1
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024:S0166-2236(24)00182-6. [PMID: 39455342 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
2
|
Chen Y, Yu J, Hou C, Peng C. Direct evidence for logarithmic magnitude representation in the central nervous system. Neuroscience 2024; 561:127-138. [PMID: 39426705 DOI: 10.1016/j.neuroscience.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Fechner's law proposes a logarithmic relationship between the physical intensity and perceived magnitude of a stimulus. The principle of logarithmic magnitude representation has been extensively utilized in various theoretical frameworks. Although the neural correlates of Weber's law have been considered as possible evidence for Fechner's law, there is still a lack of direct evidence for a logarithmic representation in the central nervous system. In our study, participants were asked to reproduce the time intervals between two circles and ignore their spatial distances while electroencephalogram (EEG) signals were recorded synchronously. Behavioral results showed that a Bayesian model, which assumes a logarithmic representation of spatiotemporal information, was better at predicting production times than a model relying on a linear representation. The EEG results revealed that P2 and P3b amplitudes increased linearly with the logarithmic transformation of spatiotemporal information, and these event-related potentials were localized in the parietal cortex. Our study provides direct evidence supporting logarithmic magnitude representation in the central nervous system.
Collapse
Affiliation(s)
- Youguo Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China.
| | - Jie Yu
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Chunna Hou
- Key Laboratory of Cognition and Personality (Ministry of Education), Time Psychology Research Center, Center of Studies for Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Chunhua Peng
- Chongqing Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Saha A, Bucci T, Baudin J, Sinha R. Regional tuning of photoreceptor adaptation in the primate retina. Nat Commun 2024; 15:8821. [PMID: 39394185 PMCID: PMC11470117 DOI: 10.1038/s41467-024-53061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Adaptation in cone photoreceptors allows our visual system to effectively operate over an enormous range of light intensities. However, little is known about the properties of cone adaptation in the specialized region of the primate central retina called the fovea, which is densely packed with cones and mediates high-acuity central vision. Here we show that macaque foveal cones exhibit weaker and slower luminance adaptation compared to cones in the peripheral retina. We find that this difference in adaptive properties between foveal and peripheral cones is due to differences in the magnitude of a hyperpolarization-activated current, Ih. This Ih current regulates the strength and time course of luminance adaptation in peripheral cones where it is more prominent than in foveal cones. A weaker and slower adaptation in foveal cones helps maintain a higher sensitivity for a longer duration which may be well-suited for maximizing the collection of high-acuity information at the fovea during gaze fixation between rapid eye movements.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Theodore Bucci
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA.
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
4
|
Godat T, Kohout K, Parkins K, Yang Q, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Noncardinal Color Directions. J Neurosci 2024; 44:e1738232024. [PMID: 38548340 PMCID: PMC11063829 DOI: 10.1523/jneurosci.1738-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - William H Merigan
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| |
Collapse
|
5
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and developmental specialization of foveal cell types in the marmoset. Proc Natl Acad Sci U S A 2024; 121:e2313820121. [PMID: 38598343 PMCID: PMC11032471 DOI: 10.1073/pnas.2313820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Ruiqi Xin
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
6
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
7
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and Developmental Specialization of Foveal Cell Types in the Marmoset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570996. [PMID: 38106142 PMCID: PMC10723441 DOI: 10.1101/2023.12.10.570996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high throughput single cell RNA sequencing to profile retinal cells of the common marmoset ( Callithrix jacchus ), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all its foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia, among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for Müller glia in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution. Significance statement The sharpness of our eyesight hinges on a tiny retinal region known as the fovea. The fovea is pivotal for primate vision and is susceptible to diseases like age-related macular degeneration. We studied the fovea in the marmoset-a primate with ancient evolutionary ties. Our data illustrated the cellular and molecular composition of its fovea across different developmental ages. Our findings highlighted a profound cellular consistency among marmosets, humans, and macaques, emphasizing the value of marmosets in visual research and the study of visual diseases.
Collapse
|
8
|
Saha A, Zuniga J, Mian K, Zhai H, Derr PJ, Hoon M, Sinha R. Regional variation in the organization and connectivity of the first synapse in the primate night vision pathway. iScience 2023; 26:108113. [PMID: 37915604 PMCID: PMC10616377 DOI: 10.1016/j.isci.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Sensitivity of primate daylight vision varies across the visual field. This is attributed to regional variations in cone photoreceptor density and synaptic connectivity of the underlying circuitry. In contrast, we have limited understanding of how synapse organization of the primate night vision pathway changes across space. Using serial electron microscopy, we reconstructed the first synapse of the night vision pathway between rod photoreceptors and second-order neurons, at multiple locations from the central part of the primate retina, fovea, to the periphery. We find that most facets of the rod synapse connectivity vary across retinal regions. However, rod synaptic divergence and convergence patterns do not change in the same manner across locations. Moreover, patterns of rod synapse organization are tightly correlated with photoreceptor density. Such regional heterogeneities revise the connectivity diagram of the primate rod synapse which will shape synapse function and sensitivity of the night vision pathway across visual space.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Juan Zuniga
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Kainat Mian
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Haoshen Zhai
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Paul J. Derr
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
9
|
Wang AYM, Kulkarni MM, McLaughlin AJ, Gayet J, Smith BE, Hauptschein M, McHugh CF, Yao YY, Puthussery T. An ON-type direction-selective ganglion cell in primate retina. Nature 2023; 623:381-386. [PMID: 37880369 PMCID: PMC10632142 DOI: 10.1038/s41586-023-06659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
To maintain a stable and clear image of the world, our eyes reflexively follow the direction in which a visual scene is moving. Such gaze-stabilization mechanisms reduce image blur as we move in the environment. In non-primate mammals, this behaviour is initiated by retinal output neurons called ON-type direction-selective ganglion cells (ON-DSGCs), which detect the direction of image motion and transmit signals to brainstem nuclei that drive compensatory eye movements1. However, ON-DSGCs have not yet been identified in the retina of primates, raising the possibility that this reflex is mediated by cortical visual areas. Here we mined single-cell RNA transcriptomic data from primate retina to identify a candidate ON-DSGC. We then combined two-photon calcium imaging, molecular identification and morphological analysis to reveal a population of ON-DSGCs in the macaque retina. The morphology, molecular signature and GABA (γ-aminobutyric acid)-dependent mechanisms that underlie direction selectivity in primate ON-DSGCs are highly conserved with those in other mammals. We further identify a candidate ON-DSGC in human retina. The presence of ON-DSGCs in primates highlights the need to examine the contribution of subcortical retinal mechanisms to normal and aberrant gaze stabilization in the developing and mature visual system.
