1
|
Wu D, Seshadri R, Kyrpides NC, Ivanova NN. A metagenomic perspective on the microbial prokaryotic genome census. SCIENCE ADVANCES 2025; 11:eadq2166. [PMID: 39823337 PMCID: PMC11740963 DOI: 10.1126/sciadv.adq2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Following 30 years of sequencing, we assessed the phylogenetic diversity (PD) of >1.5 million microbial genomes in public databases, including metagenome-assembled genomes (MAGs) of uncultivated microbes. As compared to the vast diversity uncovered by metagenomic sequences, cultivated taxa account for a modest portion of the overall diversity, 9.73% in bacteria and 6.55% in archaea, while MAGs contribute 48.54% and 57.05%, respectively. Therefore, a substantial fraction of bacterial (41.73%) and archaeal PD (36.39%) still lacks any genomic representation. This unrepresented diversity manifests primarily at lower taxonomic ranks, exemplified by 134,966 species identified in 18,087 metagenomic samples. Our study exposes diversity hotspots in freshwater, marine subsurface, sediment, soil, and other environments, whereas human samples yielded minimal novelty within the context of existing datasets. These results offer a roadmap for future genome recovery efforts, delineating uncaptured taxa in underexplored environments and underscoring the necessity for renewed isolation and sequencing.
Collapse
Affiliation(s)
- Dongying Wu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rekha Seshadri
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
2
|
Megrian D, Martinez M, Alzari PM, Wehenkel AM. Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA. Commun Biol 2025; 8:49. [PMID: 39809875 PMCID: PMC11733289 DOI: 10.1038/s42003-025-07476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time. We use phylogenetic inference and protein structure analyses to study its diversity and evolutionary history. Glp-expressing Bacteria have at least two copies of the gene, and analysis of their putative active sites suggests that Glp lost its enzymatic role. In Archaea, we find an ancestral duplication, with one paralog that may bind tungsten instead of molybdenum. Early eukaryotes acquired MoeA from Bacteria, MogA fused with MoeA in the opisthokont ancestors, and it finally gained roles in anchoring inhibitory neurotransmitters. Our findings highlight MoeA's functional versatility and repurposing.
Collapse
Affiliation(s)
- Daniela Megrian
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.
- Institut Pasteur de Montevideo, Bioinformatics Unit, 11200, Montevideo, Uruguay.
| | - Mariano Martinez
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015, Paris, France
| | - Pedro M Alzari
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France
| | - Anne Marie Wehenkel
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015, Paris, France.
| |
Collapse
|
3
|
Rodriguez-Valera F, Bellas C. How Viruses Shape Microbial Plankton Microdiversity. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:561-576. [PMID: 38950433 DOI: 10.1146/annurev-marine-040623-090847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
One major conundrum of modern microbiology is the large pangenome (gene pool) present in microbes, which is much larger than those found in complex organisms such as humans. Here, we argue that this diversity of gene pools carried by different strains is maintained largely due to the control exercised by viral predation. Viruses maintain a high strain diversity through time that we describe as constant-diversity equilibrium, preventing the hoarding of resources by specific clones. Thus, viruses facilitate the release and degradation of dissolved organic matter in the ocean, which may lead to better ecosystem functioning by linking top-down to bottom-up control. By maintaining this equilibrium, viruses act as a key element of the adaptation of marine microbes to their environment and likely behave as a single evolutionary unit.
Collapse
Affiliation(s)
- Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain;
| | | |
Collapse
|
4
|
Sirko J, Bor B, He X. Microbial dark matter and the future of dentistry. J Am Dent Assoc 2025; 156:81-84. [PMID: 39779069 DOI: 10.1016/j.adaj.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Papaleo S, Nodari R, Sterzi L, D'Auria E, Cattaneo C, Bettoni G, Bonaiti C, Pagliarini E, Zuccotti G, Panelli S, Comandatore F. Comparison of qPCR protocols for quantification of "Candidatus Saccharibacteria", belonging to the Candidate Phyla Radiation, suggests that 23S rRNA is a better target than 16S rRNA. PLoS One 2024; 19:e0310675. [PMID: 39724137 DOI: 10.1371/journal.pone.0310675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/04/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Candidate Phyla Radiation (CPR) is a large monophyletic group encompassing about 25% of bacterial diversity. Among CPR, "Candidatus Saccharibacteria" is one of the most clinically relevant phyla. Indeed, it is enriched in the oral microbiota of subjects suffering from immune-mediated disorders and it has been found to have immunomodulatory activities. For these reasons, it is crucial to have reliable methods to detect and quantify this bacterial lineage in human samples, including saliva. METHODS AND RESULTS Four qPCR protocols for quantifying "Ca. Saccharibacteria" (one targeting the 23S rRNA gene and three the 16S) were tested and compared. The efficiency and coverage of these four protocols were evaluated in silico on large genomic datasets, and in vitro on salivary DNA samples, already characterized by amplicon sequencing on the V3-V4 regions of the 16S rRNA. In silico PCR analyses showed that all qPCR primers lose part of the "Ca. Saccharibacteria" genetic variability, even if the 23S qPCR primers matched more lineages than the 16S qPCR primers. In vitro qPCR experiments confirmed that all 16S-based protocols strongly underestimated "Ca. Saccharibacteria" in salivary DNA, while the 23S qPCR protocol gave quantifications more comparable to 16S amplicon sequencing. CONCLUSION Overall, our results show that the 23S-based qPCR protocol is more precise than the 16S-based ones in quantifying "Ca. Saccharibacteria", although all protocols probably underestimate specific lineages. These results underline the current limits in quantifying "Ca. Saccharibacteria", highlighting the needs for novel experimental strategies or methods. Indeed, the underestimation of "Ca. Saccharibacteria" in clinical samples could hide its role in human health and in the development of immune-mediated diseases.
