1
|
Gu H, Zhang Y, Sun J, Liu L, Liu Z. Exploring the effect and mechanism of action of Jinlida granules (JLD) in the treatment of diabetes-associated cognitive impairment based on network pharmacology with experimental validation. Ann Med 2025; 57:2445181. [PMID: 39723533 DOI: 10.1080/07853890.2024.2445181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES To explore the effect and the probable mechanisms of JLD in the treatment of type 2 diabetes mellitus (T2DM) - associated cognitive impairment (TDACI). METHODS The effect of JLD in combating TDACI was assessed in T2DM model mice by conducting Morris water maze (MWM) behaviour testing. Active components and their putative targets, as well as TDACI-related targets, were collected from public databases. Protein-protein interactions (PPIs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and molecular docking were then utilized to explore potential molecular network mechanisms. Finally, the main targets were verified in animal model experiments. RESULTS MWM test showed that JLD improved aspects of behaviour in T2DM model mice. JLD improved glucose intolerance, tissue insulin sensitivity, lipid metabolism and enhanced synapse-associated protein expression in hippocampus tissue. Network pharmacology revealed 185 active components, 337 targets of JLD, and 7998 TDACI related targets were obtained . PPI network analyses revealed 39 core targets. GO and KEGG analyses suggested that JLD might improve TDACI by regulating gene expression, apoptotic processes and inflammatory responses mainly via PI3K-AKT and AGE-RAGE signaling pathways. Molecular docking revealed strong binding of the main components to core targets. JLD reduced hippocampus tissue expression of the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL6), core targets of treatment of TDACI. CONCLUSIONS The findings suggested that JLD has the potential to improve TDACI through multiple components, multiple targets and multiple pathways. JLD may be a promising treatment for diabetic cognitive impairment.
Collapse
Affiliation(s)
- Haiyan Gu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Yuxin Zhang
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Jinghua Sun
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Lipeng Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zanchao Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Luo W, Xu C, Li L, Ji Y, Wang Y, Li Y, Ye Y. Perfluoropentane-based oxygen-loaded nanodroplets reduce microglial activation through metabolic reprogramming. Neural Regen Res 2025; 20:1178-1191. [PMID: 38989955 PMCID: PMC11438333 DOI: 10.4103/nrr.nrr-d-23-01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00032/figure1/v/2024-07-06T104127Z/r/image-tiff Microglia, the primary immune cells within the brain, have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system, including Parkinson's disease. Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity, but also exhibit remarkable anti-inflammatory properties. However, the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood. In this study, we developed perfluoropentane-based oxygen-loaded nanodroplets (PFP-OLNDs) and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo, and suppressed microglial activation in a mouse model of Parkinson's disease. Microglial suppression led to a reduction in the inflammatory response, oxidative stress, and cell migration capacity in vitro. Consequently, the neurotoxic effects were mitigated, which alleviated neuronal degeneration. Additionally, ultrahigh-performance liquid chromatography-tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming. We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1α pathway. Collectively, our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.
Collapse
Affiliation(s)
- Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuanhui Xu
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Linxi Li
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongyi Ye
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Li J, Sun M, Tang M, Song X, Zheng K, Meng T, Li C, Du L. Mechanism of PI3K/Akt‑mediated mitochondrial pathway in obesity‑induced apoptosis (Review). Biomed Rep 2025; 22:40. [PMID: 39781039 PMCID: PMC11707581 DOI: 10.3892/br.2024.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity is a pervasive global health challenge that substantially reduces the quality of life of millions of individuals and impedes social and economic advancement. Obesity is an independent risk factor that contributes to a range of chronic non-communicable metabolic diseases, significantly affecting energy metabolism, mental health, cancer susceptibility, sleep quality, and other physiological processes. The PI3K/AKT signaling pathway, a significant glucose, lipid, and protein metabolism regulator, is integral to cellular growth, survival, and apoptosis. Apoptosis is a highly regulated form of programmed cell death that is critical for immune cell maturation and tissue repair. The present review examines the association between obesity, the PI3K/AKT pathway, and mitochondrial apoptosis to elucidate the potential mechanisms by which obesity may activate apoptotic pathways. These findings provide a theoretical foundation for mitigating obesity-related complications by targeting these critical pathways.
Collapse
Affiliation(s)
- Jiarui Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Mingxiu Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Ming Tang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xin Song
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Kaize Zheng
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning 110167, P.R. China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
5
|
Sun P, Liu F, Huo K, Wang J, Cheng Y, Shang S, Ma W, Yu J, Han J. Adiponectin facilitates the cell cycle, inhibits cell apoptosis and induces temozolomide resistance in glioblastoma via the Akt/mTOR pathway. Oncol Lett 2025; 29:127. [PMID: 39807099 PMCID: PMC11726000 DOI: 10.3892/ol.2025.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
Adiponectin (ADN) regulates DNA synthesis, cell apoptosis and cell cycle to participate in the pathology and progression of glioblastoma. The present study aimed to further explore the effect of ADN on temozolomide (TMZ) resistance in glioblastoma and the underlying mechanism of action. Glioblastoma cell lines (U251 and U87-MG cells) were treated with ADN and TMZ at different concentrations; subsequently, 3.0 µg/ml ADN and 1.0 mM TMZ were selected as the optimal concentrations for the experimental conditions. LY294002 (a PI3K inhibitor) was added to ADN or ADN + TMZ-treated glioblastoma cell lines. Cell growth rate was determined using the Cell Counting Kit-8 assay, the apoptotic rate and cell cycle were evaluated using Annexin V/propidium iodide and cell cycle assays, and p-Akt (Thr308), p-Akt (Ser473), Akt, p-mTOR, c-caspase 3, caspase 3, Bax, cyclin B1 and cyclin D1 expression was determined by western blotting. Adiponectin receptor (ADIPOR) 1 and ADIPOR2 were expressed in glioblastoma cell lines. The glioblastoma cell line growth rate was increased by ADN in a concentration- and time-dependent manner. ADN inhibited glioblastoma cell line apoptosis and facilitated cell cycle. Of note, ADN activated the Akt/mTOR pathway and the addition of LY294002 reversed the effect of ADN, indicating that ADN activated the Akt/mTOR pathway to suppress apoptosis and promote cell cycle in glioblastoma cell lines. Notably, TMZ inhibited glioblastoma cell line growth, promoted apoptosis and increased G2 phase cell cycle arrest. However, the addition of ADN reversed the effect of TMZ in glioblastoma cell lines, disclosing that ADN induced TMZ resistance. Markedly, ADN-mediated TMZ resistance was further attenuated by LY294002, suggesting that ADN activated the Akt/mTOR pathway to induce TMZ resistance in glioblastoma cell lines. In conclusion, ADN activated the Akt/mTOR pathway to facilitate cell cycle, inhibit cell apoptosis and induce TMZ resistance in glioblastoma.
Collapse
Affiliation(s)
- Peng Sun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fude Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianyi Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yawen Cheng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenlong Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Yu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianfeng Han
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Wang H, Gan X, Tang Y. Mechanisms of Heavy Metal Cadmium (Cd)-Induced Malignancy. Biol Trace Elem Res 2025; 203:608-623. [PMID: 38683269 DOI: 10.1007/s12011-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.
Collapse
Affiliation(s)
- Hairong Wang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Xuehui Gan
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China.
| |
Collapse
|
7
|
Chen Y, Fu Y, Zou H, Wang P, Xu Y, Xie Q. Network pharmacology and molecular docking reveal the mechanism of action of Bergapten against non‑small cell lung cancer. Oncol Lett 2025; 29:87. [PMID: 39677411 PMCID: PMC11638938 DOI: 10.3892/ol.2024.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide, necessitating new treatment approaches with minimal side effects. In the present study, the potential of Bergapten (5-methoxypsoralen), a natural furanocoumarin compound, as a therapeutic agent against NSCLC was investigated by using network pharmacology, molecular docking and in vitro validation. Bergapten targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and SwissTarget databases, whilst lung cancer-related targets were sourced from GeneCards and DisGeNET. Protein-protein interaction analysis and molecular docking were performed to identify key targets. The inhibitory effects of Bergapten on lung cancer cells were assessed using Cell Counting Kit-8 assays, wound healing assays, cell migration experiments, flow cytometry and western blotting. SC79 was used to verify the regulation of Bergapten on the PI3K/AKT pathway. Network pharmacology identified 51 targets, one signaling pathway and four Gene Ontology projects associated with the action of Bergapten against NSCLC. Key targets identified included glycogen synthase kinase-3β, Janus kinase 2, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α and protein tyrosine kinase 2. In vitro experiments demonstrated that Bergapten significantly inhibited cell viability, promoted apoptosis, induced cellular senescence and inhibited the PI3K/AKT signaling pathway in NSCLC cells. In conclusion, Bergapten exerts its anti-NSCLC effects through the PI3K/AKT pathway, promoting cell senescence and inhibiting inflammation. These findings suggest that Bergapten has potential as a therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Yu Fu
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Hongbo Zou
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Pingsong Wang
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Yao Xu
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Qichao Xie
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| |
Collapse
|
8
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
9
|
Asnaghi R, Antonarelli G, Battaiotto E, Castellano G, Guidi L, Izzo D, Zagami P, Trapani D, Curigliano G. An update on promising and emerging protein kinase B/AKT inhibitors for breast cancer. Expert Opin Pharmacother 2025. [PMID: 39846444 DOI: 10.1080/14656566.2025.2454290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION . The PI3K pathway is crucial in breast cancer (BC), influencing cell survival, growth, and metabolism, with AKT playing a central role in treatment resistance. This pathway's involvement in breast carcinogenesis and its link to treatment resistance underscores the significance of targeting it in BC therapy. PI3K-pathway inhibitors offer new therapeutic avenues but bring challenges, especially due to toxicity issues that hinder their development. AREAS COVERED This review discusses the PI3K-pathway inhibitors used in BC, highlighting emerging, innovative strategies. EXPERT OPINION The introduction of mTOR inhibitors marked a key step in tackling hormone receptor-positive (HR+) BC, targeting endocrine resistance. However, toxicity concerns remain, especially with PIK3CA and AKT inhibitors. Selective PI3K-targeted agents aim to reduce off-target toxicity, enhancing patient adherence and control over the disease. New compounds employing allosteric mechanisms may further limit adverse effects and allow safer combination therapies, previously limited by toxicity. Advancements in dosing strategies, focus on patient-centered outcomes, and synergistic agents are essential in advancing AKT-pathway inhibition, paving the way for a new phase in HR+ BC treatment.
