali NA, Sallman DA, Kuykendall A, Sweet K, Lancet JE, Padron E, Komrokji RS. Characterization of Indolent Chronic Myelomonocytic Leukemia Phenotypes and Dynamic Features of Disease Progression. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025:S2152-2650(25)00109-0. [PMID: 40254502 DOI: 10.1016/j.clml.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder characterized by features of myeloproliferation and myelodysplasia. Various prognostic models incorporate clinical, cytogenetic, and molecular factors to assess risk and guide treatment decisions. However, there has been limited exploration of a subset of patients exhibiting more indolent disease behavior. Due to the significant heterogeneity in disease biology, clonal architecture, clinical presentation, and outcomes, identifying key markers is essential for predicting which patients may present with indolent disease and for recognizing those at greater risk of progression who may require early intervention. PATIENTS AND METHODS We analyzed baseline clinical and molecular parameters in 656 CMML patients, stratifying them into 2 groups: those observed for ≥ 3 years (indolent CMML) and those needing treatment within that period. RESULTS 14% of CMML patients exhibited indolent disease, correlating with superior outcomes (mOS: 78.5 months vs. 25 months in nonindolent cases). Indolent disease was associated with higher hemoglobin and platelet counts, JAK2 mutations, and fewer cytopenias. In contrast, features indicating the need for earlier treatment included leukocytosis, elevated lymphocyte/monocyte counts, higher percentage of circulating immature cells/blasts, increased marrow cellularity/blasts, and NRAS, ASXL1, and RUNX1 mutations. Changes in the M:E ratio, the presence of abnormally localized immature precursors (ALIP) and gain of mutations reflecting clonal evolution indicated clinical decline and need for timely treatment initiation. CONCLUSION A small proportion of CMML patients exhibit indolent features linked to better outcomes, contrasting with markers indicating earlier treatment initiation, which are associated with increased risk of progression; recognizing these markers aids in predicting disease aggressiveness.
Collapse
Affiliation(s)
- Luis E Aguirre
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Harvard T.H. Chan School of Public Health, Boston, MA.
| | - Somedeb Ball
- Division of Hematology and Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Akriti Jain
- Taussig Cancer Institute, Leukemia and Myeloid Disorders Program, Cleveland Clinic, Cleveland, OH
| | - Najla Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Andrew Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Kendra Sweet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.
| |
Collapse
|
11
|
Fu YC, Liang SB, Luo M, Wang XP. Intratumoral heterogeneity and drug resistance in cancer. Cancer Cell Int 2025; 25:103. [PMID: 40102941 PMCID: PMC11917089 DOI: 10.1186/s12935-025-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Intratumoral heterogeneity is the main cause of tumor treatment failure, varying across disease sites (spatial heterogeneity) and polyclonal properties of tumors that evolve over time (temporal heterogeneity). As our understanding of intratumoral heterogeneity, the formation of which is mainly related to the genomic instability, epigenetic modifications, plastic gene expression, and different microenvironments, plays a substantial role in drug-resistant as far as tumor metastasis and recurrence. Understanding the role of intratumoral heterogeneity, it becomes clear that a single therapeutic agent or regimen may only be effective for subsets of cells with certain features, but not for others. This necessitates a shift from our current, unchanging treatment approach to one that is tailored against the killing patterns of cancer cells in different clones. In this review, we discuss recent evidence concerning global perturbations of intratumoral heterogeneity, associations of specific intratumoral heterogeneity in lung cancer, the underlying mechanisms of intratumoral heterogeneity potentially leading to formation, and how it drives drug resistance. Our findings highlight the most up-to-date progress in intratumoral heterogeneity and its role in mediating tumor drug resistance, which could support the development of future treatment strategies.
Collapse
Affiliation(s)
- Yue-Chun Fu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shao-Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Luo
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Xue-Ping Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
12
|
Xu S, Hong J, Dongye M, Lin J, Xue R, Huang Z, Xu J, Zhang Y, Leung AYH, Shen J, Zhang W, Liu W. The synergistic effect of c-Myb hyperactivation and Pu.1 deficiency induces Pelger-Huët anomaly and promotes sAML. Proc Natl Acad Sci U S A 2025; 122:e2416121122. [PMID: 40020188 PMCID: PMC11892618 DOI: 10.1073/pnas.2416121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/28/2025] [Indexed: 03/12/2025] Open
Abstract
Approximately 30% of patients with myelodysplastic syndrome (MDS) progress to secondary acute myeloid leukemia (sAML) via accumulating gene mutations. Genomic analyses reveal a complex interplay among mutant genes, with co-occurring and mutually exclusive patterns. Hyperactivation of c-MYB and deficiency of PU.1 have been linked to myeloid disorders. We report a case of AML with concurrent PU.1 and c-MYB mutations, exhibiting early onset, high blast count, chemo-resistance, indicating high-risk features, along with elevated Pelger-Huët anomaly (PHA). However, the synergistic mechanism of c-MYB and PU.1 in sAML remains unclear. Using c-Myb-hyperactivation and Pu.1-deficient double-strain (c-mybhyper;pu.1G242D/G242D) zebrafish, we investigated MDS/sAML progression. Surprisingly, the double mutant exhibited a distinct type of neutrophil resembling clinical PHA cells and demonstrated a higher rate of MDS/sAML transformation. Further expression analysis revealed reduced lmnb1 expression in double-mutant zebrafish. Knockdown of lmnb1 resulted in PHA and increased blast cells, while overexpression of lmnb1 in c-mybhyper;pu.1G242D/G242D reduced PHA cell level. This suggests that c-Myb hyperactivation and Pu.1 deficiency synergistically reduce lmnb1 expression, inducing the development of PHA-like neutrophils and promoting MDS/sAML progression in zebrafish. Moreover, coadministration of cell cycle inhibitor cytarabine (Ara-C) and the differential inducer all-trans retinoic acid (ATRA) could effectively relieve the neutrophil expansion and PHA symptoms in c-mybhyper;pu.1G242D/G242D zebrafish. Our findings revealed that c-Myb hyperactivation and Pu.1 deficiency played a synergistic role in sAML development and suggests a phenotypic association between the emergence of PH-like cells and the transformation to sAML. Furthermore, c-mybhyper;pu.1G242D/G242D zebrafish might serve as a suitable sAML model for drug screening.
Collapse
Affiliation(s)
- Song’en Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Jiaxin Hong
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Meimei Dongye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, China
| | - Jiehao Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Anskar Yu-Hung Leung
- Division of Hematology, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Juan Shen
- Department of Marine Pharmacy, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou510006, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
13
|
Sturgeon CM, Wagenblast E, Izzo F, Papapetrou EP. The Crossroads of Clonal Evolution, Differentiation Hierarchy, and Ontogeny in Leukemia Development. Blood Cancer Discov 2025; 6:94-109. [PMID: 39652739 PMCID: PMC11876951 DOI: 10.1158/2643-3230.bcd-24-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
SIGNIFICANCE In recent years, remarkable technological advances have illuminated aspects of the pathogenesis of myeloid malignancies-yet outcomes for patients with these devastating diseases have not significantly improved. We posit that a synthesized view of the three dimensions through which hematopoietic cells transit during their healthy and diseased life-clonal evolution, stem cell hierarchy, and ontogeny-promises high yields in new insights into disease pathogenesis and new therapeutic avenues.
Collapse
Affiliation(s)
- Christopher M. Sturgeon
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elvin Wagenblast
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Franco Izzo
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eirini P. Papapetrou
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Fotopoulou F, Rodríguez-Correa E, Dussiau C, Milsom MD. Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? Exp Hematol 2025; 143:104698. [PMID: 39725143 DOI: 10.1016/j.exphem.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues. This review reappraises an HSC-centric view of hematopoietic aging by exploring how the entire hematopoietic hierarchy, from stem cells to mature cells, contributes to age-related disorders. It highlights the decline of both innate and adaptive immunity, leading to increased susceptibility to infections and cancer, and the rise of autoimmunity as peripheral immune cells undergo aging-induced changes. It explores the concept of "inflammaging," where persistent, low-grade inflammation driven by old immune cells creates a cycle of tissue damage and disease. Additionally, this review delves into the roles of inflammation and homeostatic regulation in age-related conditions such as thrombotic events and anemia, arguing that these issues arise from broader dysfunctions rather than stemming from HSC functional attrition alone. In summary, this review highlights the importance of taking a holistic approach to studying hematopoietic aging and its related pathologies. By looking beyond just stem cells and considering the full spectrum of age-associated changes, one can better capture the complexity of aging and attempt to develop preventative or rejuvenation strategies that target multiple facets of this process.
