1
|
Liu D, Liu Y, Lu CY, Wang Q, Bao Y, Yu Y, Wang Q, Peng W. Investigating genetic variants in early-onset obesity through exome sequencing: A retrospective cohort study. Obes Res Clin Pract 2024:S1871-403X(24)00411-3. [PMID: 39667993 DOI: 10.1016/j.orcp.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE This study aimed to examine clinical data and analyze exome sequencing (ES) findings in children diagnosed with early-onset obesity. METHODS We screened children presenting with severe (body mass index-standard deviation score >3) and early-onset (<7 years) obesity using ES. Participants were categorized into either the "no variant identified" group or the "variant identified" group, facilitating the exploration of correlations between clinical-demographic characteristics and genetic mutations linked to early-onset obesity. The functional implications of identified variants were assessed through in silico analyses. RESULTS Of the patients, 32 (35.5 %) possessed one or more mutations in pathways associated with obesity, all of which were heterozygous and patients with more than two obesity-associated variants were more obese. This cohort included 29 novel mutations distinct to our study population, 7 previously reported pathogenic variants, two instances of uniparental disomy, and one mitochondrial hotspot mutation. Variants in the SH2B1 gene emerged as a prevalent genetic determinant of obesity within our group, accounting for 16.6 % of cases. Statistical evaluations showed no significant differences in demographic attributes between the two groups. CONCLUSION Exome sequencing proves to be an instrumental approach for uncovering new variants and broadening the spectrum of mutations in early-onset obesity among children. Concurrently, further functional studies, both in vitro and in vivo, are crucial to elucidate the contributions of these variants to obesity's pathogenesis.
Collapse
Affiliation(s)
- Deyun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yuxiang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Yu Lu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yingying Bao
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qiang Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wu Peng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Li L, Xiao H, Wu X, Tang Z, Khoury JD, Wang J, Wan S. RanBALL: An Ensemble Random Projection Model for Identifying Subtypes of B-cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614777. [PMID: 39386448 PMCID: PMC11463541 DOI: 10.1101/2024.09.24.614777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identification of B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic approaches. Existing methods for B-ALL subtyping primarily depend on immunophenotypic, cytogenetic and genomic analyses, which would be costly, complicated, and laborious in clinical practice applications. To overcome these challenges, we present RanBALL (an Ensemble Random Projection-Based Model for Identifying B-Cell Acute Lymphoblastic Leukemia Subtypes), an accurate and cost-effective model for B-ALL subtype identification based on transcriptomic profiling only. RanBALL leverages random projection (RP) to construct an ensemble of dimension-reduced multi-class support vector machine (SVM) classifiers for B-ALL subtyping. Results based on 100 times 5-fold cross validation tests for >1700 B-ALL patients demonstrated that the proposed model achieved an accuracy of 93.35%, indicating promising prediction capabilities of RanBALL for B-ALL subtyping. The high accuracies of RanBALL suggested that our model could effectively capture underlying patterns of transcriptomic profiling for accurate B-ALL subtype identification. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets, and eventually have consequential positive impacts on downstream risk stratification and tailored treatment design.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinchao Wu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Saeed S, Bonnefond A, Froguel P. Obesity: exploring its connection to brain function through genetic and genomic perspectives. Mol Psychiatry 2024:10.1038/s41380-024-02737-9. [PMID: 39237720 DOI: 10.1038/s41380-024-02737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Obesity represents an escalating global health burden with profound medical and economic impacts. The conventional perspective on obesity revolves around its classification as a "pure" metabolic disorder, marked by an imbalance between calorie consumption and energy expenditure. Present knowledge, however, recognizes the intricate interaction of rare or frequent genetic factors that favor the development of obesity, together with the emergence of neurodevelopmental and mental abnormalities, phenotypes that are modulated by environmental factors such as lifestyle. Thirty years of human genetic research has unveiled >20 genes, causing severe early-onset monogenic obesity and ~1000 loci associated with common polygenic obesity, most of those expressed in the brain, depicting obesity as a neurological and mental condition. Therefore, obesity's association with brain function should be better recognized. In this context, this review seeks to broaden the current perspective by elucidating the genetic determinants that contribute to both obesity and neurodevelopmental and mental dysfunctions. We conduct a detailed examination of recent genetic findings, correlating them with clinical and behavioral phenotypes associated with obesity. This includes how polygenic obesity, influenced by a myriad of genetic variants, impacts brain regions associated with addiction and reward, differentiating it from monogenic forms. The continuum between non-syndromic and syndromic monogenic obesity, with evidence from neurodevelopmental and cognitive assessments, is also addressed. Current therapeutic approaches that target these genetic mechanisms, yielding improved clinical outcomes and cognitive advantages, are discussed. To sum up, this review corroborates the genetic underpinnings of obesity, affirming its classification as a neurological disorder that may have broader implications for neurodevelopmental and mental conditions. It highlights the promising intersection of genetics, genomics, and neurobiology as a foundation for developing tailored medical approaches to treat obesity and its related neurological aspects.
Collapse
Affiliation(s)
- Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France.
- University of Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
4
|
Köroğlu Ç, Traurig M, Muller YL, Day SE, Piaggi P, Wiedrich K, Vazquez L, Hanson RL, Van Hout CV, Alkelai A, Shuldiner AR, Bogardus C, Baier LJ. Identification and functional validation of rare coding variants in genes linked to monogenic obesity. Obesity (Silver Spring) 2024; 32:1769-1777. [PMID: 39192769 PMCID: PMC11361714 DOI: 10.1002/oby.24101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/12/2024] [Accepted: 05/21/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Rare cases of monogenic obesity, which may respond to specific therapeutics, can remain undetected in populations in which polygenic obesity is prevalent. This study examined rare DNA variation in established monogenic obesity genes within a community using whole-exome sequence data from 6803 longitudinally studied individuals. METHODS Exome data across 15 monogenic obesity genes were analyzed for nonsynonymous variants observed in any child with a maximum BMI z score > 2 (N = 279) but not observed in a child with a maximum BMI z score ≤ 0 (n = 1542) or that occurred in adults in the top 5th percentile of BMI (n = 263) but not in adults below the median BMI (n = 2629). Variants were then functionally analyzed using luciferase assays. RESULTS The comparisons between cases of obesity and controls identified eight missense variants in six genes: DYRK1B, KSR2, MC4R, NTRK2, PCSK1, and SIM1. Among these, MC4R p.A303P and p.R165G were previously shown to impair MC4R function. Functional analyses of the remaining six variants suggest that KSR2 p.I402F and p.T193I and NTRK2 p.S249Y alter protein function. CONCLUSIONS In addition to MC4R, rare missense variants in KSR2 and NTRK2 may potentially explain the severe obesity observed for the carriers.
Collapse
Affiliation(s)
- Çiğdem Köroğlu
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Yunhua L. Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Samantha E. Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Kim Wiedrich
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Laura Vazquez
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Cristopher V. Van Hout
- Laboratorio Internacional de Investigation sobre el Genoma Humano, Universidad Nacional Autonoma de Mexico Campus Juriquilla, Queretaro, Mexico
| | | | | | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Leslie J. Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
5
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Abu-Rub LI, Al-Barazenji T, Abiib S, Hammad AS, Abbas A, Hussain K, Al-Shafai M. Identification of KSR2 Variants in Pediatric Patients with Severe Early-Onset Obesity from Qatar. Genes (Basel) 2024; 15:966. [PMID: 39202327 PMCID: PMC11353872 DOI: 10.3390/genes15080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
The kinase suppressor of Ras 2 (KSR2) gene is associated with monogenic obesity, and loss-of-function variants in KSR2 have been identified in individuals with severe early-onset obesity. This study investigated KSR2 variants in 9 pediatric patients with severe early-onset obesity in Qatar using whole genome sequencing among a cohort of 240 individuals. We focused on KSR2 variants with a minor allele frequency (MAF) below 1% and a Combined Annotation Dependent Depletion (CADD) score above 13 to identify potential causative variants. Our analysis identified four KSR2 variants: one intronic (c.1765-8G>A) and three missense variants (c.1057G>A, c.1673G>A, and c.923T>C) in nine patients. The intronic variant c.1765-8G>A was the most frequent (seen in six individuals) and had a CADD score of 21.10, suggesting possible pathogenicity. This variant showed a significantly higher allele frequency in the Qatari population compared to the Genome Aggregation Database (gnomAD), indicating a possible founder effect. Molecular modeling of the missense variants revealed structural changes in the protein structure. The study concludes that these four KSR2 variants are associated with monogenic obesity, with an autosomal dominant inheritance pattern. The c.1765-8G>A variant's prevalence in Qatar underscores its importance in genetic screening for severe obesity. This research advances the understanding of genetic factors in severe early-onset obesity and may inform better management strategies.
Collapse
Affiliation(s)
- Lubna I. Abu-Rub
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (T.A.-B.); (S.A.); (A.S.H.); (A.A.)
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (T.A.-B.); (S.A.); (A.S.H.); (A.A.)
| | - Sumaya Abiib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (T.A.-B.); (S.A.); (A.S.H.); (A.A.)
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (T.A.-B.); (S.A.); (A.S.H.); (A.A.)
| | - Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (T.A.-B.); (S.A.); (A.S.H.); (A.A.)