Collapse
Affiliation(s)
- Anna Y M Wang
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Manoj M Kulkarni
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Amanda J McLaughlin
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Jacqueline Gayet
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Benjamin E Smith
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
- Vision Science Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Max Hauptschein
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
| | - Cyrus F McHugh
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
- Vision Science Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Yvette Y Yao
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry and Vision Science, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, Berkeley, CA, USA.
| |
Collapse
|
10
|
Burge J, Dyer CM. Eccentricity strongly modulates visual processing delays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.559991. [PMID: 37808845 PMCID: PMC10557771 DOI: 10.1101/2023.09.30.559991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The temporal dynamics of visual information processing varies with the stimulus being processed and with the retinal location that initiates the processing. Here, we present psychophysical data with sub-millisecond precision showing that increasing eccentricity decreases the delay with which stimuli are processed. We show that, even within the central +/-6° of the visual field, processing delays change by a factor of up to three times. A simple model, grounded in retinal physiology, provides a good account of the data. The relative delays are on the order of only milliseconds. But if later processing leaves the delays unresolved, they can cause dramatic misperceptions of motion and 3D layout. We discuss the implications for how the human visual system solves the temporal binding problem across eccentricity. The results highlight the severe computational challenge of obtaining accurate, temporally-unified percepts of the environment with spatiotemporally-staggered processing across the visual field.
Collapse
Affiliation(s)
- Johannes Burge
- Department of Psychology, University of Pennsylvania, Pennsylvania PA
- Neuroscience Graduate Group, University of Pennsylvania, Pennsylvania PA
- Bioengineering Graduate Group, University of Pennsylvania, Pennsylvania PA
| | - Callista M Dyer
- Department of Psychology, University of Pennsylvania, Pennsylvania PA
| |
Collapse
|
11
|
Kerschensteiner D. Losing, preserving, and restoring vision from neurodegeneration in the eye. Curr Biol 2023; 33:R1019-R1036. [PMID: 37816323 PMCID: PMC10575673 DOI: 10.1016/j.cub.2023.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The retina is a part of the brain that sits at the back of the eye, looking out onto the world. The first neurons of the retina are the rod and cone photoreceptors, which convert changes in photon flux into electrical signals that are the basis of vision. Rods and cones are frequent targets of heritable neurodegenerative diseases that cause visual impairment, including blindness, in millions of people worldwide. This review summarizes the diverse genetic causes of inherited retinal degenerations (IRDs) and their convergence onto common pathogenic mechanisms of vision loss. Currently, there are few effective treatments for IRDs, but recent advances in disparate areas of biology and technology (e.g., genome editing, viral engineering, 3D organoids, optogenetics, semiconductor arrays) discussed here enable promising efforts to preserve and restore vision in IRD patients with implications for neurodegeneration in less approachable brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Rodrigues T, Dib L, Bréthaut É, Matter MM, Matter-Sadzinski L, Matter JM. Increased neuron density in the midbrain of a foveate bird, pigeon, results from profound change in tissue morphogenesis. Dev Biol 2023; 502:77-98. [PMID: 37400051 DOI: 10.1016/j.ydbio.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The increase of brain neuron number in relation with brain size is currently considered to be the major evolutionary path to high cognitive power in amniotes. However, how changes in neuron density did contribute to the evolution of the information-processing capacity of the brain remains unanswered. High neuron densities are seen as the main reason why the fovea located at the visual center of the retina is responsible for sharp vision in birds and primates. The emergence of foveal vision is considered as a breakthrough innovation in visual system evolution. We found that neuron densities in the largest visual center of the midbrain - i.e., the optic tectum - are two to four times higher in modern birds with one or two foveae compared to birds deprived of this specialty. Interspecies comparisons enabled us to identify elements of a hitherto unknown developmental process set up by foveate birds for increasing neuron density in the upper layers of their optic tectum. The late progenitor cells that generate these neurons proliferate in a ventricular zone that can expand only radially. In this particular context, the number of cells in ontogenetic columns increases, thereby setting the conditions for higher cell densities in the upper layers once neurons did migrate.
Collapse
Affiliation(s)
- Tania Rodrigues
- Department of Molecular Biology & Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, 4, Switzerland
| | - Linda Dib
- Swiss Institute of Bioinformatics, Le Génopode, 1015, Lausanne, Switzerland
| | | | - Michel M Matter
- HEPIA, HES-SO, University of Applied Sciences and Arts Western Switzerland, 1202, Geneva, Switzerland
| | - Lidia Matter-Sadzinski
- Department of Molecular Biology & Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, 4, Switzerland
| | - Jean-Marc Matter
- Department of Molecular Biology & Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, 4, Switzerland.
| |
Collapse
|
13
|
Godat T, Kohout K, Yang Q, Parkins K, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Non-Cardinal Color Directions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557995. [PMID: 37745616 PMCID: PMC10516013 DOI: 10.1101/2023.09.15.557995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A long-standing question in vision science is how the three cone photoreceptor types - long (L), medium (M) and short (S) wavelength sensitive - combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L+S and L vs. M+S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds are L vs. M and S vs. L+M. The cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in cortex. However, small populations with the appropriate M vs. L+S and L vs. M+S cone-opponency have been reported in large surveys of cone inputs to primate RGCs and their projections to the lateral geniculate nucleus (LGN) yet their existence continues to be debated. Resolving this long-standing open question is needed as a complete account of the cone-opponency in the retinal output is critical for efforts to understand how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to longitudinally and noninvasively measurements of the foveal RGC light responses in the living macaque eye. We confirm the presence of L vs. M+S and M vs. L+S neurons with non-cardinal cone-opponency and demonstrate that cone-opponent signals in the retinal output are substantially more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Juliette E. McGregor
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - Sara S. Patterson
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| |
Collapse
|
14
|
Seifert M, Roberts PA, Kafetzis G, Osorio D, Baden T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat Commun 2023; 14:5308. [PMID: 37652912 PMCID: PMC10471707 DOI: 10.1038/s41467-023-41032-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.