Collapse
Affiliation(s)
- Riccardo Asnaghi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Battaiotto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Grazia Castellano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Davide Izzo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
10
|
Li Y, Li G, Feng J, Li S, Liu N. Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment. Phytother Res 2025. [PMID: 39844461 DOI: 10.1002/ptr.8418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer. Currently, inflammation treatment predominantly relies on chemical drugs. Nevertheless, these existing therapies are constrained by their numerous side effects and slow remission of symptoms. Consequently, there is an urgent need for the discovery and development of new drugs that exhibit minimal side effects while exerting potent anti-inflammatory effects. This article extensively explored the activities and mechanisms of MNPs (covering studies from 2010 to 2024) regulating key signaling pathways and inflammatory mediators in the IME, which establishes a theoretical basis for the further development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuru Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangjie Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
11
|
Deng RM, Huang G, Wang T, Zhou J. Regulated programmed cell death in sepsis associated acute lung injury: From pathogenesis to therapy. Int Immunopharmacol 2025; 148:114111. [PMID: 39832461 DOI: 10.1016/j.intimp.2025.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Sepsis associated acute lung injury (SALI) is a common complication in patients with severe sepsis and a disease with high morbidity and mortality in ICU patients. The main mechanism of SALI is pulmonary hypoperfusion due to hypotension and shock caused by sepsis, which leads to ischemic necrosis of alveolar endothelial cells and eventually lung failure. At present, SALI therapy mainly includes antibiotic therapy, fluid resuscitation, transfusion products and vasoactive drugs, but these strategies are not satisfactory. Therefore, focusing on the role of different cell death patterns in SALI may help in the search for effective treatments. Understanding the molecular mechanisms of SALI and identifying pathways that inhibit lung cell death are critical to developing effective drug therapies to prevent the progression of SALI. Cell death is controlled by programmed cell death (PCD) pathways, including apoptosis, necroptosis, ferroptosis, pyroptosis and autophagy. There is growing evidence that PCD plays an important role in the pathogenesis of SALI, and inhibitors of various types of PCD represent a promising therapeutic strategy. Therefore, understanding the role and mechanism of PCD in SALI is conducive to our understanding of its pathological mechanism, and is of great significance for the treatment of SALI. In this article, we discuss recent advances in the role of PCD in SALI, show how different signaling pathways (such as NF-κB, PI3K/Akt, mTOR, and Nrf2) regulate PCD to regulate SALI development, and discuss the associations between various types of PCD. The aim is to explore the molecular mechanism behind SALI and to find new targets for SALI therapy.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Tingting Wang
- Department of Anaesthesia, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
12
|
Cleary JA, Kumar A, Craft S, Deep G. Neuron-derived extracellular vesicles as a liquid biopsy for brain insulin dysregulation in Alzheimer's disease and related disorders. Alzheimers Dement 2025:e14497. [PMID: 39822132 DOI: 10.1002/alz.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature. Among these AD-specific molecular changes is brain insulin-signaling dysregulation, which cannot be assessed clinically in a living patient and remains an unexplained co-occurrence during AD pathogenesis. This review is focused on delineating how NDEs in the blood may begin to close the gap between identifying molecular changes associated with brain insulin dysregulation reliably in living patients and its connection to AD. This approach could lead to the identification of novel early and less-invasive diagnostic molecular biomarkers for AD. HIGHLIGHTS: Neuron-derived extracellular vesicles (NDEs) could be isolated from peripheral blood. NDEs in blood reflect the molecular signature of Alzheimer's disease (AD). Brain insulin-signaling dysregulation plays a critical role in AD. NDEs in blood could predict brain insulin-signaling dysregulation. NDEs offer novel early and less-invasive diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- Jacob Alexander Cleary
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ashish Kumar
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Gagan Deep
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
13
|
Antonyan L, Zhang X, Ni A, Peng H, Alsuwaidi S, Fleming P, Zhang Y, Semenak A, Macintosh J, Wu H, Hettige NC, Jefri M, Ernst C. Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes. Hum Mol Genet 2025:ddaf003. [PMID: 39825586 DOI: 10.1093/hmg/ddaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells. We find that extremes of SETBP1 protein dose reciprocally influence important signalling molecules such as AKT, suggesting that the SETBP1 protein operates within a narrow dosage range and that extreme doses are detrimental. We identified SETBP1 nuclear bodies as interacting with the nuclear lamina and suggest that SETBP1 may organize higher order chromatin structure via links to the nuclear envelope. SETBP1 protein doses may exert significant influence on global gene expression patterns via these SETBP1 nuclear bodies. This work provides evidence for the importance of SETBP1 protein dose in human brain development, with implications for two neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lilit Antonyan
- Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Xin Zhang
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Huashan Peng
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Shaima Alsuwaidi
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada
| | - Peter Fleming
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada
| | - Ying Zhang
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Amelia Semenak
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada
| | - Julia Macintosh
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada
| | - Hanrong Wu
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Nuwan C Hettige
- Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Malvin Jefri
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada
- Rare Neurodevelopmental Disorders Laboratory, Montreal Neurological Institute, 3801 University Street, Montreal, QC H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, QC H3A 1A1, Canada
| |
Collapse
|
14
|
Al-Noshokaty TM, El-Sayyad GS, Abdelhamid R, Mansour A, Abdellatif N, Alaaeldien A, Reda T, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Mohammed OA, Abulsoud AI. Long non-coding RNAs and their role in breast cancer pathogenesis and drug resistance: Navigating the non-coding landscape review. Exp Cell Res 2025; 444:114365. [PMID: 39626864 DOI: 10.1016/j.yexcr.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Despite the progress made in the development of targeted therapies, breast cancer (BC) continues to pose a significant threat to the health of women. Transcriptomics has emerged due to the advancements in high-throughput sequencing technology. This provides crucial information about the role of non-coding RNAs (ncRNAs) in human cells, particularly long ncRNAs (lncRNAs), in disease development and function. When the control of these ncRNAs is disrupted, various illnesses emerge, including cancer. Numerous studies have produced empirical data on the function of lncRNAs in tumorigenesis and disease development. However, the roles and mechanisms of numerous lncRNAs remain unidentified at the molecular level because their regulatory role and the functional implications of abnormalities in cancer biology have yet to be thoroughly defined. The review gives an itemized summary of the most current developments in the role of lncRNA in BC, focusing on three main pathways, PI3K, MAPK, NF-kB, and hypoxia, and their resistance mechanisms.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
15
|
De Moner B, Martinez-Sanchez J, Garrote M, Ramos A, Ventosa-Capell H, Moreno-Castaño A, Nomdedeu M, Ojeda A, Escolar G, Garcia-Pagan JC, Arellano-Rodrigo E, Carreras E, Alvarez-Larran A, Díaz-Ricart M. Endothelial Damage in JAK2V617F Myeloproliferative Neoplasms with Splanchnic Vein Thrombosis. Thromb Haemost 2025. [PMID: 39809451 DOI: 10.1055/a-2498-4849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
BACKGROUND JAK2V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored. MATERIAL AND METHODS Plasma and serum samples from JAK2V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33). Cultured endothelial cells (ECs) were exposed to serum samples from these patients and from healthy donors as controls. Changes in markers of inflammation (VCAM-1, ICAM-1), cell permeability (VE-cadherin), production of VWF, extracellular matrix (ECM) reactivity, and activation of intracellular signaling pathways related to stress, proliferation, inflammation (Akt, p44/42, IkBa), and JAK2/STAT3 pathway, were assessed by immunofluorescence, flow adhesion, SDS-PAGE and immunoblot. Additionally, circulating markers of endothelial activation and damage (VWF, sVCAM-1, sTNFRI, thrombomodulin, angiopoietin-2, a2-antiplasmin activity, PAI-1) were evaluated in Patients' plasma. RESULTS The in vitro studies showed that EC exposure to MPN thrombotic patients' sera resulted in increased VCAM-1 and ICAM-1, and reduced VE-cadherin expression (p<0.05) at the cell surface. Production and release of VWF to the ECM were higher (p<0.05), with increased platelet adhesion after perfusing whole blood, being more noticeable in response to sera from non-treated patients. Furthermore, intracellular activation of Akt, p44/42, IkBa and JAK2/STAT3 was observed. Moreover, plasma levels of VWF, TNF-R1, VCAM-1, thrombomodulin, and angiopoietin-2 were higher in JAK2V617F+ MPN patients with thrombosis. CONCLUSION The present findings suggest that circulating factors in MPNs with SVT debut induce endothelial proinflammatory and prothrombotic phenotypes, which are modulated in vitro with MPN treatment.
Collapse
Affiliation(s)
- Blanca De Moner
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Marta Garrote
- Hematopathology Section, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, IDIBAPS, Spain
| | - Alex Ramos
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | | | - Ana Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Meritxell Nomdedeu
- Hemostasis and Hemotherapy Department, Institut del Càncer i Malalties de la Sang (ICAMS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Asunción Ojeda
- Liver Unit, Barcelona Hepatic Haemodynamic Laboratory, Hospital Clínic de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Gines Escolar
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Joan Carles Garcia-Pagan
- Liver Unit, Barcelona Hepatic Haemodynamic Laboratory, Hospital Clínic de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Eduardo Arellano-Rodrigo
- Hemostasis and Hemotherapy Department, Institut del Càncer i Malalties de la Sang (ICAMS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric Carreras
- Barcelona Endothelium Team, Barcelona, Spain
- Fundació Carreras contra la Leucèmia, Barcelona, Spain
| | - Alberto Alvarez-Larran
- Hematology Department, Institut del Càncer i Malalties de la Sang (ICAMS), Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Maribel Díaz-Ricart
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| |
Collapse
|
16
|
Gheyas RN, Williams RC, Ryan KA, Menko AS. The link of FOXO1 and FOXO4 transcription factors to development of the lens. Dev Dyn 2025. [PMID: 39797725 DOI: 10.1002/dvdy.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/02/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored. RESULTS In studies of the embryonic lens, we showed that both FOXO1 and FOXO4, which share many downstream targets, are expressed in a differentiation-state-specific manner, most highly in lens epithelial and differentiating cortical fiber cells. Their expression patterns and subcellular distributions suggest both shared and distinct functions. Stabilization of FOXO cytoplasmic pools involved their binding to the chaperone protein 14-3-3. FOXO association with β-catenin linked this transcription complex to fiber cell-specific gene activation. Inhibition of PI3K/Akt signaling promoted FOXO1/FOXO4 nuclear localization in lens epithelial and fiber cells and expression of the CDKi p27 in the lens epithelium where it has been linked to lens cell withdrawal from the cell cycle and initiation of the lens differentiation program. We showed that FOXO1 transcriptional activation is required for the induction of p27 when Akt signaling is blocked, demonstrating the linearity of the PI3K/Akt/FOXO1/p27 pathway. CONCLUSIONS PI3K/Akt signaling regulates FOXO-dependent lens cell differentiation.
