1
|
Luo Q, Zhou L, Luo D, Yu L. Clonal hematopoiesis of indeterminate potential (CHIP): A potential contributor to lymphoma. Crit Rev Oncol Hematol 2024; 206:104589. [PMID: 39667716 DOI: 10.1016/j.critrevonc.2024.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
Clonal hematopoiesis (CH) typically refers to the clonal expansion of hematopoietic stem cells (HSCs) due to genetic mutations, serving as the pathogenic basis for various diseases. Clonal hematopoiesis of indeterminate potential (CHIP) is a subtype of CH, emerging as a significant risk factor for myeloid malignancies and cardiovascular diseases, which has attracted increasing attention. However, recent research has unveiled previously overlooked links between CHIP and lymphoma. This paper reviews the relationship between CHIP and lymphoma, focusing on the role and mechanism of TET2 and DNMT3A-mediated CHIP in lymphoma from the perspective of laboratory research and clinical observation. Additionally, we explore the therapeutic implications of targeting CHIP genes and inflammatory pathways in lymphoma. Our findings underscore the multifaceted influence of CHIP on lymphoma development and provide a promising avenue for therapeutic interventions in CHIP mediated lymphoma.
Collapse
Affiliation(s)
- QingQing Luo
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - LiLi Zhou
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China
| | - DaYa Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Zhang Q, Yim R, Lee P, Chin L, Li V, Gill H. Implications of Clonal Hematopoiesis in Hematological and Non-Hematological Disorders. Cancers (Basel) 2024; 16:4118. [PMID: 39682303 DOI: 10.3390/cancers16234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Clonal hematopoiesis (CH) is associated with an increased risk of developing myeloid neoplasms (MNs) such as myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). In general, CH comprises clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). It is an age-related phenomenon characterized by the presence of somatic mutations in hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) that acquire a fitness advantage under selection pressure. Individuals with CHIP have an absolute risk of 0.5-1.0% per year for progressing to MDS or AML. Inflammation, smoking, cytotoxic therapy, and radiation can promote the process of clonal expansion and leukemic transformation. Of note, exposure to chemotherapy or radiation for patients with solid tumors or lymphomas can increase the risk of therapy-related MN. Beyond hematological malignancies, CH also serves as an independent risk factor for heart disease, stroke, chronic obstructive pulmonary disease, and chronic kidney disease. Prognostic models such as the CH risk score and MN-prediction models can provide a framework for risk stratification and clinical management of CHIP/CCUS and identify high-risk individuals who may benefit from close surveillance. For CH or related disorders, therapeutic strategies targeting specific CH-associated mutations and specific selection pressure may have a potential role in the future.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lynn Chin
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivian Li
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Xie Z, Fernandez J, Lasho T, Finke C, Amundson M, McCullough KB, LaPlant BR, Mangaonkar AA, Gangat N, Reichard KK, Elliott M, Witzig TE, Patnaik MM. High-dose IV ascorbic acid therapy for patients with CCUS with TET2 mutations. Blood 2024; 144:2456-2461. [PMID: 39352751 PMCID: PMC11628862 DOI: 10.1182/blood.2024024962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT This phase 2 trial assessed high-dose IV ascorbic acid in TET2 mutant clonal cytopenia. Eight of 10 patients were eligible for response assessment, with no responses at week 20 by International Working Group Myelodysplasia Syndromes/Neoplasms criteria. This trial was registered at www.clinicaltrials.gov as #NCT03418038.
Collapse
Affiliation(s)
- Zhuoer Xie
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Jenna Fernandez
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Terra Lasho
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Christy Finke
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Michelle Amundson
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Betsy R. LaPlant
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Naseema Gangat
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Kaaren K. Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Michelle Elliott
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Thomas E. Witzig
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Mrinal M. Patnaik
- Hematology Division, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Hojjatipour T, Ajeli M, Maali A, Azad M. Epigenetic-modifying agents: The potential game changers in the treatment of hematologic malignancies. Crit Rev Oncol Hematol 2024; 204:104498. [PMID: 39244179 DOI: 10.1016/j.critrevonc.2024.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Hematologic malignancies are lethal diseases arising from accumulated leukemic cells with substantial genetic or epigenetic defects in their natural development. Epigenetic modifications, including DNA methylation and histone modifications, are critical in hematologic malignancy formation, propagation, and treatment response. Both mutations and aberrant recruitment of epigenetic modifiers are reported in different hematologic malignancies, which regarding the reversible nature of epigenetic regulations, make them a potential target for cancer treatment. Here, we have first outlined a comprehensive overview of current knowledge related to epigenetic regulation's impact on the development and prognosis of hematologic malignancies. Furthermore, we have presented an updated overview regarding the current status of epigenetic-based drugs in hematologic malignancies treatment. And finally, discuss current challenges and ongoing clinical trials based on the manipulation of epigenetic modifies in hematologic malignancies.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mina Ajeli
- Department of Medical Laboratory Sciences, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
5
|
Guo L, Hong T, Lee YT, Hu X, Pan G, Zhao R, Yang Y, Yang J, Cai X, Rivera L, Liang J, Wang R, Dou Y, Kodali S, Li W, Han L, Di Stefano B, Zhou Y, Li J, Huang Y. Perturbing TET2 condensation promotes aberrant genome-wide DNA methylation and curtails leukaemia cell growth. Nat Cell Biol 2024; 26:2154-2167. [PMID: 39251719 DOI: 10.1038/s41556-024-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
The ten-eleven translocation (TET) family of dioxygenases maintain stable local DNA demethylation during cell division and lineage specification. As the major catalytic product of TET enzymes, 5-hydroxymethylcytosine is selectively enriched at specific genomic regions, such as enhancers, in a tissue-dependent manner. However, the mechanisms underlying this selectivity remain unresolved. Here we unveil a low-complexity insert domain within TET2 that facilitates its biomolecular condensation with epigenetic modulators, such as UTX and MLL4. This co-condensation fosters a permissive chromatin environment for precise DNA demethylation. Disrupting low-complexity insert-mediated condensation alters the genomic binding of TET2 to cause promiscuous DNA demethylation and genome reorganization. These changes influence the expression of key genes implicated in leukaemogenesis to curtail leukaemia cell proliferation. Collectively, this study establishes the pivotal role of TET2 condensation in orchestrating precise DNA demethylation and gene transcription to support tumour cell growth.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tingting Hong
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yi-Tsang Lee
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Xue Hu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Guokai Pan
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rongjie Zhao
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yuhan Yang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jingwen Yang
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Xiaoli Cai
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Logan Rivera
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jie Liang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rui Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yaling Dou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Leng Han
