1
|
An J, Wang H, Wei M, Yu X, Liao Y, Tan X, Hu C, Li S, Luo Y, Gui Y, Lin K, Wang Y, Huang L, Wang D. Identification of chemical inhibitors targeting long noncoding RNA through gene signature-based high throughput screening. Int J Biol Macromol 2025; 292:139119. [PMID: 39722392 DOI: 10.1016/j.ijbiomac.2024.139119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Scalable methods for functionally high-throughput screening of RNA-targeting small molecules are currently limited. Here, an RNA knockdown gene signature and high-throughput sequencing-based high-throughput screening (HTS2) were integrated to identify RNA-targeting compounds. We first generated a gene signature characterizing the knockdown of the long non-coding RNA LINC00973. Then, screening of 8199 compounds by HTS2 assay identified that treatments of Hesperadin and GSK1070916 significantly mimic the expression pattern of the LINC00973 knockdown gene signature. Functionally, cell phenotype changes after treatments of these two compounds also mimic the losing function of LINC00973 in multiple types of cancer cells. Mechanistically, the inhibitory action of these two compounds on LINC00973 primarily operates via the AURKB-mediated MAPK signaling pathway, resulting in reduced expression of the transcription factor c-Jun. Consequently, this leads to the suppression of LINC00973 transcription. Moreover, these two compounds significantly inhibit xenograft tumor growth in vivo. Clinically, we further found that breast tumors with high expression of LINC00973 also show relatively high expression of AURKB or JUN, and vice versa. In summary, we established a novel high-throughput screening strategy to identify small molecules capable of targeting RNA, provided two promising compounds targeting LINC00973 and further shed light on the underlying transcriptional upregulation mechanism of LINC00973 within cancer cells.
Collapse
Affiliation(s)
- Jun An
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huili Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Mingming Wei
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiankuo Yu
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yile Liao
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Tan
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Gui
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kequan Lin
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Racioppo B, Pechalrieu D, Abegg D, Dwyer B, Ramseier NT, Hu YS, Adibekian A. Chemoproteomics-Enabled De Novo Proteolysis Targeting Chimera Discovery Platform Identifies a Metallothionein Degrader to Probe Its Role in Cancer. J Am Chem Soc 2025. [PMID: 39989026 DOI: 10.1021/jacs.4c17827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) represent powerful tools to modulate the activity of classically "undruggable" proteins, but their application has been limited to known ligands and a few select protein classes. Herein, we present our chemoproteomic strategy for simultaneous de novo discovery of novel degraders and ligands for challenging and previously "undruggable" targets. Using comparative PROTAC versus ligand global proteomics analyses, we rapidly identify proteins selectively downregulated by several "untargeted" PROTACs containing a VHL E3 ligase recruiter and various covalent and noncovalent ligands. We showcase our approach by identifying a first-in-class PROTAC for metallothionein 2A (MT2A), a small, cysteine-rich, metal-binding protein implicated in heavy metal detoxification, zinc homeostasis, and cellular invasion. Notably, isoform-specific MT overexpression has been shown to augment cellular migration and invasion across several cancer cell lines, although the precise mechanisms are unknown due to insufficient tools to study MTs. We show that optimized PROTAC AA-BR-157 covalently binds conserved C44, degrades overexpressed MT2A with nanomolar potency, and reduces the migration and invasion of MDA-MB-231 cells. We further demonstrate a time-dependent increase in intracellular zinc levels following MT2A degradation as well as downregulation of protein diaphanous homolog 3 (DIAPH3), a positive regulator of actin and cell motility. Super-resolution imaging of MDA-MB-231 cells shows that the downregulation of MT2A and DIAPH3 inhibits cell polarization and thereby migration, suggesting that MT2A may regulate motility via DIAPH3-dependent cytoskeletal remodeling. In summary, our strategy enables the de novo discovery of PROTACs and ligands for novel disease-related targets and lays the groundwork for expansion of the druggable proteome.
Collapse
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Dany Pechalrieu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Brendan Dwyer
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Neal Thomas Ramseier
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Ying S Hu
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Alexander Adibekian
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- University of Illinois Cancer Center, 818 South Wolcott Avenue, Chicago, Illinois 60612, United States
- UICentre, University of Illinois Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Department of Pharmaceutical Sciences, University of Illinois Chicago, 833 S Wood Street, Chicago, Illinois 60607, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois, 900 S Ashland Ave, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Edwards AN, Hsu KL. Emerging opportunities for intact and native protein analysis using chemical proteomics. Anal Chim Acta 2025; 1338:343551. [PMID: 39832869 DOI: 10.1016/j.aca.2024.343551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Chemical proteomics has advanced small molecule ligand discovery by providing insights into protein-ligand binding mechanism and enabling medicinal chemistry optimization of protein selectivity on a global scale. Mass spectrometry is the predominant analytical method for chemoproteomics, and various approaches have been deployed to investigate and target a rapidly growing number of protein classes and biological systems. Two methods, intact mass analysis (IMA) and top-down proteomics (TDMS), have gained interest in recent years due to advancements in high resolution mass spectrometry instrumentation. Both methods apply mass spectrometry analysis at the proteoform level, as opposed to the peptide level of bottom-up proteomics (BUMS), thus addressing some of the challenges of protein inference and incomplete information on modification stoichiometry. This Review covers recent research progress utilizing MS-based proteomics methods, discussing in detail the capabilities and opportunities for improvement of each method. Further, heightened attention is given to IMA and TDMS, highlighting these methods' strengths and considerations when utilized in chemoproteomic studies. Finally, we discuss the capabilities of native mass spectrometry (nMS) and ion mobility mass spectrometry (IM-MS) and how these methods can be used in chemoproteomics research to complement existing approaches to further advance the field of functional proteomics.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
4
|
Vázquez-Villa H, Rueda-Zubiaurre A, Fernández D, Foronda R, Parker CG, Cravatt BF, Martín-Fontecha M, Ortega-Gutiérrez S. Chemical probes for the identification of the molecular targets of honokiol. Eur J Med Chem 2025; 283:117102. [PMID: 39616692 DOI: 10.1016/j.ejmech.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025]
Abstract
Honokiol is a natural product with an interesting array of biological effects, including significant anti-tumor properties. However, full exploration of its therapeutic potential is hampered by its modest pharmacokinetic profile and by the lack of synthetic methods that allow to obtain specifically designed derivatives with improved properties. In addition, the specific molecular targets of honokiol remain poorly understood, a fact that limits the search of alternative hits for subsequent optimization programs. In this work we describe an optimized series of synthetic routes that allow to access to a variety of honokiol derivatives, including a set of minimalist photoaffinity probes to map potential protein targets in live cells. Chemical proteomic studies of the most potent probe revealed a defined set of proteins as the cellular targets of honokiol. Significantly, up to the 62 % of the identified proteins have described roles in cancer, highlighting their potential relationship with the antitumor effects of honokiol. Furthermore, several of the top hits have been validated as direct binding partners of honokiol by cellular thermal shift assay (CETSA). In sum, the work described herein provides the first landscape of the cellular targets of honokiol in living cells and contributes to define the specific molecular pathways affected by this natural product.
Collapse
Affiliation(s)
- Henar Vázquez-Villa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Ainoa Rueda-Zubiaurre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Daniel Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Román Foronda
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA, 92037, United States
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica, Facultad de Óptica y Optometría, Avda. Arcos de Jalón, 118, Universidad Complutense de Madrid, E-28037, Madrid, Spain.
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
5
|
Kang S, Cai Z, Wang Y, Yin Q, Dai A, Zhang Z, Shi J, Lian J, Song S, Fu Y, Zhong F, Bian Y, Zhao F, Liu J, Zhao W. Chemical proteomic profiling reveals prostaglandin termination enzyme PTGR2 as a key molecular target of natural coumarin fraxetin. Chem Commun (Camb) 2025; 61:2552-2555. [PMID: 39812453 DOI: 10.1039/d4cc05681g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Natural coumarins represent a diverse group of secondary metabolites with a wide range of biological activities. However, their specific molecular targets have remained largely unexplored. Employing chemical proteomics, a comprehensive analysis of the protein targets of the natural coumarin fraxetin has been conducted. Prostaglandin reductase 2 (PTGR2), a key enzyme involved in the final inactivation of prostaglandins, was identified as a primary target of fraxetin. Inhibition of PTGR2 can lead to the accumulation of 15-keto-PGE2, which subsequently activates the Nrf2 signaling pathway and suppresses NF-κB, resulting in notable anti-inflammatory effects. These findings provide novel insights into the molecular targets of fraxetin and other coumarins, which are crucial for fully exploring their therapeutic potential.
