1
|
Liang J, Xie J, He J, Li Y, Wei D, Zhou R, Wei G, Liu X, Chen Q, Li D. Inhibiting lncRNA NEAT1 Increases Glioblastoma Response to TMZ by Reducing Connexin 43 Expression. Cancer Rep (Hoboken) 2024; 7:e70031. [PMID: 39453684 PMCID: PMC11505515 DOI: 10.1002/cnr2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Glioblastoma multiforme (GBM) is considered the most assailant subtype of gliomas, presenting a formidable obstacle because of its inherent resistance to temozolomide (TMZ). This study aimed to characterize the function of lncRNA NEAT1 in facilitating the advancement of gliomas. METHODS The expression level of NEAT1 in glioma tissues and cells was detected by qRT-PCR. RNA interference experiment, cell proliferation assay, FITC/PI detection assay, immunoblotting, bioinformatics prediction, a double luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay, SLDT assay and correlation analysis of clinical samples were performed to explore the regulatory effects of NEAT1, miR-454-3p and Cx43 and their role in malignant progression of GBM. The role of NEAT1 in vivo was investigated by an intracranial tumor formation experiment in mice. RESULTS The results showed that recurring gliomas displayed elevated levels of NEAT1 compared to primary gliomas. The suppression of NEAT1 led to a restoration of sensitivity in GBM cells to TMZ. NEAT1 functioned as a competitive endogenous RNA against miR-454-3p. Connexin 43 was identified as a miR-454-3p target. NEAT1 was found to regulate gap junctional intercellular communication by modulating Connexin 43, thereby impacting the response of GBM cells to TMZ chemotherapy. Downregulation of NEAT1 resulted in enhanced chemosensitivity to TMZ and extended the survival of mice. CONCLUSIONS Overall, these results indicated that the NEAT1/miR-454-3p/Connexin 43 pathway influences GBM cell response to TMZ and could offer a potential new strategy for treating GBM.
Collapse
Affiliation(s)
- Jinxing Liang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Jia‐xiu Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Junhui He
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Yi Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Dongmei Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Rongfei Zhou
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Guining Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Xuehua Liu
- Department of CardiologySir Run Run Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing'an District Center Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Dongmei Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinChina
| |
Collapse
|
2
|
Current JZ, Chaney HL, Zhang M, Dugan EM, Chimino GL, Yao J. Characterization of bovine long non-coding RNAs, OOSNCR1, OOSNCR2 and OOSNCR3, and their roles in oocyte maturation and early embryonic development. Reprod Biol 2024; 24:100915. [PMID: 38936296 DOI: 10.1016/j.repbio.2024.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In mammals, early embryogenesis relies heavily on the regulation of maternal transcripts including protein-coding and non-coding RNAs stored in oocytes. In this study, the expression of three bovine oocyte expressed long non-coding RNAs (lncRNAs), OOSNCR1, OOSNCR2, and OOSNCR3, was characterized in somatic tissues, the ovarian follicle, and throughout early embryonic development. Moreover, the functional requirement of each transcript during oocyte maturation and early embryonic development was investigated using a siRNA-mediated knockdown approach. Tissue distribution analysis revealed that OOSNCR1, OOSNCR2 and OOSNCR3 are predominantly expressed in fetal ovaries. Follicular cell expression analysis revealed that these lncRNAs are highly expressed in the oocytes, with minor expression detected in the cumulus cells (CCs) and mural granulosa cells (mGCs). The expression for all three genes was highest during oocyte maturation, decreased at fertilization, and ceased altogether by the 16-cell stage. Knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 in immature oocytes was achieved by microinjection of the cumulus-enclosed germinal vesicle (GV) oocytes with siRNAs targeting these lncRNAs. Knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 did not affect cumulus expansion, but oocyte survival at 12 h post-insemination was significantly reduced. In addition, knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 in immature oocytes resulted in a decreased rate of blastocyst development, and reduced expression of genes associated with oocyte competency such as nucleoplasmin 2 (NPM2), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and JY-1 in MII oocytes. The data herein suggest a functional requirement of OOSNCR1, OOSNCR2, and OOSNCR3 during bovine oocyte maturation and early embryogenesis.
Collapse
Affiliation(s)
- Jaelyn Z Current
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Heather L Chaney
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Mingxiang Zhang
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Emily M Dugan
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Gianna L Chimino
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
3
|
Zuo Y, He J, Zhou Z, Sun J, Ouyang C, Huang H, Wang Y, Liu H, Reed SH. Long non-coding RNA LIP interacts with PARP-1 influencing the efficiency of base excision repair. Noncoding RNA Res 2024; 9:649-658. [PMID: 38577022 PMCID: PMC10987297 DOI: 10.1016/j.ncrna.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
In recent years, various long non-coding RNAs (lncRNAs) involved in DNA damage response (DDR) have been identified and studied to deepen our understanding. However, there are rare reports on the association between lncRNAs and base excision repair (BER). Our designed DNA microarray identified dozens of functionally unknown lncRNAs, and their transcription levels significantly increased upon exposure to DNA damage inducers. One of them, named LIP (Long noncoding RNA Interacts with PARP-1), exhibited a significant alteration in transcription in response to methyl methanesulfonate (MMS) and temozolomide (TMZ) treatments. LIP knockdown or knockout cell lines are sensitive to MMS and TMZ, indicating that LIP plays a crucial role in DDR. The loss or insufficiency of LIP significantly influences the efficiency of BER in human cells, and it suggests that LIP participates in the BER pathway. The interaction between LIP and a key factor in BER, poly (ADP-ribose) polymerase 1 (PARP-1), has been confirmed. We identified and characterized LIP, a lncRNA, which is involved in DDR, significantly influences BER efficiency, and interacts with the BER key factor PARP-1. This advances our understanding of the connection between lncRNAs and BER, presenting the potential for the discovery of new drug targets.
Collapse
Affiliation(s)
- You Zuo
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jiaqian He
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Can Ouyang
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Hui Huang
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Yajuan Wang
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Simon H. Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
4
|
Liao M, Webster J, Coonrod EM, Weilbaecher KN, Maher CA, White NM. BCAR4 Expression as a Predictive Biomarker for Endocrine Therapy Resistance in Breast Cancer. Clin Breast Cancer 2024; 24:368-375.e2. [PMID: 38443227 DOI: 10.1016/j.clbc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Breast cancer, particularly the estrogen receptor positive (ER+) subtype, remains a leading cause of cancer-related death among women. Endocrine therapy is the most effective treatment for ER+ breast cancer; however, the development of resistance presents a significant challenge. This study explored the role of the breast cancer antiestrogen resistance 4 (BCAR4) gene as a potential driver of resistance and a pivotal biomarker in breast cancer. PATIENTS AND METHODS The researchers undertook a comprehensive analysis of 1743 patients spanning 6 independent cohorts. They examined the association of BCAR4 expression with patient outcomes across all breast cancer types and the PAM50 molecular subtypes. The relationship between elevated BCAR4 expression and resistance to endocrine therapy including AIs, the prevailing standard-of-care for endocrine therapy, was also investigated. RESULTS This meta-analysis corroborated the link between BCAR4 expression and adverse outcomes as well as resistance to endocrine therapy in breast cancer. Notably, BCAR4 expression is clinically significant in luminal A and B subtypes. Additionally, an association between BCAR4 expression and resistance to AI treatment was discerned. CONCLUSION This study expands on previous findings by demonstrating that BCAR4 expression is associated with resistance to newer therapies. The identification of patients with intrinsic resistance to hormone therapy is crucial to avoid ineffective treatment strategies. These findings contribute to our understanding of endocrine therapy resistance in breast cancer and could potentially guide the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Muheng Liao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO
| | - Jace Webster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Emily M Coonrod
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Katherine N Weilbaecher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Christopher A Maher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO
| | - Nicole M White
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
5
|
Li W, Zhang H, You Z, Guo B. LncRNAs in Immune and Stromal Cells Remodel Phenotype of Cancer Cell and Tumor Microenvironment. J Inflamm Res 2024; 17:3173-3185. [PMID: 38774447 PMCID: PMC11108079 DOI: 10.2147/jir.s460730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Emerging studies suggest that long non-coding RNAs (lncRNAs) participate in the mutual regulation of cells in tumor microenvironment, thereby affecting the anti-tumor immune activity of immune cells. Additionally, the intracellular pathways mediated by lncRNAs can affect the expression of immune checkpoints or change the cell functions, including cytokines secretion, of immune and stromal cells in tumor microenvironment, which further influences cancer patients' prognosis and treatment response. With the in-depth research, lncRNAs have shown great potency as a new immunotherapy target and predict immunotherapy response. The research on lncRNAs provides us with a new insight into developing new immunotherapy drugs and predicting the outcome of immunotherapy. With development of RNA sequencing technology, amounts of lncRNAs were found to be dysregulated in immune and stromal cells rather than tumor cells. These lncRNAs function through ceRNA network or regulating transcript factor activity, thus leading abnormal differentiation and activation of immune and stromal cells. Here, we review the function of lncRNAs in the immune microenvironment and focus on the alteration of lncRNAs in immune and stromal cells, and discuss how these alterations affect tumor growth, metastasis and treatment response.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Clinical Oncology, Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan University, Qianjiang, Hubei, People’s Republic of China
- Department of Clinical Oncology, Qianjiang Central Hospital of Hubei Province, Qianjiang, Hubei, People’s Republic of China
| | - Haohan Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zuo You
- Department of Traditional Chinese Medicine, Xianfeng County People’s Hospital, Enshi, Hubei, People’s Republic of China
| | - Baozhu Guo
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Rodrigues JS, Chenlo M, Bravo SB, Perez-Romero S, Suarez-Fariña M, Sobrino T, Sanz-Pamplona R, González-Prieto R, Blanco Freire MN, Nogueiras R, López M, Fugazzola L, Cameselle-Teijeiro JM, Alvarez CV. dsRNAi-mediated silencing of PIAS2beta specifically kills anaplastic carcinomas by mitotic catastrophe. Nat Commun 2024; 15:3736. [PMID: 38744818 PMCID: PMC11094195 DOI: 10.1038/s41467-024-47751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.