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (L.I.A.-R.); (T.A.-B.); (S.A.); (A.S.H.); (A.A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
Pott J, Kheirkhah A, Gadin JR, Kleber ME, Delgado GE, Kirsten H, Forer L, Hauck SM, Burkhardt R, Scharnagl H, Loeffler M, März W, Thiery J, Gieger C, Peters A, Silveira A, Hooft FV, Kronenberg F, Scholz M. Sex and statin-related genetic associations at the PCSK9 gene locus: results of genome-wide association meta-analysis. Biol Sex Differ 2024; 15:26. [PMID: 38532495 PMCID: PMC10964567 DOI: 10.1186/s13293-024-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player of lipid metabolism with higher plasma levels in women throughout their life. Statin treatment affects PCSK9 levels also showing evidence of sex-differential effects. It remains unclear whether these differences can be explained by genetics. METHODS We performed genome-wide association meta-analyses (GWAS) of PCSK9 levels stratified for sex and statin treatment in six independent studies of Europeans (8936 women/11,080 men respectively 14,825 statin-free/5191 statin-treated individuals). Loci associated in one of the strata were tested for statin- and sex-interactions considering all independent signals per locus. Independent variants at the PCSK9 gene locus were then used in a stratified Mendelian Randomization analysis (cis-MR) of PCSK9 effects on low-density lipoprotein cholesterol (LDL-C) levels to detect differences of causal effects between the subgroups. RESULTS We identified 11 loci associated with PCSK9 in at least one stratified subgroup (p < 1.0 × 10-6), including the PCSK9 gene locus and five other lipid loci: APOB, TM6SF2, FADS1/FADS2, JMJD1C, and HP/HPR. The interaction analysis revealed eight loci with sex- and/or statin-interactions. At the PCSK9 gene locus, there were four independent signals, one with a significant sex-interaction showing stronger effects in men (rs693668). Regarding statin treatment, there were two significant interactions in PCSK9 missense mutations: rs11591147 had stronger effects in statin-free individuals, and rs11583680 had stronger effects in statin-treated individuals. Besides replicating known loci, we detected two novel genome-wide significant associations: one for statin-treated individuals at 6q11.1 (within KHDRBS2) and one for males at 12q24.22 (near KSR2/NOS1), both with significant interactions. In the MR of PCSK9 on LDL-C, we observed significant causal estimates within all subgroups, but significantly stronger causal effects in statin-free subjects compared to statin-treated individuals. CONCLUSIONS We performed the first double-stratified GWAS of PCSK9 levels and identified multiple biologically plausible loci with genetic interaction effects. Our results indicate that the observed sexual dimorphism of PCSK9 and its statin-related interactions have a genetic basis. Significant differences in the causal relationship between PCSK9 and LDL-C suggest sex-specific dosages of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jesper R Gadin
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Solna, Sweden
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- SYNLAB Academy, Synlab Holding Deutschland GmbH, Mannheim and Augsburg, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Faculty of Medicine, University of Kiel, Kiel, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angela Silveira
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Solna, Sweden
| | - Ferdinand Van't Hooft
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Solna, Sweden
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
8
|
Zhang X, Perry RJ. Metabolic underpinnings of cancer-related fatigue. Am J Physiol Endocrinol Metab 2024; 326:E290-E307. [PMID: 38294698 DOI: 10.1152/ajpendo.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Cancer-related fatigue (CRF) is one of the most prevalent and detrimental complications of cancer. Emerging evidence suggests that obesity and insulin resistance are associated with CRF occurrence and severity in cancer patients and survivors. In this narrative review, we analyzed recent studies including both preclinical and clinical research on the relationship between obesity and/or insulin resistance and CRF. We also describe potential mechanisms for these relationships, though with the caveat that because the mechanisms underlying CRF are incompletely understood, the mechanisms mediating the association between obesity/insulin resistance and CRF are similarly incompletely delineated. The data suggest that, in addition to their effects to worsen CRF by directly promoting tumor growth and metastasis, obesity and insulin resistance may also contribute to CRF by inducing chronic inflammation, neuroendocrinological disturbance, and metabolic alterations. Furthermore, studies suggest that patients with obesity and insulin resistance experience more cancer-induced pain and are at more risk of emotional and behavioral disruptions correlated with CRF. However, other studies implied a potentially paradoxical impact of obesity and insulin resistance to reduce CRF symptoms. Despite the need for further investigation utilizing interventions to directly elucidate the mechanisms of cancer-related fatigue, current evidence demonstrates a correlation between obesity and/or insulin resistance and CRF, and suggests potential therapeutics for CRF by targeting obesity and/or obesity-related mediators.
Collapse
Affiliation(s)
- Xinyi Zhang
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
9
|
Mulim HA, Walker JW, Waldron DF, Quadros DG, Benfica LF, de Carvalho FE, Brito LF. Genetic background of juniper (Juniperus spp.) consumption predicted by fecal near-infrared spectroscopy in divergently selected goats raised in harsh rangeland environments. BMC Genomics 2024; 25:107. [PMID: 38267854 PMCID: PMC10809474 DOI: 10.1186/s12864-024-10009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Junipers (Juniperus spp.) are woody native, invasive plants that have caused encroachment problems in the U.S. western rangelands, decreasing forage productivity and biodiversity. A potential solution to this issue is using goats in targeted grazing programs. However, junipers, which grow in dry and harsh environmental conditions, use chemical defense mechanisms to deter herbivores. Therefore, genetically selecting goats for increased juniper consumption is of great interest for regenerative rangeland management. In this context, the primary objectives of this study were to: 1) estimate variance components and genetic parameters for predicted juniper consumption in divergently selected Angora (ANG) and composite Boer x Spanish (BS) goat populations grazing on Western U.S. rangelands; and 2) to identify genomic regions, candidate genes, and biological pathways associated with juniper consumption in these goat populations. RESULTS The average juniper consumption was 22.4% (± 18.7%) and 7.01% (± 12.1%) in the BS and ANG populations, respectively. The heritability estimates (realized heritability within parenthesis) for juniper consumption were 0.43 ± 0.02 (0.34 ± 0.06) and 0.19 ± 0.03 (0.13 ± 0.03) in BS and ANG, respectively, indicating that juniper consumption can be increased through genetic selection. The repeatability values of predicted juniper consumption were 0.45 for BS and 0.28 for ANG. A total of 571 significant SNP located within or close to 231 genes in BS, and 116 SNP related to 183 genes in ANG were identified based on the genome-wide association analyses. These genes are primarily associated with biological pathways and gene ontology terms related to olfactory receptors, intestinal absorption, and immunity response. CONCLUSIONS These findings suggest that juniper consumption is a heritable trait of polygenic inheritance influenced by multiple genes of small effects. The genetic parameters calculated indicate that juniper consumption can be genetically improved in both goat populations.
Collapse
Affiliation(s)
| | - John W Walker
- Texas A&M AgriLife Research and Extension Center, San Angelo, TX, USA
| | - Daniel F Waldron
- Texas A&M AgriLife Research and Extension Center, San Angelo, TX, USA
| | - Danilo G Quadros
- University of Arkansas System Division of Agriculture, Little Rock, AR, USA
| | - Lorena F Benfica
- Purdue University, West Lafayette, IN, USA
- São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Felipe E de Carvalho
- Purdue University, West Lafayette, IN, USA
- Universtity of São Paulo, Pirassununga, São Paulo, Brazil
| | | |
Collapse
|
10
|
Wójcik M, Zachurzok A. Obesity in children: inheritance and treatment - state of art 2024. Pediatr Endocrinol Diabetes Metab 2024; 30:112-115. [PMID: 39451183 PMCID: PMC11538914 DOI: 10.5114/pedm.2024.144042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
11
|
Abstract
Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular disease. A combination of environmental and genetic factors influences the pathogenesis of obesity. Advances in genomic technologies have driven the identification of multiple genetic loci associated with this disease, ranging from studying severe onset cases to investigating common multifactorial polygenic forms. Additionally, findings from epigenetic analyses of modifications to the genome that do not involve changes to the underlying DNA sequence have emerged as key signatures in the development of obesity. Such modifications can mediate the effects of environmental factors, including diet and lifestyle, on gene expression and clinical presentation. This review outlines what is known about the genetic and epigenetic contributors to obesity susceptibility, along with the albeit limited therapeutic options currently available. Furthermore, we delineate the potential mechanisms of actions through which epigenetic changes can mediate environmental influences and the related opportunities they present for future interventions in the management of obesity.
Collapse
Affiliation(s)
- Khanh Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Diabetes and Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
12
|
Sun Z, Ji J, Zuo L, Hu Y, Wang K, Xu T, Wang Q, Cheng F. Causal relationship between nonalcoholic fatty liver disease and different sleep traits: a bidirectional Mendelian randomized study. Front Endocrinol (Lausanne) 2023; 14:1159258. [PMID: 37334291 PMCID: PMC10272397 DOI: 10.3389/fendo.2023.1159258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background and aims Non-alcoholic fatty liver disease(NAFLD) is common worldwide and has previously been reported to be associated with sleep traits. However, it is not clear whether NAFLD changes sleep traits or whether the changes in sleep traits lead to the onset of NAFLD. The purpose of this study was to investigate the causal relationship between NAFLD and changes in sleep traits using Mendelian randomization. Methods We proposed a bidirectional Mendelian randomization (MR) analysis and performed validation analyses to dissect the association between NAFLD and sleep traits. Genetic instruments were used as proxies for NAFLD and sleep. Data of genome-wide association study(GWAS) were obtained from the center for neurogenomics and cognitive research database, Open GWAS database and GWAS catalog. Three MR methods were performed, including inverse variance weighted method(IVW), MR-Egger, weighted median. Results In total,7 traits associated with sleep and 4 traits associated with NAFLD are used in this study. A total of six results showed significant differences. Insomnia was associated with NAFLD (OR(95% CI)= 2.25(1.18,4.27), P = 0.01), Alanine transaminase levels (OR(95% CI)= 2.79(1.70, 4.56), P =4.71×10-5) and percent liver fat(OR(95% CI)= 1.31(1.03,1.69), P = 0.03). Snoring was associated with percent liver fat (1.15(1.05,1.26), P =2×10-3), alanine transaminase levels (OR(95% CI)= 1.27(1.08,1.50), P =0.04).And dozing was associated with percent liver fat(1.14(1.02,1.26), P =0.02).For the remaining 50 outcomes, no significant or definitive association was yielded in MR analysis. Conclusion Genetic evidence suggests putative causal relationships between NAFLD and a set of sleep traits, indicating that sleep traits deserves high priority in clinical practice. Not only the confirmed sleep apnea syndrome, but also the sleep duration and sleep state (such as insomnia) deserve clinical attention. Our study proves that the causal relationship between sleep characteristics and NAFLD is the cause of the change of sleep characteristics, while the onset of non-NAFLD is the cause of the change of sleep characteristics, and the causal relationship is one-way.