Collapse
Affiliation(s)
- Marvin Seifert
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Tsoneva T, Garcia-Molina G, Desain P. Electrophysiological model of human temporal contrast sensitivity based on SSVEP. Front Neurosci 2023; 17:1180829. [PMID: 37599998 PMCID: PMC10433170 DOI: 10.3389/fnins.2023.1180829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
The present study aims to connect the psychophysical research on the human visual perception of flicker with the neurophysiological research on steady-state visual evoked potentials (SSVEPs) in the context of their application needs and current technological developments. In four experiments, we investigated whether a temporal contrast sensitivity model could be established based on the electrophysiological responses to repetitive visual stimulation and, if so, how this model compares to the psychophysical models of flicker visibility. We used data from 62 observers viewing periodic flicker at a range of frequencies and modulation depths sampled around the perceptual visibility thresholds. The resulting temporal contrast sensitivity curve (TCSC) was similar in shape to its psychophysical counterpart, confirming that the human visual system is most sensitive to repetitive visual stimulation at frequencies between 10 and 20 Hz. The electrophysiological TCSC, however, was below the psychophysical TCSC measured in our experiments for lower frequencies (1-50 Hz), crossed it when the frequency was 50 Hz, and stayed above while decreasing at a slower rate for frequencies in the gamma range (40-60 Hz). This finding provides evidence that SSVEPs could be measured even without the conscious perception of flicker, particularly at frequencies above 50 Hz. The cortical and perceptual mechanisms that apply at higher temporal frequencies, however, do not seem to directly translate to lower frequencies. The presence of harmonics, which show better response for many frequencies, suggests non-linear processing in the visual system. These findings are important for the potential applications of SSVEPs in studying, assisting, or augmenting human cognitive and sensorimotor functions.
Collapse
Affiliation(s)
- Tsvetomira Tsoneva
- Department of Digital Engagement, Cognition and Behavior, Philips Research, Eindhoven, Netherlands
- Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Gary Garcia-Molina
- Sleep Number Labs, San Jose, CA, United States
- Center for Sleep and Consciousness, University of Wisconsin, Madison, WI, United States
| | - Peter Desain
- Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
16
|
Gogliettino AR, Madugula SS, Grosberg LE, Vilkhu RS, Brown J, Nguyen H, Kling A, Hottowy P, Dąbrowski W, Sher A, Litke AM, Chichilnisky EJ. High-Fidelity Reproduction of Visual Signals by Electrical Stimulation in the Central Primate Retina. J Neurosci 2023; 43:4625-4641. [PMID: 37188516 PMCID: PMC10286946 DOI: 10.1523/jneurosci.1091-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using large-scale electrical recording and stimulation ex vivo The functional organization, light response properties, and electrical properties of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density, kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical properties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the central retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell activation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant.SIGNIFICANCE STATEMENT Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimulation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.
Collapse
Affiliation(s)
- Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Sasidhar S Madugula
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Stanford School of Medicine, Stanford University, Stanford, California 94305
| | - Lauren E Grosberg
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Ramandeep S Vilkhu
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Jeff Brown
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Huy Nguyen
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Alexandra Kling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Władysław Dąbrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - E J Chichilnisky
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
- Department of Ophthalmology, Stanford University, Stanford, California 94305
| |
Collapse
|
17
|
Breher K, Neumann A, Kurth D, Schaeffel F, Wahl S. ON and OFF receptive field processing in the presence of optical scattering. BIOMEDICAL OPTICS EXPRESS 2023; 14:2618-2628. [PMID: 37342711 PMCID: PMC10278613 DOI: 10.1364/boe.489117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 06/23/2023]
Abstract
The balance of ON/OFF pathway activation in the retina plays a role in emmetropization. A new myopia control lens design uses contrast reduction to down-regulate a hypothesized enhanced ON contrast sensitivity in myopes. The study thus examined ON/OFF receptive field processing in myopes and non-myopes and the impact of contrast reduction. A psychophysical approach was used to measure the combined retinal-cortical output in the form of low-level ON and OFF contrast sensitivity with and without contrast reduction in 22 participants. ON responses were lower than OFF responses (ON 1.25 ± 0.03 vs. OFF 1.39 ± 0.03 log(CS); p < 0.0001) and myopes showed generally reduced sensitivities (myopes 1.25 ± 0.05 vs. non-myopes 1.39 ± 0.05 log(CS); p = 0.05). These findings remained unaffected by contrast reduction (p > 0.05). The study suggests that perceptual differences in ON and OFF signal processing between myopes and non-myopes exist but cannot explain how contrast reduction can inhibit myopia development.
Collapse
Affiliation(s)
- Katharina Breher
- Carl Zeiss Vision International GmbH, Turnstr. 27, 73430 Aalen, Germany
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Antonia Neumann
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Dominik Kurth
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| | - Frank Schaeffel
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Str. 91, 4056 Basel, Switzerland
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Turnstr. 27, 73430 Aalen, Germany
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Himmelberg MM, Winawer J, Carrasco M. Polar angle asymmetries in visual perception and neural architecture. Trends Neurosci 2023; 46:445-458. [PMID: 37031051 PMCID: PMC10192146 DOI: 10.1016/j.tins.2023.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Human visual performance changes with visual field location. It is best at the center of gaze and declines with eccentricity, and also varies markedly with polar angle. These perceptual polar angle asymmetries are linked to asymmetries in the organization of the visual system. We review and integrate research quantifying how performance changes with visual field location and how this relates to neural organization at multiple stages of the visual system. We first briefly review how performance varies with eccentricity and the neural foundations of this effect. We then focus on perceptual polar angle asymmetries and their neural foundations. Characterizing perceptual and neural variations across and around the visual field contributes to our understanding of how the brain translates visual signals into neural representations which form the basis of visual perception.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
19
|
Wang Y, Yin N, Yang R, Faiola F. Pollution effects on retinal health: A review on current methodologies and findings. Toxicol Ind Health 2023; 39:336-344. [PMID: 37160417 DOI: 10.1177/07482337231174072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In our daily life, we are exposed to numerous industrial chemicals that may be harmful to the retina, which is a delicate and sensitive part of our eyes. This could lead to irreversible changes and cause retinal diseases or blindness. Current retinal environmental health studies primarily utilize animal models, isolated mammalian retinas, animal- or human-derived retinal cells, and retinal organoids, to address both pre- and postnatal exposure. However, as there is limited toxicological information available for specific populations, human induced pluripotent stem cell (hiPSC)-induced models could be effective tools to supplement such data. In order to obtain more comprehensive and reliable toxicological information, we need more appropriate models, novel evaluation methods, and computational technologies to develop portable equipment. This review mainly focused on current toxicology models with particular emphasis on retinal organoids, and it looks forward to future models, analytical methods, and equipment that can efficiently and accurately evaluate retinal toxicity.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
van Heusden E, Olivers CNL, Donk M. The eyes prefer targets nearby fixation: Quantifying eccentricity-dependent attentional biases in oculomotor selection. Vision Res 2023; 205:108177. [PMID: 36669432 DOI: 10.1016/j.visres.2023.108177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
An important function of peripheral vision is to provide the target of the next eye movement. Here we investigate the extent to which the eyes are biased to select a target closer to fixation over one further away. Participants were presented with displays containing two identical singleton targets and were asked to move their eyes to either one of them. The targets could be presented at three different eccentricities relative to central fixation. In one condition both singletons were presented at the same eccentricity, providing an estimate of the speed of selection at each of the eccentricities. The saccadic latency distributions from this same-eccentricity condition were then used to predict the selection bias when both targets were presented at different eccentricities. The results show that when targets are presented at different eccentricities, participants are biased to select the item closest to fixation. This eccentricity-based bias was considerably stronger than predicted on the basis of saccadic latency distributions in the same-eccentricity condition. This rules out speed of processing per se as a sole explanation for such a bias. Instead, the results are consistent with attentional competition being weighted in favour of items close to fixation.