Collapse
Affiliation(s)
- Songyao Kang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Zhiwei Cai
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yuqing Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Qing Yin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Ang Dai
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Zhou Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Juan Shi
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jie Lian
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Shuo Song
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, 518118, China
| | - Yu Fu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, China
| | - Fangyuan Zhao
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jianhua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
6
|
George DE, Olatunde MO, Tepe JJ. Short and High-Yielding Synthesis of a Minimalist Diazirine-Alkyne Photo-Cross-Linker and Photoaffinity Labeling Derivatives. ACS OMEGA 2025; 10:3622-3626. [PMID: 39926512 PMCID: PMC11800027 DOI: 10.1021/acsomega.4c08497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
Minimalist photo-cross-linker 1 and its derivatives are extensively utilized in photoaffinity labeling studies. However, obtaining compound 1 in high yield has traditionally required a lengthy synthetic process. In this paper, we present a concise and efficient method to synthesize 1 in just four steps, leveraging the "Normant reagent" as a pivotal component in our strategy. Additionally, we extended our synthetic approach to generate new derivatives of the fully functionalized diazirine tag, providing versatile handles for coupling with other small molecules. This work provides a quick and high-yielding approach to access photo-cross-linker 1 compared to previously reported approaches.
Collapse
Affiliation(s)
- Dare E. George
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Miracle O. Olatunde
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jetze J. Tepe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Wang X, Sun J, Ahmad S, Yang D, Li F, Chan UH, Zeng H, Simoben CV, Houliston S, Dong A, Bolotokova A, Gibson E, Kutera M, Ghiabi P, Kondratov I, Matviyuk T, Chuprina A, Mavridi D, Lenz C, Joerger AC, Brown BD, Heath RB, Yue WW, Robbie LK, Beyett TS, Müller S, Knapp S, Harding R, Schapira M, Brown PJ, Santhakumar V, Ackloo S, Arrowsmith CH, Edwards AM, Peng H, Halabelian L. Enantioselective Protein Affinity Selection Mass Spectrometry (EAS-MS). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633682. [PMID: 39896675 PMCID: PMC11785093 DOI: 10.1101/2025.01.17.633682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
We report an enantioselective protein affinity selection mass spectrometry screening approach (EAS-MS) that enables the detection of weak binders, informs about selectivity, and generates orthogonal confirmation of binding. After method development with control proteins, we screened 31 human proteins against a designed library of 8,210 chiral compounds. 16 binders to 12 targets, including many proteins predicted to be "challenging to ligand", were discovered and confirmed in orthogonal assays. 7 binders to 6 targets bound in an enantioselective manner, with K Ds ranging from 3 to 20 μM. Binders for four targets (DDB1, WDR91, WDR55, and HAT1) were selected for in-depth characterization using X-ray crystallography. In all four cases, the mechanism for enantioselective selectivity was readily explained. EAS-MS can be used to identify and characterize selective and weakly-binding ligands for novel protein targets with unprecedented throughput and sensitivity.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Shabbir Ahmad
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Diwen Yang
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - U Hang Chan
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Conrad V. Simoben
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Elisa Gibson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Maria Kutera
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ivan Kondratov
- Enamine Ltd., Winston Churchill Street 78, 02094 Kyiv, Ukraine
- Enamine Germany GmbH, Industriepark Hoechst, G837, 65926 Frankfurt am Main, Germany
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 1, 02094 Kyiv, Ukraine
| | - Tetiana Matviyuk
- Enamine Ltd., Winston Churchill Street 78, 02094 Kyiv, Ukraine
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Danai Mavridi
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt am Main, Germany
| | - Christopher Lenz
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt am Main, Germany
| | - Andreas C. Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt am Main, Germany
| | - Benjamin D. Brown
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Richard B. Heath
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Wyatt W. Yue
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe University, Frankfurt am Main, Germany
| | - Rachel Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Aled M. Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Tamura T, Kawano M, Hamachi I. Targeted Covalent Modification Strategies for Drugging the Undruggable Targets. Chem Rev 2025; 125:1191-1253. [PMID: 39772527 DOI: 10.1021/acs.chemrev.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The term "undruggable" refers to proteins or other biological targets that have been historically challenging to target with conventional drugs or therapeutic strategies because of their structural, functional, or dynamic properties. Drugging such undruggable targets is essential to develop new therapies for diseases where current treatment options are limited or nonexistent. Thus, investigating methods to achieve such drugging is an important challenge in medicinal chemistry. Among the numerous methodologies for drug discovery, covalent modification of therapeutic targets has emerged as a transformative strategy. The covalent attachment of diverse functional molecules to targets provides a powerful platform for creating highly potent drugs and chemical tools as well the ability to provide valuable information on the structures and dynamics of undruggable targets. In this review, we summarize recent examples of chemical methods for the covalent modification of proteins and other biomolecules for the development of new therapeutics and to overcome drug discovery challenges and highlight how such methods contribute toward the drugging of undruggable targets. In particular, we focus on the use of covalent chemistry methods for the development of covalent drugs, target identification, drug screening, artificial modulation of post-translational modifications, cancer specific chemotherapies, and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaharu Kawano
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
9
|
Wéber E, Ábrányi-Balogh P, Nagymihály B, Menyhárd DK, Péczka N, Gadanecz M, Schlosser G, Orgován Z, Bogár F, Bajusz D, Kecskeméti G, Szabó Z, Bartus É, Tököli A, Tóth GK, Szalai TV, Takács T, de Araujo E, Buday L, Perczel A, Martinek TA, Keserű GM. Target-Templated Construction of Functional Proteomimetics Using Photo-Foldamer Libraries. Angew Chem Int Ed Engl 2025; 64:e202410435. [PMID: 39329252 DOI: 10.1002/anie.202410435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Current methods for proteomimetic engineering rely on structure-based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100-membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface-oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine-based photo-crosslinking was applied to sensitively detect and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo-foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K-Ras variant. Target-templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K-Ras ligand mimicked protein-like catalytic functions. The photo-foldamer approach thus enables the highly efficient mapping of protein-protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses.
Collapse
Affiliation(s)
- Edit Wéber
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Bence Nagymihály
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Dóra K Menyhárd
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Nikolett Péczka
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Márton Gadanecz
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Eötvös Loránd University, Egyetem tér 1-3, H-1053, Budapest, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Éva Bartus
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Attila Tököli
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Tibor V Szalai
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Egyetem tér 1-3, H-1053, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Elvin de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Ontario, L5 L 1 C6, Mississauga, Canada
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budafoki út 8, H-1111, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
10
|
Fu S, Chen Z, Luo Z, Nie M, Fu T, Zhou Y, Yang Q, Zhu F, Ni F. Chem(Pro)2: the atlas of chemoproteomic probes labelling human proteins. Nucleic Acids Res 2025; 53:D1651-D1662. [PMID: 39436046 PMCID: PMC11701659 DOI: 10.1093/nar/gkae943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Chemoproteomic probes (CPPs) have been widely considered as powerful molecular biological tools that enable the highly efficient discovery of both binding proteins and modes of action for the studied compounds. They have been successfully used to validate targets and identify binders. The design of CPP has been considered extremely challenging, which asks for the generalization using a large number of probe data. However, none of the existing databases gives such valuable data of CPPs. Herein, a database entitled 'Chem(Pro)2' was therefore developed to systematically describe the atlas of diverse types of CPPs labelling human protein in living cell/lysate. With the booming application of chemoproteomic technique and artificial intelligence in current chemical biology study, Chem(Pro)2 was expected to facilitate the AI-based learning of interacting pattern among molecules for discovering innovative targets and new drugs. Till now, Chem(Pro)2 has been open to all users without any login requirement at: https://idrblab.org/chemprosquare/.