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Jia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
- Department of Laboratory Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
6
|
Rodriguez-Sevilla JJ, Colla S. Inflammation in myelodysplastic syndrome pathogenesis. Semin Hematol 2024; 61:385-396. [PMID: 39424469 DOI: 10.1053/j.seminhematol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Inflammation is a key driver of the progression of preleukemic myeloid conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS), to myelodysplastic syndromes (MDS). Inflammation is a critical mediator in the complex interplay of the genetic, epigenetic, and microenvironmental factors contributing to clonal evolution. Under inflammatory conditions, somatic mutations in TET2, DNMT3A, and ASXL1, the most frequently mutated genes in CHIP and CCUS, induce a competitive advantage to hematopoietic stem and progenitor cells, which leads to their clonal expansion in the bone marrow. Chronic inflammation also drives metabolic reprogramming and immune system deregulation, further promoting the expansion of malignant clones. This review underscores the urgent need to fully elucidate the role of inflammation in MDS initiation and highlights the potential of the therapeutical targeting of inflammatory pathways as an early intervention in MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
7
|
Guz J, Zarakowska E, Mijewski P, Wasilow A, Lesniewski F, Foksinski M, Brzoszczyk B, Jarzemski P, Gackowski D, Olinski R. Epigenetic DNA modifications and vitamin C in prostate cancer and benign prostatic hyperplasia: Exploring similarities, disparities, and pathogenic implications. Neoplasia 2024; 58:101079. [PMID: 39471555 PMCID: PMC11550371 DOI: 10.1016/j.neo.2024.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVES Benign Prostatic Hyperplasia (BPH) and Prostate Cancer (PC) are very common pathologies among aging men. Both disorders involve aberrant cell division and differentiation within the prostate gland. However, the direct link between these two disorders still remains controversial. A plethora of works have demonstrated that inflammation is a major causative factor in both pathologies. Another key factor involved in PC development is DNA methylation and hydroxymethylation. METHODS A broad spectrum of parameters, including epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine, was analyzed by two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry in tissues of BPH, PC, and marginal one, as well as in leukocytes of the patients and the control group. In the same material, the expression of TETs and TDG genes was measured using RT-qPCR. Additionally, vitamin C was quantified in the blood plasma and within cells (leukocytes and prostate tissues). RESULTS Unique patterns of DNA modifications and intracellular vitamin C (iVC) in BPH and PC tissues, as well as in leukocytes, were found in comparison with control samples. The majority of the alterations were more pronounced in leukocytes than in the prostate tissues. CONCLUSIONS Characteristic DNA methylation/hydroxymethylation and iVC profiles have been observed in both PC and BPH, suggesting potential shared molecular pathways between the two conditions. As a fraction of leukocytes may be recruited to the pathological tissues and can migrate back into the circulation/blood, the observed alterations in leukocytes may reflect dynamic changes associated with the PC development, suggesting their potential utility as early markers of prostate cancer development.
Collapse
Affiliation(s)
- Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Pawel Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Aleksandra Wasilow
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Fabian Lesniewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Marek Foksinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, Jan Biziel University Hospital, Bydgoszcz 85-168; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Piotr Jarzemski
- Department of Urology, Jan Biziel University Hospital, Bydgoszcz 85-168; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland.
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz 85-092, Poland.
| |
Collapse
|
8
|
Gao Q, Shen K, Xiao M. TET2 mutation in acute myeloid leukemia: biology, clinical significance, and therapeutic insights. Clin Epigenetics 2024; 16:155. [PMID: 39521964 PMCID: PMC11550532 DOI: 10.1186/s13148-024-01771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
TET2 is a critical gene that regulates DNA methylation, encoding a dioxygenase protein that plays a vital role in the regulation of genomic methylation and other epigenetic modifications, as well as in hematopoiesis. Mutations in TET2 are present in 7%-28% of adult acute myeloid leukemia (AML) patients. Despite this, the precise mechanisms by which TET2 mutations contribute to malignant transformation and how these insights can be leveraged to enhance treatment strategies for AML patients with TET2 mutations remain unclear. In this review, we provide an overview of the functions of TET2, the effects of its mutations, its role in clonal hematopoiesis, and the possible mechanisms of leukemogenesis. Additionally, we explore the mutational landscape across different AML subtypes and present recent promising preclinical research findings.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Jin Y, Rao K, Zheng J, Zhang X, Luo Y, He J. Deficiency of TET2-mediated KMT2D self-transcription confers a targetable vulnerability in hepatocellular carcinoma. PNAS NEXUS 2024; 3:pgae504. [PMID: 39564571 PMCID: PMC11574621 DOI: 10.1093/pnasnexus/pgae504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related mortality worldwide. Conventional therapies tend to exacerbate comorbidities, liver dysfunction, and relapse, rendering an urgent demand for novel strategy for management of HCC. Here, we reported that DNA dioxygenase TET2 collaborates with histone methyltransferase KMT2D to enable transcription of KMT2D and ARID1A in HCC. Mechanistically, KMT2D and ARID1A are the major epigenetic targets of TET2 through RNA-seq analysis. Moreover, KMT2D recruits TET2 to facilitate self-transcription via oxidation of 5-methylcytosine in promoter, thereby maintaining expression of ARID1A. Physiologically, KMT2D was identified as a tumor suppressor and mediates the antitumor effect of vitamin C in HCC. Tumors with depleted KMT2D present growth advantage over control group. Vitamin C is able to impair tumor growth, which is compromised by deficiency of KMT2D. Furthermore, loss of KMT2D sensitizes HCC tumors to cisplatin with reduced tumor weight and high level of DNA damage. Ultimately, TET2-KMT2D axis correlates with prognosis of patients with HCC. Patients with high amounts of TET2 and KMT2D present better outcome. Our findings not only put forth a heretofore unrecognized mechanism underlying cross-talk between TET2 and KMT2D in mediating self-transcription of KMT2D, but also propose a targetable vulnerability for HCC therapy on the basis of TET2-KMT2D axis.
Collapse
Affiliation(s)
- Yuting Jin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Keqiang Rao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Jiaojiao Zheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinchao Zhang
- Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Jing He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| |
Collapse
|
10
|
Zhuang Q, Jin S, Wang W, Wang Y, Tong H, Liu Z, Sun J. Clonal hematopoiesis of indeterminate potential: the root cause of, and fertile ground for, hematological malignancies. Trends Mol Med 2024:S1471-4914(24)00272-7. [PMID: 39490273 DOI: 10.1016/j.molmed.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Clonal hematopoiesis (CH) of indeterminate potential (CHIP), characterized by propagation of blood cell clones carrying somatic mutations in specific driver genes, is increasingly recognized as a critical factor in the development of hematological malignancies. This phenomenon, which often emerges with age, underscores the complex interplay between genetic predisposition and environmental influences in cancer initiation and progression. Recent years have witnessed significant advances in our understanding of the link between CHIP and hematological diseases. In this review, we provide a comprehensive overview of the features of CHIP and explore its role in promoting tumorigenesis and influencing treatment outcomes for blood cancers. Finally, we summarize current available tools for risk stratification and discuss management strategies for patients with CHIP.
