1
|
Xu M, Hu H, Yang W, Zhang J, Wang H, Zhang W, Huan C. FBXO45 restricts HIV-1 replication by inducing SQSTM1/p62-mediated autophagic degradation of Tat. J Virol 2025:e0191224. [PMID: 39936917 DOI: 10.1128/jvi.01912-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
As a key regulator of human immunodeficiency virus type 1 (HIV-1) transcription, Tat plays an essential role in viral replication and latency, making it a promising target for designing viral control strategies. Identifying host factors that modulate Tat and exploring the underlying mechanisms will benefit our understanding of HIV-1 transcriptional regulation and provide valuable insights into Tat-based therapeutic strategies. Here, by employing the TurboID approach, we discovered high-affinity binding between FBXO45 and Tat. Our findings demonstrate that FBXO45 negatively regulates Tat by promoting Tat ubiquitination and directing it to autophagic degradation. Autophagic degradation of Tat has been reported, but the specific underlying mechanisms remain unidentified. We elucidated this issue by providing evidence that FBXO45-mediated Tat polyubiquitination is an essential prerequisite for this process. Silencing of FBXO45 leads to a deficiency of autophagy receptor SQSTM1/p62 to bind and facilitate the autophagic degradation of Tat. Our results further underscore the crosstalk between post-translational modifications of Tat by demonstrating that the phosphorylation site of the Tat S62 residue is required for ubiquitination induced by FBXO45. Furthermore, in the context of the regulation of HIV-1, FBXO45 inhibits viral replication and maintains the latency of HIV-1 by suppressing viral transcription. Importantly, FBXO45 overexpression significantly attenuated viral rebound after antiretroviral therapy withdrawal. In summary, our findings suggest a novel role for FBXO45 in regulating HIV-1 replication by inducing the ubiquitination and SQSTM1/p62-dependent autophagic degradation of Tat. Considering the indispensable role of Tat in the regulation of HIV-1 replication and reactivation, FBXO45 may be a potential target for therapeutic intervention against HIV-1.IMPORTANCEHIV-1 Tat plays an indispensable role in regulating viral transcription and is a promising target for achieving a functional cure for AIDS. Identifying the host factors that modulate Tat expression could benefit the development of anti-HIV-1 strategies targeting Tat. Using TurboID assay, we identified a significant interaction between FBXO45 and Tat. Functionally, FBXO45 ubiquitinates and directs Tat for SQSTM1/p62-mediated autophagic degradation, thereby effectively restricting HIV-1 replication and maintaining HIV-1 latency by suppressing Tat-dependent viral transcription. These findings uncover a novel role for FBXO45 in regulating Tat and broaden our understanding of the host mechanisms involved in Tat processing.
Collapse
Affiliation(s)
- Mingxiu Xu
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haobo Hu
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weijing Yang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxiang Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Wang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
García-Blay Ó, Hu X, Wassermann CL, van Bokhoven T, Struijs FMB, Hansen MMK. Multimodal screen identifies noise-regulatory proteins. Dev Cell 2025; 60:133-151.e12. [PMID: 39406240 DOI: 10.1016/j.devcel.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2023] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 01/11/2025]
Abstract
Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, identifies 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise control can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise control does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state switching in pluripotent mouse embryonic stem cells and impacts their fate choice during differentiation. Collectively, we demonstrate a class of proteins that control noise orthogonally to mean expression levels. This work serves as a proof of concept that can identify other functional noise regulators throughout development and disease progression.
Collapse
Affiliation(s)
- Óscar García-Blay
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Christin L Wassermann
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tom van Bokhoven
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Fréderique M B Struijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Gomez-Rivera F, Terry VH, Chen C, Painter MM, Virgilio MC, Yaple-Maresh ME, Collins KL. Variation in HIV-1 Tat activity is a key determinant in the establishment of latent infection. JCI Insight 2024; 10:e184711. [PMID: 39636695 PMCID: PMC11790021 DOI: 10.1172/jci.insight.184711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
Despite effective treatment, human immunodeficiency virus (HIV) persists in optimally treated people as a transcriptionally silent provirus. Latently infected cells evade the immune system and the harmful effects of the virus, thereby creating a long-lasting reservoir of HIV. To gain a deeper insight into the molecular mechanisms of HIV latency establishment, we constructed a series of HIV-1 fluorescent reporter viruses that distinguish active versus latent infection. We unexpectedly observed that the proportion of active to latent infection depended on a limiting viral factor, which created a bottleneck that could be overcome by superinfection of the cell, T cell activation, or overexpression of HIV-1 transactivator of transcription (Tat). In addition, we found that tat and regulator of expression of virion proteins (Rev) expression levels varied among HIV molecular clones and that tat levels were an important variable in latency establishment. Lower rev levels limited viral protein expression whereas lower Tat levels or mutation of the Tat binding element promoted latent infection that was resistant to reactivation even in fully activated primary T cells. Nevertheless, we found that combinations of latency reversal agents targeting both cellular activation and histone acetylation pathways overcame deficiencies in the Tat/TAR axis of transcription regulation. These results provide additional insight into the mechanisms of latency establishment and inform Tat-centered approaches to cure HIV.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Virgilio
- Department of Computational Medicine and Bioinformatics
- Cellular and Molecular Biology Program, and
| | | | - Kathleen L. Collins
- Graduate Program in Immunology
- Department of Internal Medicine
- Cellular and Molecular Biology Program, and
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Pitchai FNN, Tanner EJ, Khetan N, Vasen G, Levrel C, Kumar AJ, Pandey S, Ordonez T, Barnette P, Spencer D, Jung SY, Glazier J, Thompson C, Harvey-Vera A, Son HI, Strathdee SA, Holguin L, Urak R, Burnett J, Burgess W, Busman-Sahay K, Estes JD, Hessell A, Fennessey CM, Keele BF, Haigwood NL, Weinberger LS. Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates. Science 2024; 385:eadn5866. [PMID: 39116226 PMCID: PMC11545966 DOI: 10.1126/science.adn5866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2023] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Antiviral therapies with reduced frequencies of administration and high barriers to resistance remain a major goal. For HIV, theories have proposed that viral-deletion variants, which conditionally replicate with a basic reproductive ratio [R0] > 1 (termed "therapeutic interfering particles" or "TIPs"), could parasitize wild-type virus to constitute single-administration, escape-resistant antiviral therapies. We report the engineering of a TIP that, in rhesus macaques, reduces viremia of a highly pathogenic model of HIV by >3log10 following a single intravenous injection. Animal lifespan was significantly extended, TIPs conditionally replicated and were continually detected for >6 months, and sequencing data showed no evidence of viral escape. A single TIP injection also suppressed virus replication in humanized mice and cells from persons living with HIV. These data provide proof of concept for a potential new class of single-administration antiviral therapies.
