1
|
Genschik P, Schiaffini M, Lechner E. Proteolytic control of the RNA silencing machinery. THE PLANT CELL 2024; 36:2997-3008. [PMID: 38456220 PMCID: PMC11371168 DOI: 10.1093/plcell/koae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Studies in plants were often pioneering in the field of RNA silencing and revealed a broad range of small RNA (sRNA) categories. When associated with ARGONAUTE (AGO) proteins, sRNAs play important functions in development, genome integrity, stress responses, and antiviral immunity. Today, most of the protein factors required for the biogenesis of sRNA classes, their amplification through the production of double-stranded RNA, and their function in transcriptional and posttranscriptional regulation have been identified. Nevertheless, and despite the importance of RNA silencing, we still know very little about their posttranslational regulation. This is in stark contrast with studies in metazoans, where different modifications such as prolyl hydroxylation, phosphorylation, sumoylation, ubiquitylation, and others have been reported to alter the activity and stability of key factors, such as AGO proteins. Here, we review current knowledge of how key components of the RNA silencing machinery in plants are regulated during development and by microbial hijacking of endogenous proteases.
Collapse
Affiliation(s)
- Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Marlene Schiaffini
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| |
Collapse
|
2
|
Yang S, Poretska O, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 sustains cellular differentiation by limiting HD-ZIP III transcription factor gene expression. PLANT PHYSIOLOGY 2024; 196:291-308. [PMID: 38781290 PMCID: PMC11376390 DOI: 10.1093/plphys/kiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency. A role of AMP1 in the miRNA-mediated inhibition of translation has previously been reported; however, how this activity is related to its developmental functions is unclear. Here, we examined the functional interaction between AMP1 and the Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors, which are miRNA-controlled determinants of shoot meristem specification. We found that the HD-ZIP III transcriptional output is enhanced in the amp1 mutant and that plant lines with increased HD-ZIP III activity not only developed amp1 mutant-like phenotypes but also showed a synergistic genetic interaction with the mutant. Conversely, the reduction of HD-ZIP III function suppressed the shoot hypertrophy defects of the amp1 mutant. We further provide evidence that the expression domains of HD-ZIP III family members are expanded in the amp1 mutant and that this misexpression occurs at the transcriptional level and does not involve the function of miRNA165/166. Finally, amp1 mutant-specific phenotypes cannot be mimicked by a general inhibition of miRNA function in the AMP1 expression domain. These findings lead us to a model in which AMP1 restricts cellular pluripotency upstream of HD-ZIP III proteins, and this control appears to be not directly mediated by the canonical miRNA pathway.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Brigitte Poppenberger
- Professorship Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| |
Collapse
|
3
|
Xue H, Zhou W, Yang L, Li S, Lei P, An X, Jia M, Zhang H, Yu F, Meng J, Liu X. Endoplasmic reticulum protein ALTERED MERISTEM PROGRAM 1 negatively regulates senescence in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:273-290. [PMID: 38781292 DOI: 10.1093/plphys/kiae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Plant senescence is a highly regulated developmental program crucial for nutrient reallocation and stress adaptation in response to developmental and environmental cues. Stress-induced and age-dependent natural senescence share both overlapping and distinct molecular responses and regulatory schemes. Previously, we have utilized a carbon-deprivation (C-deprivation) senescence assay using Arabidopsis (Arabidopsis thaliana) seedlings to investigate senescence regulation. Here we conducted a comprehensive time-resolved transcriptomic analysis of Arabidopsis wild type seedlings subjected to C-deprivation treatment at multiple time points, unveiling substantial temporal changes and distinct gene expression patterns. Moreover, we identified ALTERED MERISTEM PROGRAM 1 (AMP1), encoding an endoplasmic reticulum protein, as a potential regulator of senescence based on its expression profile. By characterizing loss-of-function alleles and overexpression lines of AMP1, we confirmed its role as a negative regulator of plant senescence. Genetic analyses further revealed a synergistic interaction between AMP1 and the autophagy pathway in regulating senescence. Additionally, we discovered a functional association between AMP1 and the endosome-localized ABNORMAL SHOOT3 (ABS3)-mediated senescence pathway and positioned key senescence-promoting transcription factors downstream of AMP1. Overall, our findings shed light on the molecular intricacies of transcriptome reprogramming during C-deprivation-induced senescence and the functional interplay among endomembrane compartments in controlling plant senescence.
Collapse
Affiliation(s)
- Hui Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenhui Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuting Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Choi J, Browning S, Schmitt-Keichinger C, Fuchs M. Mutations in the WG and GW motifs of the three RNA silencing suppressors of grapevine fanleaf virus alter their systemic suppression ability and affect virus infectivity. Front Microbiol 2024; 15:1451285. [PMID: 39188317 PMCID: PMC11345138 DOI: 10.3389/fmicb.2024.1451285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1BHel, as well as their fused form (1ABHel). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1BHel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta, and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1ABHel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1ABHel. This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2, NbDCL4,, and NbRDR6 expression by 1BHel. This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta. Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Collapse
Affiliation(s)
- Jiyeong Choi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| | - Scottie Browning
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| | - Corinne Schmitt-Keichinger
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, France
- INRAE, SVQV UMR 1131, Université de Strasbourg, Colmar, France
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| |
Collapse
|
5
|
Yang H, Thompson B. Widespread changes to the translational landscape in a maize microRNA biogenesis mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1986-2000. [PMID: 38963711 DOI: 10.1111/tpj.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
MicroRNAs are short, non-coding RNAs that repress gene expression in both plants and animals and have diverse functions related to growth, development, and stress responses. The ribonuclease, DICER-LIKE1 (DCL1) is required for two steps in plant miRNA biogenesis: cleavage of the primary miRNAs (pri-miRNAs) to release a hairpin structure, called the precursor miRNA (pre-miRNA) and cleavage of the pre-miRNA to generate the miRNA/miRNA* duplex. The mature miRNA guides the RNA-induced silencing complex to target RNAs with complementary sequences, resulting in translational repression and/or RNA cleavage of target mRNAs. However, the relative contribution of translational repression versus mRNA degradation by miRNAs remains unknown at the genome-level in crops, especially in maize. The maize fuzzy tassel (fzt) mutant contains a hypomorphic mutation in DCL1 resulting in broad developmental defects. While most miRNAs are reduced in fzt, the levels of miRNA-targeted mRNAs are not dramatically increased, suggesting that translational regulation by miRNAs may be common. To gain insight into the repression mechanism of plant miRNAs, we combined ribosome profiling and RNA-sequencing to globally survey miRNA activities in maize. Our data indicate that translational repression contributes significantly to regulation of most miRNA targets and that approximately one-third of miRNA targets are regulated primarily at the translational level. Surprisingly, ribosomes appear altered in fzt mutants suggesting that DCL1 may also have a role in ribosome biogenesis. Thus, DICER-LIKE1 shapes the translational landscape in plants through both miRNA-dependent and miRNA-independent mechanisms.
Collapse
Affiliation(s)
- Hailong Yang
- Biology Department, East Carolina University, Greenville, North Carolina, USA
| | - Beth Thompson
- Biology Department, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
6
|
Marmisolle FE, Borniego MB, Cambiagno DA, Gonzalo L, García ML, Manavella PA, Hernández C, Reyes CA. Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery. Microbiol Spectr 2024; 12:e0351323. [PMID: 38785434 PMCID: PMC11218507 DOI: 10.1128/spectrum.03513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.
Collapse
Affiliation(s)
- Facundo E. Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - María B. Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Damián A. Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L. García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo A. Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
7
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Zaheer U, Munir F, Salum YM, He W. Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review. PeerJ 2024; 12:e17115. [PMID: 38560454 PMCID: PMC10979746 DOI: 10.7717/peerj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.
Collapse
Affiliation(s)
- Uroosa Zaheer
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Faisal Munir
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yussuf Mohamed Salum
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weiyi He
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Rong F, Lv Y, Deng P, Wu X, Zhang Y, Yue E, Shen Y, Muhammad S, Ni F, Bian H, Wei X, Zhou W, Hu P, Wu L. Switching action modes of miR408-5p mediates auxin signaling in rice. Nat Commun 2024; 15:2525. [PMID: 38514635 PMCID: PMC10958043 DOI: 10.1038/s41467-024-46765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
MicroRNAs (miRNAs) play fundamental roles in many developmental and physiological processes in eukaryotes. MiRNAs in plants generally regulate their targets via either mRNA cleavage or translation repression; however, which approach plays a major role and whether these two function modes can shift remains elusive. Here, we identify a miRNA, miR408-5p that regulates AUXIN/INDOLE ACETIC ACID 30 (IAA30), a critical repressor in the auxin pathway via switching action modes in rice. We find that miR408-5p usually inhibits IAA30 protein translation, but in a high auxin environment, it promotes the decay of IAA30 mRNA when it is overproduced. We further demonstrate that IDEAL PLANT ARCHITECTURE1 (IPA1), an SPL transcription factor regulated by miR156, mediates leaf inclination through association with miR408-5p precursor promoter. We finally show that the miR156-IPA1-miR408-5p-IAA30 module could be controlled by miR393, which silences auxin receptors. Together, our results define an alternative auxin transduction signaling pathway in rice that involves the switching of function modes by miR408-5p, which contributes to a better understanding of the action machinery as well as the cooperative network of miRNAs in plants.