Collapse
Affiliation(s)
- Stella Papaleo
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Riccardo Nodari
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Lodovico Sterzi
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Enza D'Auria
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Camilla Cattaneo
- Sensory & Consumer Science Lab (SCS_Lab), Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Giorgia Bettoni
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Clara Bonaiti
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ella Pagliarini
- Sensory & Consumer Science Lab (SCS_Lab), Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pediatrics, Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Simona Panelli
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Francesco Comandatore
- Pediatric Clinical Research Center "Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
He W, Liang H, Li W, Gao X, Hu T, Lin X, Wu Z, Sun J, Li X, Wang M, Hou X, Jie Z, Tong X, Jin X, Xiao L, Zou Y. Revealing an unprecedented diversity of episymbiotic Saccharibacteria in a high-quality genome collection. NPJ Biofilms Microbiomes 2024; 10:153. [PMID: 39702451 DOI: 10.1038/s41522-024-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The episymbiotic Candidatus Saccharibacteria is the most studied lineage of candidate phyla radiation. Living an epiparasitic lifestyle, Saccharibacteria might be associated with human mucosal diseases by modulating the structure of the oral microbiome through interactions with host bacteria. However, the knowledge of Saccharibacterial genomic diversity and the potential underlying their adaptation to a wide range of habitats remains limited. Here, we construct a high-quality genome collection of Saccharibacteria from multiple sources, providing 2041 high-quality genomes and previously unidentified taxa. The comparative genomic analysis shows the widespread metabolic defects of Saccharibacteria. Specific metabolic modules are commonly found in Saccharibacteria of different habitats, suggesting Saccharibacteria might have undergone habitat adaptation during the transition from different environments. We additionally show that Saccharibacteria account for ~1% of the Chinese oral microbiome. A preliminary analysis of rheumatoid arthritis individuals and healthy controls implies that Saccharibacteria might be associated with human systemic disease.
Collapse
Affiliation(s)
- Wenxin He
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | | | - Wenxi Li
- BGI Research, Shenzhen, 518083, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | | | | | | | - Zhinan Wu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxi Sun
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Li
- BGI Research, Shenzhen, 518083, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengmeng Wang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxue Hou
- BGI Research, Shenzhen, 518083, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
7
|
Srinivas P, Peterson SB, Gallagher LA, Wang Y, Mougous JD. Beyond genomics in Patescibacteria: A trove of unexplored biology packed into ultrasmall bacteria. Proc Natl Acad Sci U S A 2024; 121:e2419369121. [PMID: 39665754 DOI: 10.1073/pnas.2419369121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Patescibacteria, also known as the Candidate Phyla Radiation, are a diverse clade of largely uncultivated, small bacteria that comprise a significant proportion of all bacterial diversity. The few members that have been cultivated exhibit a fascinating life cycle in which they grow as obligate epibionts on the surface of host bacteria. In this Perspective, we make the case that the study of these unique, divergent, and poorly characterized organisms represents an exciting frontier in microbiology. This burgeoning field has already achieved several critical breakthroughs, including metagenomic sequence-based reconstructions of the metabolic and biosynthetic capabilities of diverse Patescibacteria and the development of generalizable strategies for their cultivation and genetic manipulation. We argue these that advances, among others, should pave the way toward a molecular understanding of the complex interactions that undoubtedly underpin the relationship between Patescibacteria and their hosts.