Collapse
Affiliation(s)
- Fathima N. Nagoor Pitchai
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Elizabeth J. Tanner
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Neha Khetan
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Gustavo Vasen
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Clara Levrel
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Arjun J. Kumar
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Absci Corporation, Vancouver, WA, USA
| | - Seung-Yong Jung
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Joshua Glazier
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Cassandra Thompson
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Harvey-Vera
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- US-Mexico Border Health Commission, Tijuana, Mexico
| | - Hye-In Son
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Steffanie A. Strathdee
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leo Holguin
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Urak
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - John Burnett
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William Burgess
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- School of Health and Biomedical Sciences College of Science, Engineering and Health RMIT University, Melbourne, Australia
| | - Ann Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leor S. Weinberger
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Ashokkumar M, Mei W, Peterson JJ, Harigaya Y, Murdoch DM, Margolis DM, Kornfein C, Oesterling A, Guo Z, Rudin CD, Jiang Y, Browne EP. Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae003. [PMID: 38902848 PMCID: PMC11189801 DOI: 10.1093/gpbjnl/qzae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 06/22/2024]
Abstract
Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jackson J Peterson
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuriko Harigaya
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Murdoch
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caleb Kornfein
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Alex Oesterling
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Zhicheng Guo
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Cynthia D Rudin
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Yuchao Jiang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Edward P Browne
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Wilhelm E, Poirier M, Da Rocha M, Bédard M, McDonald PP, Lavigne P, Hunter CL, Bell B. Mitotic deacetylase complex (MiDAC) recognizes the HIV-1 core promoter to control activated viral gene expression. PLoS Pathog 2024; 20:e1011821. [PMID: 38781120 PMCID: PMC11115230 DOI: 10.1371/journal.ppat.1011821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
The human immunodeficiency virus (HIV) integrates into the host genome forming latent cellular reservoirs that are an obstacle for cure or remission strategies. Viral transcription is the first step in the control of latency and depends upon the hijacking of the host cell RNA polymerase II (Pol II) machinery by the 5' HIV LTR. Consequently, "block and lock" or "shock and kill" strategies for an HIV cure depend upon a full understanding of HIV transcriptional control. The HIV trans-activating protein, Tat, controls HIV latency as part of a positive feed-forward loop that strongly activates HIV transcription. The recognition of the TATA box and adjacent sequences of HIV essential for Tat trans-activation (TASHET) of the core promoter by host cell pre-initiation complexes of HIV (PICH) has been shown to be necessary for Tat trans-activation, yet the protein composition of PICH has remained obscure. Here, DNA-affinity chromatography was employed to identify the mitotic deacetylase complex (MiDAC) as selectively recognizing TASHET. Using biophysical techniques, we show that the MiDAC subunit DNTTIP1 binds directly to TASHET, in part via its CTGC DNA motifs. Using co-immunoprecipitation assays, we show that DNTTIP1 interacts with MiDAC subunits MIDEAS and HDAC1/2. The Tat-interacting protein, NAT10, is also present in HIV-bound MiDAC. Gene silencing revealed a functional role for DNTTIP1, MIDEAS, and NAT10 in HIV expression in cellulo. Furthermore, point mutations in TASHET that prevent DNTTIP1 binding block the reactivation of HIV by latency reversing agents (LRA) that act via the P-TEFb/7SK axis. Our data reveal a key role for MiDAC subunits DNTTIP1, MIDEAS, as well as NAT10, in Tat-activated HIV transcription and latency. DNTTIP1, MIDEAS and NAT10 emerge as cell cycle-regulated host cell transcription factors that can control activated HIV gene expression, and as new drug targets for HIV cure strategies.
Collapse
Affiliation(s)
| | | | - Morgane Da Rocha
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Mikaël Bédard
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Patrick P. McDonald
- Pulmonary Division, Medicine Faculty, Université de Sherbrooke; and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Pierre Lavigne
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | | | - Brendan Bell
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
8
|
Pina C. Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230052. [PMID: 38432321 PMCID: PMC10909511 DOI: 10.1098/rstb.2023.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 03/05/2024] Open
Abstract
Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
- CenGEM – Centre for Genome Engineering and Maintenance, Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, United Kingdom
| |
Collapse
|
9
|
Ranga U, Panchapakesan A, Saini C. HIV-1 subtypes and latent reservoirs. Curr Opin HIV AIDS 2024; 19:87-92. [PMID: 38169308 DOI: 10.1097/coh.0000000000000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW We explore the current status of research on HIV-1 subtype-specific variations and their impact on HIV-1 latency. We also briefly address the controversy surrounding the decision-making process governing the ON/OFF states of HIV-1 transcription, specifically focusing on the regulatory elements, the long terminal repeat (LTR), and Tat. Understanding the decision-making process is crucial for developing effective intervention strategies, such as the 'shock-and-kill' approach, to reactivate latent HIV-1. RECENT FINDINGS Attention has been drawn to subtype-specific transcription factor binding site (TFBS) variations and the possible impact of these variations on viral latency. Further, diverse subtype-specific assays have been developed to quantify the latent viral reservoirs. One interesting observation is the relatively larger latent reservoirs in HIV-1B infection than those of other viral subtypes, which needs rigorous validation. The emergence of LTR-variant viral strains in HIV-1C demonstrating significantly higher levels of latency reversal has been reported. SUMMARY Despite persistent and substantial efforts, latent HIV-1 remains a formidable challenge to a functional cure. Determined and continued commitment is needed to understand the ON/OFF decision-making process of HIV-1 latency, develop rigorous assays for accurately quantifying the latent reservoirs, and identify potent latency-reversing agents and cocktails targeting multiple latency stages. The review emphasizes the importance of including diverse viral subtypes in future latency research.
Collapse
Affiliation(s)
- Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| | - Arun Panchapakesan
- Molecular Biology Laboratory, Y R Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, Tamil Nadu, India
| | - Chhavi Saini
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| |
Collapse
|
10
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
11
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
12
|
Damour A, Slaninova V, Radulescu O, Bertrand E, Basyuk E. Transcriptional Stochasticity as a Key Aspect of HIV-1 Latency. Viruses 2023; 15:1969. [PMID: 37766375 PMCID: PMC10535884 DOI: 10.3390/v15091969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours. Transcriptional bursts are mainly controlled by the core transcription factors TBP, SP1 and NF-κb, the chromatin status of the viral promoter and RNA polymerase II pausing. In particular, spontaneous variability in the promoter chromatin creates heterogeneity in the response to activators such as TNF-α, which is then amplified by the Tat feedback loop to generate high and low viral transcriptional states. This phenomenon is likely at the basis of the partial and stochastic response of latent T cells from HIV-1 patients to latency-reversing agents, which is a barrier for the development of shock-and-kill strategies of viral eradication. A detailed understanding of the transcriptional stochasticity of HIV-1 and the possibility to precisely model this phenomenon will be important assets to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Alexia Damour
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| | - Vera Slaninova
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Ovidiu Radulescu
- LPHI, UMR 5294 CNRS, University of Montpellier, 34095 Montpellier, France;
| | - Edouard Bertrand
- IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France;
| | - Eugenia Basyuk
- MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France;
| |
Collapse
|
13
|
Sankhe GD, Raja R, Singh DP, Bheemireddy S, Rana S, Athira PJ, Dixit NM, Saini DK. Sequestration of histidine kinases by non-cognate response regulators establishes a threshold level of stimulation for bacterial two-component signaling. Nat Commun 2023; 14:4483. [PMID: 37491529 PMCID: PMC10368727 DOI: 10.1038/s41467-023-40095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2020] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Bacterial two-component systems (TCSs) consist of a sensor histidine kinase (HK) that perceives a specific signal, and a cognate response regulator (RR) that modulates the expression of target genes. Positive autoregulation improves TCS sensitivity to stimuli, but may trigger disproportionately large responses to weak signals, compromising bacterial fitness. Here, we combine experiments and mathematical modelling to reveal a general design that prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can be sequestered by non-cognate RRs. We study five TCSs of Mycobacterium tuberculosis and find, for all of them, non-cognate RRs that show higher affinity than cognate RRs for HK~Ps. Indeed, in vitro assays show that HK~Ps preferentially bind higher affinity non-cognate RRs and get sequestered. Mathematical modelling indicates that this sequestration would introduce a 'threshold' stimulus strength for eliciting responses, thereby preventing responses to weak signals. Finally, we construct tunable expression systems in Mycobacterium bovis BCG to show that higher affinity non-cognate RRs suppress responses in vivo.