Collapse
Affiliation(s)
- Foteini Fotopoulou
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Esther Rodríguez-Correa
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Charles Dussiau
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
| |
Collapse
|
15
|
Sarchi M, Doulatov S. Understanding Human Oncogene Function and Cooperativity in Myeloid Malignancy Using iPSCs. Exp Hematol 2025; 143:104697. [PMID: 39674361 DOI: 10.1016/j.exphem.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Myeloid malignancies are a spectrum of clonal disorders driven by genetic alterations that cooperatively confer aberrant self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs). Induced pluripotent stem cells (iPSCs) can be differentiated into HSPCs and have been widely explored for modeling hematologic disorders and cell therapies. More recently, iPSC models have been applied to study the origins and pathophysiology of myeloid malignancies, motivated by the appreciation for the differences in human oncogene function and the need for genetically defined models that recapitulate leukemia development. In this review, we will provide a broad overview of the rationale, the challenges, practical aspects, history, and recent advances of iPSC models for modeling myeloid neoplasms. We will focus on the insights into the previously unknown aspects of human oncogene function and cooperativity gained through the use of these models. It is now safe to say that iPSC models are a mainstay of leukemia modeling "toolbox" alongside primary human cells from normal and patient sources.
Collapse
Affiliation(s)
- Martina Sarchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sergei Doulatov
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA; Department of Genome Sciences, University of Washington, Seattle, WA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
16
|
Spencer Chapman M, Mitchell E, Yoshida K, Williams N, Fabre MA, Ranzoni AM, Robinson PS, Kregar LD, Wilk M, Boettcher S, Mahbubani K, Saeb Parsy K, Gowers KHC, Janes SM, Ng SWK, Hoare M, Green AR, Vassiliou GS, Cvejic A, Manz MG, Laurenti E, Martincorena I, Stratton MR, Nangalia J, Coorens THH, Campbell PJ. Prolonged persistence of mutagenic DNA lesions in somatic cells. Nature 2025; 638:729-738. [PMID: 39814886 PMCID: PMC11839459 DOI: 10.1038/s41586-024-08423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment1-3. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours3,4, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium5-12. Persistent DNA lesions occurred at increased rates, with distinctive mutational signatures, in donors exposed to tobacco or chemotherapy, suggesting that they can arise from exogenous mutagens. In haematopoietic stem cells, persistent DNA lesions, probably from endogenous sources, generated the characteristic mutational signature SBS1913; occurred steadily throughout life, including in utero; and endured for 2.2 years on average, with 15-25% of lesions lasting at least 3 years. We estimate that on average, a haematopoietic stem cell has approximately eight such lesions at any moment in time, half of which will generate a mutation with each cell cycle. Overall, 16% of mutations in blood cells are attributable to SBS19, and similar proportions of driver mutations in blood cancers exhibit this signature. These data indicate the existence of a family of DNA lesions that arise from endogenous and exogenous mutagens, are present in low numbers per genome, persist for months to years, and can generate a substantial fraction of the mutation burden of somatic cells.
Collapse
Affiliation(s)
- Michael Spencer Chapman
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haemato-oncology, Barts Cancer Institute, London, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Matthias Wilk
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Kate H C Gowers
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs For Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Matt Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ana Cvejic
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elisa Laurenti
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Lecornec N, Duchmann M, Itzykson R. Single-cell sequencing applications in acute myeloid leukemia. Leuk Lymphoma 2025; 66:175-189. [PMID: 39496597 DOI: 10.1080/10428194.2024.2422833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies with poor prognosis. AML result from the proliferation of immature myeloid cells blocked at a variable stage of differentiation. Beyond inter-patient heterogeneity, AMLs are characterized by genetic and phenotypic intra-patient heterogeneity. Despite major advances in deciphering AML biology with bulk sequencing studies, pivotal questions remain unanswered. Analyses at the single-cell level could thus transform our understanding of these neoplasms. We review recent progresses in single-cell sequencing technologies from cell processing to bioinformatic pipelines. We next discuss how single-cell applications have helped understand the genetic and functional intra-leukemic heterogeneity, emphasizing aspects related to leukemic stem cells, clonal evolution and measurable residual disease (MRD) monitoring. We finally delineate how single-cell technologies could be implemented in routine clinical practice to improve patient management.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Single-Cell Analysis/methods
- Neoplasm, Residual/genetics
- Neoplasm, Residual/diagnosis
- Biomarkers, Tumor/genetics
- High-Throughput Nucleotide Sequencing/methods
- Clonal Evolution
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Computational Biology/methods
- Prognosis
Collapse
Affiliation(s)
- Nicolas Lecornec
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Matthieu Duchmann
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Raphael Itzykson
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université Paris Cité, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
18
|
Villaume MT, Savona MR. Pathogenesis and inflammaging in myelodysplastic syndrome. Haematologica 2025; 110:283-299. [PMID: 39445405 PMCID: PMC11788632 DOI: 10.3324/haematol.2023.284944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a genetically complex and phenotypically diverse set of clonal hematologic neoplasms that occur with increasing frequency with age. MDS has long been associated with systemic inflammatory conditions and disordered inflammatory signaling is implicated in MDS pathogenesis. A rise in sterile inflammation occurs with ageing and the term "inflammaging" has been coined by to describe this phenomenon. This distinct form of sterile inflammation has an unknown role in in the pathogenesis of myeloid malignancies despite shared correlations with age and ageing-related diseases. More recent is a discovery that many cases of MDS arise from clonal hematopoiesis of indeterminate potential (CHIP), an age associated, asymptomatic pre-disease state. The interrelationship between ageing, inflammation and clonal CHIP is complex and likely bidirectional with causality between inflammaging and CHIP potentially instrumental to understanding MDS pathogenesis. Here we review the concept of inflammaging and MDS pathogenesis and explore their causal relationship by introducing a novel framing mechanism of "pre-clonal inflammaging" and "clonal inflammaging". We aim to harmonize research on ageing, inflammation and MDS pathogenesis by contextualizing the current understanding of inflammaging and the ageing hematopoietic system with what is known about the etiology of MDS via its progression from CHIP.
Collapse
Affiliation(s)
- Matthew T Villaume
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Michael R Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Program in Cancer Biology, and Center for Immunobiology Nashville, TN 37232.
| |
Collapse
|
19
|
Sieberer H, Luciano M, Amend D, Blöchl C, Eglseer A, Steinkellner A, Rieser S, Andosch A, Steiner P, Hummer L, Krenn PW, Dang HH, Huber CG, Aberger F, Neuper T, Horejs-Hoeck J. Inhibition of NLRP3 enhances pro-apoptotic effects of FLT3 inhibition in AML. Cell Commun Signal 2025; 23:53. [PMID: 39875995 PMCID: PMC11773904 DOI: 10.1186/s12964-025-02046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
FLT3 mutations occur in approximately 25% of all acute myeloid leukemia (AML) patients. While several FLT3 inhibitors have received FDA approval, their use is currently limited to combination therapies with chemotherapy, as resistance occurs, and efficacy decreases when the inhibitors are used alone. Given the highly heterogeneous nature of AML, there is an urgent need for novel targeted therapies that address the disease from multiple angles. Recent research has identified the NLRP3 inflammasome as a potential new driver in AML. Here, we investigated the efficacy of different NLRP3 inhibitors in targeting AML cells in vitro. Our findings reveal that NLRP3 inhibition induces cell cycle arrest as well as signs of senescence in multiple AML cell lines. In contrast, NLRP3 inhibition selectively induced apoptosis in FLT3 mutant AML cell lines, but not in FLT3 wild-type AML cells. Moreover, we show that NLRP3 inhibition impairs FLT3 signaling by reducing both FLT3 expression as well as downstream signaling in FLT3 mutant cells. A database analysis revealed a strong positive correlation between FLT3 and NLRP3 in cancer, which was particularly evident in AML patients. Strikingly, the simultaneous inhibition of NLRP3 and FLT3 markedly enhanced apoptosis in FLT3-ITD mutant AML cells, but not in FLT3 wild-type cells. In summary, this study reveals a promising combined therapeutic strategy specifically targeting NLRP3/FLT3-ITD positive AML blasts in vitro, highlighting a potential new avenue for AML treatment.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Apoptosis/drug effects
- Cell Line, Tumor
- Signal Transduction/drug effects
- Mutation
Collapse
Affiliation(s)
- Helene Sieberer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Michela Luciano
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Diana Amend
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Constantin Blöchl
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Anna Eglseer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Alina Steinkellner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Sebastian Rieser
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Ancuela Andosch
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Philip Steiner
- Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Laura Hummer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria.