Collapse
Affiliation(s)
- Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Luo
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Meiyun Nie
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- LeadArt Biotechnologies Ltd., Ningbo 315201, China
| |
Collapse
|
11
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter TR, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes. Cell Chem Biol 2024; 31:2138-2155.e32. [PMID: 39547236 PMCID: PMC11837778 DOI: 10.1016/j.chembiol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these "photo-stereoprobes" interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible NanoBRET assays. Integrated phenotypic screening and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of DOS-inspired photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and facilitating the discovery and characterization of bioactive compounds in phenotypic screens.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zher Yin Tan
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haoxin Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever R Carter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen E DeMeester
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Li S, Li X, Ma L, Luo Z, Yin F, Zhang Y, Chen Y, Wan S, Zhou H, Wang X, Kong L. Polypharmacological Drug Design Guided by Integrating Phenotypic and Restricted Fragment Docking Strategies. J Med Chem 2024; 67:21049-21069. [PMID: 39300597 DOI: 10.1021/acs.jmedchem.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Polypharmacological drugs are of great value for treating complex human diseases by the combinative modulation of several biological targets. However, multitarget drug design with more than two targets is challenging and generally discovered by serendipity. Herein, a restricted fragment docking (RFD) computational method combined with a phenotypic discovery approach was developed for rational polypharmacological drug design. Via genetic and drug combination studies in a microglial phenotype, we first identified novel synergistic effects by triple target modulation toward RIPK1, MAP4K4, and ALK. Drawing on the RFD method to explore virtual chemical spaces in three target pockets, we identified a lead compound, LP-10d, that precisely modulated RIPK1/MAP4K4/ALK for synergistic microglial protection with low nanomolar potency. LP-10d showed polypharmacology against multiple neuropathologies in the 3xTg Alzheimer's disease mouse model. Our study revealed a potential application of the RFD method, which is valuable to further polypharmacological drug discovery involved in clinical studies for treating complex human diseases.
Collapse
Affiliation(s)
- Shang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinxin Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Liangliang Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yonglei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yifan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Siyuan Wan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Han Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
13
|
Cheung ST, Kim Y, Cho JH, Brandvold KR, Ghosh B, Del Rosario AM, Bell-Temin H. End-to-End Throughput Chemical Proteomics for Photoaffinity Labeling Target Engagement and Deconvolution. J Proteome Res 2024; 23:4951-4961. [PMID: 39374182 DOI: 10.1021/acs.jproteome.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Photoaffinity labeling (PAL) methodologies have proven to be instrumental for the unbiased deconvolution of protein-ligand binding events in physiologically relevant systems. However, like other chemical proteomic workflows, they are limited in many ways by time-intensive sample manipulations and data acquisition techniques. Here, we describe an approach to address this challenge through the innovation of a carboxylate bead-based protein cleanup procedure to remove excess small-molecule contaminants and couple it to plate-based, proteomic sample processing as a semiautomated solution. The analysis of samples via label-free, data-independent acquisition (DIA) techniques led to significant improvements on a workflow time per sample basis over current standard practices. Experiments utilizing three established PAL ligands with known targets, (+)-JQ-1, lenalidomide, and dasatinib, demonstrated the utility of having the flexibility to design experiments with a myriad of variables. Data revealed that this workflow can enable the confident identification and rank ordering of known and putative targets with outstanding protein signal-to-background enrichment sensitivity. This unified end-to-end throughput strategy for processing and analyzing these complex samples could greatly facilitate efficient drug discovery efforts and open up new opportunities in the chemical proteomics field.
Collapse
Affiliation(s)
- Sheldon T Cheung
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Yongkang Kim
- Janssen Research & Development, LLC, 301 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ji-Hoon Cho
- Janssen Research & Development, LLC, 301 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristoffer R Brandvold
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Brahma Ghosh
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Amanda M Del Rosario
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Harris Bell-Temin
- Janssen Research & Development, LLC, 301 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Sharma R, Oyagawa CRM, Abbasi H, Dragunow M, Conole D. Phenotypic approaches for CNS drugs. Trends Pharmacol Sci 2024; 45:997-1017. [PMID: 39438155 DOI: 10.1016/j.tips.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Central nervous system (CNS) drug development is plagued by high clinical failure rate. Phenotypic assays promote clinical translation of drugs by reducing complex brain diseases to measurable, clinically valid phenotypes. We critique recent platforms integrating patient-derived brain cells, which most accurately recapitulate CNS disease phenotypes, with higher throughput models, including immortalized cells, to balance validity and scalability. These platforms were screened with conventional commercial chemogenomic compound libraries. We explore emerging library curation strategies to improve hit rate and quality, and screening novel fragment libraries as alternatives, for more tractable drug target deconvolution. The clinically relevant models used in these platforms could harbor important, unidentified drug targets, so we review evolving agnostic target deconvolution approaches, including chemical proteomics and artificial intelligence (AI), which aid in phenotypic screening hit mechanism elucidation, thereby facilitating rational hit-to-drug optimization.
Collapse
Affiliation(s)
- Raahul Sharma
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Caitlin R M Oyagawa
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Hamid Abbasi
- Auckland Bioengineering Institute, The University of Auckland, 70 Symonds Street, Auckland, 1010, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| | - Daniel Conole
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
15
|
Tong Y, Childs-Disney JL, Disney MD. Targeting RNA with small molecules, from RNA structures to precision medicines: IUPHAR review: 40. Br J Pharmacol 2024; 181:4152-4173. [PMID: 39224931 DOI: 10.1111/bph.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
RNA plays important roles in regulating both health and disease biology in all kingdoms of life. Notably, RNA can form intricate three-dimensional structures, and their biological functions are dependent on these structures. Targeting the structured regions of RNA with small molecules has gained increasing attention over the past decade, because it provides both chemical probes to study fundamental biology processes and lead medicines for diseases with unmet medical needs. Recent advances in RNA structure prediction and determination and RNA biology have accelerated the rational design and development of RNA-targeted small molecules to modulate disease pathology. However, challenges remain in advancing RNA-targeted small molecules towards clinical applications. This review summarizes strategies to study RNA structures, to identify small molecules recognizing these structures, and to augment the functionality of RNA-binding small molecules. We focus on recent advances in developing RNA-targeted small molecules as potential therapeutics in a variety of diseases, encompassing different modes of actions and targeting strategies. Furthermore, we present the current gaps between early-stage discovery of RNA-binding small molecules and their clinical applications, as well as a roadmap to overcome these challenges in the near future.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
16
|
Wozniak JM, Li W, Parker CG. Chemical proteomic mapping of reversible small molecule binding sites in native systems. Trends Pharmacol Sci 2024; 45:969-981. [PMID: 39406592 DOI: 10.1016/j.tips.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 11/10/2024]
Abstract
The impact of small molecules in human biology are manifold; not only are they critical regulators of physiological processes, but they also serve as probes to investigate biological pathways and leads for therapeutic development. Identifying the protein targets of small molecules, and where they bind, is critical to understanding their functional consequences and potential for pharmacological use. Over the past two decades, chemical proteomics has emerged as a go-to strategy for the comprehensive mapping of small molecule-protein interactions. Recent advancements in this field, particularly innovations of photoaffinity labeling (PAL)-based methods, have enabled the robust identification of small molecule binding sites on protein targets, often in live cells. In this opinion article, we examine these advancements as well as reflect on how their strategic integration with other emerging tools can advance therapeutic development.
Collapse
Affiliation(s)
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
17
|
Jackson PA, Kisty E, Pradhan V, Swank C, Bohrer L, Nolan TL, Weerapana E, Lapinsky DJ. Appendage- and Scaffold-Diverse Electrophilic and Photoreactive Probes for Integrated Phenotypic Screening-Target Identification Campaigns via a Minimalist Bifunctional Isocyanide. ACS OMEGA 2024; 9:42557-42570. [PMID: 39431108 PMCID: PMC11483914 DOI: 10.1021/acsomega.4c06879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
One of the grand challenges in chemical biology is identifying a small-molecule modulator for all proteins within a proteome. To expand the variety and number of ligandable proteins for drug discovery, the objective of this study was to synthesize and evaluate the protein target profiles of electrophilic and photoreactive fully functionalized small-molecule probes (FFSMPs) featuring increased scaffold-, appendage-, and protein-reactive functional group (PRFG) diversity. FFSMPs contain: (1) a protein-binding motif, (2) an electrophilic or photoreactive PRFG for target protein capture, and (3) a terminal alkyne for click chemistry-based proteomic applications. These compounds can be directly applied in phenotypic screening programs to identify ligand-protein pairs in cells unbiasedly. Herein, we highlight 17 examples from 34 structurally diverse FFSMPs featuring five electrophiles, three photoreactive groups, and 15 chemical scaffolds. Essential to the synthesis of the FFSMPs was a new minimalist bifunctional isocyanide in an "isocyanide-based multicomponent reaction-Boc deprotection-arming" synthetic sequence. To the best of our knowledge, this is the first report concerning the preparation of appendage- and scaffold-diverse FFSMPs for integrated phenotypic screening-target identification campaigns with the ability to examine either electrophilic or photoreactive PRFGs. In contrast, the status quo for such studies has been appendage-diverse FFSMPs comprised of a single chemical scaffold and a single PRFG, which limits efficient target protein capture and/or chemical space sampling significantly in the quest for discovering new drug targets and/or compounds with novel mechanisms of action. Phenotypic screening of the electrophilic members of our library identified several FFSMPs with potent antiproliferative activity against MCF10CA1a breast cancer cells. One of these FFSMPs (Compound 4a) covalently targeted and potently inhibited protein disulfide isomerase A1 (PDIA1). This study supports the continued use of minimalist bifunctional isocyanides as valuable building blocks for preparing structurally diverse FFSMPs for integrated phenotypic screening-target identification campaigns.