Collapse
Affiliation(s)
- Pooja Srinivas
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98109
- HHMI, University of Washington, Seattle, WA 98109
- Microbial Interactions and Microbiome Center, University of Washington, Seattle, WA 98109
| |
Collapse
|
8
|
Ye YQ, Ye MQ, Zhang XY, Huang YZ, Zhou ZY, Feng YJ, Du ZJ. Description of the first marine-isolated member of the under-represented phylum Gemmatimonadota, and the environmental distribution and ecogenomics of Gaopeijiales ord. nov. mSystems 2024; 9:e0053524. [PMID: 39560406 DOI: 10.1128/msystems.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
The phylum Gemmatimonadota is widespread but rarely cultured and, in fact, there are only six described species isolated from soil, freshwater, and wastewater treatment. However, no isolates of Gemmatimonadota from marine environment have been described; thus, little is known about the physiology and metabolism of members of the marine lineages. In this study, four novel facultatively anaerobic bacterial strains belonging to Gemmatimonadota were isolated from marine sediments collected from Xiaoshi Island in Weihai, China, using an aerobic enrichment method. The integrated results of phylogenetic and phenotypic characteristics supported that these four strains represent one novel species in a novel genus, for which the name Gaopeijia maritima gen. nov., sp. nov. is proposed, as the first representative of novel taxa, Gaopeijiales ord. nov., Gaopeijiaceae fam. nov. in the class Longimicrobiia. Gaopeijiales was detected in 22,884 out of 95,549 amplicon data sets, mainly from soil. However, the highest mean relative abundances were in sponge (0.7%) and marine sediment (0.35%), showing salt-related character. Most of the Gaopeijiales subgroups potentially belong to the rare bacterial biosphere. The aerobic enrichment in this study could significantly increase the relative abundance of Gaopeijiales (from 0.37% to 2.6%). Furthermore, the metabolic capabilities inferred from high-quality representative Gaopeijiales genomes/MAGs suggest that this group primarily performs chemoorganoheterotrophic metabolism with facultatively anaerobic characteristics and possesses various secondary metabolite biosynthesis gene clusters (BGCs), mirroring those observed in the four novel strains.IMPORTANCEDespite rapid advances in molecular and sequencing technologies, obtaining pure cultures remains a crucial research goal in microbiology, as it is essential for a deeper understanding of microbial metabolism. Gemmatimonadota is a widespread but rarely cultured bacterial phylum. Currently, there are only six cultured strains of this interesting group, all isolated from non-marine environments. Little is known about the physiology and metabolism of members of the marine lineages. Here we isolated and characterized four novel marine strains, and proposed a new order Gaopeijiales within Gemmatimonadota. Furthermore, the global distribution, environmental preference, and metabolic potential of Gaopeijiales are analyzed using public data. Our work enriches the resources available for the under-represented phylum Gemmatimonadota and provides insights into the physiological and metabolic characteristics of the marine lineage (Gaopeijiales) through culturology and omics.
Collapse
Affiliation(s)
- Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
| | - Xin-Yue Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - You-Zhi Huang
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zi-Yang Zhou
- Marine College, Shandong University, Weihai, Shandong, China
| | - Yan-Jun Feng
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Saranya S, Prathiviraj R, Chellapandi P. Evolutionary Transitions of DNA Replication Origins Between Archaea and Bacteria. J Basic Microbiol 2024:e2400527. [PMID: 39663550 DOI: 10.1002/jobm.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
DNA replication origins play a crucial role in cellular division and are evolutionarily conserved across domains. This study investigated the evolutionary transitions of replication origins between archaea and bacteria by analyzing 2733 bacterial and 257 archaeal genomes. Our findings revealed that certain methanogens and bacteria share phylogenetic proximity, suggesting evolutionary interactions across diverse ecological systems. Evolutionary transitions in replication origins may have occurred between gut methanogens and bacteria, haloarchaea (Halogeometricum borinquense DSM 11551 and Halovivax ruber XH-70), halobacteria, and sulfur-reducing archaea. Methanosarcina barkeri (M. barkeri), Methanosaeta thermophila, and Methanococcoides burtonii (M. burtonii) were closely related to respiratory tract bacteria in humans. Methanohalobium evestigatum (M. evestigatum) is strongly linked to the animal gut pathogen Mycoplasma putrefaciens (M. putrefaciens). Several thermophilic hydrogenotrophic methanogens clustered with oral and fish pathogens. Pyrococcus furiosus (P. furiosus) was evolutionarily related to the replication origin of plant pathogens. This study sheds light on the ecological drivers of DNA replication origin evolution and their role in microbial speciation and adaptation. Our findings highlight the influence of mutualistic and parasitic relationships on these evolutionary transitions. It could have significant implications in biotechnology and medicine, such as developing novel antimicrobial strategies and understanding host-pathogen dynamics.