Collapse
|
13
|
Faccioli N, Poitou C, Clément K, Dubern B. Current Treatments for Patients with Genetic Obesity. J Clin Res Pediatr Endocrinol 2023; 15:108-119. [PMID: 37191347 PMCID: PMC10234057 DOI: 10.4274/jcrpe.galenos.2023.2023-3-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Obesity derives from impaired central control of body weight, implying interaction between environment and an individual genetic predisposition. Genetic obesities, including monogenic and syndromic obesities, are rare and complex neuro-endocrine pathologies where the genetic contribution is predominant. Severe and early-onset obesity with eating disorders associated with frequent comorbidities make these diseases challenging. Their current estimated prevalence of 5-10% in severely obese children is probably underestimated due to the limited access to genetic diagnosis. A central alteration of hypothalamic regulation of weight implies that the leptin-melanocortin pathway is responsible for the symptoms. The management of genetic obesity has so far been only based, above all, on lifestyle intervention, especially regarding nutrition and physical activity. New therapeutic options have emerged in the last years for these patients, raising great hope to manage their complex situation and improve quality of life. Implementation of genetic diagnosis in clinical practice is thus of paramount importance to allow individualized care. This review describes the current clinical management of genetic obesity and the evidence on which it is based. Some insights will also be provided into new therapies under evaluation.
Collapse
Affiliation(s)
- Nathan Faccioli
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Department of Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Paris, France
- Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches, NutriOmics, Research Unit, Paris, France
- Reference Center for Rare Diseases (PRADORT, Prader-Willi Syndrome and Other Rare Forms of Obesity with Eating Behavior Disorders), Paris, France
| | - Christine Poitou
- Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches, NutriOmics, Research Unit, Paris, France
- Reference Center for Rare Diseases (PRADORT, Prader-Willi Syndrome and Other Rare Forms of Obesity with Eating Behavior Disorders), Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches, NutriOmics, Research Unit, Paris, France
- Reference Center for Rare Diseases (PRADORT, Prader-Willi Syndrome and Other Rare Forms of Obesity with Eating Behavior Disorders), Paris, France
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Béatrice Dubern
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Department of Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Paris, France
- Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches, NutriOmics, Research Unit, Paris, France
- Reference Center for Rare Diseases (PRADORT, Prader-Willi Syndrome and Other Rare Forms of Obesity with Eating Behavior Disorders), Paris, France
| |
Collapse
|
14
|
Dubern B, Faccioli N, Poitou C, Clément K. Novel therapeutics in rare genetic obesities: A narrative review. Pharmacol Res 2023; 191:106763. [PMID: 37037398 DOI: 10.1016/j.phrs.2023.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
The better understanding of the molecular causes of rare genetic obesities and its associated phenotype involving the hypothalamus allows today to consider innovative therapeutics focused on hunger control. Several new pharmacological molecules benefit patients with monogenic or syndromic obesity. They are likely to be among the treatment options for these patients in the coming years, helping clinicians and patients prevent rapid weight progression and eventually limit bariatric surgery procedures, which is less effective in these patients. Their positioning in the management of such patients will be needed to be well defined to develop precision medicine in genetic forms of obesity.
Collapse
Affiliation(s)
- Beatrice Dubern
- Assistance Publique Hôpitaux de Paris, Trousseau Hospital, Pediatric Nutrition and Gastroenterology Department, French Reference Center for Prader-Willi Syndrome and other rare obesities (PRADORT), Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France.
| | - Nathan Faccioli
- Assistance Publique Hôpitaux de Paris, Trousseau Hospital, Pediatric Nutrition and Gastroenterology Department, French Reference Center for Prader-Willi Syndrome and other rare obesities (PRADORT), Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| | - Christine Poitou
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| |
Collapse
|
15
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
16
|
Next-Generation Sequencing of a Large Gene Panel for Outcome Prediction of Bariatric Surgery in Patients with Severe Obesity. J Clin Med 2022; 11:jcm11247531. [PMID: 36556146 PMCID: PMC9783894 DOI: 10.3390/jcm11247531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Obesity is a chronic disease in which abnormal deposition of fat threatens health, leading to diabetes, cardiovascular diseases, cancer, and other chronic illnesses. According to the WHO, 19.8% of the adult population in Italy is obese, and the prevalence is higher among men. It is important to know the predisposition of an individual to become obese and to respond to bariatric surgery, the most up-to-date treatment for severe obesity. To this purpose, we developed an NGS gene panel, comprising 72 diagnostic genes and 244 candidate genes, and we sequenced 247 adult obese Italian patients. Eleven deleterious variants in 9 diagnostic genes and 17 deleterious variants in 11 candidate genes were identified. Interestingly, mutations were found in several genes correlated to the Bardet-Biedl syndrome. Then, 25 patients were clinically followed to evaluate their response to bariatric surgery. After a 12-month follow-up, the patients that carried deleterious variants in diagnostic or candidate genes had a reduced weight loss, as compared to the other patients. The NGS-based panel, including diagnostic and candidate genes used in this study, could play a role in evaluating, diagnosing, and managing obese individuals, and may help in predicting the outcome of bariatric surgery.
Collapse
|
17
|
Mierzwa M, Bik-Multanowski M, Ranke MB, Brandt S, Flehmig B, Małecka-Tendera E, Mazur A, Petriczko E, Wabitsch M, Wójcik M, Zachurzok A. Clinical, genetic, and epidemiological survey of Polish children and adolescents with severe obesity: A study protocol of the Polish-German study project on severe early-onset obesity. Front Endocrinol (Lausanne) 2022; 13:972174. [PMID: 36479220 PMCID: PMC9719973 DOI: 10.3389/fendo.2022.972174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Severe early-onset obesity (SEOO) in children is a common feature of monogenic obesity. Nowadays, mutations in at least 50 genes are known to be related to monogenic obesity, and many others are tested. Part of them is involved in the leptin-proopiomelanocortin pathway. The aim of the project is to establish the Polish database of severely obese children and adolescents and to evaluate the prevalence of monogenic forms of obesity in this cohort, with a special focus on leptin-proopiomelanocortin pathway abnormalities. The secondary project aim is to identify new population-specific mutations in obesity-related genes in severely obese Polish children and adolescents. This is a prospective multi-center clinical study performed in four Polish centers. The estimated sample size is 500 patients aged 1-18 years, with severe obesity, hyperphagia, and food-seeking behaviors. In each patient, the medical history regarding the obesity duration in the patient and obesity and its complication existence in the family will be taken. Next, the questionnaire regarding the symptom characteristic of specific mutations, which we are going to test, will be performed. Hyperphagia will be assessed on the basis of age-specific questionnaires. The physical examination with anthropometric measurement, basic biochemical and hormonal tests, and leptin and biologically active leptin measurements will be performed. Finally, genetic analysis will be performed using next-generation sequencing with sequencing libraries prepared to include obesity-related genes. The genotyping findings will be confirmed with the use of classic sequencing (Sanger's method). In the future, the pathogenicity of new mutations in obesity-related genes identified in our cohort is planned to be confirmed by functional testing in vitro. Nowadays, there are no data regarding the prevalence of severe obesity or monogenic obesity in Polish children. This project has the potential to improve understanding of obesity etiology and may contribute to implementing attribute mutation-specific treatment. Moreover, it may lead to a finding of new, population-specific mutations related to SEOO.
Collapse
Affiliation(s)
- Magdalena Mierzwa
- Pediatric Endocrinology Ward, Independent Public Clinical Hospital No. 1, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | | | - Stephanie Brandt
- Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | | - Ewa Małecka-Tendera
- Department of Pediatrics and Pediatric Endocrinology, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland
| | - Artur Mazur
- Department of Pediatrics, Pediatric Endocrinology and Diabetes, Medical Faculty, University of Rzeszów, Rzeszów, Poland
| | - Elżbieta Petriczko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Disorders and Cardiology of Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
18
|
DiRusso CJ, Dashtiahangar M, Gilmore TD. Scaffold proteins as dynamic integrators of biological processes. J Biol Chem 2022; 298:102628. [PMID: 36273588 PMCID: PMC9672449 DOI: 10.1016/j.jbc.2022.102628] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022] Open
Abstract
Scaffold proteins act as molecular hubs for the docking of multiple proteins to organize efficient functional units for signaling cascades. Over 300 human proteins have been characterized as scaffolds, acting in a variety of signaling pathways. While the term scaffold implies a static, supportive platform, it is now clear that scaffolds are not simply inert docking stations but can undergo conformational changes that affect their dependent signaling pathways. In this review, we catalog scaffold proteins that have been shown to undergo actionable conformational changes, with a focus on the role that conformational change plays in the activity of the classic yeast scaffold STE5, as well as three human scaffold proteins (KSR, NEMO, SHANK3) that are integral to well-known signaling pathways (RAS, NF-κB, postsynaptic density). We also discuss scaffold protein conformational changes vis-à-vis liquid-liquid phase separation. Changes in scaffold structure have also been implicated in human disease, and we discuss how aberrant conformational changes may be involved in disease-related dysregulation of scaffold and signaling functions. Finally, we discuss how understanding these conformational dynamics will provide insight into the flexibility of signaling cascades and may enhance our ability to treat scaffold-associated diseases.