Collapse
Affiliation(s)
- Elle van Heusden
- Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081 HV Amsterdam, the Netherlands.
| | - Christian N L Olivers
- Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081 HV Amsterdam, the Netherlands
| | - Mieke Donk
- Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
21
|
Wang X, Roberts PA, Yoshimatsu T, Lagnado L, Baden T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep 2023; 42:112055. [PMID: 36757846 DOI: 10.1016/j.celrep.2023.112055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split "color" from "grayscale" information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this "dynamic balance," ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
Collapse
Affiliation(s)
- Xinwei Wang
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Wang C, Fang C, Zou Y, Yang J, Sawan M. Artificial intelligence techniques for retinal prostheses: a comprehensive review and future direction. J Neural Eng 2023; 20. [PMID: 36634357 DOI: 10.1088/1741-2552/acb295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Objective. Retinal prostheses are promising devices to restore vision for patients with severe age-related macular degeneration or retinitis pigmentosa disease. The visual processing mechanism embodied in retinal prostheses play an important role in the restoration effect. Its performance depends on our understanding of the retina's working mechanism and the evolvement of computer vision models. Recently, remarkable progress has been made in the field of processing algorithm for retinal prostheses where the new discovery of the retina's working principle and state-of-the-arts computer vision models are combined together.Approach. We investigated the related research on artificial intelligence techniques for retinal prostheses. The processing algorithm in these studies could be attributed to three types: computer vision-related methods, biophysical models, and deep learning models.Main results. In this review, we first illustrate the structure and function of the normal and degenerated retina, then demonstrate the vision rehabilitation mechanism of three representative retinal prostheses. It is necessary to summarize the computational frameworks abstracted from the normal retina. In addition, the development and feature of three types of different processing algorithms are summarized. Finally, we analyze the bottleneck in existing algorithms and propose our prospect about the future directions to improve the restoration effect.Significance. This review systematically summarizes existing processing models for predicting the response of the retina to external stimuli. What's more, the suggestions for future direction may inspire researchers in this field to design better algorithms for retinal prostheses.
Collapse
Affiliation(s)
- Chuanqing Wang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Chaoming Fang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jie Yang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Mohamad Sawan
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| |
Collapse
|
23
|
Liu F, Wang ZH, Huang W, Xu Y, Sang X, Liu R, Li ZY, Bi YL, Tang L, Peng JY, Wei JR, Miao ZC, Yan JH, Liu S, Yan JH, Liu S. Defects and asymmetries in the visual pathway of non-human primates with natural strabismus and amblyopia. Zool Res 2023; 44:153-168. [PMID: 36484227 PMCID: PMC9841183 DOI: 10.24272/j.issn.2095-8137.2022.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Strabismus and amblyopia are common ophthalmologic developmental diseases caused by abnormal visual experiences. However, the underlying pathogenesis and visual defects are still not fully understood. Most studies have used experimental interference to establish disease-associated animal models, while ignoring the natural pathophysiological mechanisms. This study was designed to investigate whether natural strabismus and amblyopia are associated with abnormal neurological defects. We screened one natural strabismic monkey ( Macaca fascicularis) and one natural amblyopic monkey from hundreds of monkeys, and retrospectively analyzed one human strabismus case. Neuroimaging, behavioral, neurophysiological, neurostructural, and genovariation features were systematically evaluated using magnetic resonance imaging (MRI), behavioral tasks, flash visual evoked potentials (FVEP), electroretinogram (ERG), optical coherence tomography (OCT), and whole-genome sequencing (WGS), respectively. Results showed that the strabismic patient and natural strabismic and amblyopic monkeys exhibited similar abnormal asymmetries in brain structure, i.e., ipsilateral impaired right hemisphere. Visual behavior, visual function, retinal structure, and fundus of the monkeys were impaired. Aberrant asymmetry in binocular visual function and structure between the strabismic and amblyopic monkeys was closely related, with greater impairment of the left visual pathway. Several similar known mutant genes for strabismus and amblyopia were also identified. In conclusion, natural strabismus and amblyopia are accompanied by abnormal asymmetries of the visual system, especially visual neurophysiological and neurostructural defects. Our results suggest that future therapeutic and mechanistic studies should consider defects and asymmetries throughout the entire visual system.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Zhong-Hao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Zhou-Yue Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Ya-Lan Bi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Jing-Yi Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Jia-Ru Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China
| | - Zhi-Chao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK,Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Jian-Hua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China,E-mail:
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, China,Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ultrafast spectra and kinetics of human green-cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2023; 120:e2214276120. [PMID: 36577071 PMCID: PMC9910472 DOI: 10.1073/pnas.2214276120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin is the pigment that enables night vision, whereas cone opsins are the pigments responsible for color vision in bright-light conditions. Despite their importance for vision, cone opsins are poorly characterized at the molecular level compared to rhodopsin. Spectra and kinetics of the intermediate states of human green-cone visual pigment (mid-wavelength sensitive, or MWS opsin) were measured and compared with the intermediates and kinetics of bovine rhodopsin. All the major intermediates of the MWS opsin were recorded in the picosecond to millisecond time range. Several intermediates in MWS opsin appear to have characteristics similar to the intermediates of bovine rhodopsin; however, there are some marked differences. One of the most striking differences is in their kinetics, where the kinetics of the MWS opsin intermediates are slower compared to those of the bovine rhodopsin intermediates.