Collapse
Affiliation(s)
- Rifah N Gheyas
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ruby C Williams
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kelly A Ryan
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
El Safadi M, Shah TA, Zahara SS, Bin Jardan YA, Bourhia M. Regulation of TGF-β1, PI3K/PIP3/Akt, Nrf-2/Keap-1 and NF-κB signaling pathways to avert bifenthrin induced hepatic injury: A palliative role of daidzein. Tissue Cell 2025; 93:102733. [PMID: 39842227 DOI: 10.1016/j.tice.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Bifenthrin (BFN) is a noxious insecticide which is reported to damage various body organs. Daidzein (DZN) is a natural flavone with excellent pharmacological properties. This research was conducted to evaluate the alleviative strength of DZN to counteract BFN prompted liver toxicity in male albino rats. Thirty-two rats were divided into 4 groups i.e., the control, BFN (7 mg /kg), BFN (7 mg/kg) + DZN (20 mg/kg) and DZN (20 mg/kg) alone group. The biochemical assessment was performed by using qRT PCR as well as standard ELISA protocols. The findings are validated by applying pharmacodynamic techniques including molecular simulation. It was observed that BFN reduced the gene expressions of phosphoinositide 3-kinase (PI3K), phosphatidylinositol-3, 4, 5-triphosphate (PIP3), Protein kinase B (Akt), nuclear factor erythroid 2-related factor 2 (Nrf-2) while promoting the gene expressions of Kelch-like ECH-associated protein 1 (Keap-1). Moreover, BFN notably reduced the activities of glutathione reductase (GSR), heme-oxygenase-1 (HO-1), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) while elevating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). BFN promoted the levels of matrix metallopeptidase 2 (MMP-2), Procollagen III N-terminal Pro-peptide (PIIINP), alkaline phosphatase (ALP), transforming growth factor-beta-1 (TGF-β1), aspartate aminotransferase (AST), tissue inhibitor of matrix metalloproteinases 1 (TIMP1), and alanine aminotransferase (ALT). The levels of nuclear factor- kappa B (NF-κB), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) were increased following the BFN intoxication. BFN enhanced the expressions of cysteine-aspartic acid protease-3 (Caspase-3) and Bcl-2-associated X protein (Bax) while suppressing the gene expression of B-cell lymphoma-2 (Bcl-2). Moreover, BFN disrupted the normal histology of liver tissues. Nonetheless, DZN treatment remarkably alleviated hepatic damages owing to its antioxidative, anti-apoptotic as well as anti-inflammatory abilities. However, DZN supplementation remarkably safeguarded which is further confirmed by in-silico assessment.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Abu Dhabi, Al Ain, United Arab Emirates
| | - Tawaf Ali Shah
- College of Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, China
| | - Syeda Sania Zahara
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P. O. Box 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| |
Collapse
|
18
|
Diao H, Yang H, Yu B, Fan Y, Li S, Fan J, Xiao D, Zhao Y, Guo M, Zhang Y, Huang S, Tang Q, Li SS, Sun T, Jin X. 5,7-Dihydroxy-4-Methylcoumarin enhances osteogenesis and ameliorates osteoporosis via the AKT1 pathway. Biochem Pharmacol 2025; 233:116752. [PMID: 39800268 DOI: 10.1016/j.bcp.2025.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Osteoporosis is a chronic disease distinguished by decreased bone density and degradation of bone microstructure, frequently linked with inflammation and oxidative stress, both of which contribute to the acceleration of bone resorption. The compound 5,7-Dihydroxy-4-methylcoumarin (D4M) present in Artemisia dracunculus exhibits significant antioxidant and anti-inflammatory properties. Nonetheless, the potential anti-osteoporotic effects of D4M, along with the molecular targets and mechanisms responsible for these effects, have not been studied. This study aims to assess the impact of D4M on osteoblastogenesis and glucocorticoid-induced osteoporosis while examining the potential underlying mechanisms. We examined the effects of varying concentrations of D4M on the proliferation and differentiation of MC3T3-E1 cells. Additionally, in vivo experiments were carried out using a glucocorticoid-induced zebrafish osteoporosis model to evaluate the effects of D4M on vertebral bone density and osteogenic markers. Target prediction and molecular docking analyses were conducted to investigate the binding interactions between D4M and its target proteins. D4M showed a significant enhancement of MC3T3-E1 cell proliferation and differentiation within the concentration range of 10 to 40 μM, with the greatest increase in mineralization noted at 20 μM. Furthermore, in the zebrafish osteoporosis model, treatment with 20 μM D4M resulted in a significant improvement in vertebral bone density and the restoration of osteoblast-specific marker expression. Ligand-based target prediction identified AKT1 as a potential target for D4M, and molecular docking highlighted the binding interactions between D4M and AKT1 phosphorylation sites. Co-treatment with the AKT1 inhibitor A-443654 abolished the anti-osteoporotic effects of D4M. These findings demonstrate that D4M enhances osteoblast differentiation and mitigates osteoporosis through its interaction with AKT1, suggesting its potential as a therapeutic agent for treating osteoporosis.
Collapse
Affiliation(s)
- Han Diao
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Houzhi Yang
- Tianjin Medical University, Tianjin, PR China
| | - Bin Yu
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Yonggang Fan
- School of Medicine, Nankai University, Tianjin, PR China
| | - Shenao Li
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jigeng Fan
- Tianjin Medical University, Tianjin, PR China
| | | | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, PR China
| | - Miao Guo
- School of Medicine, Nankai University, Tianjin, PR China
| | - Ying Zhang
- Tianjin Key Specialty of Integrated Traditional Chinese and Western Medicine, Tianjin Institute of Rehabilitation, Tianjin Union Medical Centre, Tianjin, PR China
| | - Shaoyuan Huang
- School of Medicine, Nankai University, Tianjin, PR China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Centre, Tianjin, PR China.
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, PR China.
| | - Tianwei Sun
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, PR China.
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, PR China.
| |
Collapse
|
19
|
Li M, Chen P, Xue M, Wang J, Wang H, Liang X. AKT-FoxO1-PCK/ChREBP signaling pathway regulates metabolic liver disease induced by high glucose in largemouth bass. Int J Biol Macromol 2025; 295:139703. [PMID: 39793804 DOI: 10.1016/j.ijbiomac.2025.139703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD). High glucose (25 mM) stimulation in hepatocytes significantly reduced AKT and FoxO1 phosphorylation level, while enhancing glycolysis and gluconeogenesis enzyme activities, leading to acute glucose metabolism disorder. However, after treatment of insulin or FoxO1 inhibitor, the related parameters returned to control level. The mRNA levels of ChREBP and lipid synthesis genes were increased after high glucose stimulation, and then decreased after adding FoxO1 inhibitor, accompanied by a reduction of TG content. Furtherly, plasmid transfection, dual-luciferase reporter assay experiments and EMSA proved that AKT positively regulated the phosphorylation of FoxO1 and FoxO1 positively regulated the promoter activities of PCK and ChREBP, and the transcription factor binding sites were found. In summary, these results support a critical role of AKT-FoxO1-PCK/ChREBP signaling pathway in regulating the occurrence of MLD in largemouth bass. Moreover, we identified a novel FoxO1-mediated gene regulation mechanism, revealing a previously unrecognized cross-talk between FoxO1 and ChREBP.
Collapse
Affiliation(s)
- Min Li
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Chen
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Liu X, Yang L, Su Z, Ma X, Liu Y, Ma L, Ma X, Ma M, Liu X, Zhang K, Chen X. Acupoint catgut embedding alleviates experimental autoimmune encephalomyelitis by modulating neuroinflammation and potentially inhibiting glia activation through JNK and ERK pathways. Front Neurosci 2025; 18:1520092. [PMID: 39850625 PMCID: PMC11755674 DOI: 10.3389/fnins.2024.1520092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Background Acupoint catgut embedding (ACE) is a traditional Chinese medicine technique commonly used for managing various disorders, including chronic inflammatory pain and allergic asthma. Despite its growing use, the neuroimmunological mechanisms underlying ACE treatment effects remain unclear. Methods This study investigated the roles and potential mechanisms of the effects of ACE in treating experimental autoimmune encephalomyelitis (EAE), a frequently used animal model of autoimmune neuroinflammation. The effects of ACE treatment were evaluated by monitoring body weight and EAE severity scores. Behavioral tests, histopathological analysis, ELISA, and flow cytometry were conducted to assess the therapeutic efficacy of ACE. RNA sequencing was performed to uncover ACE-associated transcriptional signatures in the spinal cords of EAE mice. Results The results were validated through western blotting, qRT-PCR, and immunofluorescence (IF) staining. In ACE-treated mice, EAE disease severity was significantly ameliorated, along with improvements in anxiety-like behaviors and reduced inflammation and demyelination. The ACE treatment restored immune imbalance in the EAE mice by decreasing Th17 and Th1 cells, while increasing Treg cells in peripheral immune organs and reducing serum inflammatory cytokine levels. RNA sequencing revealed significant suppression of the genes and pathways associated with reactive microglial and astrocytic activation, corroborated by IF studies. Additionally, ACE treatment could suppress the ERK and JNK signaling pathways at both RNA and protein levels. Conclusion These findings confirm the protective role of ACE in mitigating EAE symptoms by modulating microglial and astrocytic activity and regulating inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaofang Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liansheng Yang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhumin Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xueying Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mingxia Ma
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Xiaoyun Liu
- Department of General Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Chen S, Zhang C, Huang H, Wang Y, Lian M, Hong G. Activation of the WNT4/ β-catenin/FOXO1 pathway by PDK1 promotes cervical cancer metastasis and EMT process. J Mol Histol 2025; 56:68. [PMID: 39779500 DOI: 10.1007/s10735-024-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions. METHODS PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively. Cellular activity and apoptosis-related protein expression levels were evaluated using MTT assays and western blotting. Transcriptome sequencing elucidates the regulatory pathways impacted by PDK1 silencing, and rescue experiments confirmed the underlying mechanisms. Xenograft models with nude mice were used to validate the effects of PDK1 silencing on CC progression. RESULTS PDK1 silencing reduced migration, invasion, and cellular activity under hypoxic conditions while promoting apoptosis. Transcriptomic analysis revealed that PDK1 suppression downregulated the WNT4/β-catenin/FOXO1 pathway, decreasing EMT-related protein expression. Mechanistically, PDK1 enhanced β-catenin stability by inhibiting its phosphorylation through AKT-mediated GSK3β inactivation, promoting EMT and anti-apoptotic gene transcription. CONCLUSIONS Targeting PDK1 may provide novel therapeutic strategies specifically for CC by modulating the WNT4/β-catenin/FOXO1 pathway and associated EMT and apoptotic processes.