Collapse
Affiliation(s)
- Qiqi Zhuang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Shengjie Jin
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Zuyun Liu
- The Second Affiliated Hospital, and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Wang P, Chen LL, Xiong Y, Ye D. Metabolite regulation of epigenetics in cancer. Cell Rep 2024; 43:114815. [PMID: 39368084 DOI: 10.1016/j.celrep.2024.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
The catalytic activity of most epigenetic enzymes requires a metabolite produced by central carbon metabolism as a cofactor or (co-)substrate. The concentrations of these metabolites undergo dynamic changes in response to nutrient levels and environmental conditions, reprogramming metabolic processes and epigenetic landscapes. Abnormal accumulations of epigenetic modulatory metabolites resulting from mutations in metabolic enzymes contribute to tumorigenesis. In this review, we first present the concept that metabolite regulation of gene expression represents an evolutionarily conserved mechanism from prokaryotes to eukaryotes. We then review how individual metabolites affect epigenetic enzymes and cancer development. Lastly, we discuss the advancement of and opportunity for therapeutic targeting of metabolite-epigenetic regulation in cancer therapy.
Collapse
Affiliation(s)
- Pu Wang
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Cullgen, Inc., 12671 High Bluff Drive, San Diego, CA 92130, USA.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Beer SA, Went M, Hislop JM, Houlston R, Kaiser M. Appraising ascorbic acid as a chemoprevention agent for acute myeloid leukaemia using Mendelian Randomisation. Blood Cancer J 2024; 14:183. [PMID: 39424823 PMCID: PMC11489766 DOI: 10.1038/s41408-024-01168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Affiliation(s)
- Sina A Beer
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK.
| | - Molly Went
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Jessica M Hislop
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Martin Kaiser
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Laisné M, Lupien M, Vallot C. Epigenomic heterogeneity as a source of tumour evolution. Nat Rev Cancer 2024:10.1038/s41568-024-00757-9. [PMID: 39414948 DOI: 10.1038/s41568-024-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
In the past decade, remarkable progress in cancer medicine has been achieved by the development of treatments that target DNA sequence variants. However, a purely genetic approach to treatment selection is hampered by the fact that diverse cell states can emerge from the same genotype. In multicellular organisms, cell-state heterogeneity is driven by epigenetic processes that regulate DNA-based functions such as transcription; disruption of these processes is a hallmark of cancer that enables the emergence of defective cell states. Advances in single-cell technologies have unlocked our ability to quantify the epigenomic heterogeneity of tumours and understand its mechanisms, thereby transforming our appreciation of how epigenomic changes drive cancer evolution. This Review explores the idea that epigenomic heterogeneity and plasticity act as a reservoir of cell states and therefore as a source of tumour evolution. Best practices to quantify epigenomic heterogeneity and explore its various causes and consequences are discussed, including epigenomic reprogramming, stochastic changes and lasting memory. The design of new therapeutic approaches to restrict epigenomic heterogeneity, with the long-term objective of limiting cancer development and progression, is also addressed.
Collapse
Affiliation(s)
- Marthe Laisné
- CNRS UMR3244, Institut Curie, PSL University, Paris, France
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontorio, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontorio, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontorio, Canada.
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|
14
|
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants (Basel) 2024; 13:1242. [PMID: 39456495 PMCID: PMC11505632 DOI: 10.3390/antiox13101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with an increased global incidence in recent decades, despite a substantially unchanged survival. While TC has an excellent overall prognosis, some types of TC are associated with worse patient outcomes, depending on the genetic setting. Furthermore, oxidative stress is related to more aggressive features of TC. Vitamin C, an essential nutrient provided with food or as a dietary supplement, is a well-known antioxidant and a scavenger of reactive oxygen species; however, at high doses, it can induce pro-oxidant effects, acting through multiple biological mechanisms that play a crucial role in killing cancer cells. Although experimental data and, less consistently, clinical studies, suggest the possibility of antineoplastic effects of vitamin C at pharmacological doses, the antitumor efficacy of this nutrient in TC remains at least partly unexplored. Therefore, this review discusses the current state of knowledge on the role of vitamin C, alone or in combination with other conventional therapies, in the management of TC, the mechanisms underlying this association, and the perspectives that may emerge in TC treatment strategies, and, also, in light of the development of novel functional foods useful to this extent, by implementing novel sensory analysis strategies.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
15
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
16
|
Liu WS, Wu BS, Yang L, Chen SD, Zhang YR, Deng YT, Wu XR, He XY, Yang J, Feng JF, Cheng W, Xu YM, Yu JT. Whole exome sequencing analyses reveal novel genes in telomere length and their biomedical implications. GeroScience 2024; 46:5365-5385. [PMID: 38837026 PMCID: PMC11336033 DOI: 10.1007/s11357-024-01203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
Telomere length is a putative biomarker of aging and is associated with multiple age-related diseases. There are limited data on the landscape of rare genetic variations in telomere length. Here, we systematically characterize the rare variant associations with leukocyte telomere length (LTL) through exome-wide association study (ExWAS) among 390,231 individuals in the UK Biobank. We identified 18 robust rare-variant genes for LTL, most of which estimated effects on LTL were significant (> 0.2 standard deviation per allele). The biological functions of the rare-variant genes were associated with telomere maintenance and capping and several genes were specifically expressed in the testis. Three novel genes (ASXL1, CFAP58, and TET2) associated with LTL were identified. Phenotypic association analyses indicated significant associations of ASXL1 and TET2 with cancers, age-related diseases, blood assays, and cardiovascular traits. Survival analyses suggested that carriers of ASXL1 or TET2 variants were at increased risk for cancers; diseases of the circulatory, respiratory, and genitourinary systems; and all-cause and cause-specific deaths. The CFAP58 carriers were at elevated risk of deaths due to cancers. Collectively, the present whole exome sequencing study provides novel insights into the genetic landscape of LTL, identifying novel genes associated with LTL and their implications on human health and facilitating a better understanding of aging, thus pinpointing the genetic relevance of LTL with clonal hematopoiesis, biomedical traits, and health-related outcomes.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1St Eastern Jianshe Road, Zhengzhou, 450000, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1St Eastern Jianshe Road, Zhengzhou, 450000, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
17
|
BAYRAK AM, YUCEL B. AMPK Activation in TET2 Downregulated Leukemia Cells Upon Glutamine Limitation. Medeni Med J 2024; 39:161-168. [PMID: 39350522 PMCID: PMC11572213 DOI: 10.4274/mmj.galenos.2024.59683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 11/20/2024] Open
Abstract
Objective Metabolic rewiring is a characteristic of cancer cells. Cancer cells require more nutrients for survival and proliferation. Although glutamine can be produced in cells via a series of enzymatic reactions, a group of cancer cells are dependent on extracellular glutamine for survival. TET2 plays a role in DNA demethylation and is a tumor suppressor gene. The TET2 gene is frequently mutated in various cancers, including acute myeloid leukemia (AML). Our study aimed to investigate the association between TET2-knockdown AML cell line HL-60 cells and glutamine metabolism. Methods To evaluate the association between TET2 expression and glutamine limitation, TET2 was downregulated in HL-60 cells using shRNA plasmids. The proliferation of TET2-knockdown HL-60 cells was calculated in normal and glutamine-deficient medium. GLUL mRNA expression was investigated using quantitative reverse transcription polymerase chain reaction and protein levels were evaluated using immunoblotting. Results The numbers and viability of TET2-knockdown HL-60 cells were decreased in low glutamine-containing medium, but the viability of TET2-knockdown HL-60 cells was higher than that of control cells. GLUL mRNA expressions were increased in TET2-knockdown cells in low glutamine. In addition, P-AMPKα protein expression was increased in TET2-knockdown HL-60 cells in low glutamine-containing medium. Conclusions Our findings indicate that TET2-knockdown HL-60 cells may be more resistant to glutamine deprivation. In glutamine-deficient medium, the mRNA expression of glutamine synthetase is increased, which could be related to glutamine addiction in cells. In addition, low-glutamyl medium increased the P-AMPKα protein level in TET2-knockdown HL-60 cells.