Collapse
Affiliation(s)
- Gaurav D Sankhe
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Devendra Pratap Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bengaluru, India
| | - P J Athira
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Narendra M Dixit
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
14
|
Ling L, Leda AR, Begum N, Spagnuolo RA, Wahl A, Garcia JV, Valente ST. Loss of In Vivo Replication Fitness of HIV-1 Variants Resistant to the Tat Inhibitor, dCA. Viruses 2023; 15:950. [PMID: 37112931 PMCID: PMC10146675 DOI: 10.3390/v15040950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
HIV resistance to the Tat inhibitor didehydro-cortistatin A (dCA) in vitro correlates with higher levels of Tat-independent viral transcription and a seeming inability to enter latency, which rendered resistant isolates more susceptible to CTL-mediated immune clearance. Here, we investigated the ability of dCA-resistant viruses to replicate in vivo using a humanized mouse model of HIV infection. Animals were infected with WT or two dCA-resistant HIV-1 isolates in the absence of dCA and followed for 5 weeks. dCA-resistant viruses exhibited lower replication rates compared to WT. Viral replication was suppressed early after infection, with viral emergence at later time points. Multiplex analysis of cytokine and chemokines from plasma samples early after infection revealed no differences in expression levels between groups, suggesting that dCA-resistance viruses did not elicit potent innate immune responses capable of blocking the establishment of infection. Viral single genome sequencing results from plasma samples collected at euthanasia revealed that at least half of the total number of mutations in the LTR region of the HIV genome considered essential for dCA evasion reverted to WT. These results suggest that dCA-resistant viruses identified in vitro suffer a fitness cost in vivo, with mutations in LTR and Nef pressured to revert to wild type.
Collapse
Affiliation(s)
- Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana R. Leda
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nurjahan Begum
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rae Ann Spagnuolo
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL 33458, USA
| |
Collapse
|
15
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
16
|
Singh A, Saint-Antoine M. Probing transient memory of cellular states using single-cell lineages. Front Microbiol 2023; 13:1050516. [PMID: 36824587 PMCID: PMC9942930 DOI: 10.3389/fmicb.2022.1050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
The inherent stochasticity in the gene product levels can drive single cells within an isoclonal population to different phenotypic states. The dynamic nature of this intercellular variation, where individual cells can transition between different states over time, makes it a particularly hard phenomenon to characterize. We reviewed recent progress in leveraging the classical Luria-Delbrück experiment to infer the transient heritability of the cellular states. Similar to the original experiment, individual cells were first grown into cell colonies, and then, the fraction of cells residing in different states was assayed for each colony. We discuss modeling approaches for capturing dynamic state transitions in a growing cell population and highlight formulas that identify the kinetics of state switching from the extent of colony-to-colony fluctuations. The utility of this method in identifying multi-generational memory of the both expression and phenotypic states is illustrated across diverse biological systems from cancer drug resistance, reactivation of human viruses, and cellular immune responses. In summary, this fluctuation-based methodology provides a powerful approach for elucidating cell-state transitions from a single time point measurement, which is particularly relevant in situations where measurements lead to cell death (as in single-cell RNA-seq or drug treatment) or cause an irreversible change in cell physiology.
Collapse
Affiliation(s)
- Abhyudai Singh
- Departments of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences University of Delaware, Newark, DE, United States
| | | |
Collapse
|
17
|
Enhanced Transcriptional Strength of HIV-1 Subtype C Minimizes Gene Expression Noise and Confers Stability to the Viral Latent State. J Virol 2023; 97:e0137622. [PMID: 36533949 PMCID: PMC9888270 DOI: 10.1128/jvi.01376-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Stochastic fluctuations in gene expression emanating from the HIV-1 long terminal repeat (LTR), amplified by the Tat positive feedback circuit, determine the choice between viral infection fates: active transcription (ON) or transcriptional silence (OFF). The emergence of several transcription factor binding site (TFBS) variant strains in HIV-1 subtype C (HIV-1C), especially those containing the duplication of the NF-κB motif, mandates the evaluation of the effect of enhanced transcriptional strength on gene expression noise and its influence on viral fate selection switch. Using a panel of subgenomic LTR-variant strains containing different copy numbers of the NF-κB motif (ranging from 0 to 4), we used flow cytometry, mRNA quantification, and pharmacological perturbations to demonstrate an inverse correlation between promoter strength and gene expression noise in Jurkat T cells and primary CD4+ T cells. The inverse correlation is consistent in clonal cell populations at constant intracellular concentrations of Tat and when NF-κB levels were regulated pharmacologically. Further, we show that strong LTRs containing at least two copies of the NF-κB motif in the enhancer establish a more stable latent state and demonstrate more rapid latency reversal than weak LTRs containing fewer motifs. We also demonstrate a cooperative binding of NF-κB to the motif cluster in HIV-1C LTRs containing two, three, or four NF-κB motifs (Hill coefficient [H] = 2.61, 3.56, and 3.75, respectively). The present work alludes to a possible evolution of the HIV-1C LTR toward gaining transcriptional strength associated with attenuated gene expression noise with implications for viral latency. IMPORTANCE Over the past two consecutive decades, HIV-1 subtype C (HIV-1C) has been undergoing directional evolution toward augmenting the transcriptional strength of the long terminal repeat (LTR) by adding more copies of the existing transcription factor binding site (TFBS) by sequence duplication. Additionally, the duplicated elements are genetically diverse, suggesting broader-range signal receptivity by variant LTRs. The HIV-1 promoter is inherently noisy, and the stochastic fluctuations in gene expression of variant LTRs may influence the active transcription (ON)/transcriptional silence (OFF) latency decisions. The evolving NF-κB motif variations of HIV-1C offer a powerful opportunity to examine how the transcriptional strength of the LTR might influence gene expression noise. Our work here shows that the augmented transcriptional strength of the HIV-1C LTR leads to concomitantly reduced gene expression noise, consequently leading to stabler latency maintenance and rapid latency reversal. The present work offers a novel lead toward appreciating the molecular mechanisms governing HIV-1 latency.