Collapse
Affiliation(s)
- Joana S Rodrigues
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Susana B Bravo
- Department of Proteomics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Tomas Sobrino
- Department of NeuroAging Group - Clinical Neurosciences Research Laboratory (LINC), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- University Hospital Lozano Blesa, Institute for Health Research Aragon (IISA), ARAID Foundation, Aragon Government and CIBERESP, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Román González-Prieto
- Cell Dynamics and Signaling Department, Andalusian Center for Molecular Biology and Regenerative Medicine, Universidad de Sevilla - CSIC - Universidad Pablo de Olavide-Junta de Andalucía, 41092, Sevilla, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, 41012, Sevilla, Spain
| | - Manuel Narciso Blanco Freire
- Department of Surgery, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Molecular Metabolism, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS); Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Ye X, Liu Q, Qin X, Ma Y, Sheng Q, Wu X, Chen S, Huang L, Sun Y. BCAR4 facilitates trastuzumab resistance and EMT in breast cancer via sponging miR-665 and interacting with YAP1. FASEB J 2024; 38:e23589. [PMID: 38572594 DOI: 10.1096/fj.202301617rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/24/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Breast cancer antiestrogen resistance 4 (BCAR4) has been suggested that can modulate cell behavior, resulting in tumorigenesis and chemoresistance. However, the underlying mechanisms of BCAR4 in trastuzumab resistance (TR) is still elusive. Here, we explored the function and the underlying mechanism of BCAR4 involving in TR. We found that BCAR4 is significantly upregulated in trastuzumab-resistant BC cells. Knockdown of BCAR4 could sensitize the BC cells to trastuzumab and suppress epithelial-mesenchymal transition (EMT). Mechanically, BCAR4 promotes yes-associated protein 1 (YAP1) expression by competitively sponging miR-665, to activated TGF-β signaling. Reciprocally, YAP1 could occupy the BCAR4 promoter to enhance its transcription, suggesting that there exists a positive feedback regulation between YAP1 and BCAR4. Targeting the BCAR4/miR-665/YAP1 axis may provide a novel insight of therapeutic approaches for TR in BC.
Collapse
Affiliation(s)
- Xingming Ye
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Qin
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yijing Ma
- College of Biological Science and Technology, Fuzhou University, Fuzhou, China
| | - Qingsong Sheng
- Department of Obstetrics-Gynecology, Xiamen University Dongfang Hospital/Fuzong Clinical Medicine College of Fujian Medical University (900 Hospital of Joint Logistics Support Force), Fuzhou, China
| | - Xiufeng Wu
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shanshan Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lijie Huang
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
8
|
Fan X, Liu F, Wang X, Wang Y, Chen Y, Shi C, Su X, Tan M, Yan Q, Peng J, Shao J, Xiong Y, Lin A. LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:488-503. [PMID: 37955780 DOI: 10.1007/s11427-023-2425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 11/14/2023]
Abstract
Ferroptosis, a unique type of non-apoptotic cell death resulting from iron-dependent lipid peroxidation, has a potential physiological function in tumor suppression, but its underlying mechanisms have not been fully elucidated. Here, we report that the long non-coding RNA (lncRNA) LncFASA increases the susceptibility of triple-negative breast cancer (TNBC) to ferroptosis. As a tumor suppressor, LncFASA drives the formation of droplets containing peroxiredoxin1 (PRDX1), a member of the peroxidase family, resulting in the accumulation of lipid peroxidation via the SLC7A11-GPX4 axis. Mechanistically, LncFASA directly binds to the Ahpc-TSA domain of PRDX1, inhibiting its peroxidase activity by driving liquid-liquid phase separation, which disrupts intracellular ROS homeostasis. Notably, high LncFASA expression indicates favorable overall survival in individuals with breast cancer, and LncFASA impairs the growth of breast xenograft tumors by modulating ferroptosis. Together, our findings illustrate the crucial role of this lncRNA in ferroptosis-mediated cancer development and provide new insights into therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
| | - Xiang Wang
- Department of Central Laboratory, the First People's Hospital of Huzhou, Huzhou, 313000, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Xiong
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
9
|
Wu C, Yang J, Lin X, Wu J, Yang C, Chen S. LncRNA PRKCA-AS1 promotes LUAD progression and function as a ceRNA to regulate S100A16 by sponging miR-508-5p. J Cancer 2024; 15:1718-1730. [PMID: 38370382 PMCID: PMC10869986 DOI: 10.7150/jca.91184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024] Open
Abstract
Objective: This study aimed to elucidate the underlying mechanism of LncRNA PRKCA-AS1 in lung adenocarcinoma (LUAD). Methods: The expression of LncRNA PRKCA-AS1, miR-508-5p and S100A16, in LUAD tissues or cell lines (NCI-H520 and H1299) was analyzed with qRT-PCR. The clinical diagnostic value of LncRNA PRKCAAS1, miR-508-5p and S100A16 in LUAD were analyzed by receptor operating characteristic (ROC) curve. Then we knockdown or overexpression of PRKCAAS1 in NCI-H520 and H1299 cells, and the cell function test was applied to detect the activity and metastasis level of cells in different transfection groups. Then Pearson correlation analysis was used for the correlation between miR-508-5p and PRKCA-AS1. The dual-luciferase reporter experiment and CHIRP analysis was conducted to verify the target binding relationship of PRKCA-AS1, miR-508-5p or S100A16. FISH assay analyzed the colocalization of PRKCA-AS1 and miR-508-5p in NCI-H520 and H1299 cells. Rescue experiment and tumorigenesis experiment in nude mice further explore the regulatory mechanisms of LncRNA PRKCA-AS1, miR-508-5p and S100A16 on LUAD progression in vitro and in vivo. Results: From the results, PRKCA-AS1 and S100A16 were up-regulated in LUAD tissues, while miR-508-5p was downregulated compared with the adjacent tissues. And gain-of-function revealed that PRKCA-AS1 knock-down apparently suppressed the cell proliferation and metastasis, whereas miR-508-5p inhibitors or S100A16 overexpression showed a opposite effect. In addition, there is evidence that PRKCA-AS1, miR-508-5p and S100A16 have a targeted regulatory relationship. Moreover, rescue experiment and tumorigenesis experiment in nude mice further confirmed that LncRNA PRKCA-AS1 regulates S100A16 through sponging miR-508-5p to regulate LUAD progression in vitro and in vivo. Conclusion: These results demonstrated that LncRNA PRKCA-AS1 might regulate LUAD by acting as a ceRNA via sponging miR-508-5p and regulating S100A16 expression, indicating that manipulation of PRKCA-AS1 might be a potential therapeutic strategy in LUAD.
Collapse
Affiliation(s)
- Chaohui Wu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Jiansheng Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xianbin Lin
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Jingyang Wu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Chuangcai Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
10
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
11
|
Liu L, Liu Z, Liu Q, Wu W, Lin P, Liu X, Zhang Y, Wang D, Prager BC, Gimple RC, Yu J, Zhao W, Wu Q, Zhang W, Wu E, Chen X, Luo J, Rich JN, Xie Q, Jiang T, Chen R. LncRNA INHEG promotes glioma stem cell maintenance and tumorigenicity through regulating rRNA 2'-O-methylation. Nat Commun 2023; 14:7526. [PMID: 37980347 PMCID: PMC10657414 DOI: 10.1038/s41467-023-43113-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/31/2023] [Indexed: 11/20/2023] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal of human cancers, containing glioma stem cells (GSCs) that display therapeutic resistance. Here, we report that the lncRNA INHEG is highly expressed in GSCs compared to differentiated glioma cells (DGCs) and promotes GSC self-renewal and tumorigenicity through control of rRNA 2'-O-methylation. INHEG induces the interaction between SUMO2 E3 ligase TAF15 and NOP58, a core component of snoRNP that guides rRNA methylation, to regulate NOP58 sumoylation and accelerate the C/D box snoRNP assembly. INHEG activation enhances rRNA 2'-O-methylation, thereby increasing the expression of oncogenic proteins including EGFR, IGF1R, CDK6 and PDGFRB in glioma cells. Taken together, this study identifies a lncRNA that connects snoRNP-guided rRNA 2'-O-methylation to upregulated protein translation in GSCs, supporting an axis for potential therapeutic targeting of gliomas.