Collapse
|
25
|
James B, Piekarz P, Moya-Díaz J, Lagnado L. The Impact of Multivesicular Release on the Transmission of Sensory Information by Ribbon Synapses. J Neurosci 2022; 42:9401-9414. [PMID: 36344266 PMCID: PMC9794368 DOI: 10.1523/jneurosci.0717-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
The statistics of vesicle release determine how synapses transfer information, but the classical Poisson model of independent release does not always hold at the first stages of vision and hearing. There, ribbon synapses also encode sensory signals as events comprising two or more vesicles released simultaneously. The implications of such coordinated multivesicular release (MVR) for spike generation are not known. Here we investigate how MVR alters the transmission of sensory information compared with Poisson synapses using a pure rate-code. We used leaky integrate-and-fire models incorporating the statistics of release measured experimentally from glutamatergic synapses of retinal bipolar cells in zebrafish (both sexes) and compared these with models assuming Poisson inputs constrained to operate at the same average rates. We find that MVR can increase the number of spikes generated per vesicle while reducing interspike intervals and latency to first spike. The combined effect was to increase the efficiency of information transfer (bits per vesicle) over a range of conditions mimicking target neurons of different size. MVR was most advantageous in neurons with short time constants and reliable synaptic inputs, when less convergence was required to trigger spikes. In the special case of a single input driving a neuron, as occurs in the auditory system of mammals, MVR increased information transfer whenever spike generation required more than one vesicle. This study demonstrates how presynaptic integration of vesicles by MVR can increase the efficiency with which sensory information is transmitted compared with a rate-code described by Poisson statistics.SIGNIFICANCE STATEMENT Neurons communicate by the stochastic release of vesicles at the synapse and the statistics of this process will determine how information is represented by spikes. The classical model is that vesicles are released independently by a Poisson process, but this does not hold at ribbon-type synapses specialized to transmit the first electrical signals in vision and hearing, where two or more vesicles can fuse in a single event by a process termed coordinated multivesicular release. This study shows that multivesicular release can increase the number of spikes generated per vesicle and the efficiency of information transfer (bits per vesicle) over a range of conditions found in the retina and peripheral auditory system.
Collapse
Affiliation(s)
- Ben James
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Pawel Piekarz
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - José Moya-Díaz
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Leon Lagnado
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
26
|
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis. PLoS One 2022; 17:e0278261. [PMID: 36445926 PMCID: PMC9707781 DOI: 10.1371/journal.pone.0278261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
Abstract
The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.
Collapse
|
27
|
Roberts RJV, Pop S, Prieto-Godino LL. Evolution of central neural circuits: state of the art and perspectives. Nat Rev Neurosci 2022; 23:725-743. [DOI: 10.1038/s41583-022-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
|
28
|
Abbas F, Becker S, Jones BW, Mure LS, Panda S, Hanneken A, Vinberg F. Revival of light signalling in the postmortem mouse and human retina. Nature 2022; 606:351-357. [PMID: 35545677 PMCID: PMC10000337 DOI: 10.1038/s41586-022-04709-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.
Collapse
Affiliation(s)
- Fatima Abbas
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Ludovic S Mure
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Institute of Physiology, University of Bern, Bern, Switzerland
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| | | | - Anne Hanneken
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Retina Consultants San Diego, La Jolla, CA, USA.
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Hussey KA, Hadyniak SE, Johnston RJ. Patterning and Development of Photoreceptors in the Human Retina. Front Cell Dev Biol 2022; 10:878350. [PMID: 35493094 PMCID: PMC9049932 DOI: 10.3389/fcell.2022.878350] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/04/2023] Open
Abstract
Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.
Collapse
|
30
|
Sedigh-Sarvestani M, Fitzpatrick D. What and Where: Location-Dependent Feature Sensitivity as a Canonical Organizing Principle of the Visual System. Front Neural Circuits 2022; 16:834876. [PMID: 35498372 PMCID: PMC9039279 DOI: 10.3389/fncir.2022.834876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Traditionally, functional representations in early visual areas are conceived as retinotopic maps preserving ego-centric spatial location information while ensuring that other stimulus features are uniformly represented for all locations in space. Recent results challenge this framework of relatively independent encoding of location and features in the early visual system, emphasizing location-dependent feature sensitivities that reflect specialization of cortical circuits for different locations in visual space. Here we review the evidence for such location-specific encoding including: (1) systematic variation of functional properties within conventional retinotopic maps in the cortex; (2) novel periodic retinotopic transforms that dramatically illustrate the tight linkage of feature sensitivity, spatial location, and cortical circuitry; and (3) retinotopic biases in cortical areas, and groups of areas, that have been defined by their functional specializations. We propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual experience, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. Future studies are necessary to discover mechanisms underlying joint encoding of location and functional information, how this relates to behavior, emerges during development, and varies across species.
Collapse
|
31
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
32
|
Zapp SJ, Nitsche S, Gollisch T. Retinal receptive-field substructure: scaffolding for coding and computation. Trends Neurosci 2022; 45:430-445. [DOI: 10.1016/j.tins.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
|
33
|
AMIGO1 Promotes Axon Growth and Territory Matching in the Retina. J Neurosci 2022; 42:2678-2689. [PMID: 35169021 PMCID: PMC8973419 DOI: 10.1523/jneurosci.1164-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Dendrite and axon arbor sizes are critical to neuronal function and vary widely between different neuron types. The relative dendrite and axon sizes of synaptic partners control signal convergence and divergence in neural circuits. The developmental mechanisms that determine cell-type-specific dendrite and axon size and match synaptic partners' arbor territories remain obscure. Here, we discover that retinal horizontal cells express the leucine-rich repeat domain cell adhesion molecule AMIGO1. Horizontal cells provide pathway-specific feedback to photoreceptors-horizontal cell axons to rods and horizontal cell dendrites to cones. AMIGO1 selectively expands the size of horizontal cell axons. When Amigo1 is deleted in all or individual horizontal cells of either sex, their axon arbors shrink. By contrast, horizontal cell dendrites and synapse formation of horizontal cell axons and dendrites are unaffected by AMIGO1 removal. The dendrites of rod bipolar cells, which do not express AMIGO1, shrink in parallel with horizontal cell axons in Amigo1 knockout (Amigo1 KO) mice. This territory matching maintains the function of the rod bipolar pathway, preserving bipolar cell responses and retinal output signals in Amigo1 KO mice. We previously identified AMIGO2 as a scaling factor that constrains retinal neurite arbors. Our current results identify AMIGO1 as a scaling factor that expands retinal neurite arbors and reveal territory matching as a novel homeostatic mechanism. Territory matching interacts with other homeostatic mechanisms to stabilize the development of the rod bipolar pathway, which mediates vision near the threshold.SIGNIFICANCE STATEMENT Neurons send and receive signals through branched axonal and dendritic arbors. The size of these arbors is critical to the function of a neuron. Axons and dendrites grow during development and are stable at maturity. The mechanisms that determine axon and dendrite size are not well understood. Here, we identify a cell surface protein, AMIGO1, that selectively promotes axon growth of horizontal cells, a retinal interneuron. Removal of AMIGO1 reduces the size of horizontal cell axons without affecting the size of their dendrites or the ability of both arbors to form connections. The changes in horizontal cell axons are matched by changes in synaptic partner dendrites to stabilize retinal function. This identifies territory matching as a novel homeostatic plasticity mechanism.