Collapse
|
19
|
Aboul-Naga AM, Alsamman AM, El Allali A, Elshafie MH, Abdelal ES, Abdelkhalek TM, Abdelsabour TH, Mohamed LG, Hamwieh A. Genome-wide analysis identified candidate variants and genes associated with heat stress adaptation in Egyptian sheep breeds. Front Genet 2022; 13:898522. [PMID: 36263427 PMCID: PMC9574253 DOI: 10.3389/fgene.2022.898522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Heat stress caused by climatic changes is one of the most significant stresses on livestock in hot and dry areas. It has particularly adverse effects on the ability of the breed to maintain homeothermy. Developing countries are advised to protect and prepare their animal resources in the face of potential threats such as climate change. The current study was conducted in Egypt's three hot and dry agro-ecological zones. Three local sheep breeds (Saidi, Wahati, and Barki) were studied with a total of 206 ewes. The animals were exercised under natural heat stress. The heat tolerance index of the animals was calculated to identify animals with high and low heat tolerance based on their response to meteorological and physiological parameters. Genomic variation in these breeds was assessed using 64,756 single nucleotide polymorphic markers (SNPs). From the perspective of comparative adaptability to harsh conditions, our objective was to investigate the genomic structure that might control the adaptability of local sheep breeds to environmental stress under hot and dry conditions. In addition, indices of population structure and diversity of local breeds were examined. Measures of genetic diversity showed a significant influence of breed and location on populations. The standardized index of association (rbarD) ranged from 0.0012 (Dakhla) to 0.026 (Assuit), while for the breed, they ranged from 0.004 (Wahati) to 0.0103 (Saidi). The index of association analysis (Ia) ranged from 1.42 (Dakhla) to 35.88 (Assuit) by location and from 6.58 (Wahati) to 15.36 (Saidi) by breed. The most significant SNPs associated with heat tolerance were found in the MYO5A, PRKG1, GSTCD, and RTN1 genes (p ≤ 0.0001). MYO5A produces a protein widely distributed in the melanin-producing neural crest of the skin. Genetic association between genetic and phenotypic variations showed that OAR1_18300122.1, located in ST3GAL3, had the greatest positive effect on heat tolerance. Genome-wide association analysis identified SNPs associated with heat tolerance in the PLCB1, STEAP3, KSR2, UNC13C, PEBP4, and GPAT2 genes.
Collapse
Affiliation(s)
- Adel M. Aboul-Naga
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | | | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohmed H. Elshafie
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Ehab S. Abdelal
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Tarek M. Abdelkhalek
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Taha H. Abdelsabour
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Layaly G. Mohamed
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Aladdin Hamwieh
- International Center For Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| |
Collapse
|
20
|
Mazur A, Zachurzok A, Baran J, Dereń K, Łuszczki E, Weres A, Wyszyńska J, Dylczyk J, Szczudlik E, Drożdż D, Metelska P, Brzeziński M, Kozioł-Kozakowska A, Matusik P, Socha P, Olszanecka-Gilianowicz M, Jackowska T, Walczak M, Peregud-Pogorzelski J, Tomiak E, Wójcik M. Childhood Obesity: Position Statement of Polish Society of Pediatrics, Polish Society for Pediatric Obesity, Polish Society of Pediatric Endocrinology and Diabetes, the College of Family Physicians in Poland and Polish Association for Study on Obesity. Nutrients 2022; 14:nu14183806. [PMID: 36145182 PMCID: PMC9505061 DOI: 10.3390/nu14183806] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity is one of the most important problems of public health. Searching was conducted by using PubMed/MEDLINE, Cochrane Library, Science Direct, MEDLINE, and EBSCO databases, from January 2022 to June 2022, for English language meta-analyses, systematic reviews, randomized clinical trials, and observational studies from all over the world. Five main topics were defined in a consensus join statement of the Polish Society of Pediatrics, Polish Society for Pediatric Obesity, Polish Society of Pediatric Endocrinology and Diabetes and Polish Association for the Study on Obesity: (1) definition, causes, consequences of obesity; (2) treatment of obesity; (3) obesity prevention; (4) the role of primary care in the prevention of obesity; (5) Recommendations for general practitioners, parents, teachers, and regional authorities. The statement outlines the role of diet, physical activity in the prevention and treatment of overweight and obesity, and gives appropriate recommendations for interventions by schools, parents, and primary health care. A multisite approach to weight control in children is recommended, taking into account the age, the severity of obesity, and the presence of obesity-related diseases. Combined interventions consisting of dietary modification, physical activity, behavioral therapy, and education are effective in improving metabolic and anthropometric indices. More actions are needed to strengthen the role of primary care in the effective prevention and treatment of obesity because a comprehensive, multi-component intervention appears to yield the best results.
Collapse
Affiliation(s)
- Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
- Correspondence: (A.M.); (A.Z.); (M.W.)
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Zabrze, Poland
- Correspondence: (A.M.); (A.Z.); (M.W.)
| | - Joanna Baran
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Katarzyna Dereń
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Aneta Weres
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Justyna Wyszyńska
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Justyna Dylczyk
- Children’s University Hospital, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Ewa Szczudlik
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Paulina Metelska
- Department of Public Health and Social Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Michał Brzeziński
- Chair and Department of Paediatrics, Gastroenterology, Allergology and Child Nutrition, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Agnieszka Kozioł-Kozakowska
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Paweł Matusik
- Department of Pediatrics, Pediatric Obesity and Metabolic Bone Diseases, Chair of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Piotr Socha
- The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| | - Magdalena Olszanecka-Gilianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Disorders and Cardiology of the Developmental Age, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jarosław Peregud-Pogorzelski
- Department of Pediatrics, Pediatric Oncology and Immunology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Elżbieta Tomiak
- The College of Family Physicians in Poland, 00-209 Warszawa, Poland
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland
- Correspondence: (A.M.); (A.Z.); (M.W.)
| |
Collapse
|
21
|
Delle Donne R, Iannucci R, Rinaldi L, Roberto L, Oliva MA, Senatore E, Borzacchiello D, Lignitto L, Giurato G, Rizzo F, Sellitto A, Chiuso F, Castaldo S, Scala G, Campani V, Nele V, De Rosa G, D'Ambrosio C, Garbi C, Scaloni A, Weisz A, Ambrosino C, Arcella A, Feliciello A. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun Biol 2022; 5:780. [PMID: 35918402 PMCID: PMC9345969 DOI: 10.1038/s42003-022-03639-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth.
Collapse
Affiliation(s)
- Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | | | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Giovanni Scala
- Department of Biology, University Federico II, Naples, Italy
| | | | - Valeria Nele
- Department of Pharmacy, University Federico II, Naples, Italy
| | | | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
- Genome Research Center for Health, Campus of Medicine, University of Salerno, Salerno, Italy
| | - Concetta Ambrosino
- Biogem, Ariano Irpino, Avellino, Italy
- Department of Science and Technology University of Sannio, Benevento, Italy
| | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
22
|
Cacciottolo TM, Henning E, Keogh JM, Bel Lassen P, Lawler K, Bounds R, Ahmed R, Perdikari A, Mendes de Oliveira E, Smith M, Godfrey EM, Johnson E, Hodson L, Clément K, van der Klaauw AA, Farooqi IS. Obesity Due to Steroid Receptor Coactivator-1 Deficiency Is Associated With Endocrine and Metabolic Abnormalities. J Clin Endocrinol Metab 2022; 107:e2532-e2544. [PMID: 35137184 PMCID: PMC9113786 DOI: 10.1210/clinem/dgac067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic variants affecting the nuclear hormone receptor coactivator steroid receptor coactivator, SRC-1, have been identified in people with severe obesity and impair melanocortin signaling in cells and mice. As a result, obese patients with SRC-1 deficiency are being treated with a melanocortin 4 receptor agonist in clinical trials. OBJECTIVE Here, our aim was to comprehensively describe and characterize the clinical phenotype of SRC-1 variant carriers to facilitate diagnosis and clinical management. METHODS In genetic studies of 2462 people with severe obesity, we identified 23 rare heterozygous variants in SRC-1. We studied 29 adults and 18 children who were SRC-1 variant carriers and performed measurements of metabolic and endocrine function, liver imaging, and adipose tissue biopsies. Findings in adult SRC-1 variant carriers were compared to 30 age- and body mass index (BMI)-matched controls. RESULTS The clinical spectrum of SRC-1 variant carriers included increased food intake in children, normal basal metabolic rate, multiple fractures with minimal trauma (40%), persistent diarrhea, partial thyroid hormone resistance, and menorrhagia. Compared to age-, sex-, and BMI-matched controls, adult SRC-1 variant carriers had more severe adipose tissue fibrosis (46.2% vs 7.1% respectively, P = .03) and a suggestion of increased liver fibrosis (5/13 cases vs 2/13 in controls, odds ratio = 3.4), although this was not statistically significant. CONCLUSION SRC-1 variant carriers exhibit hyperphagia in childhood, severe obesity, and clinical features of partial hormone resistance. The presence of adipose tissue fibrosis and hepatic fibrosis in young patients suggests that close monitoring for the early development of obesity-associated metabolic complications is warranted.
Collapse
Affiliation(s)
- Tessa M Cacciottolo
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Group and Assistance Publique hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Rachel Ahmed
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Aliki Perdikari
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Edmund M Godfrey
- Department of Radiology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elspeth Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital and National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Headington, Oxford OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital and National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Headington, Oxford OX3 7LE, UK
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Group and Assistance Publique hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
23
|
Roberts KJ, Ariza AJ, Selvaraj K, Quadri M, Mangarelli C, Neault S, Davis EE, Binns HJ. Testing for rare genetic causes of obesity: findings and experiences from a pediatric weight management program. Int J Obes (Lond) 2022; 46:1493-1501. [PMID: 35562395 PMCID: PMC9105591 DOI: 10.1038/s41366-022-01139-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Genetic screening for youth with obesity in the absence of syndromic findings has not been part of obesity management. For children with early onset obesity, genetic screening is recommended for those having clinical features of genetic obesity syndromes (including hyperphagia). OBJECTIVES The overarching goal of this work is to report the findings and experiences from one pediatric weight management program that implemented targeted sequencing analysis for genes known to cause rare genetic disorders of obesity. SUBJECTS/METHODS This exploratory study evaluated youth tested over an 18-month period using a panel of 40-genes in the melanocortin 4 receptor pathway. Medical records were reviewed for demographic and visit information, including body mass index (BMI) percent of 95th percentile (%BMIp95) and two eating behaviors. RESULTS Of 117 subjects: 51.3% were male; 53.8% Hispanic; mean age 10.2 years (SD 3.8); mean %BMIp95 157% (SD 29%). Most subjects were self- or caregiver-reported to have overeating to excess or binge eating (80.3%) and sneaking food or eating in secret (59.0%). Among analyzed genes, 72 subjects (61.5%) had at least one variant reported; 50 (42.7%) had a single variant reported; 22 (18.8%) had 2-4 variants reported; most variants were rare (<0.05% minor allele frequency [MAF]), and of uncertain significance; all variants were heterozygous. Nine subjects (7.7%) had a variant reported as PSCK1 "risk" or MC4R "likely pathogenic"; 39 (33.3%) had a Bardet-Biedl Syndrome (BBS) gene variant (4 with "pathogenic" or "likely pathogenic" variants). Therefore, 9 youth (7.7%) had gene variants previously identified as increasing risk for obesity and 4 youth (3.4%) had BBS carrier status. CONCLUSIONS Panel testing identified rare variants of uncertain significance in most youth tested, and infrequently identified variants previously reported to increase the risk for obesity. Further research in larger cohorts is needed to understand how genetic variants influence the expression of non-syndromic obesity.