Collapse
Affiliation(s)
- Fuxi Rong
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| | - Yusong Lv
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| | - Pingchuan Deng
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xia Wu
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yaqi Zhang
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China
| | - Erkui Yue
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuxin Shen
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sajid Muhammad
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fangrui Ni
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangjin Wei
- National Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China
| | - Weijun Zhou
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Peisong Hu
- National Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China
| | - Liang Wu
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan, 572000, China.
| |
Collapse
|
10
|
Blagojevic A, Baldrich P, Schiaffini M, Lechner E, Baumberger N, Hammann P, Elmayan T, Garcia D, Vaucheret H, Meyers BC, Genschik P. Heat stress promotes Arabidopsis AGO1 phase separation and association with stress granule components. iScience 2024; 27:109151. [PMID: 38384836 PMCID: PMC10879784 DOI: 10.1016/j.isci.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. AGO1 associates to the rough endoplasmic reticulum to conduct miRNA-mediated translational repression, mRNA cleavage, and biogenesis of phased siRNAs. Here, we show that a 37°C heat stress (HS) promotes AGO1 protein accumulation in cytosolic condensates where it colocalizes with components of siRNA bodies and of stress granules. AGO1 contains a prion-like domain in its poorly characterized N-terminal Poly-Q domain, which is sufficient to undergo phase separation independently of the presence of SGS3. HS only moderately affects the small RNA repertoire, the loading of AGO1 by miRNAs, and the signatures of target cleavage, suggesting that its localization in condensates protects AGO1 rather than promoting or impairing its activity in reprogramming gene expression during stress. Collectively, our work sheds new light on the impact of high temperature on a main effector of RNA silencing in plants.
Collapse
Affiliation(s)
- Aleksandar Blagojevic
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | | | - Marlene Schiaffini
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Taline Elmayan
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| | - Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Blake C. Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
11
|
Cao W, Yang L, Zhuang M, Lv H, Wang Y, Zhang Y, Ji J. Plant non-coding RNAs: The new frontier for the regulation of plant development and adaptation to stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108435. [PMID: 38402798 DOI: 10.1016/j.plaphy.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Abstract
Most plant transcriptomes constitute functional non-coding RNAs (ncRNAs) that lack the ability to encode proteins. In recent years, more research has demonstrated that ncRNAs play important regulatory roles in almost all plant biological processes by modulating gene expression. Thus, it is important to study the biogenesis and function of ncRNAs, particularly in plant growth and development and stress tolerance. In this review, we systematically explore the process of formation and regulatory mechanisms of ncRNAs, particularly those of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Additionally, we provide a comprehensive overview of the recent advancements in ncRNAs research, including their regulation of plant growth and development (seed germination, root growth, leaf morphogenesis, floral development, and fruit and seed development) and responses to abiotic and biotic stress (drought, heat, cold, salinity, pathogens and insects). We also discuss research challenges and provide recommendations to advance the understanding of the roles of ncRNAs in agronomic applications.
Collapse
Affiliation(s)
- Wenxue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China.
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing 100081, China.
| |
Collapse
|
12
|
Ishikawa T, Sugawara K, Zhang J, Funatsu T, Okabe K. Direct observation of cytoskeleton-dependent trafficking of miRNA visualized by the introduction of pre-miRNA. iScience 2024; 27:108811. [PMID: 38303695 PMCID: PMC10831896 DOI: 10.1016/j.isci.2024.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/08/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
MicroRNA (miRNA) plays physiologically and pathologically important roles in post-transcriptional regulation. Although miRNA has been suggested to dynamically interact with cellular organelles, the dynamicity of intracellular miRNA behavior has remained unclear. Here, by introducing fluorescently labeled pre-miRNA into living cells, we improved the miRNA visualization method using exogenous miRNA precursors. Through the combination of our miRNA visualization method and single-molecule sensitive fluorescence microscopy, we quantitatively analyzed the process of miRNA maturation. Furthermore, single-particle tracking of fluorescent miRNA in cells revealed the directed movements of miRNA on cytoskeletal components (i.e., microtubules and actin filaments). Our results also suggest that cytoskeleton-dependent miRNA trafficking is associated with the interaction of miRNAs with the nucleus and the endoplasmic reticulum/Golgi apparatus. Our method should facilitate the elucidation of the mechanism and physiological significance of the subcellular localization and organelle interaction of miRNA.
Collapse
Affiliation(s)
- Toshinari Ishikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Sugawara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junwei Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST, PRESTO, 4-8-1 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
14
|
Pizzol MSD, Ibelli AMG, Cantão ME, Campos FG, de Oliveira HC, de Oliveira Peixoto J, Fernandes LT, de Castro Tavernari F, Morés MAZ, Bastos APA, Ledur MC. Differential expression of miRNAs associated with pectoral myopathies in young broilers: insights from a comparative transcriptome analysis. BMC Genomics 2024; 25:104. [PMID: 38262955 PMCID: PMC10807067 DOI: 10.1186/s12864-024-09983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION White Striping (WS) and Wooden Breast (WB) pectoral myopathies are relevant disorders for contemporary broiler production worldwide. Several studies aimed to elucidate the genetic components associated with the occurrence of these myopathies. However, epigenetic factors that trigger or differentiate these two conditions are still unclear. The aim of this study was to identify miRNAs differentially expressed (DE) between normal and WS and WB-affected broilers, and to verify the possible role of these miRNAs in metabolic pathways related to the manifestation of these pectoral myopathies in 28-day-old broilers. RESULTS Five miRNAs were DE in the WS vs control (gga-miR-375, gga-miR-200b-3p, gga-miR-429-3p, gga-miR-1769-5p, gga-miR-200a-3p), 82 between WB vs control and 62 between WB vs WS. Several known miRNAs were associated with WB, such as gga-miR-155, gga-miR-146b, gga-miR-222, gga-miR-146-5p, gga-miR- 29, gga-miR-21-5p, gga-miR-133a-3p and gga-miR-133b. Most of them had not previously been associated with the development of this myopathy in broilers. We also have predicted 17 new miRNAs expressed in the broilers pectoral muscle. DE miRNA target gene ontology analysis enriched 6 common pathways for WS and WB compared to control: autophagy, insulin signaling, FoxO signaling, endocytosis, and metabolic pathways. The WS vs control contrast had two unique pathways, ERBB signaling and the mTOR signaling, while WB vs control had 14 unique pathways, with ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing being the most significant. CONCLUSIONS We found miRNAs DE between normal broilers and those affected with breast myopathies at 28 days of age. Our results also provide novel evidence of the miRNAs role on the regulation of WS and in the differentiation of both WS and WB myopathies. Overall, our study provides insights into miRNA-mediated and pathways involved in the occurrence of WS and WB helping to better understand these chicken growth disorders in an early age. These findings can help developing new approaches to reduce these complex issues in poultry production possibly by adjustments in nutrition and management conditions. Moreover, the miRNAs and target genes associated with the initial stages of WS and WB development could be potential biomarkers to be used in selection to reduce the occurrence of these myopathies in broiler production.
Collapse
Affiliation(s)
- Mariane Spudeit Dal Pizzol
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
- Present Address: Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Francelly Geralda Campos
- Departamento de Zootecnia, Programa de Pós- Graduação em Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Haniel Cedraz de Oliveira
- Departamento de Zootecnia, Programa de Pós- Graduação em Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
| | | | - Fernando de Castro Tavernari
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | | | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil.