Collapse
|
34
|
Dhankhar D, Nagpal A, Tachibanaki S, Li R, Cesario TC, Rentzepis PM. Comparison of Bovine and Carp Fish Visual Pigment Photo-Intermediates at Room Temperature. Photochem Photobiol 2022; 98:1303-1311. [PMID: 35313014 DOI: 10.1111/php.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
This paper presents room temperature nanoseconds to milliseconds time-resolved spectra and kinetics of the intermediate states and species of bovine and carp fish rhodopsin visual pigments, which also contained ~5% cone pigments. The nanoseconds to milliseconds range cover all the major intermediates in the visual phototransduction process except the formation of bathorhodopsin intermediate which occurs at the femtosecond time scale. The dynamics of these visual pigment intermediates are initiated by excitation with a 532 nm nanosecond laser pulse. The recorded differences between bovine and carp rhodopsin time-resolved spectra of the formation and decay kinetics of their intermediates are presented and discussed. The data show that the carp samples batho intermediate decays faster, nearly by a factor of three, compared to the bovine samples. The formation and decay spectra and kinetics of rhodopsin outer segments and extracted rhodopsin inserted in buffer solution were found to be identical, with very small differences between them in the decay lifetimes of bathorhodopsin and formation of lumirhodopsin.
Collapse
Affiliation(s)
- Dinesh Dhankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Anushka Nagpal
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Runze Li
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | | | - Peter M Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Saha A, Capowski E, Fernandez Zepeda MA, Nelson EC, Gamm DM, Sinha R. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea. Cell Stem Cell 2022; 29:460-471.e3. [PMID: 35104442 PMCID: PMC9093561 DOI: 10.1016/j.stem.2022.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
High-definition vision in humans and nonhuman primates is initiated by cone photoreceptors located within a specialized region of the retina called the fovea. Foveal cone death is the ultimate cause of central blindness in numerous retinal dystrophies, including macular degenerative diseases. 3D retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) hold tremendous promise to model and treat such diseases. To achieve this goal, RO cones should elicit robust and intrinsic light-evoked electrical responses (i.e., phototransduction) akin to adult foveal cones, which has not yet been demonstrated. Here, we show strong, graded, repetitive, and wavelength-specific light-evoked responses from RO cones. The photoresponses and membrane physiology of a significant fraction of these lab-generated cones are comparable with those of intact ex vivo primate fovea. These results greatly increase confidence in ROs as potential sources of functional human cones for cell replacement therapies, drug testing, and in vitro models of retinal dystrophies.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA
| | | | | | - Emma C Nelson
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
36
|
Raghuram V, Werginz P, Fried SI, Timko BP. Morphological Factors that Underlie Neural Sensitivity to Stimulation in the Retina. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100069. [PMID: 35399546 PMCID: PMC8993153 DOI: 10.1002/anbr.202100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Retinal prostheses are a promising therapeutic intervention for patients afflicted by outer retinal degenerative diseases like retinitis pigmentosa and age-related macular degeneration. While significant advances in the development of retinal implants have been made, the quality of vision elicited by these devices remains largely sub-optimal. The variability in the responses produced by retinal devices is most likely due to the differences between the natural cell type-specific signaling that occur in the healthy retina vs. the non-specific activation of multiple cell types arising from artificial stimulation. In order to replicate these natural signaling patterns, stimulation strategies must be capable of preferentially activating specific RGC types. To design more selective stimulation strategies, a better understanding of the morphological factors that underlie the sensitivity to prosthetic stimulation must be developed. This review will focus on the role that different anatomical components play in driving the direct activation of RGCs by extracellular stimulation. Briefly, it will (1) characterize the variability in morphological properties of α-RGCs, (2) detail the influence of morphology on the direct activation of RGCs by electric stimulation, and (3) describe some of the potential biophysical mechanisms that could explain differences in activation thresholds and electrically evoked responses between RGC types.
Collapse
Affiliation(s)
- Vineeth Raghuram
- Boston VA Healthcare System, 150 S Huntington Ave, Boston, MA 02130, USA
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Paul Werginz
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Shelley I. Fried
- Boston VA Healthcare System, 150 S Huntington Ave, Boston, MA 02130, USA
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Brian P. Timko
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
37
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
38
|
Impact of axonal delay on structure development in a multi-layered network. Neural Netw 2021; 144:737-754. [PMID: 34688016 DOI: 10.1016/j.neunet.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/23/2021] [Accepted: 08/15/2021] [Indexed: 11/23/2022]
Abstract
The mechanisms underlying how activity in the visual pathway gives rise through neural plasticity to many features observed experimentally in early stages of visual processing was provided by Linsker in a seminal, three-paper series. Owing to the complexity of multi-layer models, an implicit assumption in Linsker's and subsequent papers has been that propagation delay is homogeneous, playing little functional role in neural behavior. In this paper, we relax this assumption to examine the impact of distance-dependent axonal propagation delay on neural learning. We show that propagation delay induces low-pass filtering by dispersing arrival times of spikes from presynaptic neurons, providing a natural correlation cancellation mechanism for distal connections. The cut-off frequency decreases as radial propagation delay within a layer increases relative to propagation delay between layers, introducing an upper limit on temporal resolution. Given that the postsynaptic potential acts as a low-pass filter, we show that the effective time constant of each should enable processing of similar scales of temporal information. This has implications for the visual system, in which receptive field size and, thus, propagation delay, increases with eccentricity. Furthermore, network response is frequency dependent since higher frequencies require increased input amplitude to compensate for attenuation. This concords with frequency-dependent contrast sensitivity, which changes with eccentricity and receptive field size. We further show that the proportion of inhibition relative to excitation is larger where radial propagation delay is long relative to inter-laminar delay, and that delay reduces the range in on-center size, providing stability to variations in homeostatic parameters.