Collapse
Affiliation(s)
- Karyn J Roberts
- College of Nursing, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201-0413, USA. .,Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Adolfo J Ariza
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kavitha Selvaraj
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Maheen Quadri
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Caren Mangarelli
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Sarah Neault
- Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Erica E Davis
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Helen J Binns
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Gao C, Wang SW, Lu JC, Chai XQ, Li YC, Zhang PF, Huang XY, Cai JB, Zheng YM, Guo XJ, Shi GM, Ke AW, Fan J. KSR2-14-3-3ζ complex serves as a biomarker and potential therapeutic target in sorafenib-resistant hepatocellular carcinoma. Biomark Res 2022; 10:25. [PMID: 35468812 PMCID: PMC9036720 DOI: 10.1186/s40364-022-00361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Kinase suppressor of Ras 2 (KSR2) is a regulator of MAPK signaling that is overactivated in most hepatocellular carcinoma (HCC). We sought to determine the role of KSR2 in HCC pathogenesis. Methods We tested the level of KSR2 in HCC tissues and cell lines by tissue microarray, qPCR, and western blotting. Functionally, we determined the effects of KSR2 on the proliferation, migration, and invasion of HCC cells through colony formation assays, scratch assays, transwell migration assays, and xenograft tumor models. Co-immunoprecipitation (co-IP) experiments were used to assess the interaction of phospho-serine binding protein 14–3-3ζ and KSR2, and the effects of this interaction on growth and proliferation of human HCC cells were tested by co-overexpression and knockdown experiments. Additionally, we used flow cytometry to examine whether the KSR2 and 14–3-3ζ interaction conveys HCC resistance to sorafenib. Results KSR2 was significantly upregulated in HCC tissues and cell lines, and high KSR2 expression associated with poor prognosis in HCC patients. KSR2 knockdown significantly suppressed HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, co-IP experiments identified that 14–3-3ζ complexed with KSR2, and elevated 14–3-3ζ increased KSR2 protein levels in HCC cells. Importantly, Kaplan–Meier survival analysis showed that patients with both high KSR2 and high 14–3-3ζ expression levels had the shortest survival times and poorest prognoses. Interestingly, HCC cells overexpressing both KSR2 and 14–3-3ζ, rather than either protein alone, showed hyperactivated MAPK signaling and resistance to sorafenib. Conclusions Our results provide new insights into the pro-tumorigenic role of KSR2 and its regulation of the MAPK pathway in HCC. The KSR2–14–3-3ζ interaction may be a therapeutic target to enhance the sorafenib sensitivity of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00361-9.
Collapse
Affiliation(s)
- Chao Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Si-Wei Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jia-Cheng Lu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Chai
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yuan-Cheng Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Peng-Fei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Yong Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Yi-Min Zheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Jun Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| | - Jia Fan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Chow A, Khan ZM, Marsiglia WM, Dar AC. Conformational control and regulation of the pseudokinase KSR via small molecule binding interactions. Methods Enzymol 2022; 667:365-402. [PMID: 35525547 PMCID: PMC9150438 DOI: 10.1016/bs.mie.2022.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudokinases often operate through functionally related enzymes and receptors. A prime example is the pseudokinase KSR (Kinase Suppressor of RAS), which can act as both an amplifier and inhibitor of members in the RAS-MAPK (Mitogen Activated Protein Kinase) signaling pathway. KSR is structurally related to the active RAF kinases over multiple domains; moreover, the pseudokinase domain of KSR forms physical and regulatory complexes with both RAF and MEK through distinct interfaces. Characterization of small molecule interactions on KSR has been used to uncover novel chemical tools and understand the mechanism of action of clinical drugs. Here, we elaborate on assays and structural methods for measuring binding at orthosteric and interfacial binding sites on KSR. These distinct small molecule pockets provide therapeutic paths for targeting KSR1 and KSR2 pseudokinases in disease, including in RAS and RAF mutant cancers.
Collapse
Affiliation(s)
- Arthur Chow
- Department of Oncological Sciences, Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Centre for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zaigham M Khan
- Department of Oncological Sciences, Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Centre for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - William M Marsiglia
- Department of Oncological Sciences, Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Centre for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Arvin C Dar
- Department of Oncological Sciences, Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Centre for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
26
|
Saeed S, Janjua QM, Haseeb A, Khanam R, Durand E, Vaillant E, Ning L, Badreddine A, Berberian L, Boissel M, Amanzougarene S, Canouil M, Derhourhi M, Bonnefond A, Arslan M, Froguel P. Rare Variant Analysis of Obesity-Associated Genes in Young Adults With Severe Obesity From a Consanguineous Population of Pakistan. Diabetes 2022; 71:694-705. [PMID: 35061034 DOI: 10.2337/db21-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022]
Abstract
Recent advances in genetic analysis have significantly helped in progressively attenuating the heritability gap of obesity and have brought into focus monogenic variants that disrupt the melanocortin signaling. In a previous study, next-generation sequencing revealed a monogenic etiology in ∼50% of the children with severe obesity from a consanguineous population in Pakistan. Here we assess rare variants in obesity-causing genes in young adults with severe obesity from the same region. Genomic DNA from 126 randomly selected young adult obese subjects (BMI 37.2 ± 0.3 kg/m2; age 18.4 ± 0.3 years) was screened by conventional or augmented whole-exome analysis for point mutations and copy number variants (CNVs). Leptin, insulin, and cortisol levels were measured by ELISA. We identified 13 subjects carrying 13 different pathogenic or likely pathogenic variants in LEPR, PCSK1, MC4R, NTRK2, POMC, SH2B1, and SIM1. We also identified for the first time in the human, two homozygous stop-gain mutations in ASNSD1 and IFI16 genes. Inactivation of these genes in mouse models has been shown to result in obesity. Additionally, we describe nine homozygous mutations (seven missense, one stop-gain, and one stop-loss) and four copy-loss CNVs in genes or genomic regions previously linked to obesity-associated traits by genome-wide association studies. Unexpectedly, in contrast to obese children, pathogenic mutations in LEP and LEPR were either absent or rare in this cohort of young adults. High morbidity and mortality risks and social disadvantage of children with LEP or LEPR deficiency may in part explain this difference between the two cohorts.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Qasim M Janjua
- Department of Physiology and Biophysics, National University of Science and Technology, Sohar, Oman
| | - Attiya Haseeb
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Roohia Khanam
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Emmanuelle Durand
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lijiao Ning
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Alaa Badreddine
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lionel Berberian
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mathilde Boissel
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Souhila Amanzougarene
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mickaël Canouil
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Muhammad Arslan
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| |
Collapse
|
27
|
Paniagua G, Jacob HKC, Brehey O, García-Alonso S, Lechuga CG, Pons T, Musteanu M, Guerra C, Drosten M, Barbacid M. KSR induces RAS-independent MAPK pathway activation and modulates the efficacy of KRAS inhibitors. Mol Oncol 2022; 16:3066-3081. [PMID: 35313064 PMCID: PMC9441002 DOI: 10.1002/1878-0261.13213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
The kinase suppressor of rat sarcoma (RAS) proteins (KSR1 and KSR2) have long been considered as scaffolding proteins required for optimal mitogen‐activated protein kinase (MAPK) pathway signalling. However, recent evidence suggests that they play a more complex role within this pathway. Here, we demonstrate that ectopic expression of KSR1 or KSR2 is sufficient to activate the MAPK pathway and to induce cell proliferation in the absence of RAS proteins. In contrast, the ectopic expression of KSR proteins is not sufficient to induce cell proliferation in the absence of either rapidly accelerated fibrosarcoma (RAF) or MAPK‐ERK kinase proteins, indicating that they act upstream of RAF. Indeed, KSR1 requires dimerization with at least one member of the RAF family to stimulate proliferation, an event that results in the translocation of the heterodimerized RAF protein to the cell membrane. Mutations in the conserved aspartic acid–phenylalanine–glycine motif of KSR1 that affect ATP binding impair the induction of cell proliferation. We also show that increased expression levels of KSR1 decrease the responsiveness to the KRASG12C inhibitor sotorasib in human cancer cell lines, thus suggesting that increased levels of expression of KSR may make tumour cells less dependent on KRAS oncogenic signalling.