Collapse
Affiliation(s)
- Shidong Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Cuixia Zhang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Honglang Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Wang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingjian Lian
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
22
|
Zwolak I. Disentangling the role of selenium in antagonizing the toxicity of arsenic and cadmium. Arch Toxicol 2025:10.1007/s00204-024-03918-9. [PMID: 39776200 DOI: 10.1007/s00204-024-03918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) and inorganic arsenic (As) compounds are considered to be among the major public health hazards. This is due to both the high intrinsic toxicity of these substances and the often difficult to avoid exposure of the general population through contaminated water and food. One proposed method to reduce the toxic effects of As and Cd on animals and humans is the use of selenium (Se). As discussed in our previous article, laboratory studies show that this micronutrient can have a beneficial effect on the detoxification of As and Cd in the body through the formation of non-toxic complexes with these elements, as well as through the antioxidant effects of selenoproteins. New data that have emerged in recent years allow for a clearer description of the interaction between Se and As and Se and Cd. Human studies show that optimal levels of Se can have a beneficial effect in reducing the toxic effects associated with exposure to As or Cd. However, as Se levels in the body increase, the protective effects of Se may be reversed. Recent laboratory studies confirm the antagonistic effects of medium doses of Se toward Cd and As through the formation of nontoxic complexes, antioxidant, anti-inflammatory effects, and induction of pro-survival pathways in cells. In conclusion, Se has a complex effect on As and Cd toxicity, with both benefits and potential risks, depending on the form of Se and its dose as a supplement or the status (level) of this micronutrient in the body.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Biomedicine and Environmental Research, Faculty of Medicine, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| |
Collapse
|
23
|
Carrillo ND, Chen M, Wen T, Awasthi P, Wolfe TJ, Sterling C, Cryns VL, Anderson RA. Lipid transfer proteins and a PI 4-kinase initiate nuclear phosphoinositide signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.08.539894. [PMID: 37214930 PMCID: PMC10197520 DOI: 10.1101/2023.05.08.539894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei, where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes that regulate Akt activation. However, this pathway is dependent on poorly characterized nuclear PIP n pools. Here we report that PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, accumulate in the nucleoplasm in response to stress and supply nuclear PIP n pools. PITPα/β and the PI 4-kinase PI4KIIα bind p53 and are required to generate p53-PI4P, which is further phosphorylated to synthesize p53-PIP n complexes that regulate nuclear Akt activation and stress-resistance. Remarkably, PITPα/β and PI4KIIα initiate PIP n -linkage to multiple proteins that are detectable by immunoblotting and [ 3 H] myo -inositol metabolic labeling and are resistant to denaturation, suggesting a posttranslational modification. In brief Phosphatidylinositol transfer proteins initiate the nuclear PIP n -linked protein network in membrane-free regions.
Collapse
|
24
|
Díaz-Rullo J, González-Moreno L, Del Arco A, González-Pastor JE. Decoding the general role of tRNA queuosine modification in eukaryotes. Sci Rep 2025; 15:345. [PMID: 39747999 PMCID: PMC11695743 DOI: 10.1038/s41598-024-83451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Transfer RNA (tRNA) contains modified nucleosides essential for modulating protein translation. One of these modifications is queuosine (Q), which affects NAU codons translation rate. For decades, multiple studies have reported a wide variety of species-specific Q-related phenotypes in different eukaryotes, hindering the identification of a general underlying mechanism behind that phenotypic diversity. Here, through bioinformatics analysis of representative eukaryotic genomes we have predicted: i) the genes enriched in NAU codons, whose translation would be affected by tRNA Q-modification (Q-genes); and ii) the specific biological processes of each organism enriched in Q-genes, which generally in eukaryotes would be related to ubiquitination, phosphatidylinositol metabolism, splicing, DNA repair or cell cycle. These bioinformatics results provide evidence to support for the first time in eukaryotes that the wide diversity of phenotypes associated with tRNA Q-modification previously described in various species would directly depend on the control of Q-genes translation, and would allow prediction of unknown Q-dependent processes, such as Akt activation and p53 expression, which we have tested in human cancer cells. Considering the relevance of the Q-related processes, our findings may support further exploration of the role of Q in cancer and other pathologies. Moreover, since eukaryotes must salvage Q from bacteria, we suggest that changes in Q supply by the microbiome would affect the expression of host Q-genes, altering its physiology.
Collapse
Affiliation(s)
- Jorge Díaz-Rullo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
- University of Alcalá, Polytechnic School, Ctra. Madrid-Barcelona, Km.33.600, Alcalá de Henares, 28871, Madrid, Spain.
| | - Luis González-Moreno
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM/CSIC, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28049, Madrid, Spain
- Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Toledo, Spain
| | - Araceli Del Arco
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28049, Madrid, Spain
- Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Toledo, Spain
| | - José Eduardo González-Pastor
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
25
|
Feng S, Zhang Q, Liu Q, Huang C, Zhang H, Wang F, Zhu Y, Jian Q, Chen X, Jiang Q, Yan B. N 6-Methyladenosine Demethylase FTO Controls Macrophage Homeostasis in Diabetic Vasculopathy. Diabetes 2025; 74:82-95. [PMID: 39446524 DOI: 10.2337/db24-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Diabetic vasculopathy, encompassing complications such as diabetic retinopathy, represents a significant source of morbidity, with inflammation playing a pivotal role in the progression of these complications. This study investigates the influence of N6-methyladenosine demethylase (m6A) modification and the m6A demethylase fat mass and obesity-associated (FTO) protein on macrophage polarization and its subsequent effects on diabetic microvasculopathy. We found that diabetes induces a shift in macrophage polarization toward a proinflammatory M1 phenotype, which is associated with a reduction in m6A modification levels. Notably, FTO emerges as a critical regulator of m6A under diabetic conditions. In vitro experiments reveal that FTO not only modulates macrophage polarization but also mediates their interactions with vascular endothelial cells. In vivo experiments demonstrate that FTO deficiency exacerbates retinal inflammation and microvascular dysfunction in diabetic retinas. Mechanistically, FTO stabilizes mRNA through an m6A-YTHDF2-dependent pathway, thereby activating the PI3K/AKT signaling cascade. Collectively, these findings position FTO as a promising therapeutic target for the management of diabetic vascular complications. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siguo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Huiying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Fengsheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qizhi Jian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2025; 47:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
27
|
Shen H, Fu J, Liu J, Zou T, Wang K, Zhang X, Wan J. Ginsenoside Rk2 alleviates hepatic ischemia/reperfusion injury by enhancing AKT membrane translocation and activation. MedComm (Beijing) 2025; 6:e70047. [PMID: 39811799 PMCID: PMC11731106 DOI: 10.1002/mco2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/20/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening. The pharmacological effects and molecular mechanisms of Rk2 on hepatic IRI were further evaluated and elucidated in vitro and in vivo. Rk2 significantly reduced inflammation and apoptosis caused by oxygen-glucose deprivation and reperfusion in hepatocytes and dose dependently protected against hepatic I/R-induced liver injury in mice. Integrated approaches, including network pharmacology, molecular docking, transcriptome analysis, and isothermal titration calorimetry, along with experimental validation, indicated that Rk2 protects against hepatic IRI by targeting and activating the AKT (RAC serine/threonine protein kinase) signaling pathway. Pharmacological inhibition of AKT pathway or knockdown of AKT1 effectively diminished protective effects of Rk2. Rk2 directly binds to AKT1, facilitating its translocation from the cytoplasm to plasma membrane. This process markedly enhanced AKT interaction with PDPK1, promoting the activation of AKT1 and its downstream signaling. Our findings demonstrate that Rk2 protects against hepatic IRI by activating AKT signaling through direct binding to AKT1 and facilitating its membrane translocation.
Collapse
Affiliation(s)
- Hong Shen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Jiajun Fu
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Toujun Zou
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kun Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Xiao‐Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
- Basic Medical SchoolWuhan UniversityWuhanChina
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
28
|
Lu Y, Wang Y, Yao T, Dong X, Liu Y, Nakamura Y, Qi H. Mechanism of inhibition of melanoma by fucoxanthin simulated in vitro digestion products in cell models constructed using human malignant melanoma cells (A375) and keratinocytes (HaCaT). Food Chem 2025; 462:141003. [PMID: 39208735 DOI: 10.1016/j.foodchem.2024.141003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Recently, the increasing incidence of malignant melanoma has become a major public health concern owing to its poor prognosis and impact on quality of life. Consuming foods with potent antitumor compounds can help prevent melanoma and maintain skin health. Fucoxanthin (FX), a naturally occurring carotenoid found in brown algae, possesses antitumor properties. However, its bioavailability, safety risks, and in vivo effects and mechanisms against melanoma remain unclear. This research focused on evaluating the safety and prospective antimelanoma impact of simulated gastrointestinal digestion products (FX-ID) on HaCaT and A375 cells.The results indicate that FX-ID exerts negative effects on mitochondria in A375 cells, increases Bax expression, releases Cytochrome C, and activates cleaved caspase-3, ultimately promoting apoptosis. Additionally, FX-ID influences the mitogen-activated protein kinase (MAPK) pathway by enhancing cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) levels, consequently facilitating apoptosis and inflammation without significantly impacting HaCaT cells. These findings provide insight into inhibitory mechanism of FX-ID against melanoma, guiding the development of functional foods for prevention.