Collapse
|
39
|
Werth R. Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment? Brain Sci 2021; 11:1313. [PMID: 34679378 PMCID: PMC8534212 DOI: 10.3390/brainsci11101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular neural pathways. The review explores arguments for and against these theories. Recent results have shown that DD is caused by (1) a reduced ability to simultaneously recognize sequences of letters that make up words, (2) longer fixation times required to simultaneously recognize strings of letters, and (3) amplitudes of saccades that do not match the number of simultaneously recognized letters. It was shown that pseudowords that could not be recognized simultaneously were recognized almost without errors when the fixation time was extended. However, there is an individual maximum number of letters that each reader with DD can recognize simultaneously. Findings on the neurobiological basis of temporal summation have shown that a necessary prolongation of fixation times is due to impaired processing mechanisms of the visual system, presumably involving magnocells and parvocells. An area in the mid-fusiform gyrus also appears to play a significant role in the ability to simultaneously recognize words and pseudowords. The results also contradict the assumption that DD is due to a lack of eye movement control. The present research does not support the assumption that DD is caused by a phonological disorder but shows that DD is due to a visual processing dysfunction.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, University of Munich, Haydnstrasse 5, D-80336 Munich, Germany
| |
Collapse
|
40
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|
41
|
Tang H, Song R, Hu Y, Tian Y, Lu Z, Chen L, Huang Y. Late Development of Early Visual Perception: No Topology-Priority in Peripheral Vision Until Age 10. Child Dev 2021; 92:1906-1918. [PMID: 34569057 PMCID: PMC8518037 DOI: 10.1111/cdev.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Topological property (TP) is a basic geometric attribute of objects, which is preserved over continuous and one-to-one transformations and considered to be processed in early vision. This study investigated the global TP perception of 773 children aged 6-14, as compared to 179 adults. The results revealed that adults and children aged 10 or over show a TP priority trend in both central and peripheral vision, that is, less time is required to discriminate TP differences than non-TP differences. Children aged 6-8 show a TP priority trend for central stimuli, but not in their peripheral vision. The TP priority effect in peripheral vision does not emerge until age ˜10 years, and the development of central and peripheral vision seems to be different.
Collapse
Affiliation(s)
- Hongsi Tang
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationThe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rujiao Song
- The Experimental School of Shenzhen Institutes of Advanced TechnologyShenzhenChina
| | - Yueyan Hu
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationThe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yixin Tian
- The Experimental School of Shenzhen Institutes of Advanced TechnologyShenzhenChina
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationThe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Chen
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Brain and Cognitive ScienceInstitute of Biophysics,Chinese Academy of SciencesBeijingChina
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and BehaviorCAS Key Laboratory of Brain Connectome and ManipulationThe Brain Cognition and Brain Disease Institute (BCBDI)Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
42
|
Abstract
Time is largely a hidden variable in vision. It is the condition for seeing interesting things such as spatial forms and patterns, colours and movements in the external world, and yet is not meant to be noticed in itself. Temporal aspects of visual processing have received comparatively little attention in research. Temporal properties have been made explicit mainly in measurements of resolution and integration in simple tasks such as detection of spatially homogeneous flicker or light pulses of varying duration. Only through a mechanistic understanding of their basis in retinal photoreceptors and circuits can such measures guide modelling of natural vision in different species and illuminate functional and evolutionary trade-offs. Temporal vision research would benefit from bridging traditions that speak different languages. Towards that goal, I here review studies from the fields of human psychophysics, retinal physiology and neuroethology, with a focus on fundamental constraints set by early vision. Summary: Simple measures of temporal vision such as the critical flicker frequency can be useful for modelling natural vision only if their relationship to photoreceptor responses and retinal processing is understood.
Collapse
Affiliation(s)
- Kristian Donner
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
43
|
Schröder C, Oesterle J, Berens P, Yoshimatsu T, Baden T. Distinct synaptic transfer functions in same-type photoreceptors. eLife 2021; 10:e67851. [PMID: 34269177 PMCID: PMC8318593 DOI: 10.7554/elife.67851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023] Open
Abstract
Many sensory systems use ribbon-type synapses to transmit their signals to downstream circuits. The properties of this synaptic transfer fundamentally dictate which aspects in the original stimulus will be accentuated or suppressed, thereby partially defining the detection limits of the circuit. Accordingly, sensory neurons have evolved a wide variety of ribbon geometries and vesicle pool properties to best support their diverse functional requirements. However, the need for diverse synaptic functions does not only arise across neuron types, but also within. Here we show that UV-cones, a single type of photoreceptor of the larval zebrafish eye, exhibit striking differences in their synaptic ultrastructure and consequent calcium to glutamate transfer function depending on their location in the eye. We arrive at this conclusion by combining serial section electron microscopy and simultaneous 'dual-colour' two-photon imaging of calcium and glutamate signals from the same synapse in vivo. We further use the functional dataset to fit a cascade-like model of the ribbon synapse with different vesicle pool sizes, transfer rates, and other synaptic properties. Exploiting recent developments in simulation-based inference, we obtain full posterior estimates for the parameters and compare these across different retinal regions. The model enables us to extrapolate to new stimuli and to systematically investigate different response behaviours of various ribbon configurations. We also provide an interactive, easy-to-use version of this model as an online tool. Overall, we show that already on the synaptic level of single-neuron types there exist highly specialised mechanisms which are advantageous for the encoding of different visual features.
Collapse
Affiliation(s)
- Cornelius Schröder
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
| | - Jonathan Oesterle
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
- Bernstein Center for Computational Neuroscience,Centre for Integrative Neuroscience, all: University of TubingenTubingenGermany
| | | | - Tom Baden
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- School of Life Sciences,University of SussexSussexUnited Kingdom
| |
Collapse
|
44
|
Zeng B, Zhang H, Peng Y, Yu H, Li W, Li Z, Xie Y, Qiu S, Wu P, Zhang W, Liu Y, Chen Y, Liu X, Huang B. Spontaneous fundus lesions in elderly monkeys: An ideal model for age-related macular degeneration and high myopia clinical research. Life Sci 2021; 282:119811. [PMID: 34256039 DOI: 10.1016/j.lfs.2021.119811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
AIMS Age-related macular degeneration (AMD) and high myopia are frequent causes of progressive visual impairment, so it is critical to identify animal models with resembling human retinal physiology, AMD and high myopia pathological features for therapeutic studies. MAIN METHODS We screened elderly cynomolgus monkeys for fundus lesions by slit-lamp biomicroscope combined with fundus pre-set lens and further examined positive cases by color fundus photography (CFP), optical coherence tomography (OCT), fundus fluorescein angiography (FFA), streak retinoscopy, and A-scan ultrasonography. KEY FINDINGS Among the 156 animals examined, 10 males and 5 females (30 eyes) exhibited fundus abnormalities (9.6% prevalence). Multi-modal imaging revealed drusen in 20 eyes of 11 animals (prevalence rate of 7.1%), tessellated fundus in 22 eyes of 11 animals, and myopia choroidal neovascularization (CNV) in 4 eyes of 3 animals. SIGNIFICANCE Aged cynomolgus monkeys exhibit spontaneous fundus lesions resembling human AMD and high myopia, which could be an ideal model for clinical research.