Collapse
Affiliation(s)
- Guillem Paniagua
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Harrys K C Jacob
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Florida, 33136, USA
| | - Oksana Brehey
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Sara García-Alonso
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Carmen G Lechuga
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Spanish National Research Council, 28049, Madrid, Spain
| | - Monica Musteanu
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| |
Collapse
|
28
|
Antoine D, Guéant-Rodriguez RM, Chèvre JC, Hergalant S, Sharma T, Li Z, Rouyer P, Chery C, Halvick S, Bui C, Oussalah A, Ziegler O, Quilliot D, Brunaud L, Guéant JL, Meyre D. Low-frequency Coding Variants Associated With Body Mass Index Affect the Success of Bariatric Surgery. J Clin Endocrinol Metab 2022; 107:e1074-e1084. [PMID: 34718599 DOI: 10.1210/clinem/dgab774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT A recent study identified 14 low-frequency coding variants associated with body mass index (BMI) in 718 734 individuals predominantly of European ancestry. OBJECTIVE We investigated the association of 2 genetic scores (GS) with i) the risk of severe/morbid obesity, ii) BMI variation before weight-loss intervention, iii) BMI change in response to an 18-month lifestyle/behavioral intervention program, and iv) BMI change up to 24 months after bariatric surgery. METHODS The 14 low-frequency coding variants were genotyped or sequenced in 342 French adults with severe/morbid obesity and 574 French adult controls from the general population. We built risk and protective GS based on 6 BMI-increasing and 5 BMI-decreasing low-frequency coding variants that were polymorphic in our study. RESULTS While the risk GS was not associated with severe/morbid obesity status, BMI-decreasing low-frequency coding variants were significantly less frequent in patients with severe/morbid obesity than in French adults from the general population. Neither the risk nor the protective GS was associated with BMI before intervention in patients with severe/morbid obesity, nor did they affect BMI change in response to a lifestyle/behavioral modification program. The protective GS was associated with a greater BMI decrease following bariatric surgery. The risk and protective GS were associated with a higher and lower risk of BMI regain after bariatric surgery. CONCLUSION Our data indicate that in populations of European descent, low-frequency coding variants associated with BMI in the general population also affect the outcomes of bariatric surgery in patients with severe/morbid obesity.
Collapse
Affiliation(s)
- Darlène Antoine
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Jean-Claude Chèvre
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Sébastien Hergalant
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Tanmay Sharma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zhen Li
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
- Specialized Obesity Center and Endocrinology, Diabetology, department of Nutrition, Brabois Hospital, CHRU of Nancy, 54500 Vandoeuvre-Les-Nancy, France
| | - Pierre Rouyer
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Céline Chery
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Sarah Halvick
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Catherine Bui
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Abderrahim Oussalah
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - Olivier Ziegler
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
- Specialized Obesity Center and Endocrinology, Diabetology, department of Nutrition, Brabois Hospital, CHRU of Nancy, 54500 Vandoeuvre-Les-Nancy, France
- Department of Surgery, Endocrine and metabolic surgery, Multidisciplinary unit for obesity surgery (CVMC), University Hospital Centre of Nancy, Brabois Hospital, 54500 Nancy, France
| | - Didier Quilliot
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
- Specialized Obesity Center and Endocrinology, Diabetology, department of Nutrition, Brabois Hospital, CHRU of Nancy, 54500 Vandoeuvre-Les-Nancy, France
- Department of Surgery, Endocrine and metabolic surgery, Multidisciplinary unit for obesity surgery (CVMC), University Hospital Centre of Nancy, Brabois Hospital, 54500 Nancy, France
| | - Laurent Brunaud
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
- Department of Surgery, Endocrine and metabolic surgery, Multidisciplinary unit for obesity surgery (CVMC), University Hospital Centre of Nancy, Brabois Hospital, 54500 Nancy, France
| | - Jean-Louis Guéant
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
| | - David Meyre
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500 Nancy, France
- FHU ARRIMAGE, department of Biochemistry-Molecular Biology-Nutrition, University Hospital Centre of Nancy, 54500 Nancy, France
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
29
|
Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med 2022; 28:2537-2546. [PMID: 36536256 PMCID: PMC9800280 DOI: 10.1038/s41591-022-02106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.
Collapse
|
30
|
Abstract
The prevalence of obesity has tripled over the past four decades, imposing an enormous burden on people's health. Polygenic (or common) obesity and rare, severe, early-onset monogenic obesity are often polarized as distinct diseases. However, gene discovery studies for both forms of obesity show that they have shared genetic and biological underpinnings, pointing to a key role for the brain in the control of body weight. Genome-wide association studies (GWAS) with increasing sample sizes and advances in sequencing technology are the main drivers behind a recent flurry of new discoveries. However, it is the post-GWAS, cross-disciplinary collaborations, which combine new omics technologies and analytical approaches, that have started to facilitate translation of genetic loci into meaningful biology and new avenues for treatment.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark ,grid.59734.3c0000 0001 0670 2351Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Giles S. H. Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
31
|
Gomez GA, Rundle CH, Xing W, Kesavan C, Pourteymoor S, Lewis RE, Powell DR, Mohan S. Contrasting effects of <i>Ksr2</i>, an obesity gene, on trabecular bone volume and bone marrow adiposity. eLife 2022; 11:82810. [PMID: 36342465 PMCID: PMC9640193 DOI: 10.7554/elife.82810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with <i>Ksr2</i> deleted, but whether this affects bone health remains unknown. Here we studied the bones of global <i>Ksr2</i> null mice and found that <i>Ksr2</i> negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, <i>Ksr1</i>, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with <i>Ksr2</i>'s known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of <i>Ksr2</i> reveals that <i>Ksr2</i> can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of <i>Ksr2</i>, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how <i>Ksr2</i>, an adiposity and diabetic gene, regulates bone metabolism.
Collapse
Affiliation(s)
| | - Charles H Rundle
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Weirong Xing
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | | | | | | | - Subburaman Mohan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| |
Collapse
|
32
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
33
|
Tokarska-Schlattner M, Kay L, Perret P, Isola R, Attia S, Lamarche F, Tellier C, Cottet-Rousselle C, Uneisi A, Hininger-Favier I, Foretz M, Dubouchaud H, Ghezzi C, Zuppinger C, Viollet B, Schlattner U. Role of Cardiac AMP-Activated Protein Kinase in a Non-pathological Setting: Evidence From Cardiomyocyte-Specific, Inducible AMP-Activated Protein Kinase α1α2-Knockout Mice. Front Cell Dev Biol 2021; 9:731015. [PMID: 34733845 PMCID: PMC8558539 DOI: 10.3389/fcell.2021.731015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis under conditions of energy stress. Though heart is one of the most energy requiring organs and depends on a perfect match of energy supply with high and fluctuating energy demand to maintain its contractile performance, the role of AMPK in this organ is still not entirely clear, in particular in a non-pathological setting. In this work, we characterized cardiomyocyte-specific, inducible AMPKα1 and α2 knockout mice (KO), where KO was induced at the age of 8 weeks, and assessed their phenotype under physiological conditions. In the heart of KO mice, both AMPKα isoforms were strongly reduced and thus deleted in a large part of cardiomyocytes already 2 weeks after tamoxifen administration, persisting during the entire study period. AMPK KO had no effect on heart function at baseline, but alterations were observed under increased workload induced by dobutamine stress, consistent with lower endurance exercise capacity observed in AMPK KO mice. AMPKα deletion also induced a decrease in basal metabolic rate (oxygen uptake, energy expenditure) together with a trend to lower locomotor activity of AMPK KO mice 12 months after tamoxifen administration. Loss of AMPK resulted in multiple alterations of cardiac mitochondria: reduced respiration with complex I substrates as measured in isolated mitochondria, reduced activity of complexes I and IV, and a shift in mitochondrial cristae morphology from lamellar to mixed lamellar-tubular. A strong tendency to diminished ATP and glycogen level was observed in older animals, 1 year after tamoxifen administration. Our study suggests important roles of cardiac AMPK at increased cardiac workload, potentially limiting exercise performance. This is at least partially due to impaired mitochondrial function and bioenergetics which degrades with age.
Collapse
Affiliation(s)
- Malgorzata Tokarska-Schlattner
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Laurence Kay
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Pascale Perret
- Inserm U1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine, University of Grenoble Alpes, Grenoble, France
| | - Raffaella Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Stéphane Attia
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Frédéric Lamarche
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Cindy Tellier
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Cécile Cottet-Rousselle
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Amjad Uneisi
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Isabelle Hininger-Favier
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Marc Foretz
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Hervé Dubouchaud
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Catherine Ghezzi
- Inserm U1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine, University of Grenoble Alpes, Grenoble, France
| | - Christian Zuppinger
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Benoit Viollet
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Uwe Schlattner
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
34
|
Paul A, Subhadarshini S, Srinivasan N. Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles. Proteins 2021; 90:747-764. [PMID: 34708889 DOI: 10.1002/prot.26271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023]
Abstract
The bilobal protein kinase-like fold in pseudokinases lack one or more catalytic residues, conserved in canonical protein kinases, and are considered enzymatically deficient. Tertiary structures of pseudokinases reveal that their loops topologically equivalent to activation segments of kinases adopt contracted configurations, which is typically extended in active conformation of kinases. Herein, anisotropic network model based normal mode analysis (NMA) was conducted on 51 active conformation structures of protein kinases and 26 crystal structures of pseudokinases. Our observations indicate that although backbone fluctuation profiles are similar for individual kinase-pseudokinase families, low intensity mean square fluctuations in pseudo-activation segment and other sub-structures impart rigidity to pseudokinases. Analyses of collective motions from functional modes reveal that pseudokinases, compared to active kinases, undergo distinct conformational transitions using the same structural fold. All-atom NMA of protein kinase-pseudokinase pairs from each family, sharing high amino acid sequence identities, yielded distinct community clusters, partitioned by residues exhibiting highly correlated fluctuations. It appears that atomic fluctuations from equivalent activation segments guide community membership and network topologies for respective kinase and pseudokinase. Our findings indicate that such adaptations in backbone and side-chain fluctuations render pseudokinases competent for catalysis-independent roles.
Collapse
Affiliation(s)
- Anindita Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | |
Collapse
|
35
|
Johnson-Weaver BT, Choi HW, Yang H, Granek JA, Chan C, Abraham SN, Staats HF. Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Front Immunol 2021; 12:730346. [PMID: 34566991 PMCID: PMC8461742 DOI: 10.3389/fimmu.2021.730346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.
Collapse
Affiliation(s)
| | - Hae Woong Choi
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
| | - Hang Yang
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Josh A. Granek
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Cliburn Chan
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Soman N. Abraham
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Herman F. Staats
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| |
Collapse
|
36
|
Powell DR, Revelli JP, Doree DD, DaCosta CM, Desai U, Shadoan MK, Rodriguez L, Mullens M, Yang QM, Ding ZM, Kirkpatrick LL, Vogel P, Zambrowicz B, Sands AT, Platt KA, Hansen GM, Brommage R. High-Throughput Screening of Mouse Gene Knockouts Identifies Established and Novel High Body Fat Phenotypes. Diabetes Metab Syndr Obes 2021; 14:3753-3785. [PMID: 34483672 PMCID: PMC8409770 DOI: 10.2147/dmso.s322083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.