Collapse
Affiliation(s)
- Lihui Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ziyang Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qinghua Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wei Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Peng Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Xing Liu
- Beijing Neurosurgical Institute, 100050, Beijing, China
| | - Yuechuan Zhang
- Department of Department of Orthopedics, Peking Union Medical College Hospital, 100730, Beijing, China
| | - Dongpeng Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Briana C Prager
- Department of Pathology, Case Western Reserve University, Cleveland, 44106, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, 44195, USA
| | - Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, 44106, USA
| | - Jichuan Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Weixi Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Qiulian Wu
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, 15261, USA
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, China
| | - Erzhong Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaomin Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianjun Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jeremy N Rich
- Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, 15261, USA.
| | - Qi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, 100050, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, China.
| | - Runsheng Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
12
|
Peng PH, Chen JL, Wu HH, Yang WH, Lin LJ, Lai JCY, Chang JS, Syu JL, Wu HT, Hsu FT, Cheng WC, Hsu KW. Interplay between lncRNA RP11-367G18.1 variant 2 and YY1 plays a vital role in hypoxia-mediated gene expression and tumorigenesis. Cancer Cell Int 2023; 23:266. [PMID: 37941005 PMCID: PMC10634066 DOI: 10.1186/s12935-023-03067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The hypoxia-responsive long non-coding RNA, RP11-367G18.1, has recently been reported to induce histone 4 lysine 16 acetylation (H4K16Ac) through its variant 2; however, the underlying molecular mechanism remains poorly understood. METHODS RNA pull-down assay and liquid chromatography-tandem mass spectrometry were performed to identify RP11-367G18.1 variant 2-binding partner. The molecular events were examined utilizing western blot analysis, real-time PCR, luciferase reporter assay, chromatin immunoprecipitation, and chromatin isolation by RNA purification assays. The migration, invasion, soft agar colony formation, and in vivo xenograft experiments were conducted to evaluate the impact of RP11-367G18.1 variant 2-YY1 complex on tumor progression. RESULTS In this study, RNA sequencing data revealed that hypoxia and RP11-367G18.1 variant 2 co-regulated genes were enriched in tumor-related pathways. YY1 was identified as an RP11-367G18.1 variant 2-binding partner that activates the H4K16Ac mark. YY1 was upregulated under hypoxic conditions and served as a target gene for hypoxia-inducible factor-1α. RP11-367G18.1 variant 2 colocalized with YY1 and H4K16Ac in the nucleus under hypoxic conditions. Head and neck cancer tissues had higher levels of RP11-367G18.1 and YY1 which were associated with poor patient outcomes. RP11-367G18.1 variant 2-YY1 complex contributes to hypoxia-induced epithelial-mesenchymal transition, cell migration, invasion, and tumorigenicity. YY1 regulated hypoxia-induced genes dependent on RP11-367G18.1 variant 2. CONCLUSIONS RP11-367G18.1 variant 2-YY1 complex mediates the tumor-promoting effects of hypoxia, suggesting that this complex can be targeted as a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih- Pai Road, Taipei, 112, Taiwan
| | - Heng-Hsiung Wu
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 40402, Taiwan
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Li-Jie Lin
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, 40402, Taiwan
| | - Joseph Chieh-Yu Lai
- Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan
| | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Jia-Ling Syu
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan
| | - Han-Tsang Wu
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Wei-Chung Cheng
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, 40402, Taiwan.
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan.
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 40402, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
13
|
Zhang L, Kang Q, Kang M, Jiang S, Yang F, Gong J, Ou G, Wang S. Regulation of main ncRNAs by polyphenols: A novel anticancer therapeutic approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155072. [PMID: 37714063 DOI: 10.1016/j.phymed.2023.155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Plant polyphenols have shown promising applications in oncotherapy. Increasing evidence reveals that polyphenols possess the antitumor potential for multiple cancers. Non-coding RNAs (ncRNAs), mainly including small ncRNAs (microRNA) and long ncRNAs (lncRNAs), play critical roles in cancer initiation and progression. PURPOSE To establish the modulation of ncRNAs by polyphenols as a novel and promising approach in anticancer treatment. STUDY DESIGN The present research employed ncRNA, miRNA, lncRNA, and regulatory mechanism as keywords to retrieve the literature from PubMed, Web of Science, Science direct, and Google Scholar, in a 20-year period from 2003 to 2023. This study critically reviewed the current literature and presented the regulation of prominent ncRNAs by polyphenols. A comprehensive total of 169 papers were retrieved on polyphenols and their related ncRNAs in cancers. RESULTS NcRNAs, mainly including miRNA and lncRNA, play critical roles in cancer initiation and progression, which are potential modulatory targets of bioactive polyphenols, such as resveratrol, genistein, curcumin, EGCG, quercetin, in cancer management. The mechanism involved in polyphenol-mediated ncRNA regulation includes epigenetic and transcriptional modification, and post-transcriptional processing. CONCLUSION Regulatory ncRNAs are potential therapeutic targets of bioactive polyphenols, and these phytochemicals could modulate the level of these ncRNAs directly and indirectly. A better comprehension of the ncRNA regulation by polyphenols in cancers, their functional outcomes on tumor pathophysiology and regulatory molecular mechanisms, may be helpful to develop effective strategies to fight the devastating disease.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518061, China
| | | | - Suwei Jiang
- School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Feng Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Jun Gong
- Central Laboratory, Yunfu People's Hospital, Yunfu 527399, China
| | - Gaozhi Ou
- School of Physical Education, China University of Geosciences, Wuhan 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
14
|
Zhou W, Feng Y, Lin C, CHAO CK, He Z, Zhao S, Xue J, Zhao X, Cao W. Yin Yang 1-Induced Long Noncoding RNA DUXAP9 Drives the Progression of Oral Squamous Cell Carcinoma by Blocking CDK1-Mediated EZH2 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207549. [PMID: 37401236 PMCID: PMC10477890 DOI: 10.1002/advs.202207549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Indexed: 07/05/2023]
Abstract
LncRNAs play a critical role in oral squamous cell carcinoma (OSCC) progression. However, the function and detailed molecular mechanism of most lncRNAs in OSCC are not fully understood. Here, a novel nuclear-localized lncRNA, DUXAP9 (DUXAP9), that is highly expressed in OSCC is identified. A high level of DUXAP9 is positively associated with lymph node metastasis, poor pathological differentiation, advanced clinical stage, worse overall survival, and worse disease-specific survival in OSCC patients. Overexpression of DUXAP9 significantly promotes OSCC cell proliferation, migration, invasion, and xenograft tumor growth and metastasis, and upregulates N-cadherin, Vimentin, Ki67, PCNA, and EZH2 expression and downregulates E-cadherin in vitro and in vivo, whereas knockdown of DUXAP9 remarkably suppresses OSCC cell proliferation, migration, invasion, and xenograft tumor growth in vitro and in vivo in an EZH2-dependent manner. Yin Yang 1 (YY1) is found to activate the transcriptional expression of DUXAP9 in OSCC. Furthermore, DUXAP9 physically interacts with EZH2 and inhibits EZH2 degradation via the suppression of EZH2 phosphorylation, thereby blocking EZH2 translocation from the nucleus to the cytoplasm. Thus, DUXAP9 can serve as a promising target for OSCC therapy.