Collapse
Affiliation(s)
- S Saranya
- Department of Bioinformatics, Industrial Systems Biology Lab, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - R Prathiviraj
- Department of Bioinformatics, Industrial Systems Biology Lab, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - P Chellapandi
- Department of Bioinformatics, Industrial Systems Biology Lab, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
10
|
Benseddik F, Pilliol V, Alou MT, Wasfy RM, Raoult D, Dubourg G. The oral microbiota and its relationship to dental calculus and caries. Arch Oral Biol 2024; 171:106161. [PMID: 39675254 DOI: 10.1016/j.archoralbio.2024.106161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVES In this review, we provide an overview of the composition of the microbiota associated with these two dental pathologies, caries and tartar, highlighting the microbial profiles associated with each pathology. DESIGN This literature review was carried out by a manual search of two electronic databases, PubMed and Web of Science (WOS), using specific keywords to the two oral pathologies dental caries and calculus. RESULTS The oral microbial community is known for its complexity, and comprises hundreds of species of different micro-organisms. Many of them, under the influence of endogenous and exogenous factors, can play a role in the onset and development of oral pathologies. Analysis of the microbial profiles of caries and dental calculus revealed that Streptococcus mutans and Lactobacillus species are abundant in the oral microbiota associated with caries whereas their presence is less reported in dental calculus. However, the three pathogens known as the "red complex", namely Porphyromonas, Tannarella and Treponema, which are associated with the development of periodontal pathology, are strongly present in the dental calculus microbiome. CONCLUSION The microbiota composition associated with dental caries and calculus highlights specific microbial signatures for each of the two oral pathologies, underscoring their differences and microbiological complexity, while the possible relationship between the formation of dental calculus and the development of caries remains unclear.
Collapse
Affiliation(s)
- Fatma Benseddik
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Virginie Pilliol
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France; AP-HM, Marseille, France
| | - Maryam Tidjani Alou
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Reham Magdy Wasfy
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France
| | - Grégory Dubourg
- Aix-Marseille University, Microbes, Evolution, Phylogeny and Infection (MEPHI), France; IHU Méditerranée Infection, Marseille, France; AP-HM, Marseille, France.
| |
Collapse
|
11
|
Kearney M, Lieberman BS, Strotz LC. Tangled banks, braided rivers, and complex hierarchies: beyond microevolution and macroevolution. J Evol Biol 2024; 37:1402-1412. [PMID: 38819079 DOI: 10.1093/jeb/voae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Ever since the Modern Synthesis, a debate about the relationship between microevolution and macroevolution has persisted-specifically, whether they are equivalent, distinct, or explain one another. How one answers these questions has become shorthand for a much broader set of theoretical debates in evolutionary biology. Here, we examine microevolution and macroevolution in the context of the vast proliferation of data, knowledge, and theory since the advent of the Modern Synthesis. We suggest that traditional views on microevolution and macroevolution are too binary and reductive given current empirical and theoretical advances in biology. For example, patterns and processes are interconnected at various temporal and spatial scales and among hierarchical entities, rather than defining micro- or macro-domains. Further, biological entities have variably fuzzy boundaries, resulting in complex evolutionary processes that influence macroevolution occuring at both micro- and macro-levels. In addition, conceptual advances in phylodynamics have yet to be fully integrated with contemporary macroevolutionary approaches. Finally, holding microevolution and macroevolution as distinct domains thwarts synthesis and collaboration on important research questions. Instead, we propose that the focal entities and processes considered by evolutionary studies be contextualized within the complexity of the multidimensional, multimodal, multilevel phylogenetic system.
Collapse
Affiliation(s)
- Maureen Kearney
- Division of Environmental Biology, National Science Foundation, Alexandria, VA, United States
| | - Bruce S Lieberman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
- Biodiversity Institute, Division of Invertebrate Paleontology, University of Kansas, Lawrence, KS, United States
| | - Luke C Strotz
- Biodiversity Institute, Division of Invertebrate Paleontology, University of Kansas, Lawrence, KS, United States
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an, People's Republic of China
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Vettorazzo S, Boscaini A, Cerasino L, Salmaso N. From small water bodies to lakes: Exploring the diversity of freshwater bacteria in an Alpine Biosphere Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176495. [PMID: 39341249 DOI: 10.1016/j.scitotenv.2024.176495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Small water bodies, although supporting high biodiversity, are often understudied in the Alpine region. In this work, we characterized the planktic and benthic bacterial communities, as well as the water chemistry, of a wide physiographic range of 19 freshwater bodies within an Alpine Biosphere Reserve, including ponds, pasture ponds, peat bogs, shallow lakes, and lakes. We collected both water and surface sediment samples, followed by metabarcoding analysis based on the V3-V4 regions of the 16S rRNA gene. We investigated the changes in biodiversity and the distribution of unique and shared amplicon sequence variants (ASVs) between water (11,829 ASVs) and surface sediment (19,145 ASVs) habitats, as well as across different freshwater typologies. The majority of ASVs (78 %) were unique to a single sample, highlighting the variability and uniqueness of bacterial communities in such freshwater bodies. Most freshwater environments showed higher α-diversity in sediment samples (median, 1469 ASVs) compared to water (468 ASVs). We found that water and sediment habitats harboured unique bacterial communities with significant differences in their taxonomic compositions. Benthic bacteria were associated with several biogeochemical and degradative processes occurring in the sediments, with no notable differences among freshwater typologies and with phylogenetically and ecologically similar species. Conversely, planktic communities showed greater heterogeneity: small water bodies and peat bogs were characterized by higher relative abundances of Patescibacteria (up to 33 %), while lakes and shallow lakes were dominated by Actinobacteriota (up to 36 %). Cyanobacteria (426 ASVs) were generally distributed at low abundances in both water and sediment habitats. Overall, our results provided essential insights into the bacterial ecology of understudied environments such as ponds and pasture ponds and highlighted the importance of further exploring their rich pelagic and benthic bacterial biodiversity.