- Cancer Cluster Salzburg, Salzburg, 5020, Austria.
| |
Collapse
|
20
|
Senguttuvan NB, Subramanian V, Tr M, Sankaranarayanan K, Venkatesan V, Sadagopan T. Clonal hematopoiesis of indeterminate potential and cardiovascular diseases: A review. Indian Heart J 2025; 77:51-57. [PMID: 39863253 PMCID: PMC11977166 DOI: 10.1016/j.ihj.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 01/23/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular disease (CVD) is a major driver of mortality and declining health worldwide. Cardiovascular diseases (CVD) is the most common cause of morbidity and mortality globally. Although dyslipidemia, smoking, diabetes, hypertension and obesity are some well-known causes of CVD, the overlapping genetic pathways between other diseases and those affecting cardiovascular health have been overlooked. In the past decade, mutations in TET2, DNMT3A, ASXL1, and JAK2 are found to cause clonal hematopoiesis of intermediate potential (CHIP), a disease associated with age-related haematological malignancies without the presence of cytopenias or dysplasia. Coronary artery disease, heart failure, aortic stenosis, and arrhythmias have been shown to be associated with the presence of CHIP mutations. Addressing the association between CHIP could significantly reduce residual risk patients with CVD. The link between CHIP and CVD can potentially be addressed through inhibitors of inflammasomes, antagonists in the interleukin pathway, or direct antagonists of CHIP mutations.
Collapse
Affiliation(s)
| | - Vinodhini Subramanian
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education & Research (SRIHER), Chennai, India
| | - Muralidharan Tr
- Department of Cardiology, SRM medical college, Chennai, Chennai, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, Tamil Nadu, 600044, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education & Research (SRIHER), Chennai, India.
| | - Thanikachalam Sadagopan
- Department of Cardiology, Sri Ramachandra Institute of Higher Education & Research (SRIHER), Chennai, India
| |
Collapse
|
21
|
Mestermann K, Garitano-Trojaola A, Hudecek M. Accelerating CAR-T Cell Therapies with Small-Molecule Inhibitors. BioDrugs 2025; 39:33-51. [PMID: 39589646 PMCID: PMC11750903 DOI: 10.1007/s40259-024-00688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Chimeric antigen receptor T-cell therapies have markedly improved the survival rates of patients with B-cell malignancies. However, their efficacy in other hematological cancers, such as acute myeloid leukemia, and in solid tumors has been limited. Key obstacles include the downregulation or loss of antigen expression on cancer cells, restricted accessibility to target cells, and the poor persistence of these "living drugs" because of the highly immunosuppressive tumor microenvironment. Additionally, manufacturing these immunotherapies presents significant challenges, and patients frequently experience side effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This review emphasizes the potential of small-molecule inhibitors, many of which are already approved for clinical use, to facilitate chimeric antigen receptor T-cell manufacturing, enhance their anti-tumor efficacy, and mitigate their side effects. Although substantial work remains, the robust pre-clinical data and the growing clinical interest suggest significant promise for using cancer signaling pathway inhibitors to enhance and refine chimeric antigen receptor T-cell therapy for both hematological and solid tumors. Exploring these combination strategies could lead to more effective therapies, offering new hope for patients with resistant forms of cancer.
Collapse
Affiliation(s)
- Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany.
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany.
| | - Andoni Garitano-Trojaola
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany
| |
Collapse
|
22
|
Sim H, Park HJ, Park GH, Kim YJ, Park WY, Lee SH, Choi M. Increased inflammatory signature in myeloid cells of non-small cell lung cancer patients with high clonal hematopoiesis burden. eLife 2024; 13:RP96951. [PMID: 39641768 PMCID: PMC11623926 DOI: 10.7554/elife.96951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) allows estimation of clonal dynamics and documentation of somatic mutations in the hematopoietic system. Recent studies utilizing large cohorts of the general population and patients have revealed significant associations of CHIP burden with age and disease status, including in cancer and chronic diseases. An increasing number of cancer patients are treated with immune checkpoint inhibitors (ICIs), but the association of ICI response in non-small cell lung cancer (NSCLC) patients with CHIP burden remains to be determined. We collected blood samples from 100 metastatic NSCLC patients before and after ICI for high-depth sequencing of the CHIP panel and 63 samples for blood single-cell RNA sequencing. Whole exome sequencing was performed in an independent replication cohort of 180 patients. The impact of CHIP status on the immunotherapy response was not significant. However, metastatic lung cancer patients showed higher CHIP prevalence (44/100 for patients vs. 5/42 for controls; p = 0.01). In addition, lung squamous cell carcinoma (LUSC) patients showed increased burden of larger clones compared to lung adenocarcinoma (LUAD) patients (8/43 for LUSC vs. 2/50 for LUAD; p = 0.04). Furthermore, single-cell RNA-seq analysis of the matched patients showed significant enrichment of inflammatory pathways mediated by NF-κB in myeloid clusters of the severe CHIP group. Our findings suggest minimal involvement of CHIP mutation and clonal dynamics during immunotherapy but a possible role of CHIP as an indicator of immunologic response in NSCLC patients.
Collapse
Affiliation(s)
- Hyungtai Sim
- Department of Biomedical Sciences, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun Jung Park
- Samsung Genome Institute, Samsung Medical CenterSeoulRepublic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National UniversitySeoulRepublic of Korea
| | - Geun-Ho Park
- Samsung Genome Institute, Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical CenterSeoulRepublic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical CenterSeoulRepublic of Korea
| | - Se-Hoon Lee
- Samsung Genome Institute, Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan UniversitySeoulRepublic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
23
|
Liu Y, Cheng H, Cheng M, Sun M, Ma J, Gong T. Next generation sequencing reveals the mutation landscape of Chinese MDS patients and the association between mutations and AML transformations. Hematology 2024; 29:2392469. [PMID: 39158486 DOI: 10.1080/16078454.2024.2392469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/10/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND/OBJECTIVE Approximately 30% of patients with MDS eventually develop to acute myeloid leukemia (AML). Our study aimed to investigate the mutation landscape of Chinese MDS patients and identify the mutated genes which are closely implicated in the transformation of MDS to AML. METHODS In total, 412 sequencing data collected from 313 patients were used for analysis. Mutation frequencies between different groups were compared by Fisher's exact. A predictive model for risk of transformation/death of newly diagnosed patients was constructed by logistic regression. RESULTS The most frequently mutated genes in newly diagnosed patients were TP53, TET2, RUNX1, PIGA, and BCOR and mutations of RUNX1, TP53, BCORL1, TET2, and BCOR genes were more common in the treated MDS patients. Besides, we found that the mutation frequencies of IDH2, TET2, and EZH2 were significantly higher in MDS patients aged over 60 years. Moreover, two mutation sites, KRASG12A and TP53H140N were detected only at transformation in one patient, while not detected at diagnosis. In addition, the mutation frequencies of EZH2 V704F and TET2 I1873N were stable from diagnosis to transformation in two patients. Finally, we constructed a predictive model for risk of transformation/death of newly diagnosed patients combing detected data of 10 genes and the number of to leukocyte, with a sensitivity of 63.3% and a specificity of 84.6% in distinguishing individuals with and without risk of transformation/death. CONCLUSION In summary, our study found several mutations associated with the transformation from MDS to AML, and constructed a predictive model for risk of transformation/death of MDS patients.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Harbin Hematology and Oncology, the first hospital of Harbin, Harbin, People's Republic of China
| | - Huanchen Cheng
- Institute of Harbin Hematology and Oncology, the first hospital of Harbin, Harbin, People's Republic of China
| | - Mei Cheng
- Institute of Harbin Hematology and Oncology, the first hospital of Harbin, Harbin, People's Republic of China
| | - Meng Sun
- Institute of Harbin Hematology and Oncology, the first hospital of Harbin, Harbin, People's Republic of China
| | - Jun Ma
- Institute of Harbin Hematology and Oncology, the first hospital of Harbin, Harbin, People's Republic of China
| | - Tiejun Gong
- Institute of Harbin Hematology and Oncology, the first hospital of Harbin, Harbin, People's Republic of China
| |
Collapse
|
24
|
Wang NK, Wiltsie N, Winata HK, Fitz-Gibbon S, Gonzalez AE, Zeltser N, Agrawal R, Oh J, Arbet J, Patel Y, Yamaguchi TN, Boutros PC. StableLift: Optimized Germline and Somatic Variant Detection Across Genome Builds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621401. [PMID: 39554127 PMCID: PMC11565985 DOI: 10.1101/2024.10.31.621401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Reference genomes are foundational to modern genomics. Our growing understanding of genome structure leads to continual improvements in reference genomes and new genome "builds" with incompatible coordinate systems. We quantified the impact of genome build on germline and somatic variant calling by analyzing tumour-normal whole-genome pairs against the two most widely used human genome builds. The average individual had a build-discordance of 3.8% for germline SNPs, 8.6% for germline SVs, 25.9% for somatic SNVs and 49.6% for somatic SVs. Build-discordant variants are not simply false-positives: 47% were verified by targeted resequencing. Build-discordant variants were associated with specific genomic and technical features in variant- and algorithm-specific patterns. We leveraged these patterns to create StableLift, an algorithm that predicts cross-build stability with AUROCs of 0.934 ± 0.029. These results call for significant caution in cross-build analyses and for use of StableLift as a computationally efficient solution to mitigate inter-build artifacts.