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil.
| |
Collapse
|
15
|
Zhu S, Li Y, Wu Y, Shen Y, Wang Y, Yan Y, Chen W, Fu Q, Wang Y, Yu X, Yu F. The FERONIA-YUELAO module participates in translational control by modulating the abundance of tRNA fragments in Arabidopsis. Dev Cell 2023; 58:2930-2946.e9. [PMID: 37977150 DOI: 10.1016/j.devcel.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
tRNA fragments (tRFs) are a recently identified class of small noncoding RNAs. To date, the regulation of tRF abundance and its functional mechanisms have been largely unclear in plants. We investigated how the Arabidopsis thaliana receptor kinase FERONIA (FER) regulates the abundance of tRFs to inhibit global mRNA translation. We demonstrate that FER regulates tRF abundance by directly phosphorylating the tRNA-binding protein YUELAO (YL) to modulate its function. Downregulation of FER and YL prevented the modification of tRNA via cytosine-5-methylation and 2'-O-methylation, thereby increasing tRF abundance. Furthermore, we show that YL acts as an important genetic downstream target of FER signaling, and knockdown of a specific tRF partially rescues the root hair growth defects of fer and yl mutants. Our findings shed light on the abundance and regulatory mechanisms of tRF and their role in inhibiting translation in plants.
Collapse
Affiliation(s)
- Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China; Yuelushan Laboratory, Changsha 410128, China
| | - Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - You Wu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Ying Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Yujie Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Weijun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China; Yuelushan Laboratory, Changsha 410128, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China; Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
16
|
Sinha S, Sahadevan S, Ohno C, Ram H, Heisler MG. Global gene regulatory network underlying miR165a in Arabidopsis shoot apical meristem. Sci Rep 2023; 13:22258. [PMID: 38097643 PMCID: PMC10721644 DOI: 10.1038/s41598-023-49093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Arabidopsis microRNA165a (miR165a) targets Class III Homeodomain Leucine-Zipper (HD-ZIPIII) transcription factors to regulate various aspects of plant development and stress response. Over-expression of miR165a mimics the loss-of-function phenotype of HD-ZIPIII genes and leading to ectopic organ formation, shoot apical meristem (SAM) termination, loss of leaf polarity, and defective vasculature development. However, the molecular mechanisms underlying these phenotypes remain unresolved. Here, we over-expressed miR165a in a dexamethasone inducible manner and identified differentially expressed genes in the SAM through RNA-Seq. Simultaneously, using multi-channel FACS combined with RNA-Seq approach, we characterized global transcriptome patterns in miR165a expressing cell-types compared to HD-ZIPIII expressing cell-types and other cell-types in SAM. By integrating our results we identified sets of genes which are up-regulated by miR165a as well have enriched expression in miR165a cell-types, and vice-versa. Known plant development related genes such as HD-ZIPIII and their targets LITTLE ZIPPERs, Like AUXIN RESISTANT 2, BEL1-like homeodomain 6, ROTUNDIFOLIA like 16 were found to be down-regulated. Among the up-regulated genes, GIBBERELLIN 2-OXIDASEs, various elemental transporters (YSL3, ZIFL1, SULTR), and other transporter genes were prominent. Thus, the genes identified in this study help to unravel the molecular mechanism of miR165a and HD-ZIPIII regulated plant development and stress response.
Collapse
Affiliation(s)
- Sonali Sinha
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Carolyn Ohno
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India.
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Marcus G Heisler
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Zhu X, Kuang Y, Chen Y, Shi J, Cao Y, Hu J, Yu C, Yang F, Tian F, Chen H. miR2118 Negatively Regulates Bacterial Blight Resistance through Targeting Several Disease Resistance Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3815. [PMID: 38005712 PMCID: PMC10675396 DOI: 10.3390/plants12223815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Plant miRNAs are a class of noncoding RNA with a length of 21-24 nt that play an important role in plant responses to biotic and abiotic stresses. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases in rice. Our previous work showed that osa-miR2118b/n was induced by Xoo infection. However, the biological function of miR2118 has not yet been characterized in experiments. Herein, we constructed MIR2118b OE, as well as single and double mutants of MIR2118b/n using CRISPR/Cas9. Further results showed that osa-MIR2118b OE plants exhibited longer lesion lengths than the wild type after Xoo inoculation, while MIR2118 CRISPR plants exhibited shorter lesion lengths than the wild type after Xoo inoculation. Co-transformation experiments in rice protoplasts indicated that osa-miR2118 negatively regulated the transcripts of three nucleotide-binding sites and leucine-rich repeat (NLR) genes (LOC_Os08g42700.1, LOC_Os01g05600.1, and LOC_Os12g37290.1) which are predicted target genes of miR2118, but not the mutated NLR genes with a 3 bp insertion at the center of the binding sites. The transcriptional level of the three NLR genes was reversed relative to osa-miR2118 in the MIR2118b OE and MIR2118b CRISPR plants. The above results demonstrate that osa-miR2118b/n negatively regulates the resistance to bacterial blight through negatively regulating several NLR genes.
Collapse
Affiliation(s)
- Xiumei Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Yongjie Kuang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Yutong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Jia Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Yaqian Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Jixiang Hu
- Jiangsu Coastal Areas Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, Yancheng 224002, China;
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| |
Collapse
|
18
|
Schließer P, Struebing FL, Northoff BH, Kurz A, Rémi J, Holdt L, Höglinger GU, Herms J, Koeglsperger T. Detection of a Parkinson's Disease-Specific MicroRNA Signature in Nasal and Oral Swabs. Mov Disord 2023; 38:1706-1715. [PMID: 37382573 DOI: 10.1002/mds.29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Biomaterials from oral and nasal swabs provide, in theory, a potential resource for biomarker development. However, their diagnostic value has not yet been investigated in the context of Parkinson's disease (PD) and associated conditions. OBJECTIVE We have previously identified a PD-specific microRNA (miRNA) signature in gut biopsies. In this work, we aimed to investigate the expression of miRNAs in routine buccal (oral) and nasal swabs obtained from cases with idiopathic PD and isolated rapid eye movement sleep behavior disorder (iRBD), a prodromal symptom that often precedes α-synucleinopathies. We aimed to address their value as a diagnostic biomarker for PD and their mechanistic contribution to PD onset and progression. METHODS Healthy control cases (n = 28), cases with PD (n = 29), and cases with iRBD (n = 8) were prospectively recruited to undergo routine buccal and nasal swabs. Total RNA was extracted from the swab material, and the expression of a predefined set of miRNAs was quantified by quantitative real-time polymerase chain reaction. RESULTS Statistical analysis revealed a significantly increased expression of hsa-miR-1260a in cases who had PD. Interestingly, hsa-miR-1260a expression levels correlated with diseases severity, as well as olfactory function, in the PD and iRBD cohorts. Mechanistically, hsa-miR-1260a segregated to Golgi-associated cellular processes with a potential role in mucosal plasma cells. Predicted hsa-miR-1260a target gene expression was reduced in iRBD and PD groups. CONCLUSIONS Our work demonstrates oral and nasal swabs as a valuable biomarker pool in PD and associated neurodegenerative conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patricia Schließer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Felix L Struebing
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Bernd H Northoff
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Kurz
- Department of Gynaecology and Obstetrics, Klinikum Landsberg am Lech, Landsberg, Germany
| | - Jan Rémi
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases e.V. (DZNE) Munich, Munich, Germany
| | - Jochen Herms
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Translational Brain Research, German Centre for Neurodegenerative Diseases, Munich, Germany
| |
Collapse
|
19
|
Xu Y, Chen X. microRNA biogenesis and stabilization in plants. FUNDAMENTAL RESEARCH 2023; 3:707-717. [PMID: 38933298 PMCID: PMC11197542 DOI: 10.1016/j.fmre.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
MicroRNAs (miRNAs) are short endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level in a broad range of eukaryotic species. In animals, it is estimated that more than 60% of mammalian genes are targets of miRNAs, with miRNAs regulating cellular processes such as differentiation and proliferation. In plants, miRNAs regulate gene expression and play essential roles in diverse biological processes, including growth, development, and stress responses. Arabidopsis mutants with defective miRNA biogenesis are embryo lethal, and abnormal expression of miRNAs can cause severe developmental phenotypes. It is therefore crucial that the homeostasis of miRNAs is tightly regulated. In this review, we summarize the key mechanisms of plant miRNA biogenesis and stabilization. We provide an update on nuclear proteins with functions in miRNA biogenesis and proteins linking miRNA biogenesis to environmental triggers.