Collapse
Affiliation(s)
- Paul A. Jackson
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Eleni Kisty
- Department
of Chemistry, Boston College, Merkert Chemistry
Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02464, United States
| | - Vandan Pradhan
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Christopher Swank
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Luke Bohrer
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Tammy L. Nolan
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Eranthie Weerapana
- Department
of Chemistry, Boston College, Merkert Chemistry
Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02464, United States
| | - David J. Lapinsky
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
18
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
19
|
Bon C, Goretzki B, Flamme M, Shelton C, Davis H, Lima F, Garcia F, Brittain S, Brocklehurst CE. Oxadiazolines as Photoreleasable Labels for Drug Target Identification. J Am Chem Soc 2024; 146:26759-26765. [PMID: 39288302 DOI: 10.1021/jacs.4c06936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Photoaffinity labeling is a widely used technique for studying ligand-protein and protein-protein interactions. Traditional photoaffinity labels utilize nonspecific C-H bond insertion reactions mediated by a highly reactive intermediate. Despite being the most widely used photoaffinity labels, diazirines exhibit limited compatibility with downstream organic reactions and suffer from storage stability concerns. This study introduces oxadiazolines as innovative and complementary photoactivatable labels for addition to the toolbox and demonstrates their application in vitro and through in cellulo labeling experiments. Oxadiazolines can be easily synthesized from ketone moieties and cleaved with 302-330 nm light to cleanly liberate a diazo reactive moiety that can covalently modify nucleophilic amino acid residues. Notably, oxadiazolines are compatible with various organic reaction conditions and functional groups, allowing for the exploration of a large chemical space. Several known inhibitors featuring the oxadiazoline functionality were prepared without affecting their binding affinity. Furthermore, we confirmed the ability of oxadiazolines to form covalent bonds with proteins upon UV-irradiation, both in vitro and in cellulo, yielding comparable results to those of the matched diazirine compounds.
Collapse
Affiliation(s)
- Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Benedikt Goretzki
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Marie Flamme
- Chemical and Analytical Development, Novartis Development, Novartis Pharma AG, Basel 4056, Switzerland
| | - Claude Shelton
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Francisco Garcia
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Scott Brittain
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| |
Collapse
|
20
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
21
|
Shioi R, Kool ET. Chemical diversity of reagents that modify RNA 2'-OH in water: a review. Chem Sci 2024:d4sc05317f. [PMID: 39309104 PMCID: PMC11412305 DOI: 10.1039/d4sc05317f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Electrophilic water-soluble compounds have proven versatile in reacting selectively with 2'-OH groups in RNA, enabling structure mapping, probing, caging, labeling, crosslinking, and conjugation of RNAs in vitro and in living cells. While early work focused on one or two types of reagents with limited properties, recent studies have greatly diversified the structure, properties, and applications of these reagents. Here we review the scope of documented RNA hydroxyl-reactive species reported to date, with an eye to the effects of chemical structure on reactivity with RNA and other useful properties. Multiple forms of carbonyl electrophiles are now known to react at the 2'-OH, and recently, sulfonyl and aryl electrophiles have also been documented to form bonds there in high yields as well. In addition to electrophilicity, data also point to significant effects of reagent stability, steric bulk, and chirality on reaction yields and selectivity. Finally, we outline reagent properties and principles that define utility in applications with RNA, with an eye to the design of future reagents.
Collapse
Affiliation(s)
- Ryuta Shioi
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Eric T Kool
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
22
|
O'Brien JGK, Conway LP, Ramaraj PK, Jadhav AM, Jin J, Dutra JK, Evers P, Masoud SS, Schupp M, Saridakis I, Chen Y, Maulide N, Pezacki JP, Am Ende CW, Parker CG, Fox JM. Mechanistic differences between linear vs. spirocyclic dialkyldiazirine probes for photoaffinity labeling. Chem Sci 2024; 15:d4sc04238g. [PMID: 39246352 PMCID: PMC11372447 DOI: 10.1039/d4sc04238g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Dialkyldiazirines have emerged as a photo-reactive group of choice for interactome mapping in live cell experiments. Upon irradiation, 'linear' dialkyldiazirines produce dialkylcarbenes which are susceptible to both intramolecular reactions and unimolecular elimination processes, as well as diazoalkanes, which also participate in intermolecular labeling. Cyclobutylidene has a nonclassical bonding structure and is stable enough to be captured in bimolecular reactions. Cyclobutanediazirines have more recently been studied as photoaffinity probes based on cyclobutylidene, but the mechanism, especially with respect to the role of putative diazo intermediates, was not fully understood. Here, we show that photolysis (365 nm) of cyclobutanediazirines can produce cyclobutylidene intermediates as evidenced by formation of their expected bimolecular and unimolecular products, including methylenecyclopropane derivatives. Unlike linear diazirines, cyclobutanediazirine photolysis in the presence of tetramethylethylene produces a [2 + 1] cycloaddition adduct. By contrast, linear diazirines produce diazo compounds upon low temperature photolysis in THF, whereas diazo compounds are not detected in similar photolyses of cyclobutanediazirines. Diazocyclobutane, prepared by independent synthesis, is labile, reactive toward water and capable of protein alkylation. The rate of diazocyclobutane decomposition is not affected by 365 nm light, suggesting that the photochemical conversion of diazocyclobutane to cyclobutylidene is not an important pathway. Finally, chemical proteomic studies revealed that a likely consequence of this primary conversion to a highly reactive carbene is a marked decrease in labeling by cyclobutanediazirine-based probes relative to linear diazirine counterparts both at the individual protein and proteome-wide levels. Collectively, these observations are consistent with a mechanistic picture for cyclobutanediazirine photolysis that involves carbene chemistry with minimal formation of diazo intermediates, and contrasts with the photolyses of linear diazirines where alkylation by diazo intermediates plays a more significant role.
Collapse
Affiliation(s)
- Jessica G K O'Brien
- Department of Chemistry and Biochemistry, University of Delaware Newark Delaware 19716 USA
| | - Louis P Conway
- Department of Chemistry, The Scripps Research Institute La Jolla California 92037 USA
| | - Paramesh K Ramaraj
- Department of Chemistry and Biochemistry, University of Delaware Newark Delaware 19716 USA
| | - Appaso M Jadhav
- Department of Chemistry, The Scripps Research Institute La Jolla California 92037 USA
| | - Jun Jin
- BioDuro-Sundia No.233 North FuTe Rd., WaiGaoQiao Free Trade Zone Shanghai 200131 P.R. China
| | - Jason K Dutra
- Pfizer Worldwide Research and Development Eastern Point Road, Groton Connecticut 06340 USA
| | - Parrish Evers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Shadi S Masoud
- Pfizer Worldwide Research and Development Eastern Point Road, Groton Connecticut 06340 USA
| | - Manuel Schupp
- Institute of Organic Chemistry, University of Vienna 1090 Vienna Austria
| | - Iakovos Saridakis
- Institute of Organic Chemistry, University of Vienna 1090 Vienna Austria
| | - Yong Chen
- Institute of Organic Chemistry, University of Vienna 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna 1090 Vienna Austria
| | - John P Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development Eastern Point Road, Groton Connecticut 06340 USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute La Jolla California 92037 USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
23
|
Tong Y, Su X, Rouse W, Childs-Disney JL, Taghavi A, Zanon PRA, Kovachka S, Wang T, Moss WN, Disney MD. Transcriptome-Wide, Unbiased Profiling of Ribonuclease Targeting Chimeras. J Am Chem Soc 2024; 146:21525-21534. [PMID: 39047145 PMCID: PMC11740015 DOI: 10.1021/jacs.4c04717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Various approaches have been developed to target RNA and modulate its function with modes of action including binding and cleavage. Herein, we explored how small molecule binding is correlated with cleavage induced by heterobifunctional ribonuclease targeting chimeras (RiboTACs), where RNase L is recruited to cleave the bound RNA target, in a transcriptome-wide, unbiased fashion. Only a fraction of bound targets was cleaved by RNase L, induced by RiboTAC binding. Global analysis suggested that (i) cleaved targets generally form a region of stable structure that encompasses the small molecule binding site; (ii) cleaved targets have preferred RNase L cleavage sites nearby small molecule binding sites; (iii) RiboTACs facilitate a cellular interaction between cleaved targets and RNase L; and (iv) the expression level of the target influences the extent of cleavage observed. In one example, we converted a binder of LGALS1 (galectin-1) mRNA into a RiboTAC. In MDA-MB-231 cells, the binder had no effect on galectin-1 protein levels, while the RiboTAC cleaved LGALS1 mRNA, reduced galectin-1 protein abundance, and affected galectin-1-associated oncogenic cellular phenotypes. Using LGALS1, we further assessed additional factors including the length of the linker that tethers the two components of the RiboTAC, cellular uptake, and the RNase L-recruiting module on RiboTAC potency. Collectively, these studies may facilitate triangulation of factors to enable the design of RiboTACs.