Collapse
Affiliation(s)
- Wenkai Zhou
- Department of Oral and Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghai200011China
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Yisheng Feng
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Chengzhong Lin
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
- The 2nd Dental CenterShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Chi Kuan CHAO
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Ziqi He
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Shiyao Zhao
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Jieyuan Xue
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Xu‐Yun Zhao
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationKey Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wei Cao
- Department of Oral and Maxillofacial & Head and Neck OncologyShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghai200011China
- National Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| |
Collapse
|
15
|
Zhang Y, Zhao L, Bi Y, Zhao J, Gao C, Si X, Dai H, Asmamaw MD, Zhang Q, Chen W, Liu H. The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomed Pharmacother 2023; 165:115207. [PMID: 37499455 DOI: 10.1016/j.biopha.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; The People's Hospital of Zhang Dian District, Zibo, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou China
| | - Yaping Bi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Jinyuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Chao Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Xiaojie Si
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Honglin Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Qiurong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| |
Collapse
|
16
|
Rajendran P, Sekar R, Zahra HA, Jayaraman S, Rajagopal P, Abdallah BM, Ali EM, Abdelsalam SA, Veeraraghavan V. Salivaomics to decode non-coding RNAs in oral cancer. A narrative review. Noncoding RNA Res 2023; 8:376-384. [PMID: 37250455 PMCID: PMC10220469 DOI: 10.1016/j.ncrna.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Oral cancer is the most debilitating disease which affects the orderly life of a human. With so much advancement in research and technology, the average life expectancy of an individual with oral cancer appears to be about 5 years. The changing trend in incidence of oral cancer among young individuals and women without tobacco habits are ascending. Non habit related oral cancer are taking centre stage and multiple factors which induce complex biology are associated in such scenarios. To decipher the aetiology and to understand the process, these cancerous conditions are to be studied at molecular level. Saliva, the most non-invasively obtained body fluid are assessed for biomarkers exclusively in liquid biopsy. This fluid gives a huge platform to study number of molecules associated with oral cancer. Non coding RNAs are transcripts with no protein coding function. They are gaining more importance in recent times. Long noncoding RNA, microRNA are major types of noncoding transcriptome that influences in progression of oral cancer. They seem to play an important role in health and disease. Apart from these, circulating tumour cells, exosomes, extracellular vesicles, antigens and other proteins can be studied from saliva. This review is aimed to update the knowledge on current biomarkers in saliva associated with oral cancer and their epigenetic role in disease progression as well recent advances in detecting these markers to identify the stage of the disease, which will help in deciding the treatment protocol.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, West K.K. Nagar, Chennai, 600 078, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
17
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
18
|
Li Y, Peng J, Xia Y, Pan C, Li Y, Gu W, Wang J, Wang C, Wang Y, Song J, Zhou X, Ma L, Jiang Y, Liu B, Feng Q, Wang W, Jiao S, An L, Li D, Zhou Z, Zhao Y. Sufu limits sepsis-induced lung inflammation via regulating phase separation of TRAF6. Theranostics 2023; 13:3761-3780. [PMID: 37441604 PMCID: PMC10334838 DOI: 10.7150/thno.83676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Sepsis is a potentially life-threatening condition caused by the body's response to a severe infection. Although the identification of multiple pathways involved in inflammation, tissue damage and aberrant healing during sepsis, there remain unmet needs for the development of new therapeutic strategies essential to prevent the reoccurrence of infection and organ injuries. Methods: Expression of Suppressor of Fused (Sufu) was evaluated by qRT-PCR, western blotting, and immunofluorescence in murine lung and peritoneal macrophages. The significance of Sufu expression in prognosis was assessed by Kaplan-Meier survival analysis. The GFP-TRAF6-expressing stable cell line (GFP-TRAF6 Blue cells) were constructed to evaluate phase separation of TRAF6. Phase separation of TRAF6 and the roles of Sufu in repressing TRAF6 droplet aggregation were analyzed by co-immunoprecipitation, immunofluorescence, Native-PAGE, FRAP and in vitro assays using purified proteins. The effects of Sufu on sepsis-induced lung inflammation were evaluated by cell function assays, LPS-induced septic shock model and polymicrobial sepsis-CLP mice model. Results: We found that Sufu expression is reduced in early response to lipopolysaccharide (LPS)-induced acute inflammation in murine lung and peritoneal macrophages. Deletion of Sufu aggravated LPS-induced and CLP (cecal ligation puncture)-induced lung injury and lethality in mice, and augmented LPS-induced proinflammatory gene expression in cultured macrophages. In addition, we identified the role of Sufu as a negative regulator of the Toll-Like Receptor (TLR)-triggered inflammatory response. We further demonstrated that Sufu directly interacts with TRAF6, thereby preventing oligomerization and autoubiquitination of TRAF6. Importantly, TRAF6 underwent phase separation during LPS-induced inflammation, which is essential for subsequent ubiquitination activation and NF-κB activity. Sufu inhibits the phase-separated TRAF6 droplet formation, preventing NF-κB activation upon LPS stimulation. In a septic shock model, TRAF6 depletion rescued the augmented inflammatory phenotype in mice with myeloid cell-specific deletion of Sufu. Conclusions: These findings implicated Sufu as an important inhibitor of TRAF6 in sepsis and suggest that therapeutics targeting Sufu-TRAF6 may greatly benefit the treatment of sepsis.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yuanxin Xia
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenyu Pan
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P. R. China
| | - Yu Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Weijie Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaoxiong Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuang Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiawen Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuan Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liya Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiao Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Biao Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiongni Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, P. R. China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, P. R. China
| | - Liwei An
- Department of Medical Ultrasound, Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai 200072, P. R. China
| | - Dianfan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, P. R. China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
19
|
Saito-Adachi M, Hama N, Totoki Y, Nakamura H, Arai Y, Hosoda F, Rokutan H, Yachida S, Kato M, Fukagawa A, Shibata T. Oncogenic structural aberration landscape in gastric cancer genomes. Nat Commun 2023; 14:3688. [PMID: 37349325 PMCID: PMC10287692 DOI: 10.1038/s41467-023-39263-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Structural variants (SVs) are responsible for driver events in gastric cancer (GC); however, their patterns and processes remain poorly understood. Here, we examine 170 GC whole genomes to unravel the oncogenic structural aberration landscape in GC genomes and identify six rearrangement signatures (RSs). Non-random combinations of RSs elucidate distinctive GC subtypes comprising one or a few dominant RS that are associated with specific driver events (BRCA1/2 defects, mismatch repair deficiency, and TP53 mutation) and epidemiological backgrounds. Twenty-seven SV hotspots are identified as GC driver candidates. SV hotspots frequently constitute complexly clustered SVs involved in driver gene amplification, such as ERBB2, CCNE1, and FGFR2. Further deconstruction of the locally clustered SVs uncovers amplicon-generating profiles characterized by super-large SVs and intensive segmental amplifications, contributing to the extensive amplification of GC oncogenes. Comprehensive analyses using adjusted SV allele frequencies indicate the significant involvement of extra-chromosomal DNA in processes linked to specific RSs.
Collapse
Affiliation(s)
- Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirofumi Rokutan
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Xu J, Zhang S, Li H, Bao Y, Du Y, Zhou Y, Zhao D, Liu F. LncRNA-AK007111 affects airway inflammation in asthma via the regulation of mast cell function. Int Immunopharmacol 2023; 121:110341. [PMID: 37301118 DOI: 10.1016/j.intimp.2023.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in gene transcription and pathophysiological processes of human diseases. Multiple lncRNAs have been shown to play important roles in the occurrence and development of asthma. This study aimed to explore the role of a novel lncRNA, lncRNA-AK007111, in asthma. Overexpression of lncRNA-AK007111 was induced in a mouse model of asthma via viral transfection, followed by the collection of alveolar lavage fluid and lung tissue for the detection of relevant inflammatory factors and pathological analysis of lung sections. Pulmonary resistance and respiratory dynamic compliance were measured using an animal pulmonary function analyzer. The number of mast cells sensitized by immunofluorescence was detected at the cellular level. The degree of degranulation of lncRNA-AK007111 after its knockdown was determined by detecting the level of β-hexosaminidase that was released and quantifying IL-6 and TNF-α using ELISA in a model of RBL-2H3 cells activated by immunoglobulin E plus antigen. Finally, we observed the migration ability of mast cells under a microscope. The results showed that in ovalbumin-sensitized mice, the upregulation of lncRNA-AK007111 promoted the infiltration of inflammatory cells in lung tissue, increased the number of total cells, eosinophils, and mast cells, upregulated IL-5 and IL-6 levels, and increased airway hyper-reactivity. Downregulation of lncRNA-AK007111 decreased the degranulation ability of IgE/Ag-activated mast cells and inhibited the expression of IL-6 and TNF-α; moreover, the migration ability of mast cells was significantly weakened. In conclusion, our study revealed that lncRNA-AK007111 plays an important role in asthma by modulating mast cell-related functions.