Collapse
Affiliation(s)
- Ye Xu
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
| | - Xuemei Chen
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Bélanger S, Kramer MC, Payne HA, Hui AY, Slotkin RK, Meyers BC, Staub JM. Plastid dsRNA transgenes trigger phased small RNA-based gene silencing of nuclear-encoded genes. THE PLANT CELL 2023; 35:3398-3412. [PMID: 37309669 PMCID: PMC10473229 DOI: 10.1093/plcell/koad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Plastid transformation technology has been widely used to express traits of potential commercial importance, though the technology has been limited to traits that function while sequestered in the organelle. Prior research indicates that plastid contents can escape from the organelle, suggesting a possible mechanism for engineering plastid transgenes to function in other cellular locations. To test this hypothesis, we created tobacco (Nicotiana tabacum cv. Petit Havana) plastid transformants that express a fragment of the nuclear-encoded Phytoene desaturase (PDS) gene capable of catalyzing post-transcriptional gene silencing if RNA escapes into the cytoplasm. We found multiple lines of direct evidence that plastid-encoded PDS transgenes affect nuclear PDS gene silencing: knockdown of the nuclear-encoded PDS mRNA and/or its apparent translational inhibition, biogenesis of 21-nucleotide (nt) phased small interfering RNAs (phasiRNAs), and pigment-deficient plants. Furthermore, plastid-expressed dsRNA with no cognate nuclear-encoded pairing partner also produced abundant 21-nt phasiRNAs in the cytoplasm, demonstrating that a nuclear-encoded template is not required for siRNA biogenesis. Our results indicate that RNA escape from plastids to the cytoplasm occurs generally, with functional consequences that include entry into the gene silencing pathway. Furthermore, we uncover a method to produce plastid-encoded traits with functions outside of the organelle and open additional fields of study in plastid development, compartmentalization, and small RNA biogenesis.
Collapse
Affiliation(s)
- Sébastien Bélanger
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Marianne C Kramer
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Hayden A Payne
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Alice Y Hui
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey M Staub
- Plastomics Inc, 1100 Corporate Square Drive, St. Louis, MO 63132, USA
| |
Collapse
|
21
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Imdad MJ, Khan MN, Alam HS, Khan AB, Mirani ZA, Khan A, Ahmed F. Design and in silico analysis of mRNA vaccine construct against Salmonella. J Biomol Struct Dyn 2023; 41:7248-7264. [PMID: 36093938 DOI: 10.1080/07391102.2022.2119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Salmonella infections are continuously growing. Causative serovars have gained enhanced drug resistance and virulence. Current vaccines have fallen short of providing sufficient protection. mRNA vaccines have come up with huge success against SARS-CoV-2; Pfizer-BioNTech and Moderna vaccines have resulted in >90% efficacy with efficient translocation, expression, and presentation of antigen to the host immune system. Herein, based on the same approach a mRNA vaccine construct has been designed and analyzed against Salmonella by joining regions of genes of outer membrane proteins C and F of S. Typhi through a flexible linker. Construct was flanked by regulatory regions that have previously shown better expression and translocation of encoded protein. GC content of the construct was improved to attain structural and thermodynamic stability and smooth translation. Sites of strong binding miRNAs were removed through codon optimization. Protein encoded by this construct is structurally plausible, highly antigenic, non-allergen to humans, and does not cross-react to the human proteome. It is enriched in potent, highly antigenic, and conserved linear and conformational epitopes. Most conserved conformational epitopes of core protein lie on extended beta hairpins exposed to the cellular exterior. Stability and thermodynamic attributes of the final construct were found highly comparable to the Pfizer-BioNTech vaccine construct. Both contain a stable stem-loop structure downstream of the start codon and do not offer destabilizing secondary structures upstream of the start codon. Given structural and thermodynamic stability, effective immune response, and epitope composition the construct is expected to provide broad-spectrum protection against clinically important Salmonella serovars.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Janees Imdad
- Department of Microbiology, University of Karachi, Karachi, Pakistan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Muhammad Naseem Khan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | | | - Abdul Basit Khan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Zulfiqar Ali Mirani
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Faraz Ahmed
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| |
Collapse
|
23
|
Mittal M, Dhingra A, Dawar P, Payton P, Rock CD. The role of microRNAs in responses to drought and heat stress in peanut (Arachis hypogaea). THE PLANT GENOME 2023; 16:e20350. [PMID: 37351954 DOI: 10.1002/tpg2.20350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/24/2023]
Abstract
MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.
Collapse
Affiliation(s)
- Meenakshi Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Anuradha Dhingra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Paxton Payton
- USDA-ARS Plant Stress and Germplasm Lab, Lubbock, Texas, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
24
|
Hu Y, Ji J, Cheng H, Luo R, Zhang J, Li W, Wang X, Zhang J, Yao Y. The miR408a-BBP-LAC3/CSD1 module regulates anthocyanin biosynthesis mediated by crosstalk between copper homeostasis and ROS homeostasis during light induction in Malus plants. J Adv Res 2023; 51:27-44. [PMID: 36371057 PMCID: PMC10491975 DOI: 10.1016/j.jare.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION The expression of miR408 is affected by copper (Cu) conditions and positively regulates anthocyanin biosynthesis in Arabidopsis. However, the underlying mechanisms by which miR408 regulates anthocyanin biosynthesis mediated by Cu homeostasis and reactive oxygen species (ROS) homeostasis remain unclear in Malus plants. OBJECTIVES Our study aims to elucidate how miR408a and its target, basic blue protein (BBP) regulate Cu homeostasis and ROS homeostasis, and anthocyanin biosynthesis in Malus plants. METHODS The roles of miR408a and its target BBP in regulating anthocyanin biosynthesis, Cu homeostasis, and ROS homeostasis were mainly identified in Malus plants. RESULTS We found that the BBP protein interacted with the copper-binding proteins LAC3 (laccase) and CSD1 (Cu/Zn SOD superoxide dismutase), indicating a potential crosstalk between Cu homeostasis and ROS homeostasis might be mediated by miR408 to regulate the anthocyanin accumulation. Further studies showed that overexpressing miR408a or suppressing BBP transiently significantly increased the expression of genes related to Cu binding and Cu transport, leading to anthocyanin accumulation under light induction in apple fruit and Malus plantlets. Consistently, opposite results were obtained when repressing miR408a or overexpressing BBP. Moreover, light induction significantly increased the expression of miR408a, CSD1, and LAC3, but significantly reduced the BBP expression, resulting in increased Cu content and anthocyanin accumulation. Furthermore, excessive Cu significantly increased the anthocyanin accumulation, accompanied by reduced expression of miR408a and Cu transport genes, and upregulated expression of Cu binding proteins including BBP, LAC3, and CSD1 to maintain the Cu homeostasis and ROS homeostasis in Malus plantlets. CONCLUSION Our findings provide new insights into the mechanism by which the miR408a-BBP-LAC3/CSD1 module perceives light and Cu signals regulating Cu and ROS homeostasis, ultimately affecting anthocyanin biosynthesis in Malus plants.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jiayi Ji
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China; Beijing Forestry University, China
| | - Hao Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Rongli Luo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Wenjing Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| |
Collapse
|
25
|
Peddio S, Lorrai S, Padiglia A, Cannea FB, Dettori T, Cristiglio V, Genovese L, Zucca P, Rescigno A. Biochemical and Phylogenetic Analysis of Italian Phaseolus vulgaris Cultivars as Sources of α-Amylase and α-Glucosidase Inhibitors. PLANTS (BASEL, SWITZERLAND) 2023; 12:2918. [PMID: 37631130 PMCID: PMC10457751 DOI: 10.3390/plants12162918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Phaseolus vulgaris α-amylase inhibitor (α-AI) is a protein that has recently gained commercial interest, as it inhibits mammalian α-amylase activity, reducing the absorption of dietary carbohydrates. Numerous studies have reported the efficacy of preparations based on this protein on the control of glycaemic peaks in type-2 diabetes patients and in overweight subjects. A positive influence on microbiota regulation has also been described. In this work, ten insufficiently studied Italian P. vulgaris cultivars were screened for α-amylase- and α-glucosidase-inhibiting activity, as well as for the absence of antinutritional compounds, such as phytohemagglutinin (PHA). All the cultivars presented α-glucosidase-inhibitor activity, while α-AI was missing in two of them. Only the Nieddone cultivar (ACC177) had no haemagglutination activity. In addition, the partial nucleotide sequence of the α-AI gene was identified with the degenerate hybrid oligonucleotide primer (CODEHOP) strategy to identify genetic variability, possibly linked to functional α-AI differences, expression of the α-AI gene, and phylogenetic relationships. Molecular studies showed that α-AI was expressed in all the cultivars, and a close similarity between the Pisu Grogu and Fasolu cultivars' α-AI and α-AI-4 isoform emerged from the comparison of the partially reconstructed primary structures. Moreover, mechanistic models revealed the interaction network that connects α-AI with the α-amylase enzyme characterized by two interaction hotspots (Asp38 and Tyr186), providing some insights for the analysis of the α-AI primary structure from the different cultivars, particularly regarding the structure-activity relationship. This study can broaden the knowledge about this class of proteins, fuelling the valorisation of Italian agronomic biodiversity through the development of commercial preparations from legume cultivars.