Collapse
Affiliation(s)
- Ahsen Merve BAYRAK
- Istanbul Medeniyet University Institute of Graduate Studies, Department of Molecular Medicine, Istanbul, Türkiye
- Istanbul Medeniyet University Faculty of Medicine, Department of Medical Biology, Istanbul, Türkiye
| | - Burcu YUCEL
- Istanbul Medeniyet University Faculty of Medicine, Department of Medical Biology, Istanbul, Türkiye
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Türkiye
- Health Institutes of Türkiye (TUSEB), Türkiye Cancer Institute, Istanbul, Türkiye
| |
Collapse
|
18
|
Wang X, He J, Sun M, Wang S, Qu J, Shi H, Rao B. High-dose vitamin C as a metabolic treatment of cancer: a new dimension in the era of adjuvant and intensive therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03553-x. [PMID: 39259387 DOI: 10.1007/s12094-024-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
The anti-cancer mechanism of High-dose Vitamin C (HDVC) is mainly to participate in the Fenton reaction, hydroxylation reaction, and epigenetic modification, which leads to the energy crisis, metabolic collapse, and severe peroxidation stress that results in the proliferation inhibition or death of cancer cells. However, the mainstream view is that HDVC does not significantly improve cancer treatment outcomes. In clinical work and scientific research, we found that some drugs or therapies can significantly improve the anti-cancer effects of HDVC, such as PD-1 inhibitors that can increase the anti-cancer effects of cancerous HDVC by nearly three times. Here, the adjuvant and intensive therapy and synergistic mechanisms including HDVC combined application of chemoradiotherapies multi-vitamins, targeted drugs, immunotherapies, and oncolytic virus are discussed in detail. Adjuvant and intensive therapy of HDVC can significantly improve the therapeutic effect of HDVC in the metabolic treatment of cancer, but more clinical evidence is needed to support its clinical application.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jia He
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiwan Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
| |
Collapse
|
19
|
Guerin LN, Scott TJ, Yap JA, Johansson A, Puddu F, Charlesworth T, Yang Y, Simmons AJ, Lau KS, Ihrie RA, Hodges E. Temporally discordant chromatin accessibility and DNA demethylation define short and long-term enhancer regulation during cell fate specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609789. [PMID: 39253426 PMCID: PMC11383056 DOI: 10.1101/2024.08.27.609789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.
Collapse
Affiliation(s)
- Lindsey N. Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy J. Scott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacqueline A. Yap
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | - Yilin Yang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J. Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S. Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rebecca A. Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Quin C, DeJong EN, McNaughton AJM, Buttigieg MM, Basrai S, Abelson S, Larché MJ, Rauh MJ, Bowdish DME. Chronic TNF in the aging microenvironment exacerbates Tet2 loss-of-function myeloid expansion. Blood Adv 2024; 8:4169-4180. [PMID: 38924753 PMCID: PMC11334836 DOI: 10.1182/bloodadvances.2023011833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
ABSTRACT Somatic mutations in the TET2 gene occur more frequently with age, imparting an intrinsic hematopoietic stem cells (HSCs) advantage and contributing to a phenomenon termed clonal hematopoiesis of indeterminate potential (CHIP). Individuals with TET2-mutant CHIP have a higher risk of developing myeloid neoplasms and other aging-related conditions. Despite its role in unhealthy aging, the extrinsic mechanisms driving TET2-mutant CHIP clonal expansion remain unclear. We previously showed an environment containing tumor necrosis factor (TNF) favors TET2-mutant HSC expansion in vitro. We therefore postulated that age-related increases in TNF also provide an advantage to HSCs with TET2 mutations in vivo. To test this hypothesis, we generated mixed bone marrow chimeric mice of old wild-type (WT) and TNF-/- genotypes reconstituted with WT CD45.1+ and Tet2-/- CD45.2+ HSCs. We show that age-associated increases in TNF dramatically increased the expansion of Tet2-/- cells in old WT recipient mice, with strong skewing toward the myeloid lineage. This aberrant myelomonocytic advantage was mitigated in old TNF-/- recipient mice, suggesting that TNF signaling is essential for the expansion Tet2-mutant myeloid clones. Examination of human patients with rheumatoid arthritis with clonal hematopoiesis revealed that hematopoietic cells carrying certain mutations, including in TET2, may be sensitive to reduced TNF bioactivity following blockade with adalimumab. This suggests that targeting TNF may reduce the burden of some forms of CHIP. To our knowledge, this is the first evidence to demonstrate that TNF has a causal role in driving TET2-mutant CHIP in vivo. These findings highlight TNF as a candidate therapeutic target to control TET2-mutant CHIP.
Collapse
Affiliation(s)
- Candice Quin
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Erica N. DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Amy J. M. McNaughton
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Marco M. Buttigieg
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Salman Basrai
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maggie J. Larché
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Dawn M. E. Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
21
|
Zhang C, Zheng J, Liu J, Li Y, Xing G, Zhang S, Chen H, Wang J, Shao Z, Li Y, Jiang Z, Pan Y, Liu X, Xu P, Wu W. Pan-cancer analyses reveal the molecular and clinical characteristics of TET family members and suggests that TET3 maybe a potential therapeutic target. Front Pharmacol 2024; 15:1418456. [PMID: 39104395 PMCID: PMC11298443 DOI: 10.3389/fphar.2024.1418456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
The Ten-Eleven Translocation (TET) family genes are implicated in a wide array of biological functions across various human cancers. Nonetheless, there is a scarcity of studies that comprehensively analyze the correlation between TET family members and the molecular phenotypes and clinical characteristics of different cancers. Leveraging updated public databases and employing several bioinformatics analysis methods, we assessed the expression levels, somatic variations, methylation levels, and prognostic values of TET family genes. Additionally, we explored the association between the expression of TET family genes and pathway activity, tumor microenvironment (TME), stemness score, immune subtype, clinical staging, and drug sensitivity in pan-cancer. Molecular biology and cytology experiments were conducted to validate the potential role of TET3 in tumor progression. Each TET family gene displayed distinct expression patterns across at least ten detected tumors. The frequency of Single Nucleotide Variant (SNV) in TET genes was found to be 91.24%, primarily comprising missense mutation types, with the main types of copy number variant (CNV) being heterozygous amplifications and deletions. TET1 gene exhibited high methylation levels, whereas TET2 and TET3 genes displayed hypomethylation in most cancers, which correlated closely with patient prognosis. Pathway activity analysis revealed the involvement of TET family genes in multiple signaling pathways, including cell cycle, apoptosis, DNA damage response, hormone AR, PI3K/AKT, and RTK. Furthermore, the expression levels of TET family genes were shown to impact the clinical staging of tumor patients, modulate the sensitivity of chemotherapy drugs, and thereby influence patient prognosis by participating in the regulation of the tumor microenvironment, cellular stemness potential, and immune subtype. Notably, TET3 was identified to promote cancer progression across various tumors, and its silencing was found to inhibit tumor malignancy and enhance chemotherapy sensitivity. These findings shed light on the role of TET family genes in cancer progression and offer insights for further research on TET3 as a potential therapeutic target for pan-cancer.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Jie Zheng
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jin Liu
- North China University of Science and Technology, Tangshan, Hebei, China
| | - Yanxia Li
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shupeng Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jian Wang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhijiang Shao
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Zhongmin Jiang
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yingzi Pan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
| | - Ping Xu
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of Pharmacy, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wenhan Wu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People’s Hospital, Huangnan Prefecture, Qinghai, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
23
|
Isola S, Gammeri L, Furci F, Gangemi S, Pioggia G, Allegra A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int J Mol Sci 2024; 25:7284. [PMID: 39000393 PMCID: PMC11241675 DOI: 10.3390/ijms25137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Vitamin C is a water-soluble vitamin introduced through the diet with anti-inflammatory, immunoregulatory, and antioxidant activities. Today, this vitamin is integrated into the treatment of many inflammatory pathologies. However, there is increasing evidence of possible use in treating autoimmune and neoplastic diseases. We reviewed the literature to delve deeper into the rationale for using vitamin C in treating this type of pathology. There is much evidence in the literature regarding the beneficial effects of vitamin C supplementation for treating autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) and neoplasms, particularly hematological neoplastic diseases. Vitamin C integration regulates the cytokines microenvironment, modulates immune response to autoantigens and cancer cells, and regulates oxidative stress. Moreover, integration therapy has an enhanced effect on chemotherapies, ionizing radiation, and target therapy used in treating hematological neoplasm. In the future, integrative therapy will have an increasingly important role in preventing pathologies and as an adjuvant to standard treatments.