Collapse
Affiliation(s)
- Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Xiaoxuan Su
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Warren Rouse
- Iowa State University, Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Ames, IA 50011 USA
| | - Jessica L. Childs-Disney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Amirhossein Taghavi
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Patrick R. A. Zanon
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Sandra Kovachka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Tenghui Wang
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Walter N. Moss
- Iowa State University, Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Ames, IA 50011 USA
| | - Matthew D. Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
24
|
Chiu TY, Lazar DC, Wang WW, Wozniak JM, Jadhav AM, Li W, Gazaniga N, Theofilopoulos AN, Teijaro JR, Parker CG. Chemoproteomic development of SLC15A4 inhibitors with anti-inflammatory activity. Nat Chem Biol 2024; 20:1000-1011. [PMID: 38191941 PMCID: PMC11228132 DOI: 10.1038/s41589-023-01527-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
SLC15A4 is an endolysosome-resident transporter linked with autoinflammation and autoimmunity. Specifically, SLC15A4 is critical for Toll-like receptors (TLRs) 7-9 as well as nucleotide-binding oligomerization domain-containing protein (NOD) signaling in several immune cell subsets. Notably, SLC15A4 is essential for the development of systemic lupus erythematosus in murine models and is associated with autoimmune conditions in humans. Despite its therapeutic potential, the availability of quality chemical probes targeting SLC15A4 functions is limited. In this study, we used an integrated chemical proteomics approach to develop a suite of chemical tools, including first-in-class functional inhibitors, for SLC15A4. We demonstrate that these inhibitors suppress SLC15A4-mediated endolysosomal TLR and NOD functions in a variety of human and mouse immune cells; we provide evidence of their ability to suppress inflammation in vivo and in clinical settings; and we provide insights into their mechanism of action. Our findings establish SLC15A4 as a druggable target for the treatment of autoimmune and autoinflammatory conditions.
Collapse
Affiliation(s)
- Tzu-Yuan Chiu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel C Lazar
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wesley W Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Appaso M Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Nathalia Gazaniga
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
25
|
Ábrányi-Balogh P, Bajusz D, Orgován Z, Keeley AB, Petri L, Péczka N, Szalai TV, Pálfy G, Gadanecz M, Grant EK, Imre T, Takács T, Ranđelović I, Baranyi M, Marton A, Schlosser G, Ashraf QF, de Araujo ED, Karancsi T, Buday L, Tóvári J, Perczel A, Bush JT, Keserű GM. Mapping protein binding sites by photoreactive fragment pharmacophores. Commun Chem 2024; 7:168. [PMID: 39085342 PMCID: PMC11292009 DOI: 10.1038/s42004-024-01252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Fragment screening is a popular strategy of generating viable chemical starting points especially for challenging targets. Although fragments provide a better coverage of chemical space and they have typically higher chance of binding, their weak affinity necessitates highly sensitive biophysical assays. Here, we introduce a screening concept that combines evolutionary optimized fragment pharmacophores with the use of a photoaffinity handle that enables high hit rates by LC-MS-based detection. The sensitivity of our screening protocol was further improved by a target-conjugated photocatalyst. We have designed, synthesized, and screened 100 diazirine-tagged fragments against three benchmark and three therapeutically relevant protein targets of different tractability. Our therapeutic targets included a conventional enzyme, the first bromodomain of BRD4, a protein-protein interaction represented by the oncogenic KRasG12D protein, and the yet unliganded N-terminal domain of the STAT5B transcription factor. We have discovered several fragment hits against all three targets and identified their binding sites via enzymatic digestion, structural studies and modeling. Our results revealed that this protocol outperforms screening traditional fully functionalized and photoaffinity fragments in better exploration of the available binding sites and higher hit rates observed for even difficult targets.
Collapse
Affiliation(s)
- Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Aaron B Keeley
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Nikolett Péczka
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Tibor Viktor Szalai
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology & HUN-REN-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Márton Gadanecz
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Laboratory of Structural Chemistry and Biology & HUN-REN-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Tímea Imre
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- MS Metabolomics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Takács
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Signal Transduction and Functional Genomics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ivan Ranđelović
- National Tumor Biology Laboratory and Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
- KINETO Lab Ltd, Budapest, Hungary
| | - Marcell Baranyi
- KINETO Lab Ltd, Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - András Marton
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Waters Research Center, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Qirat F Ashraf
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Elvin D de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Tamás Karancsi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Waters Research Center, Budapest, Hungary
| | - László Buday
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Signal Transduction and Functional Genomics Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - József Tóvári
- National Tumor Biology Laboratory and Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - András Perczel
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Laboratory of Structural Chemistry and Biology & HUN-REN-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- National Drug Research and Development Laboratory, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
26
|
Waser P, Faghtmann J, Gil-Ordóñez M, Kristensen A, Svenningsen EB, Poulsen TB, Jørgensen KA. Enantioselective Synthesis of α-Quaternary Isochromanes by Oxidative Aminocatalysis and Gold Catalysis. Chemistry 2024; 30:e202401354. [PMID: 38629389 DOI: 10.1002/chem.202401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 05/24/2024]
Abstract
A novel strategy that combines oxidative aminocatalysis and gold catalysis allows the preparation of chiral α-quaternary isochromanes, a motif that is prevalent in natural products and synthetic bioactive compounds. In the first step, α-branched aldehydes and propargylic alcohols are transformed into α-quaternary ethers with excellent optical purities (>90 % ee) via oxidative umpolung with DDQ and an amino acid-derived primary amine catalyst. Subsequent gold(I)-catalyzed intramolecular hydroarylation affords the isochromane products with retention of the quaternary stereocenter. A second approach explores the use of allylic alcohols as reaction partners for the oxidative coupling to furnish α-quaternary ethers with generally lower enantiopurities. Stereoretentive cyclization to isochromane products is achieved via intramolecular Friedel-Crafts type alkylation with allylic acetates as a reactive handle. A number of synthetic elaborations and a biological study on these α-quaternary isochromanes highlight the potential applicability of the presented method.
Collapse
Affiliation(s)
- Philipp Waser
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Jonas Faghtmann
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Marta Gil-Ordóñez
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Anne Kristensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Esben B Svenningsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
27
|
Wozniak JM, Li W, Governa P, Chen LY, Jadhav A, Dongre A, Forli S, Parker CG. Enhanced mapping of small-molecule binding sites in cells. Nat Chem Biol 2024; 20:823-834. [PMID: 38167919 PMCID: PMC11213684 DOI: 10.1038/s41589-023-01514-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paolo Governa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Appaso Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok Dongre
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
28
|
LI K, YE Y, ZHANG X, ZHOU J, LI Y, YE M. [Identification of the binding proteins of organic acid metabolites by matrix thermal shift assay]. Se Pu 2024; 42:702-710. [PMID: 38966978 PMCID: PMC11224940 DOI: 10.3724/sp.j.1123.2023.07002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 07/06/2024] Open
Abstract
Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.