Collapse
|
18
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
19
|
Li C, Mori LP, Lyu S, Bronson R, Getzler AJ, Pipkin ME, Valente ST. The chaperone protein p32 stabilizes HIV-1 Tat and strengthens the p-TEFb/RNAPII/TAR complex promoting HIV transcription elongation. Proc Natl Acad Sci U S A 2023; 120:e2217476120. [PMID: 36584296 PMCID: PMC9910500 DOI: 10.1073/pnas.2217476120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022] Open
Abstract
HIV gene expression is modulated by the combinatorial activity of the HIV transcriptional activator, Tat, host transcription factors, and chromatin remodeling complexes. To identify host factors regulating HIV transcription, we used specific single-guide RNAs and endonuclease-deficient Cas9 to perform chromatin affinity purification of the integrated HIV promoter followed by mass spectrometry. The scaffold protein, p32, also called ASF/SF2 splicing factor-associated protein, was identified among the top enriched factors present in actively transcribing HIV promoters but absent in silenced ones. Chromatin immunoprecipitation analysis confirmed the presence of p32 on active HIV promoters and its enhanced recruitment by Tat. HIV uses Tat to efficiently recruit positive transcription elongation factor b (p-TEFb) (CDK9/CCNT1) to TAR, an RNA secondary structure that forms from the first 59 bp of HIV transcripts, to enhance RNAPII transcriptional elongation. The RNA interference of p32 significantly reduced HIV transcription in primary CD4+T cells and in HIV chronically infected cells, independently of either HIV splicing or p32 anti-splicing activity. Conversely, overexpression of p32 specifically increased Tat-dependent HIV transcription. p32 was found to directly interact with Tat's basic domain enhancing Tat stability and half-life. Conversely, p32 associates with Tat via N- and C-terminal domains. Likely due its scaffold properties, p32 also promoted Tat association with TAR, p-TEFb, and RNAPII enhancing Tat-dependent HIV transcription. In sum, we identified p32 as a host factor that interacts with and stabilizes Tat protein, promotes Tat-dependent transcriptional regulation, and may be explored for HIV-targeted transcriptional inhibition.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Luisa P. Mori
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Shuang Lyu
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Ronald Bronson
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Adam J. Getzler
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Susana T. Valente
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| |
Collapse
|
20
|
Kalidasan V, Ravichantar N, Muhd Besari A, Yunus MA, Mohd Yusoff N, Mohamed Z, Theva Das K. Latent HIV-1 provirus in vitro suppression using combinatorial CRISPR/Cas9 strategy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
21
|
A role for CD4 + helper cells in HIV control and progression. AIDS 2022; 36:1501-1510. [PMID: 35730394 DOI: 10.1097/qad.0000000000003296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE It remains unclear why HIV persists in most untreated individuals, and why a small minority of individuals can control the virus, either spontaneously or after an early treatment. Striking differences have been discovered between patient cohorts in CD4 + T-cell avidity but not in CD8 + T-cell avidity. The present work has the aim to explain the diverse outcome of infection and identify the key virological and immunological parameters predicting the outcome. DESIGN AND METHOD A mathematical model informed by these experiments and taking into account the details of HIV virology is developed. RESULTS The model predicts an arms race between viral dissemination and the proliferation of HIV-specific CD4 + helper cells leading to one of two states: a low-viremia state (controller) or a high-viremia state (progressor). Helper CD4 + cells with a higher avidity favor virus control. The parameter segregating spontaneous and posttreatment controllers is the infectivity difference between activated and resting CD4 + T cells. The model is shown to have a better connection to experiment than a previous model based on T-cell 'exhaustion'. CONCLUSION Using the model informed by patient data, the timing of antiretroviral therapy can be optimized.
Collapse
|
22
|
Lichterfeld M, Gao C, Yu XG. An ordeal that does not heal: understanding barriers to a cure for HIV-1 infection. Trends Immunol 2022; 43:608-616. [PMID: 35905706 PMCID: PMC9346997 DOI: 10.1016/j.it.2022.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/23/2022]
Abstract
With more than 38 million people living with HIV-1 (PLWH) worldwide, developing a cure for HIV-1 remains a major global health priority. Lifelong persistence of HIV-1 is frequently attributed to a pool of stable, transcriptionally silent HIV-1 proviruses, which are unaffected by currently available antiretroviral therapy (ART) or host immune activity. In this opinion article, we propose a more dynamic interpretation of HIV-1 reservoir cell biology and argue that HIV-1 proviruses frequently display residual viral transcriptional activity, making them vulnerable to longitudinal immune-mediated selection processes. Such mechanisms may, over extended periods of ART, induce an attenuated viral reservoir profile characterized by intact proviruses preferentially integrated into heterochromatin locations. We suggest that intensifying and accelerating naturally occurring selection mechanisms might represent a promising strategy for finding a potential cure for HIV-1 infection.
Collapse
Affiliation(s)
- Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Abstract
HIV-1 persistence in different cell types presents the main obstacle to an HIV-1 cure. We have previously shown that the renal epithelium is a site of HIV-1 infection and that the kidney represents a separate viral compartment from blood. Whether renal cells can harbor latent virus that can be reactivated upon treatment with latency reversing agents (LRAs) is unknown. To address this question, we developed an in vitro HIV-1 latency model in renal tubule epithelial (RTE) cells using a dual color HIV-1 reporter virus, R7/E-/GFP/EF1a-mCherry (R7GEmC), and evaluated the effect of LRAs, both as single agents and in combination, on viral reactivation. Our data show that HIV-1 can establish latency in RTE cells early postinfection. While the pool of latently infected cells expanded overtime, the percentage of productively infected cells declined. Following LRA treatment only a small fraction of latently infected cells, both T cells and RTE cells, could be reactivated, and the drug combinations more effective in reactivating HIV transcription in RTE cells differed from those more active in T cells. Our study demonstrates that HIV can establish latency in RTE cells and that current LRAs are only marginally effective in inducing HIV-1 reactivation. This suggests that further study of LRA dynamics in non-T cells may be warranted to assess the suitability of LRAs as a sterilizing cure strategy. IMPORTANCE Anti-retroviral therapy (ART) has dramatically reduced HIV-related morbidity and mortality. Despite this success, a number of challenges remain, including the long-term persistence of multiple, clinically latent viral reservoirs capable of reactivation in the absence of ART. As efforts proceed toward HIV eradication or functional cure, further understanding of the dynamics of HIV-1 replication, establishment of latency and mechanisms of reactivation in reservoirs harboring the virus throughout the body is necessary. HIV-1 can infect renal epithelial cells and the expression of viral genes in those cells contributes to the development of HIV associated nephropathy (HIVAN) in untreated individuals. The significance of our work is in developing the first model of HIV-1 latency in renal epithelial cells. This model enhances our understanding of HIV-1 latency and persistence in the kidney and can be used to screen candidate latency reversing agents.
Collapse
|
24
|
Loell K, Wu Y, Staller MV, Cohen B. Activation domains can decouple the mean and noise of gene expression. Cell Rep 2022; 40:111118. [PMID: 35858548 PMCID: PMC9912357 DOI: 10.1016/j.celrep.2022.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Regulatory mechanisms set a gene's average level of expression, but a gene's expression constantly fluctuates around that average. These stochastic fluctuations, or expression noise, play a role in cell-fate transitions, bet hedging in microbes, and the development of chemotherapeutic resistance in cancer. An outstanding question is what regulatory mechanisms contribute to noise. Here, we demonstrate that, for a fixed mean level of expression, strong activation domains (ADs) at low abundance produce high expression noise, while weak ADs at high abundance generate lower expression noise. We conclude that differences in noise can be explained by the interplay between a TF's nuclear concentration and the strength of its AD's effect on mean expression, without invoking differences between classes of ADs. These results raise the possibility of engineering gene expression noise independently of mean levels in synthetic biology contexts and provide a potential mechanism for natural selection to tune the noisiness of gene expression.