Collapse
Affiliation(s)
- Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Luca Gammeri
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Policlinico “G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
24
|
Xiang C, Gao L, Tao Q, Chen Z, Zhao S, Liu W. TET2 regulates extranodal NK/T cell lymphoma progression through regulation of DNA methylation. Hematol Oncol 2024; 42:e3295. [PMID: 38979860 DOI: 10.1002/hon.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
The biological role of Ten-11 translocation 2 (TET2) and the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in the development of extra-nodal natural killer/T-cell lymphoma (ENKTL) remains unclear. The level of 5mC and 5hmC was detected in 112 cases of ENKTL tissue specimens by immunohistochemical (IHC) staining. Subsequently, TET2 knockdown and the overexpression cell models were constructed in ENKTL cell lines. Biochemical analyses were used to assess proliferation, apoptosis, cell cycle and monoclonal formation in cells treated or untreated with L-Ascorbic acid sodium salt (LAASS). Dot-Blots were used to detect levels of genome 5mC and 5hmC. Additionally, the ILLUMINA 850k methylation chip was used to analyze the changes of TET2 regulatory genes. RNA-Seq was used to profile differentially expressed genes regulated by TET2. The global level of 5hmC was significantly decreased, while 5mC was highly expressed in ENKTL tissue. TET2 protein expression was negatively correlated with the ratio of 5mC/5hmC (p < 0.0001). The 5mC/5hmC status were related to the site of disease, clinical stage, PINK score and Ki-67 index, as well as the 5-year OS. TET2 knockdown prolonged the DNA synthesis period, increased the cloning ability of tumor cells, increased the level of 5mC and decreased the level of 5hmC in ENKTL cells. While overexpression of TET2 presented the opposite effect. Furthermore, treatment of ENKTL cells with LAASS significantly induced ENKTL cell apoptosis. These results suggest that TET2 plays an important role in ENKTL development via regulation of 5mC and 5hmC and may serve as a novel therapeutic target for ENKTL.
Collapse
Affiliation(s)
- Chunxiang Xiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Limin Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Tao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zihang Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
26
|
Ali A, Jori C, Kanika, Kumar A, Vyawahare A, Kumar J, Kumar B, Ahmad A, Fareed M, Ali N, Navik U, Khan R. A bioactive and biodegradable vitamin C stearate-based injectable hydrogel alleviates experimental inflammatory arthritis. Biomater Sci 2024; 12:3389-3400. [PMID: 38804911 DOI: 10.1039/d4bm00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory joint disorder affecting nearly 1% of the global population. In RA, synovial joints are infiltrated by inflammatory mediators and enzymes, leading to articular cartilage deterioration, joint damage, and bone erosion. Herein, the 9-aminoacridine-6-O-stearoyl-L-ascorbic acid hydrogel (9AA-SAA hydrogel) was formulated by the heat-cool method and further characterized for surface charge, surface morphology, rheology, and cytocompatibility. Furthermore, we evaluated the therapeutic efficacy of the 9AA-SAA hydrogel, an enzyme-responsive drug delivery system with on-and-off switching capabilities based on disease severity against collagen-induced experimental arthritis in Wistar rats. The anti-inflammatory action of the US FDA-approved drug 9-aminoacridine (9AA) was revealed which acted through nuclear receptor subfamily 4 group A member 1 (NR4A1), an anti-inflammatory orphan nuclear receptor that inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, we have explored the role of ascorbic acid, an active moiety of 6-O-stearoyl-L-ascorbic acid (SAA), in promoting the production of collagen production through ten-eleven translocation-2 (TET2) upregulation. Targeting through NR4A1 and TET2 could be the probable mechanism for the treatment of experimental arthritis. The combination of 9AA and ascorbic acid demonstrated enhanced therapeutic efficacy in the 9AA-SAA hydrogel, significantly reducing the severity of experimental arthritis. This approach, in contrast to existing treatments with limited effectiveness, presents a promising and more effective strategy for RA treatment by mitigating inflammation in experimental arthritis.