Collapse
Affiliation(s)
- Stefania Peddio
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | - Sonia Lorrai
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | - Alessandra Padiglia
- Department of Life and Environmental Sciences (DiSVA), University Campus, Monserrato, 09042 Cagliari, Italy; (A.P.); (F.B.C.)
| | - Faustina B. Cannea
- Department of Life and Environmental Sciences (DiSVA), University Campus, Monserrato, 09042 Cagliari, Italy; (A.P.); (F.B.C.)
| | - Tinuccia Dettori
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | | | - Luigi Genovese
- CEA/MEM/L-Sim, University Grenoble Alpes, 38044 Grenoble, France;
| | - Paolo Zucca
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| | - Antonio Rescigno
- Department of Biomedical Sciences (DiSB), University Campus, Monserrato, 09042 Cagliari, Italy; (S.P.); (S.L.); (T.D.); (A.R.)
| |
Collapse
|
26
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
27
|
Liu Y, Yu Y, Fei S, Chen Y, Xu Y, Zhu Z, He Y. Overexpression of Sly-miR398b Compromises Disease Resistance against Botrytis cinerea through Regulating ROS Homeostasis and JA-Related Defense Genes in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2572. [PMID: 37447133 DOI: 10.3390/plants12132572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiren Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihong Fei
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
28
|
Hu G, Wang B, Jia P, Wu P, Lu C, Xu Y, Shi L, Zhang F, Zhong N, Chen A, Wu J. The cotton miR530-SAP6 module activated by systemic acquired resistance mediates plant defense against Verticillium dahliae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111647. [PMID: 36806608 DOI: 10.1016/j.plantsci.2023.111647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Many cotton miRNAs in root responding to Verticillium dahliae infection have been identified. Conversely, the miRNAs in leaf distantly responding to this fungal infection from roots via systemic acquired resistance (SAR) remain to be explored. Here, we constructed two groups of leaf sRNA libraries in cotton treated with V. dahliae via root-dipped method at 7- and 10-day post inoculation. Analysis of high-throughput sRNA sequencing identified 75 known and 379 novel miRNAs, of which 41 miRNAs significantly differentially expressed in fungal treatment plant leaves compared to the mock treatment at two time points. Then we characterized the cotton miR530-SAP6 module as a representative in the distant response to V. dahliae infection in roots. Based on degradome data and a luciferase (LUC) fusion reporter analysis, ghr-miR530 directedly cleaved GhSAP6 mRNA during the post-transcriptional process. Silencing of ghr-miR530 increased plant defense to this fungus, while its overexpression attenuated plant resistance. In link with ghr-miR530 function, the knockdown of GhSAP6 also decreased the plant resistance, resulting from down-regulation of SA-relative gene expression including GhNPR1 and GhPR1. In all, these results demonstrated that there are numerous miRNAs in leaf distantly responding to V. dahliae infection in roots mediate plant immunity.
Collapse
Affiliation(s)
- Guang Hu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bingting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengzhe Lu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunjiao Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linfang Shi
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiyan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aimin Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture and Rural Affairs, Join Hope Seeds Co. Ltd., Changji, Xinjiang 831100, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Tian Y, Shao J, Bai S, Xu Z, Bi C. Palmitic acid-induced microRNA-143-5p expression promotes the epithelial-mesenchymal transition of retinal pigment epithelium via negatively regulating JDP2. Aging (Albany NY) 2023; 15:3465-3479. [PMID: 37179125 PMCID: PMC10449279 DOI: 10.18632/aging.204684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is the most crucial step in the etiopathogenesis of proliferative vitreoretinopathy. This study aimed to investigate the role of miR-143-5p in the EMT of RPE cells induced by palmitic acid (PA). METHODS ARPE-19 cells were treated with PA to induce EMT, followed by E-cadherin and α-smooth muscle actin (α-SMA) expression and the microRNA expression profile analyses. Subsequently, miR-143-5p mimics/inhibitors, and plasmids expressing its predicted target gene c-JUN-dimerization protein 2 (JDP2), were transfected in ARPE-19 cells using lipofectamine 3000, and followed by PA treatment. Their impacts on EMT were explored using wound healing and Western blot assays. Additionally, miR-143-5p mimics and JDP2-expressing plasmid were co-transfected into ARPE-19 cells and treated with PA to explore whether PA induced EMT of ARPE-19 cells via the miR-143-5p/JDP2 axis. RESULTS PA decreased E-cadherin expression and increased those of α-SMA and miR-143-5p. Inhibiting miR-143-5p suppressed the migration of ARPE-19 cells and altered the expressions of E-cadherin and α-SMA. However, additional PA treatment attenuated these alterations. JDP2 was a target of miR-143-5p. Overexpression of JDP2 inhibited the EMT of ARPE-19 cells, resulting in α-SMA downregulation and E-cadherin upregulation, which were reversed by additional PA treatment via inhibiting JDP2 expression. Overexpression of miR-143-5p reversed the effect of JDP2 on the EMT of ARPE-19 cells and additional PA treatment markedly enhanced the effect of miR-143-5p mimics. CONCLUSION PA promotes EMT of ARPE-19 cells via regulating the miR-143-5p/JDP2 axis, and these findings provide significant insights into the potential targeting of this axis to treat proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Yunlin Tian
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Juan Shao
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Shuwei Bai
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhiguo Xu
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Chunchao Bi
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
30
|
Xiao Y, Liu TM, MacRae IJ. A tiny loop in the Argonaute PIWI domain tunes small RNA seed strength. EMBO Rep 2023:e55806. [PMID: 37082939 DOI: 10.15252/embr.202255806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Argonaute (AGO) proteins use microRNAs (miRNAs) and small interfering RNAs (siRNAs) as guides to regulate gene expression in plants and animals. AGOs that use miRNAs in bilaterian animals recognize short (6-8 nt.) elements complementary to the miRNA seed region, enabling each miRNA to interact with hundreds of otherwise unrelated targets. By contrast, AGOs that use miRNAs in plants employ longer (> 13 nt.) recognition elements such that each miRNA silences a small number of physiologically related targets. Here, we show that this major functional distinction depends on a minor structural difference between plant and animal AGO proteins: a 9-amino acid loop in the PIWI domain. Swapping the PIWI loop from human Argonaute2 (HsAGO2) into Arabidopsis Argonaute10 (AtAGO10) increases seed strength, resulting in animal-like miRNA targeting. Conversely, swapping the plant PIWI loop into HsAGO2 reduces seed strength and accelerates the turnover of cleaved targets. The loop-swapped HsAGO2 silences targets more potently, with reduced miRNA-like targeting, than wild-type HsAGO2 in mammalian cells. Thus, tiny structural differences can tune the targeting properties of AGO proteins for distinct biological roles.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - TingYu M Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
31
|
Borniego ML, Innes RW. Extracellular RNA: mechanisms of secretion and potential functions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2389-2404. [PMID: 36609873 PMCID: PMC10082932 DOI: 10.1093/jxb/erac512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 06/06/2023]
Abstract
Extracellular RNA (exRNA) has long been considered as cellular waste that plants can degrade and utilize to recycle nutrients. However, recent findings highlight the need to reconsider the biological significance of RNAs found outside of plant cells. A handful of studies suggest that the exRNA repertoire, which turns out to be an extremely heterogenous group of non-coding RNAs, comprises species as small as a dozen nucleotides to hundreds of nucleotides long. They are found mostly in free form or associated with RNA-binding proteins, while very few are found inside extracellular vesicles (EVs). Despite their low abundance, small RNAs associated with EVs have been a focus of exRNA research due to their putative role in mediating trans-kingdom RNAi. Therefore, non-vesicular exRNAs have remained completely under the radar until very recently. Here we summarize our current knowledge of the RNA species that constitute the extracellular RNAome and discuss mechanisms that could explain the diversity of exRNAs, focusing not only on the potential mechanisms involved in RNA secretion but also on post-release processing of exRNAs. We will also share our thoughts on the putative roles of vesicular and extravesicular exRNAs in plant-pathogen interactions, intercellular communication, and other physiological processes in plants.
Collapse
Affiliation(s)
- M Lucía Borniego
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
32
|
Shang B, Wang L, Yan X, Li Y, Li C, Wu C, Wang T, Guo X, Choi SW, Zhang T, Wang Z, Tong CY, Oh T, Zhang X, Wang Z, Peng X, Zhang X. Intrinsically disordered proteins SAID1/2 condensate on SERRATE for dual inhibition of miRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2216006120. [PMID: 36972460 PMCID: PMC10083546 DOI: 10.1073/pnas.2216006120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.