Collapse
Affiliation(s)
- Nicholas K. Wang
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Nicholas Wiltsie
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Helena K. Winata
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Sorel Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Alfredo E. Gonzalez
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Nicole Zeltser
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Raag Agrawal
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Jieun Oh
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Jaron Arbet
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Takafumi N. Yamaguchi
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Institute for Precision Health, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| |
Collapse
|
25
|
Ishikawa Y. Recent progress in AML with recurrent genetic abnormalities. Int J Hematol 2024; 120:525-527. [PMID: 39352624 DOI: 10.1007/s12185-024-03848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by various molecular abnormalities that significantly impact its pathogenesis and prognosis. Currently, the prognosis of AML patients is stratified on the basis of co-existing chromosomal and genetic abnormalities. AML patients with NPM1 or CEBPA mutations, which are frequently identified in cytogenetically normal AML, are classified in the favorable-risk group, although approximately 40% of patients relapse. Similarly, a clinical high-risk group has been identified among patients with acute promyelocytic leukemia, but the underlying molecular abnormalities remain unclear. FLT3 mutations frequently overlap in these favorable-risk AMLs, including core binding factor AML, and their prognostic impact is still controversial. As such, further risk stratification and treatment optimization based on various molecular abnormalities are warranted to improve the prognosis of favorable-risk AMLs. These molecular abnormalities are also considered therapeutic targets, and targeted therapies have been developed over the years. In recent years, several targeted agents have been approved and demonstrated to improve the prognosis of AML. However, resistance to targeted therapies is also a challenge. This Progress in Hematology features current trends and challenges in favorable-risk AML and FLT3 mutations that are frequently identified in these patients.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
26
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024; 45:ehae682. [PMID: 39417710 PMCID: PMC11638724 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
27
|
Harris RA, Nolan J, Ammons D, Beeson S, Thamm D, Avery A. Advancements in genetic analysis: Insights from a case study and review of next-generation sequencing techniques for veterinary oncology applications. Vet Clin Pathol 2024. [PMID: 39367609 DOI: 10.1111/vcp.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024]
Abstract
Acute myeloid leukemia (AML) poses significant challenges in veterinary medicine, with limited treatment options and poor survival rates. While substantial progress has been made in characterizing human AML, translating these advancements to veterinary practice has been hindered by limited molecular understanding and diagnostic tools. The case study presented illustrates the application of whole genome sequencing in diagnosing AML in a dog, showcasing its potential in veterinary oncology. Our approach facilitated comprehensive genomic analysis, identifying mutations in genes that may be associated with AML pathogenesis in dogs, such as KRAS, IKZF1, and RUNX1. However, without supportive evidence of its clinical utility (eg, association with response to treatment or prognosis), the information is limited to exploration. This article reviews the comparative features of canine AML with human AML and discusses strategies to shrink the knowledge gap between human and veterinary medicine with cost-effective next-generation sequencing (NGS) techniques. By utilizing these approaches, the unique and shared molecular features with human AML can be identified, aiding in molecular classification and therapeutic development for both species. Despite the promise of NGS, challenges exist in implementing it into routine veterinary diagnostics. Cost considerations, turnaround times, and the need for robust bioinformatics pipelines and quality control measures must be addressed. Most importantly, analytical and clinical validation processes are essential to ensure the reliability and clinical utility of NGS-based assays. Overall, integrating NGS technologies into veterinary oncology holds great potential for advancing our understanding of AML and improving disease stratification, in hopes of improving clinical outcomes.
Collapse
Affiliation(s)
- R Adam Harris
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jillian Nolan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Dylan Ammons
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Samantha Beeson
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Douglas Thamm
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Anne Avery
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
28
|
Li HD, Chen SS, Ding J, Zhang CL, Qiu HY, Xia XX, Yang J, Wang XR. Exploration of ETV6::ABL1-positive AML with concurrent NPM1 and FLT3-ITD mutations. Ann Hematol 2024; 103:4295-4304. [PMID: 39105739 DOI: 10.1007/s00277-024-05917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
ETV6::ABL1 is a rare fusion gene that found in MPN, ALL, and AML. It has a complex and diverse formation mechanism due to the reciprocal orientations of the ETV6 and ABL1 genes relative to the centromeres. NPM1 is frequently mutated in adult AML, often accompanied by FLT3-ITD, which suggests molecular synergisms in AML pathogenesis. Previous reports on ETV6::ABL1 mostly focus on FLT3-ITD. In this study, we present a case of AML with ETV6::ABL1, along with NPM1 and FLT3-ITD. The patient showed a rapid increase in primitive cells at the initial stage, along with the presence of immature granulocytes and erythrocytes. Through cytogenetic analysis, fluorescence in situ hybridization (FISH), and RNA-seq, we elucidated the mechanism behind the formation of the ETV6::ABL1 fusion gene. Despite conventional chemotherapy failure and rapid tumor proliferation, we attempted to add FLT3 inhibitor sorafenib to the treatment, along with chemotherapy bridging to haploidentical transplantation. After haplo-HSCT, a combination of sorafenib and dasatinib was administered as maintenance therapy. The patient achieved complete remission (CR) and maintained it for 11 months. The intricate genetic landscape observed in this case presents diagnostic dilemmas and therapeutic challenges, emphasizing the importance of a comprehensive understanding of its implications for disease classification, risk stratification, and treatment selection.
Collapse
Affiliation(s)
- Hui-Dan Li
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Si-Si Chen
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Ding
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Chun-Ling Zhang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Hui-Yin Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin-Xin Xia
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Xiao-Rui Wang
- Clinical Laboratory Medicine Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
29
|
Rafiq N, Khan MH, Sahibzada M, Khan SA, Syamprabha Vijayan A, Ullah N, Koodarath C, Khalil H, Ali UA, Saleem F, Almounjed S, Khaliq I. Recent Developments and Challenges in the Treatment of Acute Leukemia and Myelodysplastic Syndromes: A Systematic Review. Cureus 2024; 16:e72599. [PMID: 39610611 PMCID: PMC11604246 DOI: 10.7759/cureus.72599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
The diagnosis of acute leukemia (AL) and myelodysplastic syndrome (MDS) is critical due to their rapid progression and varied survival rates between children and older adults. These diseases are associated with significant mortality, highlighting the need for strategies to reduce the global burden of AL and MDS. Their direct involvement with the blood, bone marrow, and extramedullary sites complicates treatment management. However, recent therapeutic advancements offer hope for the long-term management of AL and MDS. This systematic review followed the guidelines put forth by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to assess recent developments and challenges in the treatment of AL (including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)) and MDS. Databases such as PubMed, Google Scholar, NCBI, Scopus, Blood Journal, Cochrane Library, and Leukemia Gene Atlas (LGA) were used to retrieve articles published from 2017 to 2024, with the last search conducted in August 2024. A total of 12 peer-reviewed studies were selected based on specific inclusion and exclusion criteria. These studies reveal advancements in the diagnosis, classification, and treatment of AL and MDS, including long-term disease-free survival, complete remissions, and improved patient outcomes in those over 75 years of age. Less toxic treatment methods, such as targeted therapies, immunotherapies, and bispecific T-cell engagers, are particularly beneficial for older adults with ALL. Significant progress has also been made in understanding the genetic mutations in AML, leading to more personalized therapies. In MDS, a combination of chemotherapy, immunosuppressive treatments, targeted therapies, and stem cell transplants has shown high efficacy. However, challenges remain, including high initial treatment costs, limited patient access, inadequate awareness, insufficient employee training, and the lack of accurate treatment models. Despite these hurdles, these advances provide promising options for improving the quality of life for patients with AL and MDS.