Collapse
Affiliation(s)
- Aneesh Ali
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Jattin Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Bhuvnesh Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mohammad Fareed
- Environmental Health and Clinical Epidemiology Laboratory, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| |
Collapse
|
27
|
He MM, Wang K, Lo CH, Zhang Y, Polychronidis G, Knudsen MD, Zhong R, Ma Y, Wu K, Chan AT, Giovannucci EL, Ogino S, Ng K, Meyerhardt JA, Song M. Post-diagnostic multivitamin supplement use and colorectal cancer survival: A prospective cohort study. Cancer 2024; 130:2169-2179. [PMID: 38319287 PMCID: PMC11141725 DOI: 10.1002/cncr.35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Use of multivitamin supplements has been associated with lower incidence of colorectal cancer (CRC). However, its influence on CRC survival remains unknown. METHODS Among 2424 patients with stage I-III CRC who provided detailed information about multivitamin supplements in the Nurses' Health Study and Health Professionals Follow-up Study, the authors calculated multivariable hazard ratios (HRs) of multivitamin supplements for all-cause and CRC-specific mortality according to post-diagnostic use and dose of multivitamin supplements. RESULTS During a median follow-up of 11 years, the authors documented 1512 deaths, among which 343 were of CRC. Compared to non-users, post-diagnostic users of multivitamin supplements at a dose of 3-5 tablets/week had lower CRC-specific mortality (HR, 0.55; 95% confidence interval [CI], 0.36-0.83, p = .005), and post-diagnostic users at doses of 3-5 and 6-9 tablets/week had lower all-cause mortality (HR, 0.81; 95% CI, 0.67-0.99, p = .04; HR, 0.79; 95% CI, 0.70-0.88), p < .001). The dose-response analysis showed a curvilinear relationship for both CRC-specific (pnonlinearity < .001) and all-cause mortality (pnonlinearity = .004), with the maximum risk reduction observed at 3-5 tablets/week and no further reduction at higher doses. Compared to non-users in both pre- and post-diagnosis periods, new post-diagnostic users at dose of <10 tablets/week had a lower all-cause mortality (HR, 0.81; 95% CI, 0.71-0.94, p = .005), whereas new users at a dose of ≥10 tablets/week (HR, 1.58; 95% CI, 1.07-2.33) and discontinued users (HR, 1.35; 95% CI, 1.14-1.59) had a higher risk of mortality. CONCLUSIONS Use of multivitamin supplements at a moderate dose after a diagnosis of nonmetastatic CRC is associated with lower CRC-specific and overall mortality, whereas a high dose (≥10 tablets/week) use is associated with higher CRC-specific mortality.
Collapse
Affiliation(s)
- Ming-ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chun-Han Lo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Yiwen Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Georgios Polychronidis
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Study Centre of the German Surgical Society, University of Heidelberg, Heidelberg, Germany
| | - Markus D Knudsen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Oslo, Norway
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Rong Zhong
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A. Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
28
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
29
|
Ren L, Chang YF, Jiang SH, Li XH, Cheng HP. DNA methylation modification in Idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1416325. [PMID: 38915445 PMCID: PMC11194555 DOI: 10.3389/fcell.2024.1416325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease with a prognosis worse than lung cancer. It is a fatal lung disease with largely unknown etiology and pathogenesis, and no effective therapeutic drugs render its treatment largely unsuccessful. With continuous in-depth research efforts, the epigenetic mechanisms in IPF pathogenesis have been further discovered and concerned. As a widely studied mechanism of epigenetic modification, DNA methylation is primarily facilitated by DNA methyltransferases (DNMTs), resulting in the addition of a methyl group to the fifth carbon position of the cytosine base, leading to the formation of 5-methylcytosine (5-mC). Dysregulation of DNA methylation is intricately associated with the advancement of respiratory disorders. Recently, the role of DNA methylation in IPF pathogenesis has also received considerable attention. DNA methylation patterns include methylation modification and demethylation modification and regulate a range of essential biological functions through gene expression regulation. The Ten-Eleven-Translocation (TET) family of DNA dioxygenases is crucial in facilitating active DNA demethylation through the enzymatic conversion of the modified genomic base 5-mC to 5-hydroxymethylcytosine (5-hmC). TET2, a member of TET proteins, is involved in lung inflammation, and its protein expression is downregulated in the lungs and alveolar epithelial type II cells of IPF patients. This review summarizes the current knowledge of pathologic features and DNA methylation mechanisms of pulmonary fibrosis, focusing on the critical roles of abnormal DNA methylation patterns, DNMTs, and TET proteins in impacting IPF pathogenesis. Researching DNA methylation will enchance comprehension of the fundamental mechanisms involved in IPF pathology and provide novel diagnostic biomarkers and therapeutic targets for pulmonary fibrosis based on the studies involving epigenetic mechanisms.
Collapse
Affiliation(s)
- Lu Ren
- Clinical Nursing Teaching and Research Section, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Fen Chang
- Medicine School, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
31
|
Quiñones CO, Gesto-Borroto R, Wilson RV, Hernández-Madrigal SV, Lorence A. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2644-2663. [PMID: 38488689 DOI: 10.1093/jxb/erae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
l-Ascorbic acid (AsA) is an antioxidant with important roles in plant stress physiology, growth, and development. AsA also plays an essential role in human health, preventing scurvy. Humans do not synthesize AsA, which needs to be supplied via a diet rich in fresh produce. Research efforts have provided progress in the elucidation of a complex metabolic network with at least four routes leading to AsA formation in plants. In this review, three alternative pathways, namely the d-galacturonate, the l-gulose, and the myo-inositol pathways, are presented with the supporting evidence of their operation in multiple plant species. We critically discuss feeding studies using precursors and their conversion to AsA in plant organs, and research where the expression of key genes encoding enzymes involved in the alternative pathways showed >100% AsA content increase in the transgenics and in many cases accompanied by enhanced tolerance to multiple stresses. We propose that the alternative pathways are vital in AsA production in response to stressful conditions and to compensate in cases where the flux through the d-mannose/l-galactose pathway is reduced. The genes and enzymes that have been characterized so far in these alternative pathways represent important tools that are being used to develop more climate-tolerant crops.
Collapse
Affiliation(s)
- Cherryl O Quiñones
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Reinier Gesto-Borroto
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Rachael V Wilson
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Sara V Hernández-Madrigal
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, PO Box 419, State University, AR 72467, USA
| |
Collapse
|
32
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
33
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
34
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate depletion increases quiescence and self-renewal potential in hematopoietic stem cells and multipotent progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587574. [PMID: 38617357 PMCID: PMC11014518 DOI: 10.1101/2024.04.01.587574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter severely depleted ascorbate from hematopoietic cells. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potential of multipotent hematopoietic progenitors (MPPs), conferring the ability to long-term reconstitute irradiated mice. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate depletion confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel L. Cassidy
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew W. DeVilbiss
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elise C. Jeffery
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bethany R. Ottesen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda R. Reyes
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah Muh
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P. Mathews
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
35
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
36
|
Lin L, Wang B, Zhang X, Deng C, Zhou C, Zhu J, Wu H, He J. Functional TET2 gene polymorphisms increase the risk of neuroblastoma in Chinese children. IUBMB Life 2024; 76:200-211. [PMID: 38014648 DOI: 10.1002/iub.2791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
The 5-methylcytosine (m5C) is the key chemical modification in RNAs. As one of the demethylases in m5C, TET2 has been shown as a tumor suppressor. However, the impact of TET2 gene polymorphisms on neuroblastoma has not been elucidated. 402 neuroblastoma patients and 473 controls were genotyped for TET2 gene polymorphisms using the TaqMan method. The impact of TET2 gene polymorphisms on neuroblastoma susceptibility was determined using multivariate logistic regression analysis. We also adopted genotype-tissue expression database to explore the impact of TET2 gene polymorphisms on the expression of host and nearby genes. We used the R2 platform and Sangerbox tool to analyze the relationship between gene expression and neuroblastoma risk and prognosis through non-parametric testing and Kaplan-Meier analysis, respectively. We found the TET2 gene polymorphisms (rs10007915 G > C and rs7670522 A > C) and the combined 2-5 risk genotypes can significantly increase neuroblastoma risk. Stratification analysis showed that these significant associations were more prominent in certain subgroups. TET2 rs10007915 G > C and rs7670522 A > C are significantly associated with reduced expression of TET2 mRNA. Moreover, lower expression of TET2 gene is associated with high risk, MYCN amplification, and poor prognosis of neuroblastoma. The rs10007915 G > C and rs7670522 A > C are significantly related to the increased expression of inorganic pyrophosphatase 2 mRNA, and higher expression of PPA2 gene is associated with high risk, MYCN amplification, and poor prognosis of neuroblastomas. In summary, TET2 rs10007915 G > C and rs7670522 A > C significantly confer neuroblastoma susceptibility, and further research is needed to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Bo Wang
- Department of Clinical Laboratory, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Haiyan Wu
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Longhini ALF, Fernández-Maestre I, Kennedy MC, Wereski MG, Mowla S, Xiao W, Lowe SW, Levine RL, Gardner R. Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues. Front Immunol 2024; 15:1374943. [PMID: 38605953 PMCID: PMC11008467 DOI: 10.3389/fimmu.2024.1374943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction In vivo studies of cancer biology and assessment of therapeutic efficacy are critical to advancing cancer research and ultimately improving patient outcomes. Murine cancer models have proven to be an invaluable tool in pre-clinical studies. In this context, multi-parameter flow cytometry is a powerful method for elucidating the profile of immune cells within the tumor microenvironment and/or play a role in hematological diseases. However, designing an appropriate multi-parameter panel to comprehensively profile the increasing diversity of immune cells across different murine tissues can be extremely challenging. Methods To address this issue, we designed a panel with 13 fixed markers that define the major immune populations -referred to as the backbone panel- that can be profiled in different tissues but with the option to incorporate up to seven additional fluorochromes, including any marker specific to the study in question. Results This backbone panel maintains its resolution across different spectral flow cytometers and organs, both hematopoietic and non-hematopoietic, as well as tumors with complex immune microenvironments. Discussion Having a robust backbone that can be easily customized with pre-validated drop-in fluorochromes saves time and resources and brings consistency and standardization, making it a versatile solution for immuno-oncology researchers. In addition, the approach presented here can serve as a guide to develop similar types of customizable backbone panels for different research questions requiring high-parameter flow cytometry panels.