Collapse
Affiliation(s)
- Yujing Lu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yida Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tian Yao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Xiufang Dong
- School of Public Health, Dali University, Dali 671000, China
| | - Yu Liu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
29
|
Al-Shami AS, Haroun M, Essawy AE, Moussa N, Abd Elkader HTAE. Early-life bisphenol A exposure causes detrimental age-related changes in anxiety, depression, learning, and memory in juvenile and adult male rats: Involvement of NMDAR/PSD-95-PTEN/AKT signaling pathway. Neurotoxicology 2025; 106:17-36. [PMID: 39617347 DOI: 10.1016/j.neuro.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor monomer that is widely used in the manufacturing of epoxy resins and polycarbonate plastics. Several lines of evidence indicate the function of the pre- or perinatally PI3K/AKT signaling pathway in the development of psychiatric disorders. The present study aimed to evaluate for the first time the effect of modifying the NMDAR/PSD-95-PTEN/AKT signaling pathway on behavioral and synaptic plasticity of early-life BPA exposure and its long-lasting influence on juvenile and adulthood stages of development. We investigated the effects of oral BPA doses of 50 and 125 mg/kg/day on the prefrontal cortex (PFC) and hippocampus of male Sprague Dawley rats from postnatal day (PND) 18-60 and PND 18-95, which correspond to juvenile and adolescent stages, respectively. Subsequently, we performed a series of rat behavioral tests, including the open field, elevated plus-maze, forced swimming, and Y-maze. Notably, neurotransmitter levels such as dopamine, serotonin, and gamma-aminobutyric acid, levels of postsynaptic density protein 95 and cAMP response element-binding protein, as well as mRNA levels of N-methyl-D-aspartate receptor subunits, fluctuated between reduction and elevation in the PFC and hippocampus. Furthermore, phosphatase and tensin (PTEN) mRNA and protein levels were upregulated in both brain areas, while PI3K, protein kinase B (AKT) and mammalian target of rapamycin (mTOR) mRNA and protein levels were decreased. Finally, our findings indicate that postnatal BPA exposure promotes long-term anxiety and depressive-like behaviors, as well as cognitive impairment, via modulation of the NMDAR/PSD-95-PTEN/AKT pathway. These findings could help to elucidate the potential developmental and neurobehavioral effects of early-life BPA exposure.
Collapse
Affiliation(s)
- Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
30
|
Molinar-Inglis O, Wiggins K, Varma A, Del Mundo Z, Adame JM, Cozzo A, Muñoz O, Le UV, Trinh D, Garcia AC, Cisneros-Aguirre M, Gonzalez Ramirez ML, Keyes J, Zhang J, Lawson MA, Trejo J, Nicholas DA. An optimized fractionation method reveals insulin-induced membrane surface localization of GLUT1 to increase glycolysis in LβT2 cells. Mol Cell Endocrinol 2025; 595:112405. [PMID: 39481749 PMCID: PMC11632608 DOI: 10.1016/j.mce.2024.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Insulin is an important regulator of whole-body glucose homeostasis. In insulin sensitive tissues such as muscle and adipose, insulin induces the translocation of glucose transporter 4 (GLUT4) to the cell membrane, thereby increasing glucose uptake. However, insulin also signals in tissues that are not generally associated with glucose homeostasis. In the human reproductive endocrine axis, hyperinsulinemia suppresses the secretion of gonadotropins from gonadotrope cells of the anterior pituitary, thereby linking insulin dysregulation to suboptimal reproductive health. In the mouse, gonadotropes express the insulin receptor which has the canonical signaling response of IRS, AKT, and mTOR activation. However, the functional outcomes of insulin action on gonadotropes are unclear. Here, we demonstrate through use of an optimized cell fractionation protocol that insulin stimulation of the LβT2 gonadotropic cell line results in the unexpected translocation of GLUT1 to the plasma membrane. Using our high purity fractionation protocol, we further demonstrate that though Akt signaling in response to insulin is intact, insulin-induced translocation of GLUT1 occurs independently of Akt activation in LβT2 cells.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kiara Wiggins
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Anjali Varma
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Zena Del Mundo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Jose M Adame
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alyssa Cozzo
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Oscar Muñoz
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Uyen-Vy Le
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Davina Trinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Alexis C Garcia
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Metztli Cisneros-Aguirre
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Monica L Gonzalez Ramirez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeremiah Keyes
- Department of Biology, Pennsylvania State University Erie, The Behrend College, Erie, PA, USA
| | - Jin Zhang
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mark A Lawson
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dequina A Nicholas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
31
|
Makanae Y, Ato S, Kouzaki K, Tamura Y, Nakazato K. Acute high-intensity muscle contraction moderates AChR gene expression independent of rapamycin-sensitive mTORC1 pathway in rat skeletal muscle. Exp Physiol 2025; 110:127-146. [PMID: 39501426 DOI: 10.1113/ep091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/24/2024] [Indexed: 01/02/2025]
Abstract
The relationship between mechanistic target of rapamycin complex 1 (mTORC1) activation after resistance exercise and acetylcholine receptor (AChR) subunit gene expression remains largely unknown. Therefore, we aimed to investigate the effect of electrical stimulation-induced intense muscle contraction, which mimics acute resistance exercise, on the mRNA expression of AChR genes and the signalling pathways involved in neuromuscular junction (NMJ) maintenance, such as mTORC1 and muscle-specific kinase (MuSK). The gastrocnemius muscle of male adult Sprague-Dawley rats was isometrically exercised. Upon completion of muscle contraction, the rats were euthanized in the early (after 0, 1, 3, 6 or 24 h) and late (after 48 or 72 h) recovery phases and the gastrocnemius muscles were removed. Non-exercised control animals were euthanized in the basal state (control group). In the early recovery phase, Agrn gene expression increased whereas LRP4 decreased without any change in the protein and gene expression of AChR gene subunits. In the late recovery phase, Agrn, Musk, Chrnb1, Chrnd and Chrne gene expression were altered and agrin and MuSK protein expression increased. Moreover, mTORC1 and protein kinase B/Akt-histone deacetylase 4 (HDAC) were activated in the early phase but not in the late recovery phase. Furthermore, rapamycin, an inhibitor of mTORC1, did not disturb changes in AChR subunit gene expression after muscle contraction. However, rapamycin addition slightly increased AChR gene expression, while insulin did not impact it in rat L6 myotube. These results suggest that changes in the AChR subunits after muscle contraction are independent of the rapamycin-sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Yuhei Makanae
- Department of Physical Education, National Defence Academy, Yokosuka, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Healty Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
32
|
Coulombeau R, Selck C, Giang N, Al-Mohammad A, Ng N, Maher AK, Argüello R, Scalfari A, Varley J, Nicholas R, Dominguez-Villar M. Sphingosine-1-Phosphate Signalling Inhibition Suppresses Th1-Like Treg Generation by Reversing Mitochondrial Uncoupling. Immunology 2025; 174:153-166. [PMID: 39444366 DOI: 10.1111/imm.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Inflammatory environments induce the generation of dysfunctional IFNγ+T-bet+FOXP3+ Th1-like Tregs, which show defective function and are found in autoimmune conditions including multiple sclerosis (MS). The pathways that control the generation of Th1-like Tregs are not well understood. Sphingosine-1-phosphate (S1P) signalling molecules are upregulated in Th1-like Tregs, and in vivo S1P inhibition with Fingolimod (FTY720) inhibits the expression of genes responsible for Treg plasticity in MS patients. However, the underlying mechanisms are unknown. Here we show that S1P signalling inhibition by FTY720 inhibits the generation of Th1-like Tregs and rescues their suppressive function. These effects are mediated by a decrease in mTORC1 signalling and reversal of the mitochondrial uncoupling that Tregs undergo during their reprogramming into Th1-like Tregs in vitro. Finally, these results are validated in in vivo-generated Th1-like Tregs, as Tregs from MS patients treated with FTY720 display decreased Th1-like Treg frequency, increased suppressive function and mitochondrial metabolism rebalance. These results highlight the involvement of mitochondrial uncoupling in Treg reprogramming and identify S1P signalling inhibition as a target to suppress the generation of dysfunctional Th1-like Tregs.
Collapse
Affiliation(s)
- Rachel Coulombeau
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Claudia Selck
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Nicolas Giang
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | | | - Natalie Ng
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Allison K Maher
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Rafael Argüello
- Immunometabolism and Translation, Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Charing Cross Hospital, London, UK
| | - James Varley
- Centre of Neuroscience, Imperial College Healthcare NHS Trust, London, UK
| | - Richard Nicholas
- Centre of Neuroscience, Imperial College Healthcare NHS Trust, London, UK
| | | |
Collapse
|
33
|
Liang X, Hu Y, Li X, Xu X, Chen Z, Han Y, Han Y, Lang G. Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia. Neurochem Int 2025; 182:105917. [PMID: 39675432 DOI: 10.1016/j.neuint.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) is a signaling protein that is constitutively expressed in immune competent cells and plays a crucial role in cell proliferation, apoptosis, migration, deformation, and immunology. Several studies have shown that high expression of PI3Kγ can inhibit the occurrence of inflammation in microglia while also regulating the polarization of microglia to inhibit inflammation and enhance microglial migration and phagocytosis. It is well known that the regulation of microglial polarization, migration, and phagocytosis is key to the treatment of most neurodegenerative diseases. Therefore, in this article, we review the important regulatory role of PI3Kγ in microglia to provide a basis for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinghua Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xinyue Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xi Xu
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Zhonglan Chen
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yalin Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yingying Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
34
|
Niu J, Zhang L, Cui L, Liu M. Regulatory T cells in CIDP and the inhibitory effect of rapamycin on them. Hum Immunol 2025; 86:111224. [PMID: 39729692 DOI: 10.1016/j.humimm.2024.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
We aim to investigate the proportion and function of regulatory T (Treg) cells, as well as mTORC activity in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients. Peripheral blood mononuclear cells (PBMCs) from 15 CIDP and healthy controls (HC) were collected. Treg and responsive T (Tresp) cells were isolated. The inhibition rate of Treg cells was analyzed with and without rapamycin. The percentage of CD4 + CD25highFoxP3+ Tregs was higher in CIDP than in HCs (median 3.06 % vs 1.98 %, P = 0.014). The suppressive function of CIDP Tregs was normal compared with that of HCs. The activity of mTORC1 and mTORC2 revealed by pAKT and p4EBP1 in Treg cells was not significantly different between CIDP and HC. The percentage of Treg cells showed no difference in the presence or absence of rapamycin, while the suppressive function of CIDP and HC Tregs was dramatically diminished in the presence of rapamycin. The percentage of P-akt in Tregs was also reduced in the presence of rapamycin. In conclusion, the percentage and suppressive function of Tregs were not impaired in CIDP patients. The presence of rapamycin had no effect on the percentage of Treg cells but could reduce the suppressive function of CIDP and HC Tregs, possibly by reducing P-Akt.