Collapse
Affiliation(s)
- Kaiser Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Yawei Wu
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Max V. Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Barak Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.
| |
Collapse
|
25
|
Kandula UR, Wake AD. Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review. Biologics 2022; 16:89-105. [PMID: 35836496 PMCID: PMC9275675 DOI: 10.2147/btt.s368152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapies are becoming a major topic in biomedical research all over the planet. It may be a viable treatment choice for people suffering from a wide range of illnesses and injuries. It has recently emerged as an extremely intriguing and well-established science and research topic. Expectations have risen due to advancements in therapeutic approaches. Multiple laboratory testing of regulated stem cell culture and derivation is carried out before the formation of stem cells for the use of therapeutic process. Whereas HIV infection is contagious and can last a lifetime. Researchers are still working to develop a comprehensive and effective treatment for HIV and its associated condition, as well as AIDS. HIV propagation is primarily restricted to the immune system, notably T lymphocytes, as well as macrophages. Large numbers of research studies have contributed to a plethora of data about the enigmatic AIDS life cycle. This vast amount of data provides potential targets for AIDS therapies. Currently, stem cell transplantation, along with other procedures, provided novel insights into HIV pathogenesis and offered a glimpse of hope for the development of a viable HIV cure technique. One of its existing focus areas in HIV and AIDS research is to develop a novel therapeutic strategic plan capable of providing life-long complete recovery of HIV and AIDS without regular drug treatment and, inevitably, curative therapy for HIV and AIDS. The current paper tries to address the possibilities for improved stem cell treatments with "bone marrow, Hematopoietic, human umbilical cord mesenchymal, Genetical modifications with CRISPR/Cas9 in combination of stem cells, induced pluripotent stem cells applications" are discussed which are specifically applied in the HIV and AIDS therapeutic management advancement procedures.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
26
|
Guo X, Tang T, Duan M, Zhang L, Ge H. The nonequilibrium mechanism of noise-enhanced drug synergy in HIV latency reactivation. iScience 2022; 25:104358. [PMID: 35620426 PMCID: PMC9127169 DOI: 10.1016/j.isci.2022.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2021] [Revised: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Noise-modulating chemicals can synergize with transcriptional activators in reactivating latent HIV to eliminate latent HIV reservoirs. To understand the underlying biomolecular mechanism, we investigate a previous two-gene-state model and identify two necessary conditions for the synergy: an assumption of the inhibition effect of transcription activators on noise enhancers; and frequent transitions to the gene non-transcription-permissive state. We then develop a loop-four-gene-state model with Tat transcription/translation and find that drug synergy is mainly determined by the magnitude and direction of energy input into the genetic regulatory kinetics of the HIV promoter. The inhibition effect of transcription activators is actually a phenomenon of energy dissipation in the nonequilibrium gene transition system. Overall, the loop-four-state model demonstrates that energy dissipation plays a crucial role in HIV latency reactivation, which might be useful for improving drug effects and identifying other synergies on lentivirus latency reactivation. The inhibition of Activator on Noise enhancer is necessary for their synergy in reactivating HIV The drug synergy is a nonequilibrium phenomenon in the gene regulatory system The magnitude and direction of energy input determine the drug synergy This nonequilibrium mechanism is general without regarding molecular details
Collapse
|
27
|
Klinnert S, Chemnitzer A, Rusert P, Metzner KJ. Systematic HIV-1 promoter targeting with CRISPR/dCas9-VPR reveals optimal region for activation of the latent provirus. J Gen Virol 2022; 103. [PMID: 35671066 DOI: 10.1099/jgv.0.001754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
CRISPR/dCas9-based activation systems (CRISPRa) enable sequence-specific gene activation and are therefore of particular interest for the 'shock and kill' cure approach against HIV-1 infections. This approach aims to activate the latent HIV-1 proviruses in infected cells and subsequently kill these cells. Several CRISPRa systems have been shown to specifically and effectively activate latent HIV-1 when targeted to the HIV-1 5'LTR promoter, making them a promising 'shock' strategy. Here, we aimed to evaluate the dCas9-VPR system for its applicability in reversing HIV-1 latency and identify the optimal gRNA target site in the HIV-1 5'LTR promoter leading to the strongest activation of the provirus with this system. We systematically screened the HIV-1 promoter by selecting 14 specific gRNAs that cover almost half of the HIV-1 promoter from the 3' half of the U3 until the beginning of the R region. Screening in several latently HIV-1 infected cell lines showed that dCas9-VPR leads to a high activation of HIV-1 and that gRNA-V and -VII induce the strongest activation of replication competent latent provirus. This data indicates that the optimal activation region in the HIV-1 promoter for the dCas9-VPR system is located -165 to -106 bp from the transcription start site and that it is consistent with the optimal activation region reported for other CRISPRa systems. Our data demonstrates that the dCas9-VPR system is a powerful tool for HIV-1 activation and could be harnessed for the 'shock and kill' cure approach.
Collapse
Affiliation(s)
- Sarah Klinnert
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, CH-8091 Zurich, Switzerland
- Life Sciences Graduate School, University of Zurich, CH-8091 Zurich, Switzerland
| | - Alex Chemnitzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
28
|
Lee MYH, Khoury G, Olshansky M, Sonza S, Carter GP, McMahon J, Stinear TP, Turner SJ, Lewin SR, Purcell DFJ. Detection of Chimeric Cellular: HIV mRNAs Generated Through Aberrant Splicing in HIV-1 Latently Infected Resting CD4+ T Cells. Front Cell Infect Microbiol 2022; 12:855290. [PMID: 35573784 PMCID: PMC9096486 DOI: 10.3389/fcimb.2022.855290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Latent HIV-1 provirus in infected individuals on suppressive therapy does not always remain transcriptionally silent. Both HIV-1 LTR and human gene promoter derived transcriptional events can contribute HIV-1 sequences to the mRNA produced in the cell. In addition, chimeric cellular:HIV mRNA can arise through readthrough transcription and aberrant splicing. Using target enrichment coupled to the Illumina Mi-Seq and PacBio RS II platforms, we show that 3’ LTR activation is frequent in latently infected cells from both the CCL19-induced primary cell model of HIV-1 latency as well as ex vivo samples. In both systems of latent HIV-1 infection, we detected several chimeric species that were generated via activation of a cryptic splice donor site in the 5’ LTR of HIV-1. Aberrant splicing involving the major HIV-1 splice donor sites, SD1 and SD4 disrupts post-transcriptional processing of the gene in which HIV-1 is integrated. In the primary cell model of HIV-1 latency, Tat-encoding sequences are incorporated into the chimeric mRNA transcripts through the use of SD4. Our study unravels clues to the characteristics of HIV-1 integrants that promote formation of chimeric cellular:HIV mRNA and improves the understanding of the HIV-1 RNA footprint in latently infected cells.
Collapse
Affiliation(s)
- Michelle Y-H Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- *Correspondence: Damian F. J. Purcell,
| |
Collapse
|
29
|
Kabi M, Filion GJ. Chromatin and viral integration in immunity: The challenge of silencing non-self genes. Trends Immunol 2022; 43:449-458. [PMID: 35490134 DOI: 10.1016/j.it.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
Abstract
Several viruses hide in the genome of their host. To complete their replication cycle, they need to integrate in the form of a provirus and express their genes. In vertebrates, integrated viruses can be silenced by chromatin, implying that some specific mechanisms exist to detect non-self genes. The known mechanisms depend on sequence features of retroelements, but the fluctuations of virus expression suggest that other determinants also exist. Here we review the mechanisms allowing chromatin to silence integrated viruses and propose that DNA repair may help flag them as 'non-self' shortly after their genomic insertion.