Collapse
|
29
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
31
|
Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, Strohbach JW, Rukavina A, Brennsteiner V, Ogilvie K, Marella N, Kladnik K, Ciuffa R, Majmudar JD, Field SD, Bensimon A, Ferrari L, Ferrada E, Ng A, Zhang Z, Degliesposti G, Boeszoermenyi A, Martens S, Stanton R, Müller AC, Hannich JT, Hepworth D, Superti-Furga G, Kubicek S, Schenone M, Winter GE. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 2024; 384:eadk5864. [PMID: 38662832 DOI: 10.1126/science.adk5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.
Collapse
Affiliation(s)
- Fabian Offensperger
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gary Tin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Miquel Duran-Frigola
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ersilia Open Source Initiative, Cambridge CB1 3DE, UK
| | - Elisa Hahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sarah Dobner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Andrea Rukavina
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vincenth Brennsteiner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kevin Ogilvie
- Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Nara Marella
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Katharina Kladnik
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Rodolfo Ciuffa
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Evandro Ferrada
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Amanda Ng
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Zhechun Zhang
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - Gianluca Degliesposti
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andras Boeszoermenyi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Robert Stanton
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - André C Müller
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - J Thomas Hannich
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Georg E Winter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
32
|
Liu Z, Remsberg JR, Li H, Njomen E, DeMeester KE, Tao Y, Xia G, Hayward RE, Yoo M, Nguyen T, Simon GM, Schreiber SL, Melillo B, Cravatt BF. Proteomic Ligandability Maps of Spirocycle Acrylamide Stereoprobes Identify Covalent ERCC3 Degraders. J Am Chem Soc 2024; 146:10393-10406. [PMID: 38569115 PMCID: PMC11211653 DOI: 10.1021/jacs.3c13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Haoxin Li
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Yongfeng Tao
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Minjin Yoo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Vividion Therapeutics, San Diego, CA 92121, USA
| |
Collapse
|
33
|
Wan C, Yang D, Song C, Liang M, An Y, Lian C, Dai C, Ye Y, Yin F, Wang R, Li Z. A pyridinium-based strategy for lysine-selective protein modification and chemoproteomic profiling in live cells. Chem Sci 2024; 15:5340-5348. [PMID: 38577373 PMCID: PMC10988577 DOI: 10.1039/d3sc05766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Protein active states are dynamically regulated by various modifications; thus, endogenous protein modification is an important tool for understanding protein functions and networks in complicated biological systems. Here we developed a new pyridinium-based approach to label lysine residues under physiological conditions that is low-toxicity, efficient, and lysine-selective. Furthermore, we performed a large-scale analysis of the ∼70% lysine-selective proteome in MCF-7 cells using activity-based protein profiling (ABPP). We quantifically assessed 1216 lysine-labeled peptides in cell lysates and identified 386 modified lysine sites including 43 mitochondrial-localized proteins in live MCF-7 cells. Labeled proteins significantly preferred the mitochondria. This pyridinium-based methodology demonstrates the importance of analyzing endogenous proteins under native conditions and provides a robust chemical strategy utilizing either lysine-selective protein labeling or spatiotemporal profiling in a living system.
Collapse
Affiliation(s)
- Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118 P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 P. R. China
| | - Chunli Song
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Mingchan Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Chuan Dai
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| |
Collapse
|
34
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter T, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: diversity-oriented synthesis-based photoreactive stereoprobes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582206. [PMID: 38464067 PMCID: PMC10925180 DOI: 10.1101/2024.02.27.582206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.
Collapse
|
35
|
Miyajima R, Tanegashima K, Naruse N, Denda M, Hara T, Otaka A. Identification of Low-Density Lipoprotein Receptor-Related Protein 1 as a CXCL14 Receptor Using Chemically Synthesized Tetrafunctional Probes. ACS Chem Biol 2024; 19:551-562. [PMID: 38289037 DOI: 10.1021/acschembio.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
CXCL14 is a primordial CXC-type chemokine that transports CpG oligodeoxynucleotides (ODN) into endosomes and lysosomes in dendritic cells, thereby leading to the activation of the Toll-like receptor 9 (TLR9)-mediated innate immune system. However, the underlying molecular mechanism by which the CXCL14-CpG ODN complex enters cells remains elusive. Herein, we describe the chemical synthesis of CXCL14-derived photoaffinity probes and their application to the identification of target receptors for CXCL14 using quantitative proteomics. By utilizing native chemical ligation and maleimide-thiol coupling chemistry, we synthesized site-specifically modified CXCL14-based photoaffinity probes that contain photoreactive 2-aryl-5-carboxytetrazole (ACT) and a hydrazine-labile cleavable linker. CXCL14-based probes were found to be capable of binding CpG ODN to immune cells, whose bioactivities were comparable to native CXCL14. Application of CXCL14-derived probes to quantitative proteomic experiments enabled the identification of dozens of target receptor candidates for CXCL14 in mouse macrophage-derived RAW264.7 cells, and we discovered that low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for CXCL14 by competitive proteome profiling. We further showed that disruption of LRP1 affected the incorporation of the CXCL14-CpG ODN complex in the cells. Overall, this report highlights the power of synthetic CXCL14-derived photoaffinity probes combined with chemical proteomics to discover previously unidentified receptors for CXCL14, which could promote an understanding of the molecular functions of CXCL14 and the elaborate machinery of innate immune systems.
Collapse
Affiliation(s)
- Rin Miyajima
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kosuke Tanegashima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naoto Naruse
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
36
|
Gao Y, Ma M, Li W, Lei X. Chemoproteomics, A Broad Avenue to Target Deconvolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305608. [PMID: 38095542 PMCID: PMC10885659 DOI: 10.1002/advs.202305608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/29/2023] [Indexed: 12/22/2023]
Abstract
As a vital project of forward chemical genetic research, target deconvolution aims to identify the molecular targets of an active hit compound. Chemoproteomics, either with chemical probe-facilitated target enrichment or probe-free, provides a straightforward and effective approach to profile the target landscape and unravel the mechanisms of action. Canonical methods rely on chemical probes to enable target engagement, enrichment, and identification, whereas click chemistry and photoaffinity labeling techniques improve the efficiency, sensitivity, and spatial accuracy of target recognition. In comparison, recently developed probe-free methods detect protein-ligand interactions without the need to modify the ligand molecule. This review provides a comprehensive overview of different approaches and recent advancements for target identification and highlights the significance of chemoproteomics in investigating biological processes and advancing drug discovery processes.
Collapse
Affiliation(s)
- Yihui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Mingzhe Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Wenyang Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
37
|
Bracken AK, Gekko CE, Suss NO, Lueders EE, Cui Q, Fu Q, Lui ACW, Anderson ET, Zhang S, Abbasov ME. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids. J Am Chem Soc 2024; 146:2524-2548. [PMID: 38230968 PMCID: PMC11000255 DOI: 10.1021/jacs.3c10741] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Natural products perennially serve as prolific sources of drug leads and chemical probes, fueling the development of numerous therapeutics. Despite their scarcity, natural products that modulate protein function through covalent interactions with lysine residues hold immense potential to unlock new therapeutic interventions and advance our understanding of the biological processes governed by these modifications. Phloroglucinol meroterpenoids constitute one of the most expansive classes of natural products, displaying a plethora of biological activities. However, their mechanism of action and cellular targets have, until now, remained elusive. In this study, we detail the concise biomimetic synthesis, computational mechanistic insights, physicochemical attributes, kinetic parameters, molecular mechanism of action, and functional cellular targets of several phloroglucinol meroterpenoids. We harness synthetic clickable analogues of natural products to probe their disparate proteome-wide reactivity and subcellular localization through in-gel fluorescence scanning and cell imaging. By implementing sample multiplexing and a redesigned lysine-targeting probe, we streamline a quantitative activity-based protein profiling, enabling the direct mapping of global reactivity and ligandability of proteinaceous lysines in human cells. Leveraging this framework, we identify numerous lysine-meroterpenoid interactions in breast cancer cells at tractable protein sites across diverse structural and functional classes, including those historically deemed undruggable. We validate that phloroglucinol meroterpenoids perturb biochemical functions through stereoselective and site-specific modification of lysines in proteins vital for breast cancer metabolism, including lipid signaling, mitochondrial respiration, and glycolysis. These findings underscore the broad potential of phloroglucinol meroterpenoids for targeting functional lysines in the human proteome.