Collapse
Affiliation(s)
- Sara Vettorazzo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
13
|
Bullington JA, Langenfeld K, Phaneuf JR, Boehm AB, Francis CA. Microbial Community of a Sandy Beach Subterranean Estuary is Spatially Heterogeneous and Impacted by Winter Waves. Environ Microbiol 2024; 26:e70009. [PMID: 39710833 DOI: 10.1111/1462-2920.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
Subterranean estuaries (STEs) are critical ecosystems at the interface of meteoric groundwater and subsurface seawater that are threatened by sea level rise. To characterize the influence of tides and waves on the STE microbial community, we collected porewater samples from a high-energy beach STE at Stinson Beach, California, USA, over the two-week neap-spring tidal transition during both a wet and dry season. The microbial community, analyzed by 16S rRNA gene (V4) amplicon sequencing, clustered according to consistent physicochemical features found within STEs. The porewater community harbored relatively abundant Proteobacteria, Verrucomicrobiota, and Bacteroidota, as well as members of the archaeal DPANN superphylum and bacterial Candidate Phyla Radiation (CPR). Tidal conditions were not associated with microbial community composition; however, a wave overtopping event significantly impacted the beach microbiome. As a baseline for environmental change, our results elucidate the unique dynamics of a STE microbiome with unprecedented temporal resolution, highlighting the transport of cellular material through beach porewater due to waves.
Collapse
Affiliation(s)
- Jessica A Bullington
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Kathryn Langenfeld
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Jacob R Phaneuf
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Christopher A Francis
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Department of Oceans, Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
Cloarec LA, Bacchetta T, Bruto M, Leboulanger C, Grossi V, Brochier-Armanet C, Flandrois JP, Zurmely A, Bernard C, Troussellier M, Agogué H, Ader M, Oger-Desfeux C, Oger PM, Vigneron A, Hugoni M. Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem. MICROBIOME 2024; 12:249. [PMID: 39609882 PMCID: PMC11606122 DOI: 10.1186/s40168-024-01956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND DPANN archaea, including Woesearchaeota, encompass a large fraction of the archaeal diversity, yet their genomic diversity, lifestyle, and role in natural microbiomes remain elusive. With an archaeal assemblage naturally enriched in Woesearchaeota and steep vertical geochemical gradients, Lake Dziani Dzaha (Mayotte) provides an ideal model to decipher their in-situ activity and ecology. RESULTS Using genome-resolved metagenomics and phylogenomics, we identified highly diversified Woesearchaeota populations and defined novel halophilic clades. Depth distribution of these populations in the water column showed an unusual double peak of abundance, located at two distinct chemoclines that are hotspots of microbial diversity in the water column. Genome-centric metatranscriptomics confirmed this vertical distribution and revealed a fermentative activity, with acetate and lactate as end products, and active cell-to-cell processes, supporting strong interactions with other community members at chemoclines. Our results also revealed distinct Woesearchaeota ecotypes, with different transcriptional patterns, contrasted lifestyles, and ecological strategies, depending on environmental/host conditions. CONCLUSIONS This work provides novel insights into Woesearchaeota in situ activity and metabolism, revealing invariant, bimodal, and adaptative lifestyles among halophilic Woesearchaeota. This challenges our precepts of an invariable host-dependent metabolism for all the members of this taxa and revises our understanding of their contributions to ecosystem functioning and microbiome assemblage. Video Abstract.
Collapse
Affiliation(s)
- Lilian A Cloarec
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Thomas Bacchetta
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Maxime Bruto
- Université de Lyon, UMR Mycoplasmoses Animales, VetAgro Sup, AnsesMarcy L'Etoile, 69280, France
| | | | - Vincent Grossi
- UMR 5276, Laboratoire de Géologie de Lyon: Terre, Univ Lyon, UCBL, CNRS, Environnement (LGL-TPE), PlanètesVilleurbanne, 69622, France
- Present address: Mediterranean Institute of Oceanography (MIO), Aix Marseille Univ-CNRS, Marseille, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jean-Pierre Flandrois
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Adrian Zurmely
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication Et Adaptations Des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, Paris, F-75231, France
| | | | - Hélène Agogué
- UMR 7266, LIENSs, La Rochelle Université-CNRS, 2 Rue Olympe de Gouges, La Rochelle, 17000, France
| | - Magali Ader
- Institut de Physique du Globe de Paris, Université de Paris, Paris, France
| | | | - Philippe M Oger
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Adrien Vigneron
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Mylène Hugoni
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
15
|
Grossman AS, Lei L, Botting JM, Liu J, Nahar N, Souza JGS, Liu J, McLean JS, He X, Bor B. Saccharibacteria deploy two distinct Type IV pili, driving episymbiosis, host competition, and twitching motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624915. [PMID: 39651235 PMCID: PMC11623550 DOI: 10.1101/2024.11.25.624915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions. To test this, we targeted T4P pilin genes in Saccharibacteria Nanosynbacter lyticus strain TM7x to assess their essentiality and roles in symbiosis. Our results revealed that N. lyticus assembles two distinct T4P, a non-essential thin pili that has the smallest diameter of any T4P and contributes to host-binding, episymbiont growth, and competitive fitness relative to other Saccharibacteria, and an essential thick pili whose functions include twitching motility. Identification of lectin-like minor pilins and modification of host cell walls suggest glycan binding mechanisms. Collectively our findings demonstrate that Saccharibacteria encode unique extracellular pili that are vital mediators of their underexplored episymbiotic lifestyle.