Collapse
Affiliation(s)
- Baoshuan Shang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Lin Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Yanjun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, College of Life Sciences, Ningbo University, Ningbo315211, China
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Chaohua Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Tian Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- College of Life Science, Shandong Normal University, Jinan, Shandong250014, China
| | - Xiang Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Suk Won Choi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Tianru Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Ziying Wang
- Department of Biology, Texas A&M University, College Station, TX77843
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Taerin Oh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Zhiye Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xu Peng
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- Department of Biology, Texas A&M University, College Station, TX77843
| |
Collapse
|
33
|
Gohel D, Shukla S, Rajan WD, Wojtas B, Kaminska B, Singh R. Altered trafficking of miRNAs at mitochondria modulates mitochondrial functions and cell death in brain ischemia. Free Radic Biol Med 2023; 199:26-33. [PMID: 36781060 DOI: 10.1016/j.freeradbiomed.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Stroke is one of the major causes of death and disabilities worldwide. The rapid induction of cell death by necrosis and apoptosis is observed at the ischemic core, while long lasting apoptosis and brain inflammation continue in the penumbra. The emerging evidence suggests a critical role of mitochondria in acute and chronic inflammation and cell death. Mitochondrial dysfunction may result in the release of mitokines and/or mitochondrial DNA into the cytoplasm and activate multiple cytosolic pathways which in turn triggers inflammation. The role of miRNA, specifically mitochondria-associated miRNAs (mitomiRs) in the regulation of mitochondrial functions is emerging. In the current study, we hypothesized that ischemia-induced mitomiRs may modulate the mitochondrial functions and such alterations under stress conditions may lead to mitochondrial dysfunction and cell death. We have demonstrated the specific pattern of miRNAs associated with mitochondria that is altered under ischemic condition induced by transient middle artery occlusion (tMCAo) in rats. The putative targets of altered miRNAs include several mitochondrial proteins which signifies their involvement in maintaining mitochondrial homeostasis. The alteration of selected miRNAs in mitochondria was further detected in a cellular models when hypoxia was induced using a chemical agent CoCl2, in three cell lines. Two candidate mitomiRs, hsa-miR-149-3p and hsa-miR-204-5p were further analyzed for their functional role during in vitro hypoxia by transfecting mitomiR mimics into cells and determining critical mitochondrial functions and cell viability. The results here emphasize the role of certain mitomiRs as an important modulator of mitochondrial function under the ischemic condition.
Collapse
Affiliation(s)
- Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India; Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Wenson David Rajan
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093, Warsaw, Poland.
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India; Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
34
|
Sang Q, Fan L, Liu T, Qiu Y, Du J, Mo B, Chen M, Chen X. MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis. Nat Commun 2023; 14:1449. [PMID: 36949101 PMCID: PMC10033679 DOI: 10.1038/s41467-023-36774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
MicroRNAs (miRNAs) play diverse roles in plant development, but whether and how miRNAs participate in thermomorphogenesis remain ambiguous. Here we show that HYPONASTIC LEAVES 1 (HYL1)-a key component of miRNA biogenesis-acts downstream of the thermal regulator PHYTOCHROME INTERACTING FACTOR 4 in the temperature-dependent plasticity of hypocotyl growth in Arabidopsis. A hyl1-2 suppressor screen identified a dominant dicer-like1 allele that rescues hyl1-2's defects in miRNA biogenesis and thermoresponsive hypocotyl elongation. Genome-wide miRNA and transcriptome analysis revealed microRNA156 (miR156) and its target SQUAMOSA PROMOTER-BINDING-PROTEIN-LIKE 9 (SPL9) to be critical regulators of thermomorphogenesis. Surprisingly, perturbation of the miR156/SPL9 module disengages seedling responsiveness to warm temperatures by impeding auxin sensitivity. Moreover, miR156-dependent auxin sensitivity also operates in the shade avoidance response at lower temperatures. Thus, these results unveil the miR156/SPL9 module as a previously uncharacterized genetic circuit that enables plant growth plasticity in response to environmental temperature and light changes.
Collapse
Affiliation(s)
- Qing Sang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Tianxiang Liu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Gao Y, Zhu Y, Sun Q, Chen D. Argonaute-dependent ribosome-associated protein quality control. Trends Cell Biol 2023; 33:260-272. [PMID: 35981909 DOI: 10.1016/j.tcb.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Ribosome-associated protein quality control (RQC) is a protein surveillance mechanism that eliminates defective nascent polypeptides. The E3 ubiquitin ligase, Ltn1, is a key regulator of RQC that targets substrates for ubiquitination. Argonaute proteins (AGOs) are central players in miRNA-mediated gene silencing and have recently been shown to also regulate RQC by facilitating Ltn1. Therefore, AGOs directly coordinate post-transcriptional gene silencing and RQC, ensuring efficient gene silencing. We summarize the principles of RQC and the functions of AGOs in miRNA-mediated gene silencing, and discuss how AGOs associate with the endoplasmic reticulum (ER) to assist Ltn1 in controlling RQC. We highlight that RQC not only eliminates defective nascent polypeptides but also removes unwanted protein products when AGOs participate.
Collapse
Affiliation(s)
- Yajie Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China.
| |
Collapse
|
36
|
Pegler JL, Oultram JMJ, Mann CWG, Carroll BJ, Grof CPL, Eamens AL. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. PLANTS (BASEL, SWITZERLAND) 2023; 12:1101. [PMID: 36903960 PMCID: PMC10004981 DOI: 10.3390/plants12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Angiosperms form the largest phylum within the Plantae kingdom and show remarkable genetic variation due to the considerable difference in the nuclear genome size of each species. Transposable elements (TEs), mobile DNA sequences that can amplify and change their chromosome position, account for much of the difference in nuclear genome size between individual angiosperm species. Considering the dramatic consequences of TE movement, including the complete loss of gene function, it is unsurprising that the angiosperms have developed elegant molecular strategies to control TE amplification and movement. Specifically, the RNA-directed DNA methylation (RdDM) pathway, directed by the repeat-associated small-interfering RNA (rasiRNA) class of small regulatory RNA, forms the primary line of defense to control TE activity in the angiosperms. However, the miniature inverted-repeat transposable element (MITE) species of TE has at times avoided the repressive effects imposed by the rasiRNA-directed RdDM pathway. MITE proliferation in angiosperm nuclear genomes is due to their preference to transpose within gene-rich regions, a pattern of transposition that has enabled MITEs to gain further transcriptional activity. The sequence-based properties of a MITE results in the synthesis of a noncoding RNA (ncRNA), which, after transcription, folds to form a structure that closely resembles those of the precursor transcripts of the microRNA (miRNA) class of small regulatory RNA. This shared folding structure results in a MITE-derived miRNA being processed from the MITE-transcribed ncRNA, and post-maturation, the MITE-derived miRNA can be used by the core protein machinery of the miRNA pathway to regulate the expression of protein-coding genes that harbor homologous MITE insertions. Here, we outline the considerable contribution that the MITE species of TE have made to expanding the miRNA repertoire of the angiosperms.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
37
|
Xu Y, Zhang Y, Li Z, Soloria AK, Potter S, Chen X. The N-terminal extension of Arabidopsis ARGONAUTE 1 is essential for microRNA activities. PLoS Genet 2023; 19:e1010450. [PMID: 36888599 PMCID: PMC9994745 DOI: 10.1371/journal.pgen.1010450] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
microRNAs (miRNAs) regulate target gene expression through their ARGONAUTE (AGO) effector protein, mainly AGO1 in Arabidopsis thaliana. In addition to the highly conserved N, PAZ, MID and PIWI domains with known roles in RNA silencing, AGO1 contains a long, unstructured N-terminal extension (NTE) of little-known function. Here, we show that the NTE is indispensable for the functions of Arabidopsis AGO1, as a lack of the NTE leads to seedling lethality. Within the NTE, the region containing amino acids (a.a.) 91 to 189 is essential for rescuing an ago1 null mutant. Through global analyses of small RNAs, AGO1-associated small RNAs, and miRNA target gene expression, we show that the region containing a.a. 91-189 is required for the loading of miRNAs into AGO1. Moreover, we show that reduced nuclear partitioning of AGO1 did not affect its profiles of miRNA and ta-siRNA association. Furthermore, we show that the 1-to-90a.a. and 91-to-189a.a. regions of the NTE redundantly promote the activities of AGO1 in the biogenesis of trans-acting siRNAs. Together, we report novel roles of the NTE of Arabidopsis AGO1.