Collapse
Affiliation(s)
- Manisha Kabi
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada
| | - Guillaume J Filion
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada.
| |
Collapse
|
30
|
Falcinelli SD, Peterson JJ, Turner AMW, Irlbeck D, Read J, Raines SL, James KS, Sutton C, Sanchez A, Emery A, Sampey G, Ferris R, Allard B, Ghofrani S, Kirchherr JL, Baker C, Kuruc JD, Gay CL, James LI, Wu G, Zuck P, Rioja I, Furze RC, Prinjha RK, Howell BJ, Swanstrom R, Browne EP, Strahl BD, Dunham RM, Archin NM, Margolis DM. Combined noncanonical NF-κB agonism and targeted BET bromodomain inhibition reverse HIV latency ex vivo. J Clin Invest 2022; 132:e157281. [PMID: 35426377 PMCID: PMC9012286 DOI: 10.1172/jci157281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Latency reversal strategies for HIV cure using inhibitor of apoptosis protein (IAP) antagonists (IAPi) induce unprecedented levels of latent reservoir expression without immunotoxicity during suppressive antiretroviral therapy (ART). However, full targeting of the reservoir may require combinatorial approaches. A Jurkat latency model screen for IAPi combination partners demonstrated synergistic latency reversal with bromodomain (BD) and extraterminal domain protein inhibitors (BETi). Mechanistic investigations using CRISPR-CAS9 and single-cell RNA-Seq informed comprehensive ex vivo evaluations of IAPi plus pan-BET, bD-selective BET, or selective BET isoform targeting in CD4+ T cells from ART-suppressed donors. IAPi+BETi treatment resulted in striking induction of cell-associated HIV gag RNA, but lesser induction of fully elongated and tat-rev RNA compared with T cell activation-positive controls. IAPi+BETi resulted in HIV protein induction in bulk cultures of CD4+ T cells using an ultrasensitive p24 assay, but did not result in enhanced viral outgrowth frequency using a standard quantitative viral outgrowth assay. This study defines HIV transcriptional elongation and splicing as important barriers to latent HIV protein expression following latency reversal, delineates the roles of BET proteins and their BDs in HIV latency, and provides a rationale for exploration of IAPi+BETi in animal models of HIV latency.
Collapse
Affiliation(s)
- Shane D. Falcinelli
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - David Irlbeck
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Jenna Read
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Samuel L.M. Raines
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Katherine S. James
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Cameron Sutton
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Anthony Sanchez
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Ann Emery
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Gavin Sampey
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Robert Ferris
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Simon Ghofrani
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Jennifer L. Kirchherr
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Caroline Baker
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - JoAnn D. Kuruc
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Cynthia L. Gay
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Lindsey I. James
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Paul Zuck
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Inmaculada Rioja
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rebecca C. Furze
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Bonnie J. Howell
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Ronald Swanstrom
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Edward P. Browne
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Brian D. Strahl
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Richard M. Dunham
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Jiao F, Tang M. Quantification of transcription noise’s impact on cell fate commitment with digital resolutions. Bioinformatics 2022; 38:3062-3069. [DOI: 10.1093/bioinformatics/btac277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2021] [Revised: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Gene transcription is a random and noisy process. Tremendous efforts in single cell studies have been mapping transcription noises to phenotypic variabilities between isogenic cells. However, the exact role of the noise in cell fate commitment remains largely descriptive or even controversial.
Results
For a specified cell fate, we define the jumping digit I of a critical gene as a statistical threshold that a single cell has approximately an equal chance to commit the fate as to have at least I transcripts of the gene. When the transcription is perturbed by a noise enhancer without changing the basal transcription level E 0, we find a crossing digit k such that the noise catalyzes cell fate change when I > k while stabilizes the current state when I < k; k remains stable against enormous variations of kinetic rates. We further test the reactivation of latent HIV in 22 integration sites by noise enhancers paired with transcriptional activators. Strong synergistic actions are observed when the activators increase transcription burst frequency, whereas no synergism, but antagonism, is often observed if activators increase burst size. The synergistic efficiency can be predicted accurately by the ratio I / E0. When the noise enhancers double the noise, the activators double the burst frequency, and I / E0 ≥ 7, their combination is 10 times more effective than their additive effects across all 22 sites.
Availability and implementation
The jumping digit I may provide a novel probe to explore the phenotypic consequences of transcription noise in cell functions. Code is freely available at http://cam.gzhu.edu.cn/info/1014/1223.htm.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Feng Jiao
- Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, 510006, P. R. China
- College of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Moxun Tang
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
33
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
34
|
Matkovic R, Morel M, Lanciano S, Larrous P, Martin B, Bejjani F, Vauthier V, Hansen MMK, Emiliani S, Cristofari G, Gallois-Montbrun S, Margottin-Goguet F. TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV. Nat Commun 2022; 13:66. [PMID: 35013187 PMCID: PMC8748822 DOI: 10.1038/s41467-021-27650-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2020] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
The Human Silencing Hub (HUSH) complex constituted of TASOR, MPP8 and Periphilin recruits the histone methyl-transferase SETDB1 to spread H3K9me3 repressive marks across genes and transgenes in an integration site-dependent manner. The deposition of these repressive marks leads to heterochromatin formation and inhibits gene expression, but the underlying mechanism is not fully understood. Here, we show that TASOR silencing or HIV-2 Vpx expression, which induces TASOR degradation, increases the accumulation of transcripts derived from the HIV-1 LTR promoter at a post-transcriptional level. Furthermore, using a yeast 2-hybrid screen, we identify new TASOR partners involved in RNA metabolism including the RNA deadenylase CCR4-NOT complex scaffold CNOT1. TASOR and CNOT1 synergistically repress HIV expression from its LTR. Similar to the RNA-induced transcriptional silencing complex found in fission yeast, we show that TASOR interacts with the RNA exosome and RNA Polymerase II, predominantly under its elongating state. Finally, we show that TASOR facilitates the association of RNA degradation proteins with RNA polymerase II and is detected at transcriptional centers. Altogether, we propose that HUSH operates at the transcriptional and post-transcriptional levels to repress HIV proviral expression.
Collapse
Affiliation(s)
- Roy Matkovic
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | - Marina Morel
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | - Pauline Larrous
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Benjamin Martin
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Fabienne Bejjani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Virginie Vauthier
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, 6525 AM, Nijmegen, The Netherlands
| | - Stéphane Emiliani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | | | | |
Collapse
|
35
|
Abstract
Recently the Tat/rev Induced Limiting Dilution Assay, or TILDA, has been proposed as a possible alternative method to quantify the HIV-1 reservoir. TILDA estimates the frequency of latently infected cells by probing, in a limiting dilution format, the presence or inducibility of tat and rev multiply spliced HIV-1 RNA. In doing so, TILDA reduces overestimation of reservoir size compared to HIV-1 DNA measurements because multiply spliced HIV-1 RNA is less likely to be transcribed from dysfunctional genomes with replication defects. TILDA is easy to perform, requires a very low input number of cells and has a fast turnaround time, making it ideal for use in clinical settings. Here we describe the execution of TILDA with particular emphasis on cell preparation and the limiting dilution scheme.
Collapse
Affiliation(s)
- Cynthia Lungu
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Francesco A Procopio
- Department of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
36
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
37
|
Abstract
To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5′ long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4+ T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4+ T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4+ T cells, and crucially in CD4+ T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency.