Collapse
Affiliation(s)
- Jiejing Xu
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Pediatrics, The Second People's Hospital of Changzhou, Affiliate Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Siqing Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huilin Li
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaqing Bao
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Du
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Zhou
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deyu Zhao
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Feng Liu
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Fonseca-Montaño MA, Vázquez-Santillán KI, Hidalgo-Miranda A. The current advances of lncRNAs in breast cancer immunobiology research. Front Immunol 2023; 14:1194300. [PMID: 37342324 PMCID: PMC10277570 DOI: 10.3389/fimmu.2023.1194300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancer-related death in women worldwide. Breast cancer development and progression are mainly associated with tumor-intrinsic alterations in diverse genes and signaling pathways and with tumor-extrinsic dysregulations linked to the tumor immune microenvironment. Significantly, abnormal expression of lncRNAs affects the tumor immune microenvironment characteristics and modulates the behavior of different cancer types, including breast cancer. In this review, we provide the current advances about the role of lncRNAs as tumor-intrinsic and tumor-extrinsic modulators of the antitumoral immune response and the immune microenvironment in breast cancer, as well as lncRNAs which are potential biomarkers of tumor immune microenvironment and clinicopathological characteristics in patients, suggesting that lncRNAs are potential targets for immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Marco Antonio Fonseca-Montaño
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
22
|
Yao H, Liang X, Dou Z, Zhao Z, Ma W, Hao Z, Yan H, Wang Y, Wu Z, Chen G, Yang J. Transcriptome analysis to identify candidate genes related to mammary gland development of Bactrian camel ( Camelus bactrianus). Front Vet Sci 2023; 10:1196950. [PMID: 37342620 PMCID: PMC10277799 DOI: 10.3389/fvets.2023.1196950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The demand for camel milk, which has unique therapeutic properties, is increasing. The mammary gland is the organ in mammals responsible for the production and quality of milk. However, few studies have investigated the genes or pathways related to mammary gland growth and development in Bactrian camels. This study aimed to compare the morphological changes in mammary gland tissue and transcriptome expression profiles between young and adult female Bactrian camels and to explore the potential candidate genes and signaling pathways related to mammary gland development. Methods Three 2 years-old female camels and three 5 years-old adult female camels were maintained in the same environment. The parenchyma of the mammary gland tissue was sampled from the camels using percutaneous needle biopsy. Morphological changes were observed using hematoxylin-eosin staining. High-throughput RNA sequencing was performed using the Illumina HiSeq platform to analyze changes in the transcriptome between young and adult camels. Functional enrichment, pathway enrichment, and protein-protein interaction networks were also analyzed. Gene expression was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results Histomorphological analysis showed that the mammary ducts and mammary epithelial cells in adult female camels were greatly developed and differentiated from those in young camels. Transcriptome analysis showed that 2,851 differentially expressed genes were obtained in the adult camel group compared to the young camel group, of which 1,420 were upregulated, 1,431 were downregulated, and 2,419 encoded proteins. Functional enrichment analysis revealed that the upregulated genes were significantly enriched for 24 pathways, including the Hedgehog signaling pathway which is closely related to mammary gland development. The downregulated genes were significantly enriched for seven pathways, among these the Wnt signaling pathway was significantly related to mammary gland development. The protein-protein interaction network sorted the nodes according to the degree of gene interaction and identified nine candidate genes: PRKAB2, PRKAG3, PLCB4, BTRC, GLI1, WIF1, DKK2, FZD3, and WNT4. The expression of fifteen genes randomly detected by qRT-PCR showed results consistent with those of the transcriptome analysis. Discussion Preliminary findings indicate that the Hedgehog, Wnt, oxytocin, insulin, and steroid biosynthesis signaling pathways have important effects on mammary gland development in dairy camels. Given the importance of these pathways and the interconnections of the involved genes, the genes in these pathways should be considered potential candidate genes. This study provides a theoretical basis for elucidating the molecular mechanisms associated with mammary gland development and milk production in Bactrian camels.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Xiaorui Liang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhihua Dou
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zelin Hao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Hui Yan
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| | - Yuzhuo Wang
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Zhuangyuan Wu
- Xinjiang Altai Regional Animal Husbandry Veterinary Station, Altay, China
| | - Gangliang Chen
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
- Bactrian Camel Academy of Xinjiang, Wangyuan Camel Milk Limited Company, Altay, China
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Xinjiang Camel Industry Engineering Technology Research Center, Ürümqi, China
| |
Collapse
|
23
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023:10.1038/s41423-023-01032-x. [PMID: 37198402 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
24
|
Fonseca-Montaño MA, Cisneros-Villanueva M, Coales I, Hidalgo-Miranda A. LINC00426 is a potential immune phenotype-related biomarker and an overall survival predictor in PAM50 luminal B breast cancer. Front Genet 2023; 14:1034569. [PMID: 37260772 PMCID: PMC10228735 DOI: 10.3389/fgene.2023.1034569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Background: Breast cancer (BRCA) represents the most frequent diagnosed malignancy in women worldwide. Despite treatment advances, BRCAs eventually develop resistance to targeted therapies, resulting in poor prognosis. The identification of new biomarkers, like immune-related long non-coding RNAs (lncRNAs), could contribute to the clinical management of BRCA patients. In this report, we evaluated the LINC00426 expression in PAM50 BRCA subtypes from two clinical independent cohorts (BRCA-TCGA and GEO-GSE96058 datasets). Methods and results: Using Cox regression models and Kaplan-Meier survival analyses, we identified that LINC00426 expression was a consistent overall survival (OS) predictor in luminal B (LB) BRCA patients. Subsequently, differential gene expression and gene set enrichment analyses identified that LINC00426 expression was associated with different immune-related and cancer-related pathways and processes in LB BRCA. Additionally, the LINC00426 expression was correlated with the infiltration level of diverse immune cell populations, alongside immune checkpoint and cytolytic activity-related gene expression. Conclusion: This evidence suggests that LINC00426 is a potential biomarker of immune phenotype and an OS predictor in PAM50 LB BRCA.
Collapse
Affiliation(s)
- Marco Antonio Fonseca-Montaño
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Isabelle Coales
- Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
25
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
26
|
Zhang L, Yang Y, Zhang L, Ma J, Sun R, Tian Y, Yuan X, Liu B, Yu T, Jiang Z. Identification of long non-coding RNA in formaldehyde-induced cardiac dysplasia in rats. Food Chem Toxicol 2023; 174:113653. [PMID: 36758786 DOI: 10.1016/j.fct.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, 276000, PR China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, PR China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China.
| |
Collapse
|
27
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhang Z, Lu YX, Liu F, Sang L, Shi C, Xie S, Bian W, Yang JC, Yang Z, Qu L, Chen SY, Li J, Yang L, Yan Q, Wang W, Fu P, Shao J, Li X, Lin A. lncRNA BREA2 promotes metastasis by disrupting the WWP2-mediated ubiquitination of Notch1. Proc Natl Acad Sci U S A 2023; 120:e2206694120. [PMID: 36795754 PMCID: PMC9974429 DOI: 10.1073/pnas.2206694120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
Notch has been implicated in human cancers and is a putative therapeutic target. However, the regulation of Notch activation in the nucleus remains largely uncharacterized. Therefore, characterizing the detailed mechanisms governing Notch degradation will identify attractive strategies for treating Notch-activated cancers. Here, we report that the long noncoding RNA (lncRNA) BREA2 drives breast cancer metastasis by stabilizing the Notch1 intracellular domain (NICD1). Moreover, we reveal WW domain containing E3 ubiquitin protein ligase 2 (WWP2) as an E3 ligase for NICD1 at K1821 and a suppressor of breast cancer metastasis. Mechanistically, BREA2 impairs WWP2-NICD1 complex formation and in turn stabilizes NICD1, leading to Notch signaling activation and lung metastasis. BREA2 loss sensitizes breast cancer cells to inhibition of Notch signaling and suppresses the growth of breast cancer patient-derived xenograft tumors, highlighting its therapeutic potential in breast cancer. Taken together, these results reveal the lncRNA BREA2 as a putative regulator of Notch signaling and an oncogenic player driving breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
| | - Yun-xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong510060, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Jie-cheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Shi-yi Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jun Li
- Department of Pathology School of Medicine, The First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang310003, China
| | - Lu Yang
- Department of Radiotherapy, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, School of Medicine South China University of Technology, Guangzhou510080, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA92697
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310003, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang310024, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang310058, China
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310003, China
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang322000, China
| |
Collapse
|
29
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
30
|
Sun C, Ye Y, Tan Z, Liu Y, Li Y, Hu W, Liang K, Egranov SD, Huang LA, Zhang Z, Zhang Y, Yao J, Nguyen TK, Zhao Z, Wu A, Marks JR, Caudle AS, Sahin AA, Gao J, Gammon ST, Piwnica-Worms D, Hu J, Chiao PJ, Yu D, Hung MC, Curran MA, Calin GA, Ying H, Han L, Lin C, Yang L. Tumor-associated nonmyelinating Schwann cell-expressed PVT1 promotes pancreatic cancer kynurenine pathway and tumor immune exclusion. SCIENCE ADVANCES 2023; 9:eadd6995. [PMID: 36724291 PMCID: PMC9891701 DOI: 10.1126/sciadv.add6995] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2023] [Indexed: 05/16/2023]
Abstract
One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.
Collapse
Affiliation(s)
- Chengcao Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa Angela Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina K. Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey R. Marks
- Division of Surgical Science, Department of Surgery, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Abigail S. Caudle
- Department of Breast Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A. Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Michael A. Curran
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Wu L, Li S, Xu J, Shen C, Qian Q. AGAP2-AS1/BRD7/c-Myc signaling axis promotes skin cutaneous melanoma progression. Am J Transl Res 2023; 15:350-362. [PMID: 36777828 PMCID: PMC9908487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE To examine the effects and mechanisms of AGAP2 Antisense RNA 1 (AGAP2-AS1) in progression of skin cutaneous melanoma (SKCM). METHODS AGAP2-AS1 expression and SKCM survival outcomes were assessed using bioinformatics analysis. In vitro and in vivo assays, including cell proliferation, colony formation, migration, and tumor formation assays, were performed to detect AGAP2-AS1 oncogenic effects in SKCM. RNA pull-down, RNA immunoprecipitation (RIP), and co-immunoprecipitation were used to evaluate the mechanism of AGAP2-AS1 in SKCM progression. RESULTS AGAP2-AS1 was upregulated in human SKCM tissues and cells and predicted a worse prognosis. AGAP2-AS1 silencing in two SKCM cell lines inhibited cell proliferation, as well as colony formation and migration both in vitro and in vivo. The RNA pull-down assay and RIP analysis results indicated that AGAP2-AS1 interacted with bromodomain containing 7 (BRD7). AGAP2-AS1 knockdown attenuated the BRD7 and c-Myc interaction, which reduced c-Myc expression. The altered phenotypes found in AGAP2-AS1- and BRD7-deficient cells were rescued by overexpression of c-Myc. CONCLUSIONS AGAP2-AS1 participated in oncogenesis in SKCM via the BRD7/c-Myc signaling pathway. These results suggest a molecular mechanism for AGAP2-AS1 in the carcinogenesis of SKCM.