Collapse
Affiliation(s)
- Ana Leda F. Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| | - Inés Fernández-Maestre
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Margaret C. Kennedy
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Shoron Mowla
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wenbin Xiao
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, United States
| |
Collapse
|
38
|
Cao W, Xiong S, Ji W, Wei H, Ma F, Mao L. Neuroprotection Role of Vitamin C by Upregulating Glutamate Transporter-1 in Auditory Cortex of Noise-Induced Tinnitus Animal Model. ACS Chem Neurosci 2024; 15:1197-1205. [PMID: 38451201 DOI: 10.1021/acschemneuro.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 μM) increases relative to that in the control group (1.34 ± 0.22 μM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 μM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.
Collapse
Affiliation(s)
- Wanxin Cao
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Shan Xiong
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Furong Ma
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
39
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
40
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
42
|
Bravo-Perez C, Gurnari C. A tower of babel of acronyms? The shadowlands of MGUS/MBL/CHIP/TCUS. Semin Hematol 2024; 61:43-50. [PMID: 38350765 DOI: 10.1053/j.seminhematol.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
With the advent of outperforming and massive laboratory tools, such as multiparameter flow cytometry and next-generation sequencing, hematopoietic cell clones with putative abnormalities for a variety of blood malignancies have been appreciated in otherwise healthy individuals. These conditions do not fulfill the criteria of their presumed cancer counterparts, and thus have been recognized as their precursor states. This is the case of monoclonal gammopathy of unknown significance (MGUS), the first blood premalignancy state described, preceding multiple myeloma (MM) or Waldenström macroglobulinemia (WM). However, in the last 2 decades, an increasing list of clonopathies has been recognized, including monoclonal B cell lymphocytosis (MBL), which antecedes chronic lymphocytic leukemia (CLL), clonal hematopoiesis of indeterminate potential (CHIP) for myeloid neoplasms (MN), and T-cell clones of uncertain significance (TCUS) for T-cell large chronic lymphocytic leukemia (LGLL). While for some of these entities diagnostic boundaries are precisely set, for others these are yet to be fully defined. Moreover, despite mostly considered of "uncertain significance," they have not only appeared to predispose to malignancy, but also to be capable of provoking set of immunological and cardiovascular complications that may require specialized management. The clinical implications of the aberrant clones, together with the extensive knowledge generated on the pathogenetic events driving their evolution, raises the question whether earlier interventions may alter the natural history of the disease. Herein, we review this Tower of Babel of acronyms pinpointing diagnostic definitions, differential diagnosis, and the role of genomic profiling of these precursor states, as well as potential interventional strategies.
Collapse
Affiliation(s)
- Carlos Bravo-Perez
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER - Instituto de Salud Carlos III, Murcia, Spain
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
43
|
Guarnera L, Jha BK. TET2 mutation as prototypic clonal hematopoiesis lesion. Semin Hematol 2024; 61:51-60. [PMID: 38431463 PMCID: PMC10978279 DOI: 10.1053/j.seminhematol.2024.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy; Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Babal K Jha
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Center for Immunotherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute (LRI) Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
44
|
Zhao J, Cato LD, Arora UP, Bao EL, Bryant SC, Williams N, Jia Y, Goldman SR, Nangalia J, Erb MA, Vos SM, Armstrong SA, Sankaran VG. Inherited blood cancer predisposition through altered transcription elongation. Cell 2024; 187:642-658.e19. [PMID: 38218188 PMCID: PMC10872907 DOI: 10.1016/j.cell.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024]
Abstract
Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.
Collapse
Affiliation(s)
- Jiawei Zhao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Uma P Arora
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas Williams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yuemeng Jia
- Harvard Stem Cell Institute, Cambridge, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Seth R Goldman
- Nascent Transcriptomics Core, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
45
|
Pires DA, Brandão-Rangel MAR, Silva-Reis A, Olímpio FRS, Aimbire F, Oliveira CR, Mateus-Silva JR, Zamarioli LS, Bachi ALL, Bella YF, Santos JMB, Bincoletto C, Lancha AH, Vieira RP. Vitamin C Inhibits Lipopolysaccharide-Induced Hyperinflammatory State of Chronic Myeloid Leukemia Cells through Purinergic Signaling and Autophagy. Nutrients 2024; 16:383. [PMID: 38337668 PMCID: PMC10857061 DOI: 10.3390/nu16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.