Collapse
Affiliation(s)
- Nawal Rafiq
- Accident and Emergency, Rehman Medical Institute, Peshawar, PAK
| | | | - Mashaal Sahibzada
- Medical High Dependency Unit, Northwest Teaching Hospital, Peshawar, PAK
| | | | | | - Najeeb Ullah
- Internal Medicine, Rehman Medical Institute, Peshawar, PAK
| | | | - Hira Khalil
- Internal Medicine, Rehman Medical Institute, Peshawar, PAK
| | - Umar Azam Ali
- Internal Medicine, Ayub Medical College, Abbottabad, PAK
| | | | | | - Ibrar Khaliq
- Internal Medicine, Services Hospital, Lahore, PAK
| |
Collapse
|
30
|
Jin X, Zhang R, Fu Y, Zhu Q, Hong L, Wu A, Wang H. Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies. Brief Funct Genomics 2024; 23:639-650. [PMID: 38688725 DOI: 10.1093/bfgp/elae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.
Collapse
Affiliation(s)
- Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruohan Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunqi Fu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiunan Zhu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
31
|
Alonso-Pérez V, Galant K, Boudia F, Robert E, Aid Z, Renou L, Barroca V, Devanand S, Babin L, Rouiller-Fabre V, Moison D, Busso D, Piton G, Metereau C, Abermil N, Ballerini P, Hirsch P, Haddad R, Martinovic J, Petit A, Lapillonne H, Brunet E, Mercher T, Pflumio F. Developmental interplay between transcriptional alterations and a targetable cytokine signaling dependency in pediatric ETO2::GLIS2 leukemia. Mol Cancer 2024; 23:204. [PMID: 39304903 DOI: 10.1186/s12943-024-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Several fusion oncogenes showing a higher incidence in pediatric acute myeloid leukemia (AML) are associated with heterogeneous megakaryoblastic and other myeloid features. Here we addressed how developmental mechanisms influence human leukemogenesis by ETO2::GLIS2, associated with dismal prognosis. METHODS We created novel ETO2::GLIS2 models of leukemogenesis through lentiviral transduction and CRISPR-Cas9 gene editing of human fetal and post-natal hematopoietic stem/progenitor cells (HSPCs), performed in-depth characterization of ETO2::GLIS2 transformed cells through multiple omics and compared them to patient samples. This led to a preclinical assay using patient-derived-xenograft models to test a combination of two clinically-relevant molecules. RESULTS We showed that ETO2::GLIS2 expression in primary human fetal CD34+ hematopoietic cells led to more efficient in vivo leukemia development than expression in post-natal cells. Moreover, cord blood-derived leukemogenesis has a major dependency on the presence of human cytokines, including IL3 and SCF. Single cell transcriptomes revealed that this cytokine environment controlled two ETO2::GLIS2-transformed states that were also observed in primary patient cells. Importantly, this cytokine sensitivity may be therapeutically-exploited as combined MEK and BCL2 inhibition showed higher efficiency than individual molecules to reduce leukemia progression in vivo. CONCLUSIONS Our study uncovers an interplay between the cytokine milieu and transcriptional programs that extends a developmental window of permissiveness to transformation by the ETO2::GLIS2 AML fusion oncogene, controls the intratumoral cellular heterogeneity, and offers a ground-breaking therapeutical opportunity by a targeted combination strategy.
Collapse
Affiliation(s)
- Verónica Alonso-Pérez
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Klaudia Galant
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Fabien Boudia
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Elie Robert
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Laurent Renou
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Vilma Barroca
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Animal Experimentation Platform, IRCM, CEA, Fontenay-Aux-Roses, F-92260, France
| | - Saryiami Devanand
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Animal Experimentation Platform, IRCM, CEA, Fontenay-Aux-Roses, F-92260, France
| | - Loélia Babin
- Laboratory of theGenome Dynamics in the Immune System, Équipe Labellisée Ligue Contre Le Cancer, Université Paris Cité, Université Paris-Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Virginie Rouiller-Fabre
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
| | - Delphine Moison
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
| | - Didier Busso
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Cigex Molecular Platform, IRCM, CEA, IBFJ, Fontenay-Aux-Roses, France
| | - Guillaume Piton
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Cigex Molecular Platform, IRCM, CEA, IBFJ, Fontenay-Aux-Roses, France
| | - Christophe Metereau
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Centre de Recherche Saint-Antoine, CRSA, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Sorbonne Université, 75012, Paris, France
| | - Paola Ballerini
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Pierre Hirsch
- Centre de Recherche Saint-Antoine, CRSA, SIRIC CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Sorbonne Université, 75012, Paris, France
| | - Rima Haddad
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Beclère, AP-HP, Clamart, France
| | - Arnaud Petit
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology-Oncology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Erika Brunet
- Laboratory of theGenome Dynamics in the Immune System, Équipe Labellisée Ligue Contre Le Cancer, Université Paris Cité, Université Paris-Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Université Paris-Saclay, PEDIAC Program, Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| | - Françoise Pflumio
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives (CEA), Université Paris Cité, Institut National de La Santé Et de La Recherche Médicale (INSERM), Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France.
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches Et Radiations, Fontenay-Aux-Roses, F-92260, France.
- Laboratoire Des Cellules Souches Hématopoïétiques Et Des Leucémies, Équipe Labellisée Ligue Contre Le Cancer, Equipe Niche Et Cancer Dans L'Hématopoïèse, Unité Mixte de Recherche (UMR) 1274 INSERM, CEA, 18 route du panorama, Fontenay-Aux Roses, F-92265, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| |
Collapse
|
32
|
Fobare S, Sharpe C, Quinn K, Bryant K, Miles LA, Bowman RL, Cheney C, Furby C, Long M, Fyock K, Wronowski B, Lerma JR, Mullaney A, Mrózek K, Nicolet D, Sesterhenn T, Johnstone ME, Rai SN, Pasare C, Zimmermann N, Carroll AJ, Stone RM, Wang ES, Kolitz JE, Powell BL, Perentesis JP, Eisfeld AK, Hertlein E, Byrd JC. PTPN11 Mutation Clonal Hierarchy in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.612239. [PMID: 39345464 PMCID: PMC11429687 DOI: 10.1101/2024.09.18.612239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mutations in protein tyrosine phosphatase non-receptor type 11 ( PTPN11 ) have been considered late acquired mutations in acute myeloid leukemia (AML) development. To interrogate the ontogeny of PTPN11 mutations, we utilized single-cell DNA sequencing and identified that PTPN11 mutations can occur as initiating events in some AML patients when accompanied by strong oncogenic drivers, commonly NPM1 mutations. The co-driver role of PTPN11 mutations was confirmed in a novel murine model that exhibits an AML phenotype with early expansion of a diverse set of variably differentiated myeloid cells that engrafted into immunodeficient and immunocompetent mice. This immune diversity was reconstituted from early precursor cells when engrafted into immunodeficient mice. Moreover, immune diversity was also observed in the blast component of patient samples with NPM1 and PTPN11 mutations, providing novel antigen targets for immune based approaches in this subset of AML that is resistant to multiple targeted therapies.