Collapse
Affiliation(s)
- Lei Wu
- Department of Dermatology, First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Shenyi Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan UniversityWuxi 214062, Jiangsu, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China,State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Qihong Qian
- Department of Dermatology, First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|
32
|
Xu S, Liu D, Kuang Y, Li R, Wang J, Shi M, Zou Y, Qiu Q, Liang L, Xiao Y, Xu H. Long Noncoding RNA HAFML Promotes Migration and Invasion of Rheumatoid Fibroblast-like Synoviocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:135-147. [PMID: 36458981 DOI: 10.4049/jimmunol.2200453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023]
Abstract
The aggressive phenotype exhibited by fibroblast-like synoviocytes (FLSs) is critical for the progression of joint destruction in rheumatoid arthritis (RA). Long noncoding RNAs (lncRNAs) have crucial roles in the pathogenesis of diverse disorders; however, few have been identified that might be able to control the joint damage in RA. In this study, we identified an lncRNA, ENST00000509194, which was expressed at abnormally high levels in FLSs and synovial tissues from patients with RA. ENST00000509194 positively modulates the migration and invasion of FLSs by interacting with human Ag R (HuR, also called ELAVL1), an RNA-binding protein that mainly stabilizes mRNAs. ENST00000509194 binds directly to HuR in the cytoplasm to form a complex that promotes the expression of the endocytic adaptor protein APPL2 by stabilizing APPL2 mRNA. Knockdown of HuR or APPL2 impaired the migration and invasion of RA FLSs. Given its close association with HuR and FLS migration, we named ENST00000509194 as HAFML (HuR-associated fibroblast migratory lncRNA). Our findings suggest that an increase in synovial HAFML might contribute to FLS-mediated rheumatoid synovial aggression and joint destruction, and that the lncRNA HAFML might be a potential therapeutic target for dysregulated fibroblasts in a wide range of diseases.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong, China; and
| | - Yaoyao Zou
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Identification and Functional Prediction of Long Non-Coding RNA in Longissimus Dorsi Muscle of Queshan Black and Large White Pigs. Genes (Basel) 2023; 14:genes14010197. [PMID: 36672938 PMCID: PMC9858627 DOI: 10.3390/genes14010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNA (lncRNA) participates in the regulation of various biological processes, but its function and characteristics in intramuscular fat (IMF) deposition in different breeds of pigs have not been fully understood. IMF content is one of the important factors affecting pork quality. In the present study, the differentially expressed lncRNAs (DE lncRNAs) and their target genes were screened by comparing Queshan Black (QS) and Large White (LW) pigs based on RNA-seq. The results displayed 55 DE lncRNAs between QS and LW, 29 upregulated and 26 downregulated, with 172 co-located target genes, and 6203 co-expressed target genes. The results of GO and KEGG analysis showed that the target genes of DE lncRNAs were involved in multiple pathways related to lipogenesis and lipid metabolism, such as the lipid biosynthetic process, protein phosphorylation, activation of MAPK activity, and the Jak-STAT signaling pathway. By constructing regulatory networks, lincRNA-ZFP42-ACTC1, lincRNA-AMY2-STAT1, and/or lincRNA-AMY2/miR-204/STAT1 were sieved, and the results indicate that lncRNA could participate in IMF deposition through direct regulation or ceRNA. These findings provide a basis for analyzing the molecular mechanism of IMF deposition in pigs and lay a foundation for developing and utilizing high-quality resources of local pig breeds.
Collapse
|
34
|
Wu T, Li X, Yan G, Tan Z, Zhao D, Liu S, Wang H, Xiang Y, Chen W, Lu H, Liao X, Li Y, Lu Z. LncRNA BCAR4 promotes migration, invasion, and chemo-resistance by inhibiting miR-644a in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:14. [PMID: 36627684 PMCID: PMC9830721 DOI: 10.1186/s13046-022-02588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Metastasis and drug resistance of breast cancer have become a barrier to treating patients successfully. Long noncoding RNAs (lncRNAs) are known as vital players in cancer development and progression. METHODS: The RT-qPCR were used to detect the gene expression. Colony formation assay, would healing assay, and transwell assay were performed to investigate oncogenic functions of cells. CCK8 assay was used to detect the cell viability. Western blot was applied to detect the protein level. Dual-luciferase reporter assay was used to determine the relationship between molecules. Mouse orthotopic xenograft tumor models were established to evaluate the effects of BCAR4 on tumor growth and metastasis in vivo. RESULTS: LncRNA BCAR4 was significantly increased in breast cancer patients' tissues and plasma and upregulated in breast cancer cell lines. BCAR4 upregulation was correlated with the TNM stages and decreased after surgical removal of breast tumors. Silencing of BCAR4 suppressed breast cancer cell colony formation, migration, invasion, and xenograft tumor growth and promoted chemo-sensitivity. Mechanistically, BCAR4 facilitates breast cancer migration and invasion via the miR-644a-CCR7 axis of the MAPK pathway. BCAR4 promotes ABCB1 expression indirectly by binding to and down-regulating miR-644a to induce chemo-resistance in breast cancer. CONCLUSIONS Our findings provide insights into the oncogenic role of BCAR4 and implicate BCAR4 as a potential diagnostic biomarker and a promising therapeutic agent to suppress metastasis and inhibit chemo-resistance of breast cancer.
Collapse
Affiliation(s)
- Tangwei Wu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Xiaoyi Li
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Ge Yan
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zheqiong Tan
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Dan Zhao
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Shuiyi Liu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Hui Wang
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Yuan Xiang
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Weiqun Chen
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Hongda Lu
- grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Xinghua Liao
- grid.412787.f0000 0000 9868 173XInstitute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei 430081 People’s Republic of China
| | - Yong Li
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Zhongxin Lu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| |
Collapse
|
35
|
Chang MW, Yang JH, Tsitsipatis D, Yang X, Martindale J, Munk R, Pandey P, Banskota N, Romero B, Batish M, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Wilson G, Gorospe M. Enhanced myogenesis through lncFAM-mediated recruitment of HNRNPL to the MYBPC2 promoter. Nucleic Acids Res 2022; 50:13026-13044. [PMID: 36533518 PMCID: PMC9825165 DOI: 10.1093/nar/gkac1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.
Collapse
Affiliation(s)
- Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
36
|
Hsu KW, Lai JCY, Chang JS, Peng PH, Huang CH, Lee DY, Tsai YC, Chung CJ, Chang H, Chang CH, Chen JL, Pang ST, Hao Z, Cui XL, He C, Wu KJ. METTL4-mediated nuclear N6-deoxyadenosine methylation promotes metastasis through activating multiple metastasis-inducing targets. Genome Biol 2022; 23:249. [PMID: 36461076 PMCID: PMC9716733 DOI: 10.1186/s13059-022-02819-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND DNA N6-methyldeoxyadenosine (6mA) is rarely present in mammalian cells and its nuclear role remains elusive. RESULTS Here we show that hypoxia induces nuclear 6mA modification through a DNA methyltransferase, METTL4, in hypoxia-induced epithelial-mesenchymal transition (EMT) and tumor metastasis. Co-expression of METTL4 and 6mA represents a prognosis marker for upper tract urothelial cancer patients. By RNA sequencing and 6mA chromatin immunoprecipitation-exonuclease digestion followed by sequencing, we identify lncRNA RP11-390F4.3 and one novel HIF-1α co-activator, ZMIZ1, that are co-regulated by hypoxia and METTL4. Other genes involved in hypoxia-mediated phenotypes are also regulated by 6mA modification. Quantitative chromatin isolation by RNA purification assay shows the occupancy of lncRNA RP11-390F4.3 on the promoters of multiple EMT regulators, indicating lncRNA-chromatin interaction. Knockdown of lncRNA RP11-390F4.3 abolishes METTL4-mediated tumor metastasis. We demonstrate that ZMIZ1 is an essential co-activator of HIF-1α. CONCLUSIONS We show that hypoxia results in enriched 6mA levels in mammalian tumor cells through METTL4. This METTL4-mediated nuclear 6mA deposition induces tumor metastasis through activating multiple metastasis-inducing genes. METTL4 is characterized as a potential therapeutic target in hypoxic tumors.
Collapse
Affiliation(s)
- Kai-Wen Hsu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan ,Research Center for Cancer Biology, Taipei, Taiwan ,grid.254145.30000 0001 0083 6092Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 404 Taiwan
| | - Joseph Chieh-Yu Lai
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan ,grid.254145.30000 0001 0083 6092Institute of Biomedical Sciences, China Medical University, Taichung, 404 Taiwan
| | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| | - Ching-Hui Huang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| | - Der-Yen Lee
- grid.254145.30000 0001 0083 6092Institute of Integrated Medicine, China Medical University, Taichung, 404 Taiwan
| | | | - Chi-Jung Chung
- grid.254145.30000 0001 0083 6092Department of Health Risk Management, College of Public Health, China Medical University, Taichung, 404 Taiwan
| | - Han Chang
- grid.411508.90000 0004 0572 9415Department of Pathology, China Medical University Hospital, Taichung, 404 Taiwan
| | - Chao-Hsiang Chang
- grid.411508.90000 0004 0572 9415Department of Urology, China Medical University Hospital, Taichung, 404 Taiwan
| | - Ji-Lin Chen
- grid.278247.c0000 0004 0604 5314Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333 Taiwan
| | - Ziyang Hao
- grid.170205.10000 0004 1936 7822Departments of Chemistry & Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA ,grid.24696.3f0000 0004 0369 153XSchool of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069 China
| | - Xiao-Long Cui
- grid.170205.10000 0004 1936 7822Departments of Chemistry & Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA
| | - Chuan He
- grid.170205.10000 0004 1936 7822Departments of Chemistry & Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Howard Hughes Medical Institute, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| |
Collapse
|
37
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Nickless A, Zhang J, Othoum G, Webster J, Inkman MJ, Coonrod E, Fontes S, Rozycki EB, Maher CA, White NM. Pan-Cancer Analysis Reveals Recurrent BCAR4 Gene Fusions across Solid Tumors. Mol Cancer Res 2022; 20:1481-1488. [PMID: 35852383 PMCID: PMC9530645 DOI: 10.1158/1541-7786.mcr-21-0775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Chromosomal rearrangements often result in active regulatory regions juxtaposed upstream of an oncogene to generate an expressed gene fusion. Repeated activation of a common downstream partner-with differing upstream regions across a patient cohort-suggests a conserved oncogenic role. Analysis of 9,638 patients across 32 solid tumor types revealed an annotated long noncoding RNA (lncRNA), Breast Cancer Anti-Estrogen Resistance 4 (BCAR4), was the most prevalent, uncharacterized, downstream gene fusion partner occurring in 11 cancers. Its oncogenic role was confirmed using multiple cell lines with endogenous BCAR4 gene fusions. Furthermore, overexpressing clinically prevalent BCAR4 gene fusions in untransformed cell lines was sufficient to induce an oncogenic phenotype. We show that the minimum common region to all gene fusions harbors an open reading frame that is necessary to drive proliferation. IMPLICATIONS BCAR4 gene fusions represent an underappreciated class of gene fusions that may have biological and clinical implications across solid tumors.