Collapse
Affiliation(s)
- Alex S Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Lei Lei
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, 610093, China
| | - Jack M Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Nusrat Nahar
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - João Gabriel S Souza
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, Guarulhos, São Paulo 07023-070, Brazil
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven CT, 06536, United States
- New Haven Microbial Sciences Institute, Yale University, West Haven CT, 06516, United States
| | - Jeffrey S McLean
- Department of Microbiology, University of Washington, Seattle WA, 98109, USA
- Department of Periodontics, University of Washington, Seattle WA, 98195, USA
- Department of Oral Health Sciences, University of Washington, Seattle WA, 98195, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge MA, 02142, USA
| |
Collapse
|
16
|
Yang JX, Peng Y, Yu QY, Yang JJ, Zhang YH, Zhang HY, Adams CA, Willing CE, Wang C, Li QS, Han XG, Gao C. Gene horizontal transfers and functional diversity negatively correlated with bacterial taxonomic diversity along a nitrogen gradient. NPJ Biofilms Microbiomes 2024; 10:128. [PMID: 39550371 PMCID: PMC11569254 DOI: 10.1038/s41522-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
Horizontal gene transfer (HGT) mediated diversification is a critical force driving evolutionary and ecological processes. However, how HGT might relate to anthropogenic activity such as nitrogen addition, and its subsequent effect on functional diversity and cooccurrence networks remain unknown. Here we approach this knowledge gap by blending bacterial 16S rRNA gene amplicon and shotgun metagenomes from a platform of cessation of nitrogen additions and continuous nitrogen additions. We found that bacterial HGT events, functional genes, and virus diversities increased whereas bacterial taxonomic diversity decreased by nitrogen additions, resulting in a counterintuitive strong negative association between bacterial taxonomic and functional diversities. Nitrogen additions, especially the ceased one, complexified the cooccurrence network by increasing the contribution of vitamin B12 auxotrophic Acidobacteria, indicating cross-feeding. These findings advance our perceptions of the causes and consequences of the diversification process in community ecology.
Collapse
Affiliation(s)
- Jian-Xia Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yi Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yun-Hai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yang Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Catharine Allyssa Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Claire Elizabeth Willing
- Department of Biology, Stanford University, Stanford, CA, USA
- School of Environmental and Forest Science, University of Washington, Seattle, WA, USA
| | - Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Shi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Guo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, Hebei University, Baoding, China.
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Amran RH, Jamal MT, Bowrji S, Sayegh F, Santanumurti MB, Satheesh S. Mini review: antimicrobial compounds produced by bacteria associated with marine invertebrates. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01209-5. [PMID: 39446239 DOI: 10.1007/s12223-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
Collapse
Affiliation(s)
- Ramzi H Amran
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
| | - Saba Bowrji
- Department of Marine Biology and Fisheries, Faculty of Marine Science and Environments, Hodeidah University, P.O. Box 3114, Hodeidah, Yemen
| | - Fotoon Sayegh
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
18
|
Baker BJ, Sarno N. Small archaea may form intimate partnerships to maximize their metabolic potential. mBio 2024; 15:e0034724. [PMID: 39207169 PMCID: PMC11481508 DOI: 10.1128/mbio.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
DPANN archaea have characteristically small cells and unique genomes that were long overlooked in diversity surveys. Their reduced genomes often lack essential metabolic pathways, requiring symbiotic relationships with other archaeal and bacterial hosts for survival. Yet a long-standing question remains, what is the advantage of maintaining ultrasmall cells. A recent study by Zhang et al. examined genomes of DPANN archaea from marine oxygen deficient zones (ODZs) (I. H. Zhang, B. Borer, R. Zhao, S. Wilbert, et al., mBio 15:e02918-23, 2024, https://doi.org/10.1128/mbio.02918-23). Surprisingly, these genomes contain a broad array of metabolic pathways including genes predicted to be involved in nitrous oxide (N2O) reduction. However, N2O levels are likely too low in ODZs to make this metabolically feasible. Modeling co-localization of DPANN archaea (N2O consumers) with other larger cells (N2O producers) demonstrates that N2O uptake rates can be optimized by maximizing the producer-to-consumer size ratio and proximity of consumer cells to producers. This may explain why such a diversity of archaea maintain extremely small cell sizes.