Collapse
|
38
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
39
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
40
|
Ismail SD, Pankrac J, Ndashimye E, Prodger JL, Abrahams MR, Mann JFS, Redd AD, Arts EJ. Addressing an HIV cure in LMIC. Retrovirology 2021; 18:21. [PMID: 34344423 PMCID: PMC8330180 DOI: 10.1186/s12977-021-00565-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.
Collapse
Affiliation(s)
- Sherazaan D Ismail
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Joshua Pankrac
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Andrew D Redd
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada.
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
41
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
42
|
Desai RV, Chen X, Martin B, Chaturvedi S, Hwang DW, Li W, Yu C, Ding S, Thomson M, Singer RH, Coleman RA, Hansen MMK, Weinberger LS. A DNA repair pathway can regulate transcriptional noise to promote cell fate transitions. Science 2021; 373:science.abc6506. [PMID: 34301855 DOI: 10.1126/science.abc6506] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2020] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Stochastic fluctuations in gene expression ("noise") are often considered detrimental, but fluctuations can also be exploited for benefit (e.g., dither). We show here that DNA base excision repair amplifies transcriptional noise to facilitate cellular reprogramming. Specifically, the DNA repair protein Apex1, which recognizes both naturally occurring and unnatural base modifications, amplifies expression noise while homeostatically maintaining mean expression levels. This amplified expression noise originates from shorter-duration, higher-intensity transcriptional bursts generated by Apex1-mediated DNA supercoiling. The remodeling of DNA topology first impedes and then accelerates transcription to maintain mean levels. This mechanism, which we refer to as "discordant transcription through repair" ("DiThR," which is pronounced "dither"), potentiates cellular reprogramming and differentiation. Our study reveals a potential functional role for transcriptional fluctuations mediated by DNA base modifications in embryonic development and disease.
Collapse
Affiliation(s)
- Ravi V Desai
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA.,Medical Scientist Training Program and Tetrad Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Xinyue Chen
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Benjamin Martin
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA.,Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, the Netherlands
| | - Sonali Chaturvedi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Dong Woo Hwang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chen Yu
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, the Netherlands
| | - Leor S Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA. .,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Brandt L, Cristinelli S, Ciuffi A. Single-Cell Analysis Reveals Heterogeneity of Virus Infection, Pathogenicity, and Host Responses: HIV as a Pioneering Example. Annu Rev Virol 2021; 7:333-350. [PMID: 32991268 DOI: 10.1146/annurev-virology-021820-102458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
While analyses of cell populations provide averaged information about viral infections, single-cell analyses offer individual consideration, thereby revealing a broad spectrum of diversity as well as identifying extreme phenotypes that can be exploited to further understand the complex virus-host interplay. Single-cell technologies applied in the context of human immunodeficiency virus (HIV) infection proved to be valuable tools to help uncover specific biomarkers as well as novel candidate players in virus-host interactions. This review aims at providing an updated overview of single-cell analyses in the field of HIV and acquired knowledge on HIV infection, latency, and host response. Although HIV is a pioneering example, similar single-cell approaches have proven to be valuable for elucidating the behavior and virus-host interplay in a range of other viruses.
Collapse
Affiliation(s)
- Ludivine Brandt
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
44
|
Evaluation of Singer et al.: Technical points on analyzing viral replication kinetics in single cells. Cell Syst 2021; 12:205-206. [PMID: 33735616 DOI: 10.1016/j.cels.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
One snapshot of the peer review process for "Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion" (Singer et al., 2021).
Collapse
|
45
|
Khoury G, Lee MY, Ramarathinam SH, McMahon J, Purcell AW, Sonza S, Lewin SR, Purcell DFJ. The RNA-Binding Proteins SRP14 and HMGB3 Control HIV-1 Tat mRNA Processing and Translation During HIV-1 Latency. Front Genet 2021; 12:680725. [PMID: 34194479 PMCID: PMC8236859 DOI: 10.3389/fgene.2021.680725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Tat protein is essential for virus production. RNA-binding proteins that facilitate Tat production may be absent or downregulated in resting CD4+ T-cells, the main reservoir of latent HIV in people with HIV (PWH) on antiretroviral therapy (ART). In this study, we examined the role of Tat RNA-binding proteins on the expression of Tat and control of latent and productive infection. Affinity purification coupled with mass spectrometry analysis was used to detect binding partners of MS2-tagged tat mRNA in a T cell-line model of HIV latency. The effect of knockdown and overexpression of the proteins of interest on Tat transactivation and translation was assessed by luciferase-based reporter assays and infections with a dual color HIV reporter virus. Out of the 243 interactions identified, knockdown of SRP14 (Signal Recognition Particle 14) negatively affected tat mRNA processing and translation as well as Tat-mediated transactivation, which led to an increase in latent infection. On the other hand, knockdown of HMGB3 (High Mobility Group Box 3) resulted in an increase in Tat transactivation and translation as well as an increase in productive infection. Footprinting experiments revealed that SRP14 and HMGB3 proteins bind to TIM-TAM, a conserved RNA sequence-structure in tat mRNA that functions as a Tat IRES modulator of tat mRNA. Overexpression of SRP14 in resting CD4+ T-cells from patients on ART was sufficient to reverse HIV-1 latency and induce virus production. The role of SRP14 and HMGB3 proteins in controlling HIV Tat expression during latency will be further assessed as potential drug targets.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Y. Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sri H. Ramarathinam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James McMahon
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Ma X, Chen T, Peng Z, Wang Z, Liu J, Yang T, Wu L, Liu G, Zhou M, Tong M, Guan Y, Zhang X, Lin Y, Tang X, Li L, Tang Z, Pan T, Zhang H. Histone chaperone CAF-1 promotes HIV-1 latency by leading the formation of phase-separated suppressive nuclear bodies. EMBO J 2021; 40:e106632. [PMID: 33739466 PMCID: PMC8126954 DOI: 10.15252/embj.2020106632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV-1-infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency-reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF-1 (chromatin assembly factor 1) is enriched on the HIV-1 long terminal repeat (LTR) and forms nuclear bodies with liquid-liquid phase separation (LLPS) properties. CAF-1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV-1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase-separated CAF-1 nuclear body formation and play a key role in maintaining HIV-1 latency. Disruption of phase-separated CAF-1 bodies could be a potential strategy to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Chen
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhilin Peng
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwen Wang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jun Liu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liyang Wu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Guangyan Liu
- College of Basic Medical SciencesShenyang Medical CollegeShenyangLiaoningChina
| | - Mo Zhou
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Muye Tong
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuanjun Guan
- Core Laboratory Platform for Medical ScienceZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xu Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingtong Lin
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoping Tang
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Linghua Li
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Zhonghui Tang
- Department of BioinformaticsZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ting Pan
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
47
|
Feng Z, Yang Z, Gao X, Xue Y, Wang X. Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency. Curr HIV Res 2021; 19:238-247. [PMID: 33461468 DOI: 10.2174/1570162x19666210118151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed "shock and kill", which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory. OBJECTIVE To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the "shock" phase in "shock and kill" strategy. METHODS We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol's bioactivity on primary cells isolated from HIV-1 latent infected patients. RESULTS Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients. CONCLUSION We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Zeming Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
48
|
Tripiciano A, Picconi O, Moretti S, Sgadari C, Cafaro A, Francavilla V, Arancio A, Paniccia G, Campagna M, Pavone-Cossut MR, Sighinolfi L, Latini A, Mercurio VS, Pietro MD, Castelli F, Saracino A, Mussini C, Perri GD, Galli M, Nozza S, Ensoli F, Monini P, Ensoli B. Anti-Tat immunity defines CD4 + T-cell dynamics in people living with HIV on long-term cART. EBioMedicine 2021; 66:103306. [PMID: 33839064 PMCID: PMC8105504 DOI: 10.1016/j.ebiom.2021.103306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Low-level HIV viremia originating from virus reactivation in HIV reservoirs is often present in cART treated individuals and represents a persisting source of immune stimulation associated with sub-optimal recovery of CD4+ T cells. The HIV-1 Tat protein is released in the extracellular milieu and activates immune cells and latent HIV, leading to virus production and release. However, the relation of anti-Tat immunity with residual viremia, persistent immune activation and CD4+ T-cell dynamics has not yet been defined. METHODS Volunteers enrolled in a 3-year longitudinal observational study were stratified by residual viremia, Tat serostatus and frequency of anti-Tat cellular immune responses. The impact of anti-Tat immunity on low-level viremia, persistent immune activation and CD4+ T-cell recovery was investigated by test for partitions, longitudinal regression analysis for repeated measures and generalized estimating equations. FINDINGS Anti-Tat immunity is significantly associated with higher nadir CD4+ T-cell numbers, control of low-level viremia and long-lasting CD4+ T-cell recovery, but not with decreased immune activation. In adjusted analysis, the extent of CD4+ T-cell restoration reflects the interplay among Tat immunity, residual viremia and immunological determinants including CD8+ T cells and B cells. Anti-Env immunity was not related to CD4+ T-cell recovery. INTERPRETATION Therapeutic approaches aiming at reinforcing anti-Tat immunity should be investigated to improve immune reconstitution in people living with HIV on long-term cART. TRIAL REGISTRATION ISS OBS T-002 ClinicalTrials.gov identifier: NCT01024556 FUNDING: Italian Ministry of Health, special project on the Development of a vaccine against HIV based on the Tat protein and Ricerca Corrente 2019/2020.