Collapse
Affiliation(s)
- Jingwen Niu
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Lei Zhang
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Liying Cui
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Mingsheng Liu
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
35
|
Torres C, Mancinelli G, Chen JWE, Cordoba-Chacon J, Pins D, Saeed S, McKinney R, Castellanos K, Orsi G, Singhal M, Patel A, Acebedo J, Coleman A, Heneche J, Yalagala PCR, Subbaiah PV, Leal C, Grimaldo S, Ortuno FM, Bishehsari F, Grippo PJ. Cell Membrane Fatty Acids and PIPs Modulate the Etiology of Pancreatic Cancer by Regulating AKT. Nutrients 2024; 17:150. [PMID: 39796583 PMCID: PMC11722924 DOI: 10.3390/nu17010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10-20 years), prevention strategies represent an effective means to improve outcomes. One of the risk factors for many cancers and for pancreatic cancer in particular is diet. Hence, our objective is to understand how a diet rich in ω3 and ω6 polyunsaturated fatty acids affects the progression of this disease. Methods: We investigated polyunsaturated fatty acid (PUFA) effects on disease progression employing both in vitro (PDAC cell lines) and in vivo (EL-Kras and KC mice) approaches. Also, we gathered data from the National Health and Nutrition Examination Survey (NHANES) and the National Cancer Institute (NCI) from 1999 to 2017 for a retrospective observational study. Results: The consumption of PUFAs in a patient population correlates with increased PDAC incidence, particularly when the ω3 intake increases to a lesser extent than ω6. Our data demonstrate dietary PUFAs can be incorporated into plasma membrane lipids affecting PI3K/AKT signaling and support the emergence of membrane-targeted therapies. Moreover, we show that the phospholipid composition of a lipid nanoparticle (LNP) can impact the cell membrane integrity and, ultimately, cell viability after administration of these LNPs. Conclusions: Cancer prevention is impactful particularly for those with very poor prognosis, including pancreatic cancer. Our results point to the importance of dietary intervention in this disease when detected early and the potential to improve the antiproliferative effect of drug efficacy when combined with these regimens in later stages of pancreatic cancer.
Collapse
Affiliation(s)
- Carolina Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigacion Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Georgina Mancinelli
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Jee-Wei Emily Chen
- Department of Materials Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.-W.E.C.)
| | - Jose Cordoba-Chacon
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Danielle Pins
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Sara Saeed
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Ronald McKinney
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Karla Castellanos
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | | | - Megha Singhal
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Akshar Patel
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Jose Acebedo
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Adonis Coleman
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Jorge Heneche
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Poorna Chandra Rao Yalagala
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Papasani V. Subbaiah
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Cecilia Leal
- Department of Materials Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.-W.E.C.)
| | - Sam Grimaldo
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
| | - Francisco M. Ortuno
- Department of Computer Architecture and Computer Technology, University of Granada, 18071 Granada, Spain
| | - Faraz Bishehsari
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Paul J. Grippo
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (G.M.); (S.S.); (R.M.); (A.P.)
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, 840 S. Wood Street, CSB 708, Chicago, IL 60612, USA
| |
Collapse
|
36
|
Lin Z, Gong Y, Yu C, Yang C, Yin L, Zhang D, Tang Y, Xu F, Wang Y, Liu Y. IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway. Poult Sci 2024; 104:104761. [PMID: 39754922 DOI: 10.1016/j.psj.2024.104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells. Small RNA sequencing revealed that miR-15c-3p expression was elevated by oxidative stress induction and attenuated by antioxidant curcumin. Functional validation with miR-15c-3p mimic and inhibitor confirmed the role of miR-15c-3p in exacerbating oxidative stress and resultant suppression of lipid droplet storage and progesterone secretion in chicken granulosa cells by targeting insulin-like growth factor 2 binding protein 3 (IGF2BP3). These regulatory effects were mediated through the sequential downstream signaling cascade of AKT-Raf1-ERK1/2. In conclusion, IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway. These findings offer new insights into the molecular mechanisms by which oxidative stress damages reproductive capacity and a theoretical basis for mitigating oxidative stress in laying hens through genetic improvement.
Collapse
Affiliation(s)
- Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanrong Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuan Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Feng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China.
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
37
|
Spigarelli R, Spisni E, Magalhães M, Cabral C, Gonçalves AC, Saracino IM, Botti G, Dalpiaz A, Beggiato S, Valerii MC. Clove Essential Oil as a Source of Antitumoral Compounds Capable of Crossing the Blood-Brain Barrier: A Focus on the Effects of β-Caryophyllene and Eugenol in a Glioblastoma Cell Line. Int J Mol Sci 2024; 26:238. [PMID: 39796096 PMCID: PMC11720353 DOI: 10.3390/ijms26010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells. Cell death, cell cycle regulation and mitochondrial membrane potential (MMP) were evaluated using flow cytometry. mRNA levels of target genes were evaluated by qPCR. Secreted cytokines were measured by Luminex®. BCA, as well as EU, permeates the brain. EU and BCA affected the viability and proliferation of U87 cells (up to 50%, p < 0.001) but not HMC3 cells and showed a synergistic effect. BCA and EU induced G0/G1 cell cycle arrest, increasing apoptosis/necrosis. EU and BCA induced the downregulation of mRNAs encoding for key proteins involved in GB angiogenesis (VEGFA decreased op to 60%, p < 0.01), proliferation and progression, and showed anti-inflammatory activity (IL-4 significantly decreased, p < 0.001). EU and BCA demonstrated strong and multitarget antitumor activity in U87 cells. Our results provide a strong rationale for the further evaluation of EU and BCA as possible therapeutic molecules in GB management.
Collapse
Affiliation(s)
- Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (M.C.V.)
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (M.C.V.)
| | - Mariana Magalhães
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3030-789 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- iCBR, Group of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilaria Maria Saracino
- Microbiology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (G.B.); (A.D.)
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy; (G.B.); (A.D.)
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via Fossato di Mortara 19, 44121 Ferrara, Italy;
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy; (R.S.); (M.C.V.)
| |
Collapse
|
38
|
Qi Y, Xu B, He J, Jiang B, Yan L, Zhou H, Chen S. Unveiling the Mechanisms and Therapeutic Effects of Xiaoyao Sanjie Decoction in Triple-Negative Breast Cancer: A Network Pharmacology and Experimental Validation Approach. Drug Des Devel Ther 2024; 18:6263-6281. [PMID: 39741917 PMCID: PMC11687282 DOI: 10.2147/dddt.s492047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/16/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a disease associated with high incidence and high mortality, which is a major problem threatening women's health. Xiaoyao Sanjie Decoction (XYSJD) exhibits remarkable therapeutic efficacy on TNBC; however, the underlying mechanism is unclear. This study verified the efficacy of XYSJD and its active component in the treatment of TNBC and explored its potential mechanism. Methods Ultra-high performance liquid chromatography-hybrid quadrupole orbitrap mass spectrometry (UHPLC-Q Exactive HFX-MS) was applied to explore the main chemical constituents of XYSJD. The key targets and potential mechanisms of XYSJD in the treatment of TNBC were predicted through network pharmacology, bioinformatics analysis and molecular docking. The effects of XYSJD against TNBC cells were evaluated by CCK-8 assay, EdU assay, wound healing assay, transwell assay, Hoechst-PI staining and flow cytometry. The mechanism of action was validated by Western blot analysis. Finally, the effect and mechanism of XYSJD and Que on TNBC were further verified by the tumor formation model. Results UHPLC-Q Exactive HFX-MS identified a total of 9 compounds in XYSJD. Network pharmacological methods identified 206 targets for anti-TNBC. Bioinformatics analysis suggests that the EZH2/AKT1 signaling pathway might play an important role in the effects of XYSJD against TNBC. Gene Ontology enrichment analysis showed that the biological process of XYSJD in TNBC treatment mainly involved apoptosis. XYSJD and Que were observed to have a good anticancer effect in vivo and in vitro. In addition, quercetin could induce the apoptosis of TNBC cells by decreased the expression levels of EZH2/AKT1 signaling pathway. Furthermore, AKT1 overexpression, treatment with the AKT activator (SC79) and EZH2 overexpression could reverse apoptosis induced by quercetin in TNBC cells. Conclusion This study revealed the anti-TNBC efficacy of XYSJD. Quercetin, the effective component of XYSJD, promoted apoptosis of TNBC cells via blockade of the EZH2/AKT1 signaling pathway. These findings aim to provide a more reliable basis for the clinical application of XYSJD in the treatment of TNBC.
Collapse
Affiliation(s)
- Yu Qi
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Bo Xu
- Postdoctoral Mobile Workstation, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bo Jiang
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Le Yan
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Haiyan Zhou
- Foreign Languages College, Hubei University of Science and Technology, Xianning, People’s Republic of China
| | - Saili Chen
- Clinical Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
- National Demonstration Center for Experimental (General Practice) Education (Hubei University of Science and Technology), Xianning, People’s Republic of China
- Xianning Heji Hospital of Integrated Chinese and Western Medicine, Xianning, People’s Republic of China
- Xianning Traditional Chinese Medicine Chronic Disease Conditioning and Cancer Rehabilitation Joint Innovation Center, Xianning, People’s Republic of China
| |
Collapse
|
39
|
Tian Z, Xuan H, Yao Y, Hao S, Zhang Z, Zhang B, Zhang J, Zhang L, Sang X, Yuan J, Farrell G, Wu Q. Fast detection of protein kinase B in chrysin treated colorectal cancer cells using a novel multicore microfiber biosensor. COMMUNICATIONS ENGINEERING 2024; 3:185. [PMID: 39725710 DOI: 10.1038/s44172-024-00332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Rapid and accurate determination of target proteins in cells provide essential diagnostic information for early detection of diseases, evaluation of drug responses, and the study of pathophysiological mechanisms. Traditional Western blotting method has been used for the determination, but it is complex, time-consuming, and semi-quantitative. Here, a tapered seven-core fiber (TSCF) biosensor was designed and fabricated. By immobilizing protein kinase B (PKB), also known as AKT, antibody onto TSCF surface, the microfiber biosensor can be used for quantitatively detecting the AKT level in solution concentrations as low as 0.26 ng/mL. To test the reliability of the TSCF sensing method in a medical application, the TSCF biosensor was used to study the relationship between chrysin's anticancer effect and the concentration of AKT in a human colorectal cancer cell line (LoVo cells). The results reveal that the inhibitory effect of chrysin on LoVo cells is positively correlated with the dose, agreeing well with the equivalent results using the traditional Western blotting method.