Collapse
Affiliation(s)
- Brett J. Baker
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| | - Natalie Sarno
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
19
|
Figueroa-Gonzalez PA, Bornemann TLV, Hinzke T, Maaß S, Trautwein-Schult A, Starke J, Moore CJ, Esser SP, Plewka J, Hesse T, Schmidt TC, Schreiber U, Bor B, Becher D, Probst AJ. Metaproteogenomics resolution of a high-CO 2 aquifer community reveals a complex cellular adaptation of groundwater Gracilibacteria to a host-dependent lifestyle. MICROBIOME 2024; 12:194. [PMID: 39369255 PMCID: PMC11452946 DOI: 10.1186/s40168-024-01889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Bacteria of the candidate phyla radiation (CPR), constituting about 25% of the bacterial biodiversity, are characterized by small cell size and patchy genomes without complete key metabolic pathways, suggesting a symbiotic lifestyle. Gracilibacteria (BD1-5), which are part of the CPR branch, possess alternate coded genomes and have not yet been cultivated. The lifestyle of Gracilibacteria, their temporal dynamics, and activity in natural ecosystems, particularly in groundwater, has remained largely unexplored. Here, we aimed to investigate Gracilibacteria activity in situ and to discern their lifestyle based on expressed genes, using the metaproteogenome of Gracilibacteria as a function of time in the cold-water geyser Wallender Born in the Volcanic Eifel region in Germany. RESULTS We coupled genome-resolved metagenomics and metaproteomics to investigate a cold-water geyser microbial community enriched in Gracilibacteria across a 12-day time-series. Groundwater was collected and sequentially filtered to fraction CPR and other bacteria. Based on 725 Gbps of metagenomic data, 1129 different ribosomal protein S3 marker genes, and 751 high-quality genomes (123 population genomes after dereplication), we identified dominant bacteria belonging to Gallionellales and Gracilibacteria along with keystone microbes, which were low in genomic abundance but substantially contributing to proteomic abundance. Seven high-quality Gracilibacteria genomes showed typical limitations, such as limited amino acid or nucleotide synthesis, in their central metabolism but no co-occurrence with potential hosts. The genomes of these Gracilibacteria were encoded for a high number of proteins involved in cell to cell interaction, supporting the previously surmised host-dependent lifestyle, e.g., type IV and type II secretion system subunits, transporters, and features related to cell motility, which were also detected on protein level. CONCLUSIONS We here identified microbial keystone taxa in a high-CO2 aquifer, and revealed microbial dynamics of Gracilibacteria. Although Gracilibacteria in this ecosystem did not appear to target specific organisms in this ecosystem due to lack of co-occurrence despite enrichment on 0.2-µm filter fraction, we provide proteomic evidence for the complex machinery behind the host-dependent lifestyle of groundwater Gracilibacteria. Video Abstract.
Collapse
Affiliation(s)
- Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
| | - Tjorven Hinzke
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, 17489, Greifswald, Germany
- Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, 17489, Germany
| | - Sandra Maaß
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Joern Starke
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Carrie J Moore
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Julia Plewka
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany
| | - Tobias Hesse
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, 45141, Germany
| | - Torsten C Schmidt
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, 45141, Germany
| | - Ulrich Schreiber
- Department of Geology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Batbileg Bor
- Microbiology, The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health of the University Alliance Ruhr, University of Duisburg-Essen, 45151, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany.
| |
Collapse
|
20
|
Berndsen CE, Bell JK. The structural biology and dynamics of malate dehydrogenases. Essays Biochem 2024; 68:57-72. [PMID: 39113569 DOI: 10.1042/ebc20230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Malate dehydrogenase (MDH) enzymes catalyze the reversible oxidoreduction of malate to oxaloacetate using NAD(P) as a cofactor. This reaction is vital for metabolism and the exchange of reducing equivalents between cellular compartments. There are more than 100 structures of MDH in the Protein Data Bank, representing species from archaea, bacteria, and eukaryotes. This conserved family of enzymes shares a common nucleotide-binding domain, substrate-binding domain, and subunits associate to form a dimeric or a tetrameric enzyme. Despite the variety of crystallization conditions and ligands in the experimental structures, the conformation and configuration of MDH are similar. The quaternary structure and active site dynamics account for most conformational differences in the experimental MDH structures. Oligomerization appears essential for activity despite each subunit having a structurally independent active site. There are two dynamic regions within the active site that influence substrate binding and possibly catalysis, with one of these regions adjoining the subunit interface. In this review, we introduce the reader to the general structural framework of MDH highlighting the conservation of certain features and pointing out unique differences that regulate MDH enzyme activity.