Collapse
Affiliation(s)
- Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colby E Gekko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nina O Suss
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qi Cui
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Andy C W Lui
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
38
|
Hong X, Geng P, Tian N, Li X, Gao M, Nie L, Sun Z, Liu G. From Bench to Clinic: A Nitroreductase Rv3368c-Responsive Cyanine-Based Probe for the Specific Detection of Live Mycobacterium tuberculosis. Anal Chem 2024; 96:1576-1586. [PMID: 38190499 DOI: 10.1021/acs.analchem.3c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Tuberculosis (TB), characterized by high mortality and low diagnosis, is caused by a single pathogen, Mycobacterium tuberculosis (Mtb). Imaging tools that can be used to track Mtb without pre-labeling and to diagnose live Mtb in clinical samples can shorten the gap between bench and clinic, fuel the development of novel anti-TB drugs, strengthen TB prevention, and improve patient treatment. In this study, we report an unprecedented novel nitroreductase-responsive cyanine-based fluorescent probe (Cy3-NO2-tre) that rapidly and specifically labels Mtb and detects it in clinical samples. Cy3-NO2-tre generated fluorescence after activation by a specific nitroreductase, Rv3368c, which is conserved in the Mycobacteriaceae. Cy3-NO2-tre effectively imaged mycobacteria within infected host cells, tracked the infection process, and visualized Mycobacterium smegmatis being endocytosed by macrophages. Cy3-NO2-tre also detected Mtb in the sputum of patients with TB and exhibited excellent photostability. Furthermore, the Cy3-NO2-tre/auramine O percentage change within 7 ± 2 days post drug treatment in the sputum of inpatients was closely correlated with the reexamination results of the chest computed tomography, strongly demonstrating the clinical application of Cy3-NO2-tre as a prognostic indicator in monitoring the therapeutic efficacy of anti-TB drugs in the early patient care stage.
Collapse
Affiliation(s)
- Xiaoqiao Hong
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Na Tian
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Mengqiu Gao
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lihui Nie
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|
39
|
Bartholow T, Burroughs PW, Elledge SK, Byrnes JR, Kirkemo LL, Garda V, Leung KK, Wells JA. Photoproximity Labeling from Single Catalyst Sites Allows Calibration and Increased Resolution for Carbene Labeling of Protein Partners In Vitro and on Cells. ACS CENTRAL SCIENCE 2024; 10:199-208. [PMID: 38292613 PMCID: PMC10823516 DOI: 10.1021/acscentsci.3c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
The cell surface proteome (surfaceome) plays a pivotal role in virtually all extracellular biology, and yet we are only beginning to understand the protein complexes formed in this crowded environment. Recently, a high-resolution approach (μMap) was described that utilizes multiple iridium-photocatalysts attached to a secondary antibody, directed to a primary antibody of a protein of interest, to identify proximal neighbors by light-activated conversion of a biotin-diazirine to a highly reactive carbene followed by LC/MS (Geri, J. B.; Oakley, J. V.; Reyes-Robles, T.; Wang, T.; McCarver, S. J.; White, C. H.; Rodriguez-Rivera, F. P.; Parker, D. L.; Hett, E. C.; Fadeyi, O. O.; Oslund, R. C.; MacMillan, D. W. C. Science2020, 367, 1091-1097). Here we calibrated the spatial resolution for carbene labeling using site-specific conjugation of a single photocatalyst to a primary antibody drug, trastuzumab (Traz), in complex with its structurally well-characterized oncogene target, HER2. We observed relatively uniform carbene labeling across all amino acids, and a maximum distance of ∼110 Å from the fixed photocatalyst. When targeting HER2 overexpression cells, we identified 20 highly enriched HER2 neighbors, compared to a nonspecific membrane tethered catalyst. These studies identify new HER2 interactors and calibrate the radius of carbene photoprobe labeling for the surfaceome.
Collapse
Affiliation(s)
- Thomas
G. Bartholow
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Paul W.W. Burroughs
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Susanna K. Elledge
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James R. Byrnes
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lisa L. Kirkemo
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Virginia Garda
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kevin K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
40
|
Yin Y, Zhao SL, Rane D, Lin Z, Wu M, Peterson BR. Quantification of Binding of Small Molecules to Native Proteins Overexpressed in Living Cells. J Am Chem Soc 2024; 146:187-200. [PMID: 38118119 PMCID: PMC10910633 DOI: 10.1021/jacs.3c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The affinity and selectivity of small molecules for proteins drive drug discovery and development. We report a fluorescent probe cellular binding assay (FPCBA) for determination of these values for native (untagged) proteins overexpressed in living cells. This method uses fluorophores such as Pacific Blue (PB) linked to cell-permeable protein ligands to generate probes that rapidly and reversibly equilibrate with intracellular targets, as established by kinetic assays of cellular uptake and efflux. To analyze binding to untagged proteins, an internal ribosomal entry site (IRES) vector was employed that allows a single mRNA to encode both the protein target and a separate orthogonal fluorescent protein (mVenus). This enabled cellular uptake of the probe to be correlated with protein expression by flow cytometry, allowing measurement of cellular dissociation constants (Kd) of the probe. This approach was validated by studies of the binding of allosteric activators to eight different Protein Kinase C (PKC) isozymes. Full-length PKCs expressed in transiently transfected HEK293T cells were used to measure cellular Kd values of a probe comprising PB linked to the natural product phorbol via a carbamate. These values were further used to determine competitive binding constants (cellular Ki values) of the nonfluorescent phorbol ester PDBu and the anticancer agent bryostatin 1 for each isozyme. For some PKC-small molecule pairs, these cellular Ki values matched known biochemical Ki values, but for others, altered selectivity was observed in cells. This approach can facilitate quantification of interactions of small molecules with physiologically relevant native proteins.
Collapse
Affiliation(s)
- Yuwen Yin
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Serena Li Zhao
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Digamber Rane
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Zhihong Lin
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Meng Wu
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| |
Collapse
|
41
|
Liao Y. Using Photoreactive Probes to Identify Viable Drug Targets in Non-small Cell Lung Cancer. Methods Mol Biol 2024; 2823:47-53. [PMID: 39052213 DOI: 10.1007/978-1-0716-3922-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent advancements in chemoproteomics have accelerated new chemical tools for exploring protein ligandability in native biological systems. However, a large fraction of ligandable proteome in cancer cells remains poorly studied. Here, we present a practical and efficient sample processing method for liquid chromatography high-resolution-tandem mass spectrometry (HPLC-MS/MS) analysis. This method uses fully functionalized photoreactive fragment-like probes for profiling protein-ligand interactions in live cancer cells. This method adopts "on-bead" digestion in conjunction with ZipTip desalting prior sample injection to MS. By using this protocol, fragment protein interactions can be visualized using fluorescent imaging, and fragment-associated proteins can be identified via HPLC-MS/MS analysis. Approximately 16 samples would generally expect to be processed within 3 days by following this protocol.
Collapse
Affiliation(s)
- Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
42
|
Powell CJ, Jenkins ML, Hill TB, Blank ML, Cabo LF, Thompson LR, Burke JE, Boyle JP, Boulanger MJ. Toxoplasma gondii mitochondrial association factor 1b interactome reveals novel binding partners including Ral GTPase accelerating protein α1. J Biol Chem 2024; 300:105582. [PMID: 38141762 PMCID: PMC10821591 DOI: 10.1016/j.jbc.2023.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.
Collapse
Affiliation(s)
- Cameron J Powell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Tara B Hill
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew L Blank
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leah F Cabo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lexie R Thompson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jon P Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
43
|
Punzalan C, Wang L, Bajrami B, Yao X. Measurement and utilization of the proteomic reactivity by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:166-192. [PMID: 36924435 DOI: 10.1002/mas.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical proteomics, which involves studying the covalent modifications of proteins by small molecules, has significantly contributed to our understanding of protein function and has become an essential tool in drug discovery. Mass spectrometry (MS) is the primary method for identifying and quantifying protein-small molecule adducts. In this review, we discuss various methods for measuring proteomic reactivity using MS and covalent proteomics probes that engage through reactivity-driven and proximity-driven mechanisms. We highlight the applications of these methods and probes in live-cell measurements, drug target identification and validation, and characterizing protein-small molecule interactions. We conclude the review with current developments and future opportunities in the field, providing our perspectives on analytical considerations for MS-based analysis of the proteomic reactivity landscape.