Collapse
Affiliation(s)
- Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Vittorio Francavilla
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Angela Arancio
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Giovanni Paniccia
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Massimo Campagna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | | | - Laura Sighinolfi
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy
| | - Alessandra Latini
- Unit of Dermatology and Sexually Transmitted Diseases, San Gallicano Institute - Istituti Fisioterapici Ospitalieri (IFO) IRCCS, Rome, Italy
| | - Vito S Mercurio
- Department of Infectious Diseases, S. Maria Goretti Hospital, Latina, Italy
| | - Massimo Di Pietro
- Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy
| | - Francesco Castelli
- University Division of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - Annalisa Saracino
- Division of Infectious Diseases, Policlinic Hospital, University of Bari, Bari, Italy
| | - Cristina Mussini
- Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy
| | - Giovanni Di Perri
- Clinic of Infectious Diseases, Amedeo di Savoia University Hospital, Turin, Italy
| | - Massimo Galli
- Institute of Tropical and Infectious Diseases, L. Sacco University Hospital, Milan, Italy
| | - Silvia Nozza
- Division of Infectious Diseases, S. Raffaele University Hospital IRCCS, Milan, Italy
| | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute - (IFO) IRCCS, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
49
|
Singer ZS, Ambrose PM, Danino T, Rice CM. Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion. Cell Syst 2021; 12:210-219.e3. [PMID: 33515490 PMCID: PMC9143976 DOI: 10.1016/j.cels.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
While decades of research have elucidated many steps of the alphavirus lifecycle, the earliest replication dynamics have remained unclear. This missing time window has obscured early replicase strand-synthesis behavior and prevented elucidation of how the first events of infection might influence subsequent viral competition. Using quantitative live-cell and single-molecule imaging, we observed the initial replicase activity and its strand preferences in situ and measured the trajectory of replication over time. Under this quantitative framework, we investigated viral competition, where one alphavirus is able to exclude superinfection by a second homologous virus. We show that this appears as an indirect phenotypic consequence of a bidirectional competition between the two species, coupled with the rapid onset of viral replication and a limited total cellular carrying capacity. Together, these results emphasize the utility of analyzing viral kinetics within single cells.
Collapse
Affiliation(s)
- Zakary S Singer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pradeep M Ambrose
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Jefferys SR, Burgos SD, Peterson JJ, Selitsky SR, Turner AMW, James LI, Tsai YH, Coffey AR, Margolis DM, Parker J, Browne EP. Epigenomic characterization of latent HIV infection identifies latency regulating transcription factors. PLoS Pathog 2021; 17:e1009346. [PMID: 33635929 PMCID: PMC7946360 DOI: 10.1371/journal.ppat.1009346] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2020] [Revised: 03/10/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Transcriptional silencing of HIV in CD4 T cells generates a reservoir of latently infected cells that can reseed infection after interruption of therapy. As such, these cells represent the principal barrier to curing HIV infection, but little is known about their characteristics. To further our understanding of the molecular mechanisms of latency, we characterized a primary cell model of HIV latency in which infected cells adopt heterogeneous transcriptional fates. In this model, we observed that latency is a stable, heritable state that is transmitted through cell division. Using Assay of Transposon-Accessible Chromatin sequencing (ATACseq) we found that latently infected cells exhibit greatly reduced proviral accessibility, indicating the presence of chromatin-based structural barriers to viral gene expression. By quantifying the activity of host cell transcription factors, we observe elevated activity of Forkhead and Kruppel-like factor transcription factors (TFs), and reduced activity of AP-1, RUNX and GATA TFs in latently infected cells. Interestingly, latency reversing agents with different mechanisms of action caused distinct patterns of chromatin reopening across the provirus. We observe that binding sites for the chromatin insulator CTCF are highly enriched in the differentially open chromatin of infected CD4 T cells. Furthermore, depletion of CTCF inhibited HIV latency, identifying this factor as playing a key role in the initiation or enforcement of latency. These data indicate that HIV latency develops preferentially in cells with a distinct pattern of TF activity that promotes a closed proviral structure and inhibits viral gene expression. Furthermore, these findings identify CTCF as a novel regulator of HIV latency. HIV is able to persist during antiviral therapy by entering a state of viral latency, in which viral gene expression is greatly reduced. These latently infected cells can re-seed infection if therapy is interrupted, and thus represent a major obstacle to an HIV cure. Identifying the mechanisms that lead to this state will help to identify strategies to block or eliminate HIV latency, leading to a cure for infection. By observing HIV gene expression in infected CD4 T cells, we isolated cells in which HIV has entered latency and identified characteristics that distinguish them from cells with active viral replication. We found that latently infected cells have elevated activity of specific transcription factors including Forkhead TFs and Kruppel-like factors. We also identify CTCF, a protein responsible for mediating insulation of genome domains from each other, as being required for the establishment of HIV latency. Developing agents to target these factors may lead to new strategies to eliminate the HIV reservoir.
Collapse
Affiliation(s)
- Stuart R. Jefferys
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Samuel D. Burgos
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara R. Selitsky
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anne-Marie W. Turner
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lindsey I. James
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yi-Hsuan Tsai
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alisha R. Coffey
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joel Parker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Edward P. Browne
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|