Collapse
|
33
|
Zhou J, Zhang N, Zuo Y, Xu F, Cheng L, Fu Y, Yang F, Shu M, Zhou M, Zou W, Zhang S. Glutamine metabolism-related genes predict the prognostic risk of acute myeloid leukemia and stratify patients by subtype analysis. Hereditas 2024; 161:35. [PMID: 39300580 DOI: 10.1186/s41065-024-00338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a genetically heterogeneous disease in which glutamine (Gln) contributes to AML progression. Therefore, this study aimed to identify potential prognostic biomarkers for AML based on Gln metabolism-related genes. METHODS Gln-related genes that were differentially expressed between Cancer Genome Atlas-based AML and normal samples were analyzed using the limma package. Univariate, least absolute shrinkage, selection operators, and stepwise Cox regression analyses were used to identify prognostic signatures. Risk score-based prognostic and nomogram models were constructed to predict the prognostic risk of AML. Subsequently, consistent cluster analysis was performed to stratify patients into different subtypes, and subtype-related module genes were screened using weighted gene co-expression network analysis. RESULTS Through a series of regression analyses, HGF, ANGPTL3, MB, F2, CALR, EIF4EBP1, EPHX1, and PDHA1 were identified as potential prognostic biomarkers of AML. Prognostic and nomogram models constructed based on these genes could significantly differentiate between high- and low-risk AML with high predictive accuracy. The eight-signature also stratified patients with AML into two subtypes, among which Cluster 2 was prone to a high risk of AML prognosis. These two clusters exhibited different immune profiles. Of the subtype-related module genes, the HOXA and HOXB family genes may be genetic features of AML subtypes. CONCLUSION Eight Gln metabolism-related genes were identified as potential biomarkers of AML to predict prognostic risk. The molecular subtypes clustered by these genes enabled prognostic risk stratification.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China.
| | - Na Zhang
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Yan Zuo
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Feng Xu
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Lihua Cheng
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Yuanyuan Fu
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Fudong Yang
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Min Shu
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Mi Zhou
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Wenting Zou
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Shengming Zhang
- Department of health management, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China.
| |
Collapse
|
34
|
Lints R, Walker CA, Delfi O, Prouse M, PohLui De Silva M, Bohlander SK, Wood AC. Mutational cooperativity of RUNX1::RUNX1T1 isoform 9a and oncogenic NRAS in zebrafish myeloid leukaemia. Biol Open 2024; 13:bio060523. [PMID: 39177514 PMCID: PMC11381922 DOI: 10.1242/bio.060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
RUNX1::RUNX1T1 (R::RT1) acute myeloid leukaemia (AML) remains a clinical challenge, and further research is required to model and understand leukaemogenesis. Previous zebrafish R::RT1 models were hampered by embryonic lethality and low penetrance of the malignant phenotype. Here, we overcome this by developing an adult zebrafish model in which the human R::RT1 isoform 9a is co-expressed with the frequently co-occurring oncogenic NRASG12D mutation in haematopoietic stem and progenitor cells (HSPCs), using the Runx1+23 enhancer. Approximately 50% of F0 9a+NRASG12D transgenic zebrafish developed signs of haematological disease between 5 and 14 months, with 27% exhibiting AML-like pathology: myeloid precursor expansion, erythrocyte reduction, kidney marrow hypercellularity and the presence of blasts. Moreover, only 9a+NRASG12D transplant recipients developed leukaemia with high rates of mortality within 40 days, inferring the presence of leukaemia stem cells. These leukaemic features were rare or not observed in animals expressing either the NRAS or 9a oncogenes alone, suggesting 9a and NRAS cooperation drives leukaemogenesis. This novel adult AML zebrafish model provides a powerful new tool for investigating the basis of R::RT1 - NRAS cooperativity with the potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Robyn Lints
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Christina A. Walker
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Omid Delfi
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Matthew Prouse
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | | | - Stefan K. Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Andrew C. Wood
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
- Starship Child Health, Starship Blood and Cancer Centre, Auckland 1023, New Zealand
| |
Collapse
|
35
|
Cull AH, Kent DG, Warren AJ. Emerging genetic technologies informing personalized medicine in Shwachman-Diamond syndrome and other inherited BMF disorders. Blood 2024; 144:931-939. [PMID: 38905596 DOI: 10.1182/blood.2023019986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.
Collapse
Affiliation(s)
- Alyssa H Cull
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G Kent
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Fischer A, Hernández-Rodríguez B, Mulet-Lazaro R, Nuetzel M, Hölzl F, van Herk S, Kavelaars FG, Stanewsky H, Ackermann U, Niang AH, Diaz N, Reuschel E, Strieder N, Hernández-López I, Valk PJM, Vaquerizas JM, Rehli M, Delwel R, Gebhard C. STAG2 mutations reshape the cohesin-structured spatial chromatin architecture to drive gene regulation in acute myeloid leukemia. Cell Rep 2024; 43:114498. [PMID: 39084219 DOI: 10.1016/j.celrep.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Cohesin shapes the chromatin architecture, including enhancer-promoter interactions. Its components, especially STAG2, but not its paralog STAG1, are frequently mutated in myeloid malignancies. To elucidate the underlying mechanisms of leukemogenesis, we comprehensively characterized genetic, transcriptional, and chromatin conformational changes in acute myeloid leukemia (AML) patient samples. Specific loci displayed altered cohesin occupancy, gene expression, and local chromatin activation, which were not compensated by the remaining STAG1-cohesin. These changes could be linked to disrupted spatial chromatin looping in cohesin-mutated AMLs. Complementary depletion of STAG2 or STAG1 in primary human hematopoietic progenitors (HSPCs) revealed effects resembling STAG2-mutant AML-specific changes following STAG2 knockdown, not invoked by the depletion of STAG1. STAG2-deficient HSPCs displayed impaired differentiation capacity and maintained HSPC-like gene expression. This work establishes STAG2 as a key regulator of chromatin contacts, gene expression, and differentiation in the hematopoietic system and identifies candidate target genes that may be implicated in human leukemogenesis.
Collapse
MESH Headings
- Humans
- Cohesins
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Mutation/genetics
- Hematopoietic Stem Cells/metabolism
- Cell Differentiation/genetics
- Gene Expression Regulation, Leukemic
- Antigens, Nuclear/metabolism
- Antigens, Nuclear/genetics
- Nuclear Proteins
Collapse
Affiliation(s)
- Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Fabian Hölzl
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Amadou H Niang
- Regulatory Genomics, Max Plank Institute for Molecular Medicine, Münster, Germany
| | - Noelia Diaz
- Regulatory Genomics, Max Plank Institute for Molecular Medicine, Münster, Germany
| | - Edith Reuschel
- Department of Obstetrics and Gynecology, Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | | | | | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Regulatory Genomics, Max Plank Institute for Molecular Medicine, Münster, Germany; Department of Developmental Epigenomics, MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | | |
Collapse
|
37
|
Wong TN, Mychalowych A, Feldpausch ER, Carson A, Karpova D, Link DC. The Clonal Hematopoiesis-associated Gene Srcap Plays an Essential Role in Hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607812. [PMID: 39229096 PMCID: PMC11370474 DOI: 10.1101/2024.08.16.607812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Somatic mutations arising in hematopoietic stem cells (HSCs) may provide the latter with a fitness advantage, allowing the mutant HSC to clonally expand. Such mutations have been recurrently identified in the chromatin modifier, SRCAP, in both non-malignant and leukemic clones, suggesting that this gene plays a significant role in hematopoiesis. We generated a conditional Srcap loss of function murine model and determined the consequences of hematopoietic-specific loss of this gene. We show that Srcap is essential for normal fetal liver erythropoiesis and monocytopoiesis. In Srcap deficient fetal livers, the number of phenotypic HSCs is similar to that of controls, but these HSCs exhibit a profound repopulating defect. Likewise, conditional deletion of Srcap during adult hematopoiesis results in a rapid loss of HSCs. Loss of Srcap is associated with evidence of increased DNA damage in HSCs and lineage-restricted progenitors as assessed by y-H2AX expression. Consistent with this finding, we observed strong transcriptional upregulation of the p53 pathway in Srcap deficient erythroid precursors. Collectively our data highlight the importance of Srcap in maintaining HSC function and supporting hematopoietic differentiation and suggests that it plays an essential role in maintaining genomic integrity.