Collapse
Affiliation(s)
- Ye Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Yong Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Zhenfang Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Alyssa K. Soloria
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Savannah Potter
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Xuemei Chen
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| |
Collapse
|
38
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
39
|
Shi X, Yang H, Birchler JA. MicroRNAs play regulatory roles in genomic balance. Bioessays 2023; 45:e2200187. [PMID: 36470594 DOI: 10.1002/bies.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Classic genetics studies found that genomic imbalance caused by changing the dosage of part of the genome (aneuploidy) has more detrimental effects than altering the dosage of the whole genome (ploidy). Previous analysis revealed global modulation of gene expression triggered by aneuploidy across various species, including maize (Zea mays), Arabidopsis, yeast, mammals, etc. Plant microRNAs (miRNAs) are a class of 20- to 24-nt endogenous small noncoding RNAs that carry out post-transcriptional gene expression regulation. That miRNAs and their putative targets are preferentially retained as duplicates after whole-genome duplication, as are many transcription factors and signaling components, indicates miRNAs are likely to be dosage-sensitive and potentially involved in genomic balance networks. This review addresses the following questions regarding the role of miRNAs in genomic imbalance. (1) How do aneuploidy and polyploidy impact the expression of miRNAs? (2) Do miRNAs play a regulatory role in modulating the expression of their targets under genomic imbalance?
Collapse
Affiliation(s)
- Xiaowen Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
40
|
Ding N, Zhang B. microRNA production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1096772. [PMID: 36743500 PMCID: PMC9893293 DOI: 10.3389/fpls.2023.1096772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, microRNAs (miRNAs) associate with ARGONAUTE (AGO) proteins and act as sequence-specific repressors of target gene expression, at the post-transcriptional level through target transcript cleavage and/or translational inhibition. MiRNAs are mainly transcribed by DNA-dependent RNA polymerase II (POL II) and processed by DICER LIKE1 (DCL1) complex into 21∼22 nucleotide (nt) long. Although the main molecular framework of miRNA biogenesis and modes of action have been established, there are still new requirements continually emerging in the recent years. The studies on the involvement factors in miRNA biogenesis indicate that miRNA biogenesis is not accomplished separately step by step, but is closely linked and dynamically regulated with each other. In this article, we will summarize the current knowledge on miRNA biogenesis, including MIR gene transcription, primary miRNA (pri-miRNA) processing, miRNA AGO1 loading and nuclear export; and miRNA metabolism including methylation, uridylation and turnover. We will describe how miRNAs are produced and how the different steps are regulated. We hope to raise awareness that the linkage between different steps and the subcellular regulation are becoming important for the understanding of plant miRNA biogenesis and modes of action.
Collapse
|
41
|
Banerjee S, Roy P, Nandi S, Roy S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. PLANT GROWTH REGULATION 2023; 100:355-371. [PMID: 36686885 PMCID: PMC9845834 DOI: 10.1007/s10725-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023]
Abstract
Micronutrients are essential mineral elements required for both plant and human development.An integrated system involving soil, climatic conditions, and types of crop plants determines the level of micronutrient acquisition and utilization. Most of the staple food crops consumed globally predominantly include the cereal grains, tubers and roots, respectively and in many cases, particularly in the resource-poor countries they are grown in nutrient-deficient soils. These situations frequently lead to micronutrient deficiency in crops. Moreover, crop plants with micronutrient deficiency also show high level of susceptibility to various abiotic and biotic stress factors. Apart from this, climate change and soil pollution severely affect the accumulation of micronutrients, such as zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), and copper (Cu) in food crops. Therefore, overcoming the issue of micronutrient deficiency in staple crops and to achieve the adequate level of food production with enriched nutrient value is one of the major global challenges at present. Conventional breeding approaches are not adequate to feed the increasing global population with nutrient-rich staple food crops. To address these issues, alongside traditional approaches, genetic modification strategies have been adopted during the past couple of years in order to enhance the transport, production, enrichment and bioavailability of micronutrients in staple crops. Recent advances in agricultural biotechnology and genome editing approaches have shown promising response in the development of micronutrient enriched biofortified crops. This review highlights the current advancement of our knowledge on the possible implications of various biotechnological tools for the enrichment and enhancement of bioavailability of micronutrients in crops.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Pinaki Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Shreyashi Nandi
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag Campus, 713104 Burdwan, West Bengal India
| |
Collapse
|
42
|
Huo C, Zhang B, Wang R. Research progress on plant noncoding RNAs in response to low-temperature stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2004035. [PMID: 34927551 PMCID: PMC8932918 DOI: 10.1080/15592324.2021.2004035] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Low temperature (LT) is an important factor limiting plant growth and distribution. Plants have evolved sophisticated adaptive mechanisms to cope with hypothermia. RNA silencing is the orchestrator of these cellular responses. RNA silencing, which modifies gene expression through noncoding RNAs (ncRNAs), is a strategy used by plants to combat environmental stress. ncRNAs, which have very little protein-coding capacity, work by binding reverse complementary endogenous transcripts. In plants, ncRNAs include small non-coding RNAs (sncRNAs), medium-sized non-coding RNAs (mncRNAs), and long non-coding RNAs (lncRNAs). Apart from describing the biogenesis of different ncRNAs (miRNAs, siRNAs, and lncRNAs), we thoroughly discuss the functions of these ncRNAs during cold acclimation. Two major classes of sncRNAs, microRNAs and siRNAs, play essential regulatory roles in cold response processes through the posttranscriptional gene silencing (PTGS) pathway or transcriptional gene silencing (TGS) pathway. Microarray or transcriptome sequencing analysis can reveal a large number of cold-responsive miRNAs in plants. In this review, the cold-response patterns of miRNAs verified by Northern blotting or quantitative PCR in Arabidopsis thaliana, rice, and many other important crops are discussed. The detailed molecular mechanisms of several miRNAs in Arabidopsis (miR397, miR408, miR402, and miR394) and rice (Osa-miR156, Osa-miR319, and Osa-miR528) that regulate plant cold resistance are elucidated. In addition, the regulatory mechanism of the lncRNA SVALKA in the cold signaling pathway is explained in detail. Finally, we present the challenges for understanding the roles of small ncRNAs in cold signal transduction.
Collapse
Affiliation(s)
- Chenmin Huo
- College of Biology Science & Engineering, Hebei University of Economics & Business, Shijiazhuang, China
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruiju Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- CONTACT Ruiju Wang College of Biology Science & Engineering, Hebei University of Economics & Business, Shijiazhuang, China
| |
Collapse
|
43
|
Shi C, Zhang J, Wu B, Jouni R, Yu C, Meyers BC, Liang W, Fei Q. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function. THE NEW PHYTOLOGIST 2022; 236:1529-1544. [PMID: 36031742 DOI: 10.1111/nph.18446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Phased secondary siRNAs (phasiRNAs) are broadly present in the reproductive tissues of flowering plants, with spatial-temporal specificity. However, the ARGONAUTE (AGO) proteins associated with phasiRNAs and their miRNA triggers remain elusive. Here, through histological and high-throughput sequencing analyses, we show that rice AGO1d, which is specifically expressed in anther wall cells before and during meiosis, associates with both miR2118 and miR2275 to mediate phasiRNA biogenesis. AGO1d preferentially binds to miR2118-triggered 21-nucleotide (nt) phasiRNAs with a 5'-terminal uridine, suggesting a dual role in phasiRNA biogenesis and function. Depletion of AGO1d causes a reduction of 21- and 24-nt phasiRNAs and temperature-sensitive male sterility. At lower temperatures, anthers of the ago1d mutant predominantly show excessive tapetal cells with little starch accumulation during pollen formation, possibly caused by the dysregulation of cell metabolism. These results uncover an essential role of AGO1d in rice anther development at lower temperatures and demonstrate coordinative roles of AGO proteins during reproductive phasiRNA biogenesis and function.
Collapse
Affiliation(s)
- Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingjin Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Rachel Jouni
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University, Saint Louis, MI, 63130, USA
- Donald Danforth Plant Science Center, Saint Louis, MI, 63132, USA
| | - Changxiu Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MI, 63132, USA
- Division of Plant Sciences and Technology, University of Missouri-Columbia, Columbia, MI, 65211, USA
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
44
|
Tomato MicroRNAs and Their Functions. Int J Mol Sci 2022; 23:ijms231911979. [PMID: 36233279 PMCID: PMC9569937 DOI: 10.3390/ijms231911979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) define an essential class of non-coding small RNAs that function as posttranscriptional modulators of gene expression. They are coded by MIR genes, several hundreds of which exist in the genomes of Arabidopsis and rice model plants. The functional analysis of Arabidopsis and rice miRNAs indicate that their miRNAs regulate a wide range of processes including development, reproduction, metabolism, and stress. Tomato serves as a major model crop for the study of fleshy fruit development and ripening but until recently, information on the identity of its MIR genes and their coded miRNAs was limited and occasionally contradictory. As a result, the majority of tomato miRNAs remained uncharacterized. Recently, a comprehensive annotation of tomato MIR genes has been carried out by several labs and us. In this review, we curate and organize the resulting partially overlapping MIR annotations into an exhaustive and non-redundant atlas of tomato MIR genes. There are 538 candidate and validated MIR genes in the atlas, of which, 169, 18, and 351 code for highly conserved, Solanaceae-specific, and tomato-specific miRNAs, respectively. Furthermore, a critical review of functional studies on tomato miRNAs is presented, highlighting validated and possible functions, creating a useful resource for future tomato miRNA research.