Collapse
Affiliation(s)
- Andrew Nickless
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri
| | - Ghofran Othoum
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Jace Webster
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew J. Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Emily Coonrod
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Sherron Fontes
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Emily B. Rozycki
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A. Maher
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole M. White
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
39
|
Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct 2022; 17:26. [PMID: 36182907 PMCID: PMC9526990 DOI: 10.1186/s13062-022-00341-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/10/2022] Open
Abstract
Metabolic reprogramming is commonly recognized as one important hallmark of cancers. Cancer cells present significant alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Recent findings demonstrated that long non-coding RNAs control cancer development and progression by modulating cell metabolism. Here, we give an overview of breast cancer metabolic reprogramming and the role of long non-coding RNAs in driving cancer-specific metabolic alteration.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy
| | - Mara Mancini
- IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy
| | - Eleonora Candi
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy. .,IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy.
| |
Collapse
|
40
|
Wang Q, Chen C, Xu X, Shu C, Cao C, Wang Z, Fu Y, Xu L, Xu K, Xu J, Xia A, Wang B, Xu G, Zou X, Su R, Kang W, Xue Y, Mo R, Sun B, Wang S. APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201889. [PMID: 35975461 PMCID: PMC9534967 DOI: 10.1002/advs.202201889] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Indexed: 05/29/2023]
Abstract
Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Xiao Xu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Chuanjun Shu
- Department of BioinformaticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing210000China
| | - Changchang Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhangding Wang
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Yao Fu
- Department of PathologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Lei Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Kaiyue Xu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Jiawen Xu
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Anliang Xia
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Bo Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Guifang Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Xiaoping Zou
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Wei Kang
- Department of Anatomical and Cellular PathologyInstitute of Digestive DiseaseState Key Laboratory of Digestive DiseaseState Key Laboratory of Translational OncologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongSAR999077China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Ran Mo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Beicheng Sun
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Shouyu Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
- Center for Public Health ResearchMedical School of Nanjing UniversityNanjing210000China
| |
Collapse
|
41
|
Liu P, Fan B, Othmane B, Hu J, Li H, Cui Y, Ou Z, Chen J, Zu X. m 6A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Am J Cancer Res 2022; 12:6291-6307. [PMID: 36168624 PMCID: PMC9475447 DOI: 10.7150/thno.71456] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/13/2022] [Indexed: 12/23/2022] Open
Abstract
The limited effect of adjuvant therapy for advanced bladder cancer (BCa) leads to a poor prognosis. Increasing evidence has shown that RNA N6-methyladenosine (m6A) modification plays important functional roles in tumorigenesis. Nevertheless, the role and mechanism of m6A-modified noncoding RNAs (ncRNAs) in BCa remain largely unknown. Methods: RT-PCR, western blotting and ONCOMINE dataset were used to determine the dominant m6A-related enzyme in BCa. M6A-lncRNA epitranscriptomic microarray was used to screen candidate targets of METTL14. RT-PCR, MeRIP and TCGA dataset were carried out to confirm the downstream target of METTL14. CHIRP/MS was conducted to identify the candidate proteins binding to lncDBET. RT-PCR, western blotting, RIP and KEGG analysis were used to confirm the target of lncDBET. The levels of METTL14, lncDBET and FABP5 were tested in vitro and in vivo. CCK-8, EdU, transwell and flow cytometry assays were performed to determine the oncogenic function of METTL14, lncDBET and FABP5, and their regulatory networks. Results: We identified that the m6A level of total RNA was elevated and that METTL14 was the dominant m6A-related enzyme in BCa. m6A modification mediated by METTL14 promoted the malignant progression of BCa by promoting the expression of lncDBET. Upregulated lncDBET activated the PPAR signalling pathway to promote the lipid metabolism of cancer cells through direct interaction with FABP5, thus promoting the malignant progression of BCa in vitro and in vivo. Conclusions: Our study establishes METTL14/lncDBET/FABP5 as a critical oncogenic axis in BCa.
Collapse
Affiliation(s)
- Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
42
|
Han X, Li B. The emerging role of noncoding RNAs in the Hedgehog signaling pathway in cancer. Biomed Pharmacother 2022; 154:113581. [PMID: 36037783 DOI: 10.1016/j.biopha.2022.113581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hedgehog (HH), a conserved signaling pathway, is involved in embryo development, organogenesis, and other biological functions. Dysregulation and abnormal activation of HH are involved in tumorigenesis and tumor progression. With the emergence of interest in noncoding RNAs, studies on their involvement in abnormal regulation of biological processes in tumors have been published one after another. In this review, we focus on the crosstalk between noncoding RNAs and the HH pathway in tumors and elaborate the mechanisms by which long noncoding RNAs and microRNAs regulate or are regulated by HH signaling in cancer. We also discuss the interaction between noncoding RNAs and the HH pathway from the perspective of cancer hallmarks, presenting this complex network as concisely as possible and organizing ideas for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China. libo--
| |
Collapse
|
43
|
Bae K, Kim JH, Lee JY, Kong SY, Kim YH, Kim S, Yoon KA. Oncogenic fusion of BCAR4 activates EGFR signaling and is sensitive to dual inhibition of EGFR/HER2. Front Mol Biosci 2022; 9:952651. [PMID: 36081848 PMCID: PMC9445485 DOI: 10.3389/fmolb.2022.952651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/05/2022] Open
Abstract
We previously reported CD63-BCAR4 fusion as a novel oncogene that significantly enhanced cell migration and metastasis in lung cancer. To identify effective inhibitors of metastatic activity induced by BCAR4 fusion, we screened a drug library of 381 FDA-approved compounds. The effect of drugs on cell migration was evaluated by monitoring wound healing. Drugs that decreased the cellular mobility of fusion-overexpressing cells compared with that of control cells were selected as candidates. Library screening revealed that erlotinib, canertinib, and lapatinib demonstrated inhibitory effects on cell migration. Activation of the EGFR signaling pathway was detected after ectopic expression of CD63-BCAR4 in normal bronchial epithelial cells, as observed by the increased phosphorylation of tyrosine residues in the EGFR protein. We also confirmed increased levels of the phosphorylated EGFR protein in resected tumors from mice injected with CD63-BCAR4 overexpressing cells. Tyrosine kinase inhibitors (TKIs) of the EGFR family significantly inhibit the migration of BCAR4 fusion-overexpressing cells and induce apoptosis at high concentrations. Among the EGFR family TKIs, canertinib, a dual EGFR/HER2 inhibitor, showed the best inhibitory effect on the migration and viability of BCAR4 fusion-overexpressing cells. We examined the effect of canertinib in vivo using a mouse xenograft model. Oral administration of canertinib to xenografted mice reduced tumor growth induced by the CD63-BCAR4 fusion gene. In addition, canertinib treatment restored E-cadherin expression and reduced the expression of epithelial-mesenchymal transition regulatory factors such as Slug and Snail. Taken together, these results suggest that EGFR/HER2 inhibitors are potential therapeutic options for BCAR4 fusion-harboring lung cancer patients, even in the absence of EGFR mutations.
Collapse
Affiliation(s)
- Kieun Bae
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jin Hee Kim
- College of Health Science, Cheongju University, Cheongju, South Korea
| | - Ja Young Lee
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sun-Young Kong
- Research Institute, National Cancer Center, Goyang, South Korea,National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, Goyang, South Korea,National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, Goyang, South Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea,*Correspondence: Kyong-Ah Yoon,
| |
Collapse
|
44
|
Khan A, Zhang X. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, Molecular Mechanisms, and Significant Therapeutic Potentials. Bioengineering (Basel) 2022; 9:406. [PMID: 36004931 PMCID: PMC9405066 DOI: 10.3390/bioengineering9080406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and serious type of primary liver cancer. HCC patients have a high death rate and poor prognosis due to the lack of clear signs and inadequate treatment interventions. However, the molecular pathways that underpin HCC pathogenesis remain unclear. Long non-coding RNAs (lncRNAs), a new type of RNAs, have been found to play important roles in HCC. LncRNAs have the ability to influence gene expression and protein activity. Dysregulation of lncRNAs has been linked to a growing number of liver disorders, including HCC. As a result, improved understanding of lncRNAs could lead to new insights into HCC etiology, as well as new approaches for the early detection and treatment of HCC. The latest results with respect to the role of lncRNAs in controlling multiple pathways of HCC were summarized in this study. The processes by which lncRNAs influence HCC advancement by interacting with chromatin, RNAs, and proteins at the epigenetic, transcriptional, and post-transcriptional levels were examined. This critical review also highlights recent breakthroughs in lncRNA signaling pathways in HCC progression, shedding light on the potential applications of lncRNAs for HCC diagnosis and therapy.