Collapse
Affiliation(s)
- Clodette Punzalan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- AD Bio US, Takeda, Lexington, Massachusetts, 02421, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, Massachusetts, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
44
|
Wei H, Zhang T, Li Y, Zhang G, Li Y. Covalent Capture and Selection of DNA-Encoded Chemical Libraries via Photo-Activated Lysine-Selective Crosslinkers. Chem Asian J 2023; 18:e202300652. [PMID: 37721712 DOI: 10.1002/asia.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Covalent crosslinking probes have arisen as efficient toolkits to capture and elucidate biomolecular interaction networks. Exploiting the potential of crosslinking in DNA-encoded chemical library (DEL) selection methods significantly boosted bioactive ligand discovery in complex physiological contexts. Herein, we incorporated o-nitrobenzyl alcohol (o-NBA) as a photo-activated lysine-selective crosslinker into divergent DEL formats and achieved covalent capture of ligand-target interactions featuring improved crosslinking efficiency and site-specificity. In addition, covalent DEL selection was realized with the modularly designed o-NBA-functionalized mock libraries.
Collapse
Affiliation(s)
- Haimei Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Tianyang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
45
|
Wang Y, Zhao J, Xu Y, Tao C, Tong J, Luo Y, Chen Y, Liu X, Xu T. Uncovering SOD3 and GPX4 as new targets of Benzo[α]pyrene-induced hepatotoxicity through Metabolomics and Chemical Proteomics. Redox Biol 2023; 67:102930. [PMID: 37847980 PMCID: PMC10585396 DOI: 10.1016/j.redox.2023.102930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Benzo[α]pyrene (Bap) is recognized as a ubiquitous environmental pollutant among the polycyclic aromatic hydrocarbons (PAHs) class. Previous studies have shown that the hepatotoxicity of Bap is mainly caused by its metabolites, although it remains unclear whether Bap itself induces such damage. This study integrated metabolomics and chemical proteomics approaches to comprehensively identify the potential target proteins affected by Bap in liver cells. The results from the metabolomics showed that the significant changed metabolites were related with cellular redox homeostasis. CEllular Thermal Shift Assay (CETSA) showed that Bap induced protein thermal displacement of superoxide dismutase 3 (SOD3) and glutathione peroxidase 4 (GPX4), which are closely related to oxidative homeostasis. Further validation through in vitro CETSA and drug affinity response target stability (DARTS) revealed that Bap directly affected the stability of SOD3 and GPX4 proteins. The binding affinities of Bap to the potential target proteins were further evaluated using molecular docking, while the isothermal titration calorimetry (ITC) interaction measurements indicated nanomolar-level Kd values. Importantly, we found that Bap weakened the antioxidant capacity by destroying the activities of SOD3 and GPX4, which provided a new understanding of the mechanism of hepatotoxicity induced by Bap. Moreover, our provided workflow integrating metabolomics and label-free chemical proteomics, can be regarded as a practical way to identify the targets and inter-mechanisms for the various environmental compounds.
Collapse
Affiliation(s)
- Yanwei Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiahui Zhao
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yipeng Xu
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cimin Tao
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jie Tong
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yingjie Luo
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Yong Chen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Xuesong Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Tengfei Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China.
| |
Collapse
|
46
|
Fu L, Jung Y, Tian C, Ferreira RB, Cheng R, He F, Yang J, Carroll KS. Nucleophilic covalent ligand discovery for the cysteine redoxome. Nat Chem Biol 2023; 19:1309-1319. [PMID: 37248412 DOI: 10.1038/s41589-023-01330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
With an eye toward expanding chemistries used for covalent ligand discovery, we elaborated an umpolung strategy that exploits the 'polarity reversal' of sulfur when cysteine is oxidized to sulfenic acid, a widespread post-translational modification, for selective bioconjugation with C-nucleophiles. Here we present a global map of a human sulfenome that is susceptible to covalent modification by members of a nucleophilic fragment library. More than 500 liganded sulfenic acids were identified on proteins across diverse functional classes, and, of these, more than 80% were not targeted by electrophilic fragment analogs. We further show that members of our nucleophilic fragment library can impair functional protein-protein interactions involved in nuclear oncoprotein transport and DNA damage repair. Our findings reveal a vast expanse of ligandable sulfenic acids in the human proteome and highlight the utility of nucleophilic small molecules in the fragment-based covalent ligand discovery pipeline, presaging further opportunities using non-traditional chemistries for targeting proteins.
Collapse
Affiliation(s)
- Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Youngeun Jung
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Ruifeng Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA.
| |
Collapse
|
47
|
Burton NR, Polasky DA, Shikwana F, Ofori S, Yan T, Geiszler DJ, Veiga Leprevost FD, Nesvizhskii AI, Backus KM. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics. J Am Chem Soc 2023; 145:21303-21318. [PMID: 37738129 DOI: 10.1021/jacs.3c05797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Mass spectrometry-based chemoproteomics has emerged as an enabling technology for functional biology and drug discovery. To address limitations of established chemoproteomics workflows, including cumbersome reagent synthesis and low throughput sample preparation, here, we established the silane-based cleavable isotopically labeled proteomics (sCIP) method. The sCIP method is enabled by a high yielding and scalable route to dialkoxydiphenylsilane fluorenylmethyloxycarbonyl (DADPS-Fmoc)-protected amino acid building blocks, which enable the facile synthesis of customizable, isotopically labeled, and chemically cleavable biotin capture reagents. sCIP is compatible with both MS1- and MS2-based quantitation, and the sCIP-MS2 method is distinguished by its click-assembled isobaric tags in which the reporter group is encoded in the sCIP capture reagent and balancer in the pan cysteine-reactive probe. The sCIP-MS2 workflow streamlines sample preparation with early stage isobaric labeling and sample pooling, allowing for high coverage and increased sample throughput via customized low cost six-plex sample multiplexing. When paired with a custom FragPipe data analysis workflow and applied to cysteine-reactive fragment screens, sCIP proteomics revealed established and unprecedented cysteine-ligand pairs, including the discovery that mitochondrial uncoupling agent FCCP acts as a covalent-reversible cysteine-reactive electrophile.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
48
|
Tang J, Li W, Chiu TY, Martínez-Peña F, Luo Z, Chong CT, Wei Q, Gazaniga N, West TJ, See YY, Lairson LL, Parker CG, Baran PS. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature 2023; 622:507-513. [PMID: 37730997 PMCID: PMC10699793 DOI: 10.1038/s41586-023-06535-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.
Collapse
Affiliation(s)
- Junchen Tang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Tzu-Yuan Chiu
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Zengwei Luo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Qijia Wei
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Thomas J West
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yi Yang See
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | | | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
49
|
The chemical synthesis and anti-cancer properties of portimines. Nature 2023:10.1038/d41586-023-02788-y. [PMID: 37730774 DOI: 10.1038/d41586-023-02788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
|
50
|
Aatkar A, Vuorinen A, Longfield OE, Gilbert K, Peltier-Heap R, Wagner CD, Zappacosta F, Rittinger K, Chung CW, House D, Tomkinson NCO, Bush JT. Efficient Ligand Discovery Using Sulfur(VI) Fluoride Reactive Fragments. ACS Chem Biol 2023; 18:1926-1937. [PMID: 37084287 PMCID: PMC10510102 DOI: 10.1021/acschembio.3c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Sulfur(VI) fluorides (SFs) have emerged as valuable electrophiles for the design of "beyond-cysteine" covalent inhibitors and offer potential for expansion of the liganded proteome. Since SFs target a broad range of nucleophilic amino acids, they deliver an approach for the covalent modification of proteins without requirement for a proximal cysteine residue. Further to this, libraries of reactive fragments present an innovative approach for the discovery of ligands and tools for proteins of interest by leveraging a breadth of mass spectrometry analytical approaches. Herein, we report a screening approach that exploits the unique properties of SFs for this purpose. Libraries of SF-containing reactive fragments were synthesized, and a direct-to-biology workflow was taken to efficiently identify hit compounds for CAII and BCL6. The most promising hits were further characterized to establish the site(s) of covalent modification, modification kinetics, and target engagement in cells. Crystallography was used to gain a detailed molecular understanding of how these reactive fragments bind to their target. It is anticipated that this screening protocol can be used for the accelerated discovery of "beyond-cysteine" covalent inhibitors.
Collapse
Affiliation(s)
- Arron Aatkar
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Aini Vuorinen
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Oliver E. Longfield
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Katharine Gilbert
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Rachel Peltier-Heap
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Craig D. Wagner
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | | | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - David House
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Nicholas C. O. Tomkinson
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Jacob T. Bush
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| |
Collapse
|