Collapse
Affiliation(s)
- Terrence N. Wong
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Anna Mychalowych
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ellie R. Feldpausch
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Alexander Carson
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Darja Karpova
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel C. Link
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
38
|
Gupta SV, Jose N, Tafuto B. The Impact of Gilteritinib on Overall Survival of Adult Patients with FLT3 Positive Acute Myeloid Leukemia: A Systematic Review. PRINCIPLES AND PRACTICE OF CLINICAL RESEARCH (2015) 2024; 10:47-59. [PMID: 39640233 PMCID: PMC11618817 DOI: 10.21801/ppcrj.2024.102.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Gilteritinib, an effective and selective inhibitor of the FLT3 gene, was developed to address the challenges posed by relapsed or refractory acute myeloid leukemia (AML) patients who often encounter limited treatment options and poor prognoses with salvage chemotherapy. AIM This systematic review aims to explore the progression of interventional research and consolidate existing evidence on the clinical effectiveness of gilteritinib as a monotherapy or combination therapy in improving overall survival among adults experiencing a recurrence or resistance to treatment for FLT3-positive AML patients. METHODS A comprehensive search strategy, utilizing Medical Subject Headings (MeSH) and non-MeSH terms was conducted across Pubmed, EMBASE, Cochrane, and Web of Science databases. We primarily focused on the clinical trial and retrospective studies on gilteritinib as an intervention for relapsed/refractory AML patients. RESULTS According to our predefined criteria for inclusion and exclusion, we identified 3 published clinical trials and 5 retrospective studies focused on the overall response of gilteritinib on refractory or relapsed AML adult patients published between January 1, 2018, and March 25, 2024. Clinical trial studies demonstrated superior survival outcomes than salvage chemotherapy in the FLT3-positive AML population particularly showing higher efficacy in combination therapy with Azacitidine. Retrospective studies from clinical trials revealed improved clinical outcomes in AML sub-populations. CONCLUSION Gilteritinib exhibited promising outcomes by targeting FLT3 receptors, offering a new treatment approach, and revealing improved overall survival compared to salvage chemotherapy in the difficult-to-treat patient population.
Collapse
Affiliation(s)
- Shipra Vinod Gupta
- Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, 65 Bergen Street, NJ 07107, United States
| | - Nadina Jose
- Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, 65 Bergen Street, NJ 07107, United States
| | - Barbara Tafuto
- Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, 65 Bergen Street, NJ 07107, United States
| |
Collapse
|
39
|
Berry DK, Gillis N, Padron E, Moore C, Barton LV, Gewandter KR, Haskins CG, Knepper TC. Interpretation of ambiguous TP53 test results: Mosaicism, clonal hematopoiesis, and variants of uncertain significance. J Genet Couns 2024; 33:916-926. [PMID: 37715966 DOI: 10.1002/jgc4.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
The increased use of next-generation sequencing has led to the detection of pathogenic TP53 variants in the germline setting in patients without a personal or family history consistent with Li-Fraumeni syndrome (LFS). These variants can represent low-penetrance LFS, mosaic LFS, or clonal hematopoiesis of indeterminate potential. Additionally, TP53 variants of uncertain significance can be detected in patients with a history suspicious for LFS. The interpretation of the significance of these variants can be challenging but is crucial for an accurate diagnosis and appropriate medical management. This retrospective case review provides illustrative examples of the interpretation of challenging TP53 results through multidisciplinary expertise and use of a flowchart. The authors describe eight patients with TP53 variants associated with ambiguous diagnoses and, for each case, describe how the results were interpreted and the medical care that was implemented. This report presents illustrative cases to help guide clinicians to reach definitive diagnoses for patients when confronted with TP53 variants that are inconsistent with the clinical picture and to add to the body of literature regarding interpretation and medical management of TP53 variants discovered on germline testing.
Collapse
Affiliation(s)
- Darcy K Berry
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Nancy Gillis
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Colin Moore
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Laura V Barton
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kathleen R Gewandter
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carolyn G Haskins
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Todd C Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
40
|
Petrone G, Turker I, Natarajan P, Bolton KL. Clinical and Therapeutic Implications of Clonal Hematopoiesis. Annu Rev Genomics Hum Genet 2024; 25:329-351. [PMID: 39190914 DOI: 10.1146/annurev-genom-120722-100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis (CH) is an age-related process whereby hematopoietic stem and progenitor cells (HSPCs) acquire mutations that lead to a proliferative advantage and clonal expansion. The most commonly mutated genes are epigenetic regulators, DNA damage response genes, and splicing factors, which are essential to maintain functional HSPCs and are frequently involved in the development of hematologic malignancies. Established risk factors for CH, including age, prior cytotoxic therapy, and smoking, increase the risk of acquiring CH and/or may increase CH fitness. CH has emerged as a novel risk factor in many age-related diseases, such as hematologic malignancies, cardiovascular disease, diabetes, and autoimmune disorders, among others. Future characterization of the mechanisms driving CH evolution will be critical to develop preventative and therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Isik Turker
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
41
|
Jakobsen NA, Turkalj S, Zeng AGX, Stoilova B, Metzner M, Rahmig S, Nagree MS, Shah S, Moore R, Usukhbayar B, Angulo Salazar M, Gafencu GA, Kennedy A, Newman S, Kendrick BJL, Taylor AH, Afinowi-Luitz R, Gundle R, Watkins B, Wheway K, Beazley D, Murison A, Aguilar-Navarro AG, Flores-Figueroa E, Dakin SG, Carr AJ, Nerlov C, Dick JE, Xie SZ, Vyas P. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 2024; 31:1127-1144.e17. [PMID: 38917807 PMCID: PMC11512683 DOI: 10.1016/j.stem.2024.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.
Collapse
Affiliation(s)
- Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bilyana Stoilova
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Susann Rahmig
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Murtaza S Nagree
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sayyam Shah
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel Moore
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alison Kennedy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Simon Newman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Benjamin J L Kendrick
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Adrian H Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rasheed Afinowi-Luitz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Roger Gundle
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bridget Watkins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Kim Wheway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Debra Beazley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alicia G Aguilar-Navarro
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eugenia Flores-Figueroa
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK; Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
42
|
Wang S, Liu Y, Zhao X, Wang X, Lou J, Jin P, Zhang Y, Yu J, Wang K. RUNX1::ETO and CBFβ::MYH11 converge on aberrant activation of BCAT1 to confer a therapeutic vulnerability in core-binding factor-acute myeloid leukaemia. Br J Haematol 2024; 205:552-567. [PMID: 38802066 DOI: 10.1111/bjh.19565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Effectively targeting transcription factors in therapeutic interventions remains challenging, especially in core-binding factor-acute myeloid leukaemia (CBF-AML) characterized by RUNX1::ETO and CBFβ::MYH11 fusions. However, recent studies have drawn attention towards aberrant amino acid metabolisms as actionable therapeutic targets. Here, by integrating the expression profile and genetic makeup in AML cohort, we found higher BCAT1 expression in CBF-AML patients compared with other subtypes. Metabolic profiling revealed that high BCAT1 expression led to reprogrammed branch amino acid metabolism in CBF-AML and was associated with sphingolipid pathway relating to the fitness of leukaemia cells, supported by transcriptomic profiling. Mechanistically, we demonstrated in cell lines and primary patient samples that BCAT1 was directly activated by RUNX1::ETO and CBFβ::MYH11 fusion proteins similarly in a RUNX1-dependent manner through rewiring chromatin conformation at the BCAT1 gene locus. Furthermore, BCAT1 inhibition resulted in blunted cell cycle, enhanced apoptosis and myeloid differentiation of CBF-AML cells in vitro, and alleviated leukaemia burden and prolonged survival in vivo. Importantly, pharmacological inhibition of BCAT1 using the specific inhibitor Gabapentin demonstrated therapeutic effects, as evidenced by delayed leukaemia progression and improved survival in vivo. In conclusion, our study uncovers BCAT1 as a genetic vulnerability and a promising targeted therapeutic opportunity for CBF-AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Animals
- Core Binding Factor beta Subunit/genetics
- Core Binding Factor beta Subunit/metabolism
- Mice
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
Collapse
Affiliation(s)
- Siyang Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xujie Zhao
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoling Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacheng Lou
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Department of Neurosurgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Jin
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyi Yu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Pendse S, Loeffler D. Decoding Clonal Hematopoiesis: Emerging Themes and Novel Mechanistic Insights. Cancers (Basel) 2024; 16:2634. [PMID: 39123361 PMCID: PMC11311828 DOI: 10.3390/cancers16152634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.