Collapse
Affiliation(s)
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
45
|
The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling. Nat Commun 2022; 13:4680. [PMID: 35945219 PMCID: PMC9363427 DOI: 10.1038/s41467-022-32472-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
DPF3, a component of the SWI/SNF chromatin remodeling complex, has been associated with clear cell renal cell carcinoma (ccRCC) in a genome-wide association study. However, the functional role of DPF3 in ccRCC development and progression remains unknown. In this study, we demonstrate that DPF3a, the short isoform of DPF3, promotes kidney cancer cell migration both in vitro and in vivo, consistent with the clinical observation that DPF3a is significantly upregulated in ccRCC patients with metastases. Mechanistically, DPF3a specifically interacts with SNIP1, via which it forms a complex with SMAD4 and p300 histone acetyltransferase (HAT), the major transcriptional regulators of TGF-β signaling pathway. Moreover, the binding of DPF3a releases the repressive effect of SNIP1 on p300 HAT activity, leading to the increase in local histone acetylation and the activation of cell movement related genes. Overall, our findings reveal a metastasis-promoting function of DPF3, and further establish the link between SWI/SNF components and ccRCC. The functional role of DPF3, a component of the SWI/SNF chromatin remodelling complex associated with clear cell renal cell carcinoma (ccRCC), remains unknown. Here, the authors characterise the mechanism by which DPF3 promotes metastasis via the activation of the TGF-β signalling pathway in ccRCC.
Collapse
|
46
|
Liu F, Tian T, Zhang Z, Xie S, Yang J, Zhu L, Wang W, Shi C, Sang L, Guo K, Yang Z, Qu L, Liu X, Liu J, Yan Q, Ju HQ, Wang W, Piao HL, Shao J, Zhou T, Lin A. Long non-coding RNA SNHG6 couples cholesterol sensing with mTORC1 activation in hepatocellular carcinoma. Nat Metab 2022; 4:1022-1040. [PMID: 35995997 DOI: 10.1038/s42255-022-00616-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Cholesterol contributes to the structural basis of biological membranes and functions as a signaling molecule, whose dysregulation has been associated with various human diseases. Here, we report that the long non-coding RNA (lncRNA) SNHG6 increases progression from non-alcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) by modulating cholesterol-induced mTORC1 activation. Mechanistically, cholesterol binds ER-anchored FAF2 protein to promote the formation of a SNHG6-FAF2-mTOR complex. As a putative cholesterol effector, SNHG6 enhances cholesterol-dependent mTORC1 lysosomal recruitment and activation via enhancing FAF2-mTOR interaction at ER-lysosome contacts, thereby coordinating mTORC1 kinase cascade activation with cellular cholesterol biosynthesis in a self-amplified cycle to accelerate cholesterol-driven NAFLD-HCC development. Notably, loss of SNHG6 inhibits mTORC1 signaling and impairs growth of patient-derived xenograft liver cancer tumors, identifyifng SNHG6 as a potential target for liver cancer treatment. Together, our findings illustrate the crucial role of organelle-associated lncRNA in organelle communication, nutrient sensing, and kinase cascades.
Collapse
Affiliation(s)
- Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Tian Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Shanshan Xie
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Linyu Zhu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kaiqiang Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiangrui Liu
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou, China.
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
47
|
DNA Methylation and Histone Modification in Dental-derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2022; 18:2797-2816. [PMID: 35896859 DOI: 10.1007/s12015-022-10413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/16/2022]
Abstract
Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs (ncRNAs), is essential for the regulation of multiple cellular processes. Dental-derived mesenchymal stem cells (DMSCs), a kind of multipotent cells derived from dental tissues, are impactful in regenerative medicine. Recent studies have shown that epigenetic regulation plays a major role in DMSCs. Therefore, exploring how epigenetic regulation is involved in DMSCs may be of guiding significance for tissue repair and regeneration or for exploring more effective treatments. A number of research of ncRNAs in DMSCs have been reported. However, little is known about the roles of DNA methylation and histone modifications in DMSCs. In this review, we summarize the important roles of DNA methylation and histone modifications of the fate of DMSCs.
Collapse
|
48
|
Zhang Z, Yang P, Wang C, Tian R. LncRNA CRNDE hinders the progression of osteoarthritis by epigenetic regulation of DACT1. Cell Mol Life Sci 2022; 79:405. [PMID: 35802196 PMCID: PMC11072342 DOI: 10.1007/s00018-022-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Osteoarthritis (OA) is mainly characterized by articular cartilage degeneration, synovial fibrosis, and inflammation. LncRNA CRNDE (colorectal neoplasia differentially expressed) has been reported to be down-regulated in age-related OA, but its role in injury-induced OA needs to be further explored. In this study, an OA rat model was established using anterior cruciate ligament transection, and the adenovirus-mediated CRNDE overexpression (Ad-CRNDE) or DACT1 (dapper antagonist of catenin-1) interference (sh-DACT1) vectors were administered by intraarticular injection. Moreover, chondrocyte‑like ATDC5 cells were treated with IL-1β (10 ng/mL) to simulate OA conditions in vitro. We found that overexpression of CRNDE alleviated cartilage damage and synovitis in OA rats, and suppressed IL-1β-induced apoptosis, inflammation, and extracellular matrix (ECM) degradation in chondrocyte‑like ATDC5 cells, while silencing DACT1 effectively antagonized the protective effect of CRNDE both in vivo and in vitro. Mechanism studies revealed that DACT1 could act as a downstream target of CRNDE. By recruiting p300, CRNDE promoted the enrichment of H3K27ac in the DACT1 promoter, thus promoting DACT1 transcription. In addition, CRNDE hindered the activation of the Wnt/β-catenin pathway in IL-1β-stimulated cells by inducing DACT1 expression. In conclusion, CRNDE promoted DACT1 expression through epigenetic modification and restrained the activation of Wnt/β-catenin signaling to impede the progression of OA.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
- Department of Sports Injury, Xi'an Honghui Hospital, Xi'an, China.
| | - Pei Yang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Chunsheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Run Tian
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| |
Collapse
|
49
|
Emerging roles and potential clinical applications of long non-coding RNAs in hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113327. [PMID: 35779423 DOI: 10.1016/j.biopha.2022.113327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common highly malignant tumors in humans, as well as the leading cause of cancer-related death worldwide. Growing evidence has indicated that lncRNAs are implicated in different molecular mechanisms, including interactions with DNA, RNA, or protein, so that to regulate the gene expression at epigenetic, transcriptional, or posttranscriptional level. Moreover, the mechanism of action of lncRNA is closely related to its subcellular localization. An increasing number of studies have certified that lncRNA plays a significant biological function in the occurrence and development of hepatocellular carcinoma, such as involving in cell proliferation, metastasis, apoptosis, ferroptosis, autophagy, and reprogramming of energy metabolism. As a result, lncRNA has great potential as a novel biomarker for diagnosis or therapeutics of hepatocellular carcinoma. In this review, we highlight the correlation between subcellular localization of lncRNA and its mechanism of action, discuss the biological roles of lncRNA and the latest research advances in hepatocellular carcinoma, and emphasize the potential of lncRNA as a therapeutic target for advanced patients of hepatocellular carcinoma.
Collapse
|
50
|
Sargazi ML, Jafarinejad-Farsangi S, Moazzam-Jazi M, Rostamzadeh F, Karam ZM. The crosstalk between long non-coding RNAs and the hedgehog signaling pathway in cancer. Med Oncol 2022; 39:127. [PMID: 35716241 DOI: 10.1007/s12032-022-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Hedgehog (Hh) is a conserved signaling pathway that is involved in embryo development as well as adult tissue maintenance and repair in invertebrates and vertebrates. Abnormal activation of this pathway in various types of malignant drug- and apoptosis-resistant tumors has made it a therapeutic target against tumorigenesis. Thus, understanding the molecular mechanisms that promote the activation or inhibition of this pathway is critical. Long non-coding RNAs (lncRNAs), a subclass of non-coding RNAs with a length of > 200 nt, affect the expression of Hh signaling components via a variety of transcriptional and post-transcriptional processes. This review focuses on the crosstalk between lncRNAs and the Hh pathway in carcinogenesis, outlines the broad role of Hh-related lncRNAs in tumor progression, and illustrates their clinical diagnostic, prognostic, and therapeutic potential in tumors.
Collapse
Affiliation(s)
- Marzieh Lotfian Sargazi
- Student Research Committee, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, 7619813159, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 7619813159, Kerman, Iran.
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 19839-63113, Tehran, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, 7619813159, Kerman, Iran
| | - Zahra Miri Karam
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|