Collapse
Affiliation(s)
- David R Powell
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Jean-Pierre Revelli
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Deon D Doree
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Christopher M DaCosta
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Urvi Desai
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Melanie K Shadoan
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Lawrence Rodriguez
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Michael Mullens
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Qi M Yang
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Zhi-Ming Ding
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Laura L Kirkpatrick
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Peter Vogel
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Brian Zambrowicz
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Arthur T Sands
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Kenneth A Platt
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Gwenn M Hansen
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Robert Brommage
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| |
Collapse
|
37
|
De Rosa MC, Glover HJ, Stratigopoulos G, LeDuc CA, Su Q, Shen Y, Sleeman MW, Chung WK, Leibel RL, Altarejos JY, Doege CA. Gene expression atlas of energy balance brain regions. JCI Insight 2021; 6:e149137. [PMID: 34283813 PMCID: PMC8409984 DOI: 10.1172/jci.insight.149137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct “modules” of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance–relevant brain regions.
Collapse
Affiliation(s)
- Maria Caterina De Rosa
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - Hannah J Glover
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - George Stratigopoulos
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons
| | - Charles A LeDuc
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Qi Su
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Yufeng Shen
- Department of Systems Biology.,Department of Biomedical Informatics
| | - Mark W Sleeman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wendy K Chung
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Department of Medicine.,Herbert Irving Comprehensive Cancer Center.,Institute of Human Nutrition
| | - Rudolph L Leibel
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Institute of Human Nutrition
| | | | - Claudia A Doege
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
38
|
Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147231. [PMID: 34299682 PMCID: PMC8303577 DOI: 10.3390/ijerph18147231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
The Mayan population of Guatemala is understudied within eye and vision research. Studying an observational homogenous, geographically isolated population of individuals seeking eye care may identify unique clinical, demographic, environmental and genetic risk factors for blinding eye disease that can inform targeted and effective screening strategies to achieve better and improved health care distribution. This study served to: (a) identify the ocular health needs within this population; and (b) identify any possible modifiable risk factors contributing to disease pathophysiology within this population. We conducted a cross-sectional study with 126 participants. Each participant completed a comprehensive eye examination, provided a blood sample for genetic analysis, and received a structured core baseline interview for a standardized epidemiological questionnaire at the Salama Lions Club Eye Hospital in Salama, Guatemala. Interpreters were available for translation to the patients’ native dialect, to assist participants during their visit. We performed a genome-wide association study for ocular disease association on the blood samples using Illumina’s HumanOmni2.5-8 chip to examine single nucleotide polymorphism SNPs in this population. After implementing quality control measures, we performed adjusted logistic regression analysis to determine which genetic and epidemiological factors were associated with eye disease. We found that the most prevalent eye conditions were cataracts (54.8%) followed by pseudoexfoliation syndrome (PXF) (24.6%). The population with both conditions was 22.2%. In our epidemiological analysis, we found that eye disease was significantly associated with advanced age. Cataracts were significantly more common among those living in the 10 districts with the least resources. Furthermore, having cataracts was associated with a greater likelihood of PXF after adjusting for both age and sex. In our genetic analysis, the SNP most nominally significantly associated with PXF lay within the gene KSR2 (p < 1 × 10−5). Several SNPs were associated with cataracts at genome-wide significance after adjusting for covariates (p < 5 × 10−8). About seventy five percent of the 33 cataract-associated SNPs lie within 13 genes, with the majority of genes having only one significant SNP (5 × 10−8). Using bioinformatic tools including PhenGenI, the Ensembl genome browser and literature review, these SNPs and genes have not previously been associated with PXF or cataracts, separately or in combination. This study can aid in understanding the prevalence of eye conditions in this population to better help inform public health planning and the delivery of quality, accessible, and relevant health and preventative care within Salama, Guatemala.
Collapse
|
39
|
Chen Y, Lin D, Shi C, Guo L, Liu L, Chen L, Li T, Liu Y, Zheng C, Chi X, Meng C, Xue Y. MiR-3138 deteriorates the insulin resistance of HUVECs via KSR2/AMPK/GLUT4 signaling pathway. Cell Cycle 2021; 20:353-368. [PMID: 33509040 DOI: 10.1080/15384101.2020.1870335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Insulin resistance (IR) is a complex pathological condition resulting from the dysregulation of cellular response to insulin hormone in insulin-dependent cells and is recognized as a pathogenic hallmark and strong risk factor for metabolic syndrome. The present study aims to elucidate the molecular mechanism of the pathogenesis of IR. Here, we used human umbilical vein endothelial cells (HUVECs) to establish the IR cell model induced by 1 × 10-6 mmol/L insulin. After 48 h, reactive oxygen species (ROS) and glucose consumption were measured by DCFH-DA and GOD-POD methods, respectively. The results of Microarray analysis demonstrated that there were 10 differentially expressed miRNAs (DEMs) selected based on Fold change (FC) and P value in the IR cell model compared with HUVECs. The enriched gene ontology (GO) terms analysis showed that the target genes of these 10 DEMs were significantly enriched in biological process, cellular component and molecular function, and the significantly enriched Kyoto Encyclopedia of Genes or Genomes (KEGG) pathways mainly include AMPK signaling pathway and PI3K signaling pathway. Amongst all, the expression level of miR-3138 was highest in the IR cell model evaluated by qRT-PCR. Through Targetscan, KSR2 mRNA was predicted as a target of miR-3138. And mRNA and protein expression levels of miR-3138, KSR2, GLUT4, AMPK, PI3K, Akt were examined using qRT-PCR and Western blotting, respectively. The interaction between miR-3138 and KSR2 was evaluated by dual-luciferase reporter assay. Our results showed that miR-3138 significantly deteriorated the IR of HUVECs via KSR2/AMPK/GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong Province, China.,Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China.,Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Da Lin
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Changxuan Shi
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Liang Guo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Linhua Liu
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Lin Chen
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Ting Li
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Ying Liu
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Chengchao Zheng
- Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Xintong Chi
- Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong Province, China
| |
Collapse
|
40
|
Mikkola L, Kyöstilä K, Donner J, Lappalainen AK, Hytönen MK, Lohi H, Iivanainen A. An across-breed validation study of 46 genetic markers in canine hip dysplasia. BMC Genomics 2021; 22:68. [PMID: 33478395 PMCID: PMC7818755 DOI: 10.1186/s12864-021-07375-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background Canine hip dysplasia (CHD) is a common disease, with a complex genetic background. Dogs with severe CHD sometimes also suffer from osteoarthritis (OA), an inflammatory, often painful and incurable condition. Previous studies have reported breed-specific genetic loci associated with different hip dysplasia and OA phenotypes. However, the independent replication of the known associations within or across breeds has been difficult due to variable phenotype measures, inadequate sample sizes and the existence of population specific variants. Results We execute a validation study of 46 genetic markers in a cohort of nearly 1600 dogs from ten different breeds. We categorize the dogs into cases and controls according to the hip scoring system defined by the Fédération Cynologique Internationale (FCI). We validate 21 different loci associated on fourteen chromosomes. Twenty of these associated with CHD in specific breeds, whereas one locus is unique to the across-breed study. We show that genes involved in the neddylation pathway are enriched among the genes in the validated loci. Neddylation contributes to many cellular functions including inflammation. Conclusions Our study successfully replicates many loci and highlights the complex genetic architecture of CHD. Further characterisation of the associated loci could reveal CHD-relevant genes and pathways for improved understanding of the disease pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07375-x.
Collapse
Affiliation(s)
- Lea Mikkola
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | | | - Anu K Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.
| |
Collapse
|
41
|
Rare genetic forms of obesity: From gene to therapy. Physiol Behav 2020; 227:113134. [DOI: 10.1016/j.physbeh.2020.113134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
|
42
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
43
|
Rao C, Huisman DH, Vieira HM, Frodyma DE, Neilsen BK, Chakraborty B, Hight SK, White MA, Fisher KW, Lewis RE. A Gene Expression High-Throughput Screen (GE-HTS) for Coordinated Detection of Functionally Similar Effectors in Cancer. Cancers (Basel) 2020; 12:E3143. [PMID: 33120942 PMCID: PMC7692652 DOI: 10.3390/cancers12113143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Genome-wide, loss-of-function screening can be used to identify novel vulnerabilities upon which specific tumor cells depend for survival. Functional Signature Ontology (FUSION) is a gene expression-based high-throughput screening (GE-HTS) method that allows researchers to identify functionally similar proteins, small molecules, and microRNA mimics, revealing novel therapeutic targets. FUSION uses cell-based high-throughput screening and computational analysis to match gene expression signatures produced by natural products to those produced by small interfering RNA (siRNA) and synthetic microRNA libraries to identify putative protein targets and mechanisms of action (MoA) for several previously undescribed natural products. We have used FUSION to screen for functional analogues to Kinase suppressor of Ras 1 (KSR1), a scaffold protein downstream of Ras in the Raf-MEK-ERK kinase cascade, and biologically validated several proteins with functional similarity to KSR1. FUSION incorporates bioinformatics analysis that may offer higher resolution of the endpoint readout than other screens which utilize Boolean outputs regarding a single pathway activation (i.e., synthetic lethal and cell proliferation). Challenges associated with FUSION and other high-content genome-wide screens include variation, batch effects, and controlling for potential off-target effects. In this review, we discuss the efficacy of FUSION to identify novel inhibitors and oncogene-induced changes that may be cancer cell-specific as well as several potential pitfalls within FUSION and best practices to avoid them.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Dianna H. Huisman
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Heidi M. Vieira
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Beth K. Neilsen
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| | - Binita Chakraborty
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Suzie K. Hight
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA;
| | - Michael A. White
- Chief Scientific Officer, Samumed, LLC, San Diego, CA 92121, USA;
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.R.); (D.H.H.); (H.M.V.); (D.E.F.); (B.K.N.)