Collapse
Affiliation(s)
- Shalmali Pendse
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| | - Dirk Loeffler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| |
Collapse
|
44
|
Zhu R, Shirley CM, Chu SH, Li L, Nguyen BH, Seo J, Wu M, Seale T, Duffield AS, Staudt LM, Levis M, Hu Y, Small D. Inhibition of NOTCH4 sensitizes FLT3/ITD acute myeloid leukemia cells to FLT3 tyrosine kinase inhibition. Leukemia 2024; 38:1581-1591. [PMID: 38811818 DOI: 10.1038/s41375-024-02292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Internal tandem duplication mutations of FLT3 (FLT3/ITD) confer poor prognosis in AML. FLT3 tyrosine kinase inhibitors (TKIs) alone have limited and transient clinical efficacy thus calling for new targets for more effective combination therapy. In a loss-of-function RNAi screen, we identified NOTCH4 as one such potential target whose inhibition proved cytotoxic to AML cells, and also sensitized them to FLT3 inhibition. Further investigation found increased NOTCH4 expression in FLT3/ITD AML cell lines and primary patient samples. Inhibition of NOTCH4 by shRNA knockdown, CRISPR-Cas9-based knockout or γ-secretase inhibitors synergized with FLT3 TKIs to kill FLT3/ITD AML cells in vitro. NOTCH4 inhibition sensitized TKI-resistant FLT3/ITD cells to FLT3 TKI inhibition. The combination reduced phospho-ERK and phospho-AKT, indicating inhibition of MAPK and PI3K/AKT signaling pathways. It also led to changes in expression of genes involved in regulating cell cycling, DNA repair and transcription. A patient-derived xenograft model showed that the combination reduced both the level of leukemic involvement of primary human FLT3/ITD AML cells and their ability to engraft secondary recipients. In summary, these results demonstrate that NOTCH4 inhibition synergizes with FLT3 TKIs to eliminate FLT3/ITD AML cells, providing a new therapeutic target for AML with FLT3/ITD mutations.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mice
- Receptor, Notch4/genetics
- Xenograft Model Antitumor Assays
- Mutation
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ruiqi Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Courtney M Shirley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Haihua Chu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Beam Therapeutics, Cambridge, MA, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao H Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaesung Seo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy S Duffield
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Mack T, Vlasschaert C, von Beck K, Silver AJ, Heimlich JB, Poisner H, Condon HR, Ulloa J, Sochacki AL, Spaulding TP, Kishtagari A, Bejan CA, Xu Y, Savona MR, Jones A, Bick AG. Cost-Effective and Scalable Clonal Hematopoiesis Assay Provides Insight into Clonal Dynamics. J Mol Diagn 2024; 26:563-573. [PMID: 38588769 PMCID: PMC11536471 DOI: 10.1016/j.jmoldx.2024.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon in which hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP mutations are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or to serial sequencing. In this study, an affordable (approximately US $8 per sample), accurate, and scalable sequencing assay for CHIP is introduced and validated. The efficacy of the assay was demonstrated by identifying CHIP mutations in a cohort of 456 individuals with DNA collected at multiple time points in Vanderbilt University's biobank and quantifying clonal expansion rates over time. A total of 101 individuals with CHIP/clonal cytopenia of undetermined significance were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction at both time points. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. Additionally, mutation co-occurrence and clonal competition between multiple driver mutations were explored.
Collapse
Affiliation(s)
- Taralynn Mack
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Kelly von Beck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander J Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - J Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hannah Poisner
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Henry R Condon
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jessica Ulloa
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Andrew L Sochacki
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Travis P Spaulding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cosmin A Bejan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angela Jones
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee; Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
46
|
Wells C, Robertson T, Sheth P, Abraham S. How aging influences the gut-bone marrow axis and alters hematopoietic stem cell regulation. Heliyon 2024; 10:e32831. [PMID: 38984298 PMCID: PMC11231543 DOI: 10.1016/j.heliyon.2024.e32831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.
Collapse
Affiliation(s)
- Christopher Wells
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tristan Robertson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Prameet Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Microbiology, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Sheela Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
47
|
Qin G, Dai J, Chien S, Martins TJ, Loera B, Nguyen QH, Oakes ML, Tercan B, Aguilar B, Hagen L, McCune J, Gelinas R, Monnat RJ, Shmulevich I, Becker PS. Mutation Patterns Predict Drug Sensitivity in Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:2659-2671. [PMID: 38619278 PMCID: PMC11176916 DOI: 10.1158/1078-0432.ccr-23-1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 12/08/2023] [Indexed: 04/16/2024]
Abstract
PURPOSE The inherent genetic heterogeneity of acute myeloid leukemia (AML) has challenged the development of precise and effective therapies. The objective of this study was to elucidate the genomic basis of drug resistance or sensitivity, identify signatures for drug response prediction, and provide resources to the research community. EXPERIMENTAL DESIGN We performed targeted sequencing, high-throughput drug screening, and single-cell genomic profiling on leukemia cell samples derived from patients with AML. Statistical approaches and machine learning models were applied to identify signatures for drug response prediction. We also integrated large public datasets to understand the co-occurring mutation patterns and further investigated the mutation profiles in the single cells. The features revealed in the co-occurring or mutual exclusivity pattern were further subjected to machine learning models. RESULTS We detected genetic signatures associated with sensitivity or resistance to specific agents, and identified five co-occurring mutation groups. The application of single-cell genomic sequencing unveiled the co-occurrence of variants at the individual cell level, highlighting the presence of distinct subclones within patients with AML. Using the mutation pattern for drug response prediction demonstrates high accuracy in predicting sensitivity to some drug classes, such as MEK inhibitors for RAS-mutated leukemia. CONCLUSIONS Our study highlights the importance of considering the gene mutation patterns for the prediction of drug response in AML. It provides a framework for categorizing patients with AML by mutations that enable drug sensitivity prediction.
Collapse
Affiliation(s)
| | - Jin Dai
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Sylvia Chien
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Timothy J. Martins
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Brenda Loera
- City of Hope National Medical Center, Duarte, California
| | - Quy H. Nguyen
- University of California, Irvine, Irvine, California
| | | | - Bahar Tercan
- Institute for Systems Biology, Seattle, Washington
| | | | - Lauren Hagen
- Institute for Systems Biology, Seattle, Washington
| | | | | | - Raymond J. Monnat
- Lab Medicine|Pathology and Genome Sciences, University of Washington, Seattle, Washington
| | | | - Pamela S. Becker
- Division of Hematology, University of Washington, Seattle, Washington
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- City of Hope National Medical Center, Duarte, California
| |
Collapse
|
48
|
Álvarez N, Martín A, Dorado S, Colmenares R, Rufián L, Rodríguez M, Giménez A, Carneros L, Sanchez R, Carreño G, Rapado I, Heredia Y, Martínez-López J, Barrio S, Ayala R. Detection of minimal residual disease in acute myeloid leukemia: evaluating utility and challenges. Front Immunol 2024; 15:1252258. [PMID: 38938565 PMCID: PMC11210172 DOI: 10.3389/fimmu.2024.1252258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
This study discusses the importance of minimal residual disease (MRD) detection in acute myeloid leukemia (AML) patients using liquid biopsy and next-generation sequencing (NGS). AML prognosis is based on various factors, including genetic alterations. NGS has revealed the molecular complexity of AML and helped refine risk stratification and personalized therapies. The long-term survival rates for AML patients are low, and MRD assessment is crucial in predicting prognosis. Currently, the most common methods for MRD detection are flow cytometry and quantitative PCR, but NGS is being incorporated into clinical practice due to its ability to detect genomic aberrations in the majority of AML patients. Typically, bone marrow samples are used for MRD assessment, but using peripheral blood samples or liquid biopsies would be less invasive. Leukemia originates in the bone marrow, along with the cfDNA obtained from peripheral blood. This study aimed to assess the utility of cell-free DNA (cfDNA) from peripheral blood samples for MRD detection in AML patients. A cohort of 20 AML patients was analyzed using NGS, and a correlation between MRD assessment by cfDNA and circulating tumor cells (CTCs) in paired samples was observed. Furthermore, a higher tumor signal was detected in cfDNA compared to CTCs, indicating greater sensitivity. Challenges for the application of liquid biopsy in MRD assessment were discussed, including the selection of appropriate markers and the sensitivity of certain markers. This study emphasizes the potential of liquid biopsy using cfDNA for MRD detection in AML patients and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Noemí Álvarez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Alejandro Martín
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Sara Dorado
- Altum Sequencing Co., Madrid, Spain
- Computational Science Department, Carlos III University, Madrid, Spain
| | - Rafael Colmenares
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Laura Rufián
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Margarita Rodríguez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Alicia Giménez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Laura Carneros
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Ricardo Sanchez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Gonzalo Carreño
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | | | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Santiago Barrio
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
50
|
Sadigh S, Kim AS. Molecular Pathology of Myeloid Neoplasms: Molecular Pattern Recognition. Clin Lab Med 2024; 44:339-353. [PMID: 38821648 DOI: 10.1016/j.cll.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Annette S Kim
- Division of Diagnostic Genetics and Genomics, Department of Pathology, University of Michigan/Michigan Medicine, 2800 Plymouth Road, NCRC 36-1221-79, Ann Arbor, MI 48109, USA.
| |
Collapse
|