Collapse
Affiliation(s)
- Zhen Tian
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, China
| | - Yicun Yao
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Shengyu Hao
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Zhichao Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
| | - Bingyuan Zhang
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Jingao Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
| | - Liqiang Zhang
- School of Physics Sciences and Information Technology, Liaocheng University, Liaocheng, China
| | - Xinzhu Sang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jinhui Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Gerald Farrell
- Photonics Research Centre, School of Electrical and Electronic Engineering, City Campus, Technological University Dublin, Dublin, Ireland
| | - Qiang Wu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China.
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, United Kingdom.
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, China.
| |
Collapse
|
40
|
Zhang J, Li N, Hu X. Metabolic Reprograming of Macrophages: A New Direction in Traditional Chinese Medicine for Treating Liver Failure. J Immunol Res 2024; 2024:5891381. [PMID: 39741958 PMCID: PMC11688140 DOI: 10.1155/jimr/5891381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy. These cells exhibit remarkable plasticity, enabling them to differentiate into various subtypes based on changes in their surrounding microenvironment. M1-type macrophages are associated with a pro-inflammatory phenotype and primarily rely predominantly on glycolysis. In contrast, M2-type macrophages, which are characterized by anti-inflammatory phenotype, predominantly obtain their energy from oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Shifting macrophage metabolism from glycolysis to OXPHOS inhibits M1 macrophage activation and promotes M2 macrophage activation, thereby exerting anti-inflammatory and reparative effects. This study elucidates the relationship between macrophage activation and glucose metabolism reprograming from an immunometabolism perspective. A comprehensive literature review revealed that several signaling pathways may regulate macrophage polarization through energy metabolism, including phosphatidyl-inositol 3-kinase/protein kinase B (PI3K/AKT), mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α), nuclear factor-κB (NF-κB), and AMP-activated protein kinase (AMPK), which exhibit crosstalk with one another. Additionally, we systematically reviewed several traditional Chinese medicine (TCM) monomers that can modulate glucose metabolism reprograming and influence the polarization states of M1 and M2 macrophages. This review aimed to provide valuable insights that could contribute to the development of new therapies or drugs for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Li Y, Ge S, Liu J, Sun D, Xi Y, Chen P. Nuclear Structure, Size Regulation, and Role in Cell Migration. Cells 2024; 13:2130. [PMID: 39768219 PMCID: PMC11675058 DOI: 10.3390/cells13242130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, we provide an updated perspective on the structure and function of nuclear components, focusing on the linker of nucleoskeleton and cytoskeleton complex, the nuclear envelope, the nuclear lamina, and chromatin. Additionally, nuclear size should be considered a fundamental parameter for the cellular state. Its regulation is tightly linked to environmental changes, development, and various diseases, including cancer. Hence, we also provide a concise overview of different mechanisms by which nuclear size is determined, the emerging role of the nucleus as a mechanical sensor, and the implications of altered nuclear morphology on the physiology of diseased cells.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Shanghao Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Jiayi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Deseng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Pan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| |
Collapse
|
42
|
Jun HJ, Paulo JA, Appleman VA, Yaron-Barir TM, Johnson JL, Yeo AT, Rogers VA, Kuang S, Varma H, Gygi SP, Trotman LC, Charest A. Pleiotropic tumor suppressive functions of PTEN missense mutations during gliomagenesis. iScience 2024; 27:111278. [PMID: 39660053 PMCID: PMC11629276 DOI: 10.1016/j.isci.2024.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
PTEN plays a crucial role in preventing the development of glioblastoma (GBM), a severe and untreatable brain cancer. In GBM, most PTEN deficiencies are missense mutations that have not been thoroughly examined. Here, we leveraged genetically modified mice and isogenic astrocyte cell cultures to investigate the role of clinically relevant mutations (G36E, L42R, C105F, and R173H) in the development of EGFR-driven GBM. We report that the loss of tumor suppression from these mutants is unrelated to their lipid phosphatase activity and rather relate to elevated localization at the cell membrane. Moreover, expression of these PTEN mutations heightened EGFR activity by sequestering EGFR within endomembranes longer and affected its signaling behavior. Through comprehensive studies on global protein phosphorylation and kinase library analyses in cells with the G36E and L42R PTEN mutations, we identified distinct cancer-promoting pathways activated by EGFR, offering targets for treating GBM with these PTEN alterations.
Collapse
Affiliation(s)
- Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria A. Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Tomer M. Yaron-Barir
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L. Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alan T. Yeo
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Vaughn A. Rogers
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Shan Kuang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
43
|
Donia T, Ali EMM, Kalantan AA, Alzahrani FA, Eid TM, Khamis AA. Synergistic anticancer efficacy of polydatin and sorafenib against the MCF-7 breast cancer cell line via inhibiting of PI3K/AKT/mTOR pathway and reducing resistance to treatment. Biochem Biophys Res Commun 2024; 739:150972. [PMID: 39541924 DOI: 10.1016/j.bbrc.2024.150972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol, has been investigated for its potential to mitigate sorafenib (SOF) side effects and combat multidrug resistance in cancer treatment. The study evaluated its mechanism of action for inhibiting the protein kinase B/mTOR pathway in promoting breast cancer proliferation. The combined PD and SOF have synergistic effects with a combination index (CI) < 1 in the liver (HepG2) and breast (MCF-7) cancer cell lines. Molecular docking studies were conducted to analyze interactions of PD& SOF with protein kinases as well as apoptotic and multidrug resistance proteins, including AKT1, PI3K, mTOR, Apaf-1, and ABCB1 in MCF-7 cells. Experimental validation through real-time PCR confirmed. PD has a strong binding affinity, particularly with AKT1 (-56 kcal/mol) and ABCB1 (-27.16 kcal/mol), a gene associated with multidrug resistance. These interactions were linked to anti-proliferative anti-angiogenic effects and reduced resistance to treatment, demonstrating PD has potential therapeutic benefits. Furthermore, PD combined with SOF induced apoptosis, inhibited cell growth, and arrested MCF-7 cells in the sub-G1 phase with increased intracellular ROS. This was accompanied by reduced expression of AKT1 and ABCB1 genes, reinforcing the anticancer efficacy of PD/SOF combination therapy. In conclusion, the findings suggest that PD/SOF could serve as a promising anticancer treatment strategy, warranting further investigation for potential clinical applications and mechanistic studies in vivo.
Collapse
Affiliation(s)
- Thoria Donia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Ehab M M Ali
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, 21911 Rabigh, Saudi Arabia.
| | - Thamir M Eid
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Abeer A Khamis
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
44
|
Yun YG, Yeo D, Shin SJ, Shin JS, Lee JH, Kim HW. Polydeoxyribonucleotide enhances the bioactivities of stem cells from human exfoliated deciduous teeth through Akt activation. Biochem Biophys Res Commun 2024; 739:150947. [PMID: 39550860 DOI: 10.1016/j.bbrc.2024.150947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Although numerous approaches have emerged to address the challenges of critical limb ischemia (CLI), their clinical trials have proven elusive. Stem cell therapy has been utilized for CLI; however, its efficacy is limited, resulting in low survival rates in patients. Here, we investigated the impact of polydeoxyribonucleotide (PDRN) on the bioactivities of stem cells derived from human exfoliated deciduous teeth (SHED) against oxidative stress. PDRN treatment increased the proliferation, migration, antioxidant properties, and mitochondrial respiration of SHED. These beneficial effects were regulated by Akt activation. Through a murine hindlimb ischemia model, PDRN treatment demonstrated augmented the survival and proliferation of transplanted SHED at ischemic injury sites, whereas the inhibition of Akt suppressed these effects. Our findings revealed that PDRN promoted the therapeutic potential of SHED via Akt phosphorylation, suggesting PDRN-primed SHED as promising candidates for the development of novel stem cell therapeutics.
Collapse
Affiliation(s)
- Yeo Gyun Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Ji-Sun Shin
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Pediatric Dentistry, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
45
|
Iaconisi GN, Mancini R, Ricci V, Donati D, Sconza C, Marvulli R, Ranieri M, Megna M, Varrassi G, Della Tommasa S, Bernetti A, Capobianco L, Farì G. Biochemical Mechanisms and Rehabilitation Strategies in Osteoporosis-Related Pain: A Systematic Review. Clin Pract 2024; 14:2737-2758. [PMID: 39727804 DOI: 10.3390/clinpract14060216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Osteoporosis causes a bone mass reduction and often determines acute and chronic pain. Understanding the biochemical and neurophysiological mechanisms behind this pain is crucial for developing new, effective rehabilitative and therapeutic approaches. This systematic review synthesizes recent advances in muscle-bone interactions and molecular pathways related to osteoporosis-associated pain. METHODS We carried out a systematic review including studies published from 2018 to 2024 using PubMed, Scopus, clinicaltrials.gov and Cochrane Library. The Cochrane Collaboration tool was used to assess bias risk. The review adhered to PRISMA guidelines and is registered with PROSPERO (CRD42024574456); Results: Thirteen studies were included. It emerged that osteoporosis causes progressive bone loss due to disruptions in biochemical processes and muscle-bone interactions. This condition is also closely associated with the development of pain, both acute and chronic. Key findings include the role of the miR-92a-3p/PTEN/AKT pathway and the impact of muscle-bone disconnection on bone health. Mechanotransduction is critical for bone maintenance. Effective pain management and rehabilitation strategies include physical therapy and physical exercise, yoga, Pilates, and cognitive behavioral therapy (CBT); they all improve pain relief and functional outcomes by enhancing muscle strength, flexibility, and balance. Pharmacological options such as NSAIDs, opioids, and new agents like SHR-1222, along with surgical interventions like percutaneous vertebroplasty, offer additional pain reduction, especially when included in individualized rehabilitation projects; Conclusions: This review highlights advancements in understanding osteoporotic pain mechanisms and identifies promising treatments. Integrating targeted therapies and rehabilitation strategies can enhance patients' pain relief.