| |
Collapse
|
44
|
|
45
|
Lawler K, Huang-Doran I, Sonoyama T, Collet TH, Keogh JM, Henning E, O’Rahilly S, Bottolo L, Farooqi IS. Leptin-Mediated Changes in the Human Metabolome. J Clin Endocrinol Metab 2020; 105:dgaa251. [PMID: 32392278 PMCID: PMC7282709 DOI: 10.1210/clinem/dgaa251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT While severe obesity due to congenital leptin deficiency is rare, studies in patients before and after treatment with leptin can provide unique insights into the role that leptin plays in metabolic and endocrine function. OBJECTIVE The aim of this study was to characterize changes in peripheral metabolism in people with congenital leptin deficiency undergoing leptin replacement therapy, and to investigate the extent to which these changes are explained by reduced caloric intake. DESIGN Ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) was used to measure 661 metabolites in 6 severely obese people with congenital leptin deficiency before, and within 1 month after, treatment with recombinant leptin. Data were analyzed using unsupervised and hypothesis-driven computational approaches and compared with data from a study of acute caloric restriction in healthy volunteers. RESULTS Leptin replacement was associated with class-wide increased levels of fatty acids and acylcarnitines and decreased phospholipids, consistent with enhanced lipolysis and fatty acid oxidation. Primary and secondary bile acids increased after leptin treatment. Comparable changes were observed after acute caloric restriction. Branched-chain amino acids and steroid metabolites decreased after leptin, but not after acute caloric restriction. Individuals with severe obesity due to leptin deficiency and other genetic obesity syndromes shared a metabolomic signature associated with increased BMI. CONCLUSION Leptin replacement was associated with changes in lipolysis and substrate utilization that were consistent with negative energy balance. However, leptin's effects on branched-chain amino acids and steroid metabolites were independent of reduced caloric intake and require further exploration.
Collapse
Affiliation(s)
- Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Takuhiro Sonoyama
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Tinh-Hai Collet
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
- Service of Endocrinology, Diabetes and Metabolism, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Leonardo Bottolo
- University Department of Medical Genetics, Addenbrooke’s Hospital, Cambridge, UK
- The Alan Turing Institute, London, UK
- MRC Biostatistics Unit, University of Cambridge, Robinson Way, Cambridge, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
46
|
Tabasi M, Ashrafian F, Khezerloo JK, Eshghjoo S, Behrouzi A, Javadinia SA, Poursadegh F, Eybpoosh S, Ahmadi S, Radmanesh A, Soroush A, Siadat SD. Changes in Gut Microbiota and Hormones After Bariatric Surgery: a Bench-to-Bedside Review. Obes Surg 2020; 29:1663-1674. [PMID: 30793228 DOI: 10.1007/s11695-019-03779-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overweight and obesity are among the most prevalent non-communicable diseases which are generally treated successfully by bariatric or sleeve surgery. There are evidences affirming that sleeve surgery can manipulate the pH of the stomach and interact with the metabolism of fatty acids, carbohydrates, and bile acid transfer, leading to the overgrowth of gut microbiota. Therefore, this study aims to review the changes in gut microbiota and hormones after bariatric surgery.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jamil Kheirvari Khezerloo
- Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Eshghjoo
- Microbial Pathogenesis and Immunology Department, Texas A&M University, Bryan, TX, USA
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Alireza Javadinia
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Farid Poursadegh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Radmanesh
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Ahmadreza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
47
|
Roy J, Cyert MS. Identifying New Substrates and Functions for an Old Enzyme: Calcineurin. Cold Spring Harb Perspect Biol 2020; 12:a035436. [PMID: 31308145 PMCID: PMC7050593 DOI: 10.1101/cshperspect.a035436] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biological processes are dynamically regulated by signaling networks composed of protein kinases and phosphatases. Calcineurin, or PP3, is a conserved phosphoserine/phosphothreonine-specific protein phosphatase and member of the PPP family of phosphatases. Calcineurin is unique, however, in its activation by Ca2+ and calmodulin. This ubiquitously expressed phosphatase controls Ca2+-dependent processes in all human tissues, but is best known for driving the adaptive immune response by dephosphorylating the nuclear factor of the activated T-cells (NFAT) family of transcription factors. Therefore, calcineurin inhibitors, FK506 (tacrolimus), and cyclosporin A serve as immunosuppressants. We describe some of the adverse effects associated with calcineurin inhibitors that result from inhibition of calcineurin in nonimmune tissues, illustrating the many functions of this enzyme that have yet to be elucidated. In fact, calcineurin has essential roles beyond the immune system, from yeast to humans, but since its discovery more than 30 years ago, only a small number of direct calcineurin substrates have been shown (∼75 proteins). This is because of limitations in current methods for identification of phosphatase substrates. Here we discuss recent insights into mechanisms of calcineurin activation and substrate recognition that have been critical in the development of novel approaches for identifying its targets systematically. Rather than comprehensively reviewing known functions of calcineurin, we highlight new approaches to substrate identification for this critical regulator that may reveal molecular mechanisms underlying toxicities caused by calcineurin inhibitor-based immunosuppression.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
48
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
49
|
Li L, Cheng Y, Lin L, Liu Z, Du S, Ma L, Li J, Peng Z, Yan J. Global Analysis of miRNA Signature Differentially Expressed in Insulin-resistant Human Hepatocellular Carcinoma Cell Line. Int J Med Sci 2020; 17:664-677. [PMID: 32210717 PMCID: PMC7085209 DOI: 10.7150/ijms.41999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/21/2020] [Indexed: 12/27/2022] Open
Abstract
Chemoresistance mediated by insulin resistance (IR) in HCC has already been validated. However, the underlying mechanism, especially the involvement of microRNAs (miRNAs) was unelucidated. In this study, miRNA microarrays and bioinformatics methods were employed to determine the dysregulation of miRNA by IR in HCC cells, and quantitative RT-PCR (qRT-PCR) was applied to valid the miRNA array data. Of all the 2006 miRNAs screened, 32 miRNAs were found up or down regulated between the HepG2/IR cells and its parental cells. Further literature mining revealed that some of these miRNAs may function as oncogenes or tumor suppressors that contribute to tumor progression, recurrence, and metastasis which eventually lead to chemotherapeutic resistance. Interestingly, bioinformatics analysis by Gene Ontology (GO) enrichment pathway indicating that function of the predicted target genes of these dysregulated miRNAs were significantly enriched in the processes related with biosynthesis, catabolism, modification etc., and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping showed that the biological regulatory mechanisms were integrated in cancer-related pathways. Moreover, we also constructed a network which connected the differentially expressed miRNAs to target genes, GO enrichments and KEGG pathways to reveal the hub miRNAs, genes and pathways. Collectively, our present study demonstrated the possible miRNAs and predicted target genes involving in the pathophysiology of insulin resistant HCC, providing novel insights into the molecular mechanisms of multidrug resistance in the insulin resistant HepG2 cells.
Collapse
Affiliation(s)
- Linjing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Yan Cheng
- Northwest University for Nationalities, Lanzhou 730000, P.R. China
| | - Li Lin
- Hematology Department, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730000, China
| | - Zhuan Liu
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Shengfang Du
- Department of Anesthesiology, the Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Li Ma
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhiheng Peng
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Yan
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
50
|
Powell DR, Doree DD, DaCosta CM, Platt KA, Hansen GM, van Sligtenhorst I, Ding ZM, Revelli JP, Brommage R. Obesity of G2e3 Knockout Mice Suggests That Obesity-Associated Variants Near Human G2E3 Decrease G2E3 Activity. Diabetes Metab Syndr Obes 2020; 13:2641-2652. [PMID: 32801815 PMCID: PMC7394505 DOI: 10.2147/dmso.s259546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In humans, single nucleotide polymorphisms (SNPs) near the adjacent protein kinase D1 (PRKD1) and G2/M-phase-specific E3 ubiquitin protein ligase (G2E3) genes on chromosome 14 are associated with obesity. To date, no published evidence links inactivation of either gene to changes in body fat. These two genes are also adjacent on mouse chromosome 12. Because obesity genes are highly conserved between humans and mice, we analyzed body fat in adult G2e3 and Prkd1 knockout (KO) mice to determine whether inactivating either gene leads to obesity in mice and, by inference, probably in humans. METHODS The G2e3 and Prkd1 KO lines were generated by gene trapping and by homologous recombination methodologies, respectively. Body fat was measured by DEXA in adult mice fed chow from weaning and by QMR in a separate cohort of mice fed high-fat diet (HFD) from weaning. Glucose homeostasis was evaluated with oral glucose tolerance tests (OGTTs) performed on adult mice fed HFD from weaning. RESULTS Body fat was increased in multiple cohorts of G2e3 KO mice relative to their wild-type (WT) littermates. When data from all G2e3 KO (n=32) and WT (n=31) mice were compared, KO mice showed increases of 11% in body weight (P<0.01), 65% in body fat (P<0.001), 48% in % body fat (P<0.001), and an insignificant 3% decrease in lean body mass. G2e3 KO mice were also glucose intolerant during an OGTT (P<0.05). In contrast, Prkd1 KO and WT mice had comparable body fat levels and glucose tolerance. CONCLUSION Significant obesity and glucose intolerance were observed in G2e3, but not Prkd1, KO mice. The conservation of obesity genes between mice and humans strongly suggests that the obesity-associated SNPs located near the human G2E3 and PRKD1 genes are linked to variants that decrease the amount of functional human G2E3.
Collapse
Affiliation(s)
- David R Powell
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, 77381, USA
- Correspondence: David R Powell Lexicon Pharmaceuticals Inc., 8800 Technology Forest Place, The Woodlands, TX77381, USATel +1 281 863 3060Fax +1 281 863 8115 Email
| | - Deon D Doree
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, 77381, USA
| | | | | | - Gwenn M Hansen
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, 77381, USA
| | | | - Zhi-Ming Ding
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, 77381, USA
| | | | | |
Collapse
|