Collapse
|
45
|
Ruf A, Oberkofler L, Robatzek S, Weiberg A. Spotlight on plant RNA-containing extracellular vesicles. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102272. [PMID: 35964451 DOI: 10.1016/j.pbi.2022.102272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) carrying RNA have attracted growing attention in plant cell biology. For a long time, EV release or uptake through the rigid plant cell wall was considered to be impossible and RNA outside cells to be unstable. Identified EV biomarkers have brought new insights into functional roles of EVs to transport their RNA cargo for systemic spread in plants and into plant-invading pathogens. RNA-binding proteins supposedly take over key functions in EV-mediated RNA secretion and transport, but the mechanisms of RNA sorting and EV translocation through the plant cell wall and plasma membrane are not understood. Characterizing the molecular players and the cellular mechanisms of plant RNA-containing EVs will create new knowledge in cell-to-cell and inter-organismal communication.
Collapse
Affiliation(s)
- Alessa Ruf
- LMU Munich Biocenter, Großhaderner Straße 4, 82152 Planegg-Martinsried, DE, Germany
| | - Lorenz Oberkofler
- LMU Munich Biocenter, Großhaderner Straße 4, 82152 Planegg-Martinsried, DE, Germany
| | - Silke Robatzek
- LMU Munich Biocenter, Großhaderner Straße 4, 82152 Planegg-Martinsried, DE, Germany
| | - Arne Weiberg
- LMU Munich Biocenter, Großhaderner Straße 4, 82152 Planegg-Martinsried, DE, Germany.
| |
Collapse
|
46
|
Nobusawa T, Yamatani H, Kusaba M. Early flowering phenotype of the Arabidopsis altered meristem program1 mutant is dependent on the FLOWERING LOCUS T-mediated pathway. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:317-321. [PMID: 36349233 PMCID: PMC9592955 DOI: 10.5511/plantbiotechnology.22.0515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/15/2022] [Indexed: 06/16/2023]
Abstract
Controlling the flowering time is crucial for propagating plant species and crop production. ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis thaliana encodes a putative carboxypeptidase, and an AMP1 mutant (amp1) was found to cause highly pleiotropic phenotypes including a short plastochron, an enlarged shoot apical meristem, and reduced apical dominance. Although amp1 also shows an early flowering phenotype, its mechanism has not been investigated in detail. The most important floral integrator or florigen gene, FLOWERING LOCUS T (FT), has a close relative, TWIN SISTER OF FT (TSF). In this report, we generated a new allele of tsf using a genome-editing technique and produced ft tsf double and amp1 ft tsf triple mutants. The flowering time of amp1 ft tsf was equally as late as ft tsf under long-day conditions. In addition, the expression level of FT in amp1 was 2.4-fold higher than that in wild-type, even five days after germination under long-day conditions. These results suggest that the elevated expression level of FT is responsible for the early flowering phenotype of amp1. Furthermore, expression of FLOWERING LOCUS C (FLC), a negative regulator of FT expression, is severely repressed in amp1, raising the possibility that low expression levels of FLC contributes to upregulation of FT expression and the early flowering phenotype of amp1.
Collapse
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroshi Yamatani
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
47
|
MicroRNA398: A Master Regulator of Plant Development and Stress Responses. Int J Mol Sci 2022; 23:ijms231810803. [PMID: 36142715 PMCID: PMC9502370 DOI: 10.3390/ijms231810803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in plant development and stress responses, and a growing number of studies suggest that miRNAs are promising targets for crop improvement because they participate in the regulation of diverse, important agronomic traits. MicroRNA398 (miR398) is a conserved miRNA in plants and has been shown to control multiple stress responses and plant growth in a variety of species. There are many studies on the stress response and developmental regulation of miR398. To systematically understand its function, it is necessary to summarize the evolution and functional roles of miR398 and its target genes. In this review, we analyze the evolution of miR398 in plants and outline its involvement in abiotic and biotic stress responses, in growth and development and in model and non-model plants. We summarize recent functional analyses, highlighting the role of miR398 as a master regulator that coordinates growth and diverse responses to environmental factors. We also discuss the potential for fine-tuning miR398 to achieve the goal of simultaneously improving plant growth and stress tolerance.
Collapse
|
48
|
Juurakko CL, Bredow M, diCenzo GC, Walker VK. Cold-inducible promoter-driven knockdown of Brachypodium antifreeze proteins confers freezing and phytopathogen susceptibility. PLANT DIRECT 2022; 6:e449. [PMID: 36172079 PMCID: PMC9467863 DOI: 10.1002/pld3.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The model forage crop, Brachypodium distachyon, has a cluster of ice recrystallization inhibition (BdIRI) genes, which encode antifreeze proteins that function by adsorbing to ice crystals and inhibiting their growth. The genes were targeted for knockdown using a cold-induced promoter from rice (prOsMYB1R35) to drive miRNA. The transgenic lines showed no apparent pleiotropic developmental defects but had reduced antifreeze activity as assessed by assays for ice-recrystallization inhibition, thermal hysteresis, electrolyte leakage, and leaf infrared thermography. Strikingly, the number of cold-acclimated transgenic plants that survived freezing at -8°C was reduced by half or killed entirely, depending on the line, compared with cold-acclimated wild type plants. In addition, more leaf damage was apparent at subzero temperatures in knockdowns after infection with an ice nucleating pathogen, Pseudomonas syringae. Although antifreeze proteins have been studied for almost 60 years, this is the first unequivocal demonstration of their function by knockdown in any organism, and their dual contribution to freeze protection as well as pathogen susceptibility, independent of obvious developmental defects. These proteins are thus of potential interest in a wide range of biotechnological applications from cryopreservation, to frozen product additives, to the engineering of transgenic crops with enhanced pathogen and freezing tolerance.
Collapse
Affiliation(s)
| | - Melissa Bredow
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- Present address:
Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | | | - Virginia K. Walker
- Department of BiologyQueen's UniversityKingstonOntarioCanada
- School of Environmental StudiesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
49
|
Loreti E, Perata P. Mobile plant microRNAs allow communication within and between organisms. THE NEW PHYTOLOGIST 2022; 235:2176-2182. [PMID: 35794849 PMCID: PMC10114960 DOI: 10.1111/nph.18360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 05/06/2023]
Abstract
Plant microRNAs (miRNAs) are small regulatory RNAs that are encoded by endogenous miRNA genes and regulate gene expression through gene silencing, by inducing degradation of their target messenger RNA or by inhibiting its translation. Some miRNAs are mobile molecules inside the plant, and increasing experimental evidence has demonstrated that miRNAs represent molecules that are exchanged between plants, their pathogens, and parasitic plants. It has also been shown that miRNAs are secreted into the external growing medium and that these miRNAs regulate gene expression and the phenotype of nearby receiving plants, thus defining a new concept in plant communication. However, the mechanism of miRNA secretion and uptake by plant cells still needs to be elucidated.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNRNational Research CouncilVia Moruzzi56124PisaItaly
| | - Pierdomenico Perata
- PlantLab, Center of Plant SciencesSant'Anna School of Advanced StudiesVia Giudiccioni 1056010San Giuliano TermePisaItaly
| |
Collapse
|
50
|
Erturk E, Enes Onur O, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion 2022; 66:74-81. [PMID: 35963496 DOI: 10.1016/j.mito.2022.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. MicroRNAs (miRNAs) are non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Although miRNAs mainly act in the cytoplasm, they can be found in the mitochondrial compartment of the cell. These miRNAs called "MitomiR", they can change mitochondrial functions by regulating proteins at the mitochondrial level and cause cancer. In this review, we have aimed to explain miRNA biogenesis, transport pathways to mitochondria, and summarize mitomiRs that have been shown to play an important role in mitochondrial function, especially in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Elif Erturk
- Bursa Uludag University, Vocational School of Health Services, 16059, Bursa, Turkey
| | - Omer Enes Onur
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Oguzhan Akgun
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Gonca Tuna
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Yaren Yildiz
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey.
| |
Collapse
|