Collapse
Affiliation(s)
- Baozhu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuting Peng
- Department of Ophthalmology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaojue Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sujuan Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Peixin Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yanwei Liu
- Chuangyao Biotechnology Co., Ltd., Zhaoqing, China
| | - Yanming Chen
- Xiangguan Biotechnology Co., Ltd., Guangzhou, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
45
|
Summers JA, Schaeffel F, Marcos S, Wu H, Tkatchenko AV. Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Exp Eye Res 2021; 209:108693. [PMID: 34228967 DOI: 10.1016/j.exer.2021.108693] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Susana Marcos
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hao Wu
- Department of Ophthalmology, Columbia University, New York, USA
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
46
|
Horwitz GD. Temporal filtering of luminance and chromaticity in macaque visual cortex. iScience 2021; 24:102536. [PMID: 34189430 PMCID: PMC8219838 DOI: 10.1016/j.isci.2021.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022] Open
Abstract
Contrast sensitivity peaks near 10 Hz for luminance modulations and at lower frequencies for modulations between equiluminant lights. This difference is rooted in retinal filtering, but additional filtering occurs in the cerebral cortex. To measure the cortical contributions to luminance and chromatic temporal contrast sensitivity, signals in the lateral geniculate nucleus (LGN) were compared to the behavioral contrast sensitivity of macaque monkeys. Long wavelength-sensitive (L) and medium wavelength-sensitive (M) cones were modulated in phase to produce a luminance modulation (L + M) or in counterphase to produce a chromatic modulation (L - M). The sensitivity of LGN neurons was well matched to behavioral sensitivity at low temporal frequencies but was approximately 7 times greater at high temporal frequencies. Similar results were obtained for L + M and L - M modulations. These results show that differences in the shapes of the luminance and chromatic temporal contrast sensitivity functions are due almost entirely to pre-cortical mechanisms.
Collapse
Affiliation(s)
- Gregory D. Horwitz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, 1959 N.E. Pacific Street, HSB I-714, Box 357290, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Guzhang Y, Shelchkova N, Ezzo R, Poletti M. Transient perceptual enhancements resulting from selective shifts of exogenous attention in the central fovea. Curr Biol 2021; 31:2698-2703.e2. [PMID: 33930304 PMCID: PMC8763350 DOI: 10.1016/j.cub.2021.03.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 12/01/2022]
Abstract
Exogenous attention, a powerful adaptive tool that quickly and involuntarily orients processing resources to salient stimuli, has traditionally been studied in the lower-resolution parafoveal and peripheral visual field.1-4 It is not known whether and how it operates across the 1° central fovea where visual resolution peaks.5,6 Here we investigated the dynamics of exogenous attention in the foveola. To circumvent the challenges posed by fixational eye movements at this scale, we used high-precision eye-tracking and gaze-contingent display control for retinal stabilization.7 High-acuity stimuli were briefly presented foveally at varying delays following an exogenous cue. Attended and unattended locations were just a few arcminutes away from the preferred locus of fixation. Our results show that for short temporal delays, observers' ability to discriminate fine detail is enhanced at the cued location. This enhancement is highly localized and does not extend to the nearby locations only 16' away. On a longer timescale, instead, we report an inverse effect: paradoxically, acuity is sharper at the unattended locations, resembling the phenomenon of inhibition of return at much larger eccentricities.8-10 Although exogenous attention represents a mechanism for low-cost monitoring of the environment in the extrafoveal space, these findings show that, in the foveola, it transiently modulates vision of detail with a high degree of resolution. Together with inhibition of return, it may aid visual exploration of complex foveal stimuli.11.
Collapse
Affiliation(s)
- Yue Guzhang
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Natalya Shelchkova
- Program in Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Rania Ezzo
- Department of Psychology, New York University, New York, NY, USA
| | - Martina Poletti
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA; Department of Neuroscience, University of Rochester, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
48
|
Tkatchenko TV, Tkatchenko AV. Genetic network regulating visual acuity makes limited contribution to visually guided eye emmetropization. Genomics 2021; 113:2780-2792. [PMID: 34147636 DOI: 10.1016/j.ygeno.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
During postnatal development, the eye undergoes a refinement process whereby optical defocus guides eye growth towards sharp vision in a process of emmetropization. Optical defocus activates a signaling cascade originating in the retina and propagating across the back of the eye to the sclera. Several observations suggest that visual acuity might be important for optical defocus detection and processing in the retina; however, direct experimental evidence supporting or refuting the role of visual acuity in refractive eye development is lacking. Here, we used genome-wide transcriptomics to determine the relative contribution of the retinal genetic network regulating visual acuity to the signaling cascade underlying visually guided eye emmetropization. Our results provide evidence that visual acuity is regulated at the level of molecular signaling in the retina by an extensive genetic network. The genetic network regulating visual acuity makes relatively small contribution to the signaling cascade underlying refractive eye development. This genetic network primarily affects baseline refractive eye development and this influence is primarily facilitated by the biological processes related to melatonin signaling, nitric oxide signaling, phototransduction, synaptic transmission, and dopamine signaling. We also observed that the visual-acuity-related genes associated with the development of human myopia are chiefly involved in light perception and phototransduction. Our results suggest that the visual-acuity-related genetic network primarily contributes to the signaling underlying baseline refractive eye development, whereas its impact on visually guided eye emmetropization is modest.
Collapse
Affiliation(s)
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
49
|
Abstract
William Tuten and Wolf Harmening introduce the anatomical and functional signatures of foveated vision in humans.
Collapse
|
50
|
Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T, Cuttat R, Waldt A, Papasaikas P, Diggelmann R, Patino-Alvarez CP, Galliker P, Spirig SE, Pavlinic D, Gerber-Hollbach N, Schuierer S, Srdanovic A, Balogh M, Panero R, Kusnyerik A, Szabo A, Stadler MB, Orgül S, Picelli S, Hasler PW, Hierlemann A, Scholl HPN, Roma G, Nigsch F, Roska B. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2021; 182:1623-1640.e34. [PMID: 32946783 PMCID: PMC7505495 DOI: 10.1016/j.cell.2020.08.013] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.
Collapse
Affiliation(s)
- Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Martina De Gennaro
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - David Goldblum
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rachel Cuttat
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Annick Waldt
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Roland Diggelmann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Claudia P Patino-Alvarez
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Stefan E Spirig
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Dinko Pavlinic
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | | | - Sven Schuierer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Aldin Srdanovic
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marton Balogh
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Riccardo Panero
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Akos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Arnold Szabo
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Selim Orgül
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|