Collapse
Affiliation(s)
- Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), 73100 Lecce, Italy
| | - Rachele Mancini
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70125 Bari, Italy
| | - Vincenzo Ricci
- Physical and Rehabilitation Medicine Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Danilo Donati
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Riccardo Marvulli
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70125 Bari, Italy
| | - Maurizio Ranieri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70125 Bari, Italy
| | - Marisa Megna
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70125 Bari, Italy
| | | | | | - Andrea Bernetti
- Department of Experimental Medicine (Di.Me.S), University of Salento, 73100 Lecce, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), 73100 Lecce, Italy
| | - Giacomo Farì
- Department of Experimental Medicine (Di.Me.S), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
46
|
Wang S, Zhang X, Chen Q, Wu H, Cao S, Zhao S, Li G, Wang J, Gong Y, Wang X, Pang D, Gao S. FTO activates PD-L1 promotes immunosuppression in breast cancer via the m6A/YTHDF3/PDK1 axis under hypoxic conditions. J Adv Res 2024:S2090-1232(24)00604-0. [PMID: 39701379 DOI: 10.1016/j.jare.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Altered epigenetic reprogramming enables breast cancer cells to adapt to hypoxic stress. Hypoxic microenvironment can alter immune cell infiltration and function, limiting the effectiveness of immunotherapy. OBJECTIVES The study aimed to identify how fat mass and obesity-associated protein (FTO) helps breast cancer cells cope with the hypoxic microenvironment and the mechanisms behind breast cancer cell resistance to tumor immunity. METHODS Clinical samples were utilized to analyze the impact of FTO on breast cancer progression and the effect of programmed cell death protein 1/ programmed cell death 1 ligand 1(PD-1/PD-L1) immune checkpoint inhibitor treatment. Utilized MeRIP-seq and mRNA-seq to analyze the downstream genes regulated by FTO under hypoxia. Methylation modification regulation of PDK1 by FTO was clarified using RIP. Then mouse models were utilized to analyze the efficacy of inhibiting FTO and 3-Phosphoinositide-dependent protein kinase 1(PDK1) in combination with PD-1/PD-L1 immune checkpoint inhibitor treatment. RESULT N6-Methyladenosine(m6A) demethylase FTO was transcriptionally activated by hypoxia inducible factor 1α(HIF-1α). PDK1 was identified as a potential target of FTO under hypoxic conditions through high-throughput sequencing. Mechanistically, overexpression of FTO decreases m6A modification sites on PDK1 mRNA, preventing YTH domain family 3(YTHDF3) from recognizing and binding to these sites, thereby inhibiting the degradation of PDK1 mRNA. Overexpression of PDK1 activates the AKT/STAT3 pathway, leading to enhanced PD-L1 expression. Targeting the FTO and PDK1-AKT pathways with FB23 and BX-912 inhibit breast cancer growth, enhance cytotoxic T lymphocyte (CTL) activity, and enhance the effectiveness of the PD-1/PD-L1 checkpoint inhibitor Atezolizumab. CONCLUSION This study reveals that HIF-1α promotes FTO transcription under hypoxic conditions, thereby increasing PD-L1 expression through the PDK1/AKT/STAT3 axis. Inhibition of FTO and PDK1 under hypoxic conditions could serve as a promising immunotherapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Quanrun Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Hao Wu
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Shihan Cao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Shilu Zhao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jianyu Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Yajie Gong
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xinheng Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Heilongjiang Academy of Medical Sciences, Harbin 150086, China.
| | - Song Gao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Lead Contact.
| |
Collapse
|
47
|
Liao HR, Chen CL, Kao YY, Liu FC, Tseng CP, Chen JJ. Myriscagayanone C, a new compound from the fruit of myristica cagayanensis, inhibits fMLP-induced respiratory bursts by specifically preventing Akt translocation in human neutrophils. Chem Biol Interact 2024; 407:111357. [PMID: 39701489 DOI: 10.1016/j.cbi.2024.111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Neutrophils that are overactivated can cause inflammatory diseases. Neutrophils possess various surface receptors, including G-protein-coupled chemoattractant receptors, which assist in recognizing pathogen attacks and the inflammatory environment. Therefore, targeting G-protein-coupled chemoattractant receptors and their downstream molecules is important for preventing abnormal neutrophil activation. This study examines the effects and underlying mechanism of myriscagayanone C, a new compound obtained from the fruit of myristica cagayanensis, on neutrophil respiratory burst induced by fMLP. The immunoblotting assay was conducted to assess the mechanisms by which myriscagayanone C inhibits fMLP-induced respiratory burst by disrupting the translocation of Akt to the cellular membrane. Briefly, myriscagayanone C suppressed the production of superoxide anions induced by fMLP on human neutrophils in a concentration-dependent manner (IC50: 4.73 ± 0.68 μM). Myriscagayanone C blocked fMLP-induced Akt translocation to the cell membrane, inhibiting AktT308 and AktS473 phosphorylation by PDK1Y373/376 and mTORS2481, respectively. Myriscagayanone C inhibited fMLP-induced p47phox phosphorylation and translocation. Myriscagayanone C did not inhibit the activity of PI3K, the amount of phosphatidylinositol (3, 4, 5)-trisphosphate, or the translocation of phosphorylated-PDK1Y373/376 and -mTORS2481 to the membrane. Myriscagayanone C did not inhibit fMLP-induced PKC, Src, ERK1/2, p38 phosphorylation, and intracellular calcium mobilization. Myriscagayanone C did not inhibit the chemotaxis and CD11b expression induced by fMLP. Myriscagayanone C did not inhibit PMA-induced superoxide anion production and neutrophil extracellular trap formation. According to this data, myriscagayanone C inhibits fMLP-induced neutrophil superoxide anion production by interrupting the translocation of Akt to the plasma membrane, which affects the NADPH oxidase activity by preventing p47phox phosphorylation and translocation.
Collapse
Affiliation(s)
- Hsiang-Ruei Liao
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao Yuan, Taiwan, Republic of China; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 333, Taiwan, Republic of China; Department of Anesthesiology, Chang Gung Memorial Hospital, Lin Kou, Taiwan, Republic of China.
| | - Chen-Lung Chen
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao Yuan, Taiwan, Republic of China
| | - Yu-Yao Kao
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao Yuan, Taiwan, Republic of China
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Lin Kou, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 333, Taiwan, Republic of China; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei Shan, Taoyuan, 333, Taiwan, Republic of China; Molecular Medicine Research Center, Chang Gung University, Kwei Shan, Taoyuan, 333, Taiwan, Republic of China; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Kwei Shan, Taoyuan, 333, Taiwan, Republic of China
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical, National Yang Ming Chiao Tuang University, Taipei, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China.
| |
Collapse
|
48
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Yang C, Shu J, Li Y, Zhao N, Liu X, Tian X, Sun Z, Tabish MS, Hong Y, Chen K, Sun M. Long non-coding RNAs are involved in the crosstalk between cancer-associated fibroblasts and tumor cells. Front Immunol 2024; 15:1469918. [PMID: 39717771 PMCID: PMC11663902 DOI: 10.3389/fimmu.2024.1469918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The proliferation of tumors is not merely self-regulated by the cancer cells but is also intrinsically connected to the tumor microenvironment (TME). Within this complex TME, cancer-associated fibroblasts (CAFs) are pivotal in the modulation of tumor onset and progression. Rich signaling interactions exist between CAFs and tumor cells, which are crucial for tumor regulation. Long non-coding RNAs (LncRNAs) emerge from cellular transcription as a class of functionally diverse RNA molecules. Recent studies have revealed that LncRNAs are integral to the crosstalk between CAFs and tumor cells, with the capacity to modify cellular transcriptional activity and secretion profiles, thus facilitating CAFs activation, tumor proliferation, metastasis, drug resistance, and other related functionalities. This comprehensive review revisits the latest research on LncRNA-mediated interactions between CAFs and tumor cells, encapsulates the biological roles of LncRNAs, and delves into the molecular pathways from a broader perspective, aspiring to offer novel perspectives for a deeper comprehension of the etiology of tumors and the enhancement of therapeutic approaches.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Yiwei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Xiangyu Tian
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Zexin Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Muhammad Saud Tabish
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Yichen Hong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Xu L, Zhao X, Tang F, Zhang J, Peng C, Ao H. Ameliorative Effect of Ginsenoside Rc on 5-Fluorouracil-Induced Chemotherapeutic Intestinal Mucositis via the PI3K-AKT/NF-κB Signaling Pathway: In Vivo and In Vitro Evaluations. Int J Mol Sci 2024; 25:13085. [PMID: 39684797 DOI: 10.3390/ijms252313085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
5-Fluorouracil (5-Fu) is a chemotherapeutic agent widely used to treat various cancers, which causes intestinal mucositis as a common side effect. Ginsenoside Rc, an active compound with anti-inflammatory, antioxidant, immunomodulatory, and antitumor properties, has protective effects against chemotherapy-induced mucositis caused by 5-Fu. This study aims to evaluate the protective effects of Rc on 5-Fu-induced chemotherapy-related mucositis and to elucidate its underlying mechanisms. In vivo experiments were conducted to measure intestinal permeability and assess the effects of Rc on body weight loss, diarrhea, and intestinal pathology induced by 5-Fu. Network pharmacology was also employed to explore potential mechanisms. In vitro, IEC-6 cell models were used to validate the cytoprotective effects of Rc, including assessments of cell viability, apoptosis, lactate dehydrogenase (LDH) release, and changes in inflammatory cytokine levels. The results indicate that Rc significantly ameliorated body weight reduction, diarrhea, and intestinal damage in mice treated by 5-Fu. Rc significantly mitigated 5-Fu-induced cellular damage by reducing levels of inflammatory cytokines such as IL-1β, IL-6, and TNF-α and decreasing apoptosis and cell permeability. Western blot analysis revealed that Rc upregulated the expression of Bcl-2 and tight junction proteins and downregulated the expression of Bax. Furthermore, Rc exerts anti-inflammatory and anti-apoptotic effects through PI3K-AKT and NF-κB signaling pathways. In conclusion, ginsenoside Rc demonstrated significant protective effects against 5-Fu-induced intestinal mucositis via the PI3K-AKT/NF-κB signaling pathway, suggesting its potential as a therapeutic agent for chemotherapy-related mucositis.
Collapse
Affiliation(s)
- Liyue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingnan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu, University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|