Collapse
Affiliation(s)
- Daniela A. Pires
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
| | - Maysa A. R. Brandão-Rangel
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Anamei Silva-Reis
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Fabiana R. S. Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Carlos R. Oliveira
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - José R. Mateus-Silva
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - Lucas S. Zamarioli
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - André L. L. Bachi
- Postgraduate Program in Health Science, Santo Amaro University, Rua Prof. Enéas de Siqueira Neto 340, São Paulo 04829-300, SP, Brazil;
| | - Yanesko F. Bella
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Juliana M. B. Santos
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - Antonio Herbert Lancha
- Experimental Surgery (LIM 26), Laboratory of Clinical Investigation, School of Medicine, University of Sao Paulo, Avenida Doutor Arnaldo 455, São Paulo 05508-030, SP, Brazil;
| | - Rodolfo P. Vieira
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (Unievangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, GO, Brazil
| |
Collapse
|
46
|
Treadway CJ, Boyer JA, Yang S, Yang H, Liu M, Li Z, Cheng M, Marzluff WF, Ye D, Xiong Y, Baldwin AS, Zhang Q, Brown NG. Using NMR to Monitor TET-Dependent Methylcytosine Dioxygenase Activity and Regulation. ACS Chem Biol 2024; 19:15-21. [PMID: 38193366 PMCID: PMC11075173 DOI: 10.1021/acschembio.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The active removal of DNA methylation marks is governed by the ten-eleven translocation (TET) family of enzymes (TET1-3), which iteratively oxidize 5-methycytosine (5mC) into 5-hydroxymethycytosine (5hmC), and then 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TET proteins are frequently mutated in myeloid malignancies or inactivated in solid tumors. These methylcytosine dioxygenases are α-ketoglutarate (αKG)-dependent and are, therefore, sensitive to metabolic homeostasis. For example, TET2 is activated by vitamin C (VC) and inhibited by specific oncometabolites. However, understanding the regulation of the TET2 enzyme by different metabolites and its activity remains challenging because of limitations in the methods used to simultaneously monitor TET2 substrates, products, and cofactors during catalysis. Here, we measure TET2-dependent activity in real time using NMR. Additionally, we demonstrate that in vitro activity of TET2 is highly dependent on the presence of VC in our system and is potently inhibited by an intermediate metabolite of the TCA cycle, oxaloacetate (OAA). Despite these opposing effects on TET2 activity, the binding sites of VC and OAA on TET2 are shared with αKG. Overall, our work suggests that NMR can be effectively used to monitor TET2 catalysis and illustrates how TET activity is regulated by metabolic and cellular conditions at each oxidation step.
Collapse
Affiliation(s)
- Colton J. Treadway
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Joshua A Boyer
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Shiyue Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Hui Yang
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
- Present address: Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, Shanghai College of Medicine, Fudan University, Shanghai, 200032, China
| | - Mengxi Liu
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
- Present address: Plexium, Inc., San Diego, CA 92121, United States
| | - Zhijun Li
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - William F. Marzluff
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dan Ye
- Molecular & Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai College of Medicine, Fudan University, Shanghai 200032, China
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Present address: Cullgen, Inc., 12730 High Bluff Drive, San Diego, CA, 92130, United States
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Qi Zhang
- Department. of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
47
|
Tseng YJ, Kageyama Y, Murdaugh RL, Kitano A, Kim JH, Hoegenauer KA, Tiessen J, Smith MH, Uryu H, Takahashi K, Martin JF, Samee MAH, Nakada D. Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration. Nat Commun 2024; 15:538. [PMID: 38225226 PMCID: PMC10789814 DOI: 10.1038/s41467-024-44718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are capable of regenerating the blood system, but the instructive cues that direct HSCs to regenerate particular lineages lost to the injury remain elusive. Here, we show that iron is increasingly taken up by HSCs during anemia and induces erythroid gene expression and regeneration in a Tet2-dependent manner. Lineage tracing of HSCs reveals that HSCs respond to hemolytic anemia by increasing erythroid output. The number of HSCs in the spleen, but not bone marrow, increases upon anemia and these HSCs exhibit enhanced proliferation, erythroid differentiation, iron uptake, and TET2 protein expression. Increased iron in HSCs promotes DNA demethylation and expression of erythroid genes. Suppressing iron uptake or TET2 expression impairs erythroid genes expression and erythroid differentiation of HSCs; iron supplementation, however, augments these processes. These results establish that the physiological level of iron taken up by HSCs has an instructive role in promoting erythroid-biased differentiation of HSCs.
Collapse
Affiliation(s)
- Yu-Jung Tseng
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Kageyama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rebecca L Murdaugh
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ayumi Kitano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin A Hoegenauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jonathan Tiessen
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mackenzie H Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Talib WH, Ahmed Jum’AH DA, Attallah ZS, Jallad MS, Al Kury LT, Hadi RW, Mahmod AI. Role of vitamins A, C, D, E in cancer prevention and therapy: therapeutic potentials and mechanisms of action. Front Nutr 2024; 10:1281879. [PMID: 38274206 PMCID: PMC10808607 DOI: 10.3389/fnut.2023.1281879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer, a leading global cause of mortality, arises from intricate interactions between genetic and environmental factors, fueling uncontrolled cell growth. Amidst existing treatment limitations, vitamins have emerged as promising candidates for cancer prevention and treatment. This review focuses on Vitamins A, C, E, and D because of their protective activity against various types of cancer. They are essential as human metabolic coenzymes. Through a critical exploration of preclinical and clinical studies via PubMed and Google Scholar, the impact of these vitamins on cancer therapy was analyzed, unraveling their complicated mechanisms of action. Interestingly, vitamins impact immune function, antioxidant defense, inflammation, and epigenetic regulation, potentially enhancing outcomes by influencing cell behavior and countering stress and DNA damage. Encouraging clinical trial results have been observed; however, further well-controlled studies are imperative to validate their effectiveness, determine optimal dosages, and formulate comprehensive cancer prevention and treatment strategies. Personalized supplementation strategies, informed by medical expertise, are pivotal for optimal outcomes in both clinical and preclinical contexts. Nevertheless, conclusive evidence regarding the efficacy of vitamins in cancer prevention and treatment is still pending, urging further research and exploration in this compelling area of study.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Zeena Shamil Attallah
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Mohanned Sami Jallad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Rawan Wamidh Hadi
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
49
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
50
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, Jiang G, Yan B, Sun X, Ma Y, Wang L, Wu Z, Cui X, Wang H, Yang W. TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun 2024; 15:6. [PMID: 38177099 PMCID: PMC10766952 DOI: 10.1038/s41467-023-43743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Induction of tumor vascular normalization is a crucial measure to enhance immunotherapy efficacy. cGAS-STING pathway is vital for anti-tumor immunity, but its role in tumor vasculature is unclear. Herein, using preclinical liver cancer models in Cgas/Sting-deficient male mice, we report that the interdependence between tumor cGAS and host STING mediates vascular normalization and anti-tumor immune response. Mechanistically, TET2 mediated IL-2/STAT5A signaling epigenetically upregulates tumor cGAS expression and produces cGAMP. Subsequently, cGAMP is transported via LRRC8C channels to activate STING in endothelial cells, enhancing recruitment and transendothelial migration of lymphocytes. In vivo studies in male mice also reveal that administration of vitamin C, a promising anti-cancer agent, stimulates TET2 activity, induces tumor vascular normalization and enhances the efficacy of anti-PD-L1 therapy alone or in combination with IL-2. Our findings elucidate a crosstalk between tumor and vascular endothelial cells in the tumor immune microenvironment, providing strategies to enhance the efficacy of combinational immunotherapy for liver cancer.
Collapse
Affiliation(s)
- Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qianni Zong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Cian Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Bing Yan
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Xiaoyan Sun
- Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiuliang Cui
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|