Collapse
Affiliation(s)
- Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, U.S.A
| | - Jessica K Bell
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
21
|
La Cono V, La Spada G, Smedile F, Crisafi F, Marturano L, Modica A, Nhu Khanh HH, Thinh PD, Thuy Hang CT, Selivanova EA, Bản NK, Yakimov MM. Unique Features of Extremely Halophilic Microbiota Inhabiting Solar Saltworks Fields of Vietnam. Microorganisms 2024; 12:1975. [PMID: 39458284 PMCID: PMC11509607 DOI: 10.3390/microorganisms12101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The artificial solar saltworks fields of Hon Khoi are important industrial and biodiversity resources in southern Vietnam. Most hypersaline environments in this area are characterized by saturated salinity, nearly neutral pH, intense ultraviolet radiation, elevated temperatures and fast desiccation processes. However, the extremely halophilic prokaryotic communities associated with these stressful environments remain uninvestigated. To fill this gap, a metabarcoding approach was conducted to characterize these communities by comparing them with solar salterns in northern Vietnam as well as with the Italian salterns of Motya and Trapani. Sequencing analyses revealed that the multiple reuses of crystallization ponds apparently create significant perturbations and structural instability in prokaryotic consortia. However, some interesting features were noticed when we examined the diversity of ultra-small prokaryotes belonging to Patescibacteria and DPANN Archaea. Surprisingly, we found at least five deeply branched clades, two from Patescibacteria and three from DPANN Archaea, which seem to be quite specific to the Hon Khoi saltworks field ecosystem and can be considered as a part of biogeographical connotation. Further studies are needed to characterize these uncultivated taxa, to isolate and cultivate them, which will allow us to elucidate their ecological role in these hypersaline habitats and to explore their biotechnological and biomedical potential.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute of Polar Research, Institute of Polar Sciences, National Council of Research ISP-CNR, Via San Raineri 86, 98122 Messina, Italy; (V.L.C.); (G.L.S.); (F.S.); (F.C.); (L.M.)
| | - Gina La Spada
- Institute of Polar Research, Institute of Polar Sciences, National Council of Research ISP-CNR, Via San Raineri 86, 98122 Messina, Italy; (V.L.C.); (G.L.S.); (F.S.); (F.C.); (L.M.)
| | - Francesco Smedile
- Institute of Polar Research, Institute of Polar Sciences, National Council of Research ISP-CNR, Via San Raineri 86, 98122 Messina, Italy; (V.L.C.); (G.L.S.); (F.S.); (F.C.); (L.M.)
| | - Francesca Crisafi
- Institute of Polar Research, Institute of Polar Sciences, National Council of Research ISP-CNR, Via San Raineri 86, 98122 Messina, Italy; (V.L.C.); (G.L.S.); (F.S.); (F.C.); (L.M.)
| | - Laura Marturano
- Institute of Polar Research, Institute of Polar Sciences, National Council of Research ISP-CNR, Via San Raineri 86, 98122 Messina, Italy; (V.L.C.); (G.L.S.); (F.S.); (F.C.); (L.M.)
| | - Alfonso Modica
- Eni Rewind Environmental Engineering and Market Development/Servizi Laboratorio, EE&MD/SELAB, Contrada Cava Sorciaro 1, 96010 Priolo Gargallo, Italy;
| | - Huynh Hoang Nhu Khanh
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NITRA-VAST, Hung Vuong 2, Nha Trang 650000, Vietnam; (H.H.N.K.); (P.D.T.); (C.T.T.H.)
| | - Pham Duc Thinh
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NITRA-VAST, Hung Vuong 2, Nha Trang 650000, Vietnam; (H.H.N.K.); (P.D.T.); (C.T.T.H.)
| | - Cao Thi Thuy Hang
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NITRA-VAST, Hung Vuong 2, Nha Trang 650000, Vietnam; (H.H.N.K.); (P.D.T.); (C.T.T.H.)
| | - Elena A. Selivanova
- Institute for Cellular and Intracellular Symbiosis, Ural Branch, Russian Academy of Sciences, Pionerskaya Ul. 11, 460000 Orenburg, Russia;
| | - Ninh Khắc Bản
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, IMBC-VAST, Hoang Quoc Viet 18, Nghia Do, Hanoi 100000, Vietnam
| | - Michail M. Yakimov
- Institute of Polar Research, Institute of Polar Sciences, National Council of Research ISP-CNR, Via San Raineri 86, 98122 Messina, Italy; (V.L.C.); (G.L.S.); (F.S.); (F.C.); (L.M.)
| |
Collapse
|
22
|
Nakagawa S, Sakai HD, Shimamura S, Takamatsu Y, Kato S, Yagi H, Yanaka S, Yagi-Utsumi M, Kurosawa N, Ohkuma M, Kato K, Takai K. N-linked protein glycosylation in Nanobdellati (formerly DPANN) archaea and their hosts. J Bacteriol 2024; 206:e0020524. [PMID: 39194224 PMCID: PMC11411935 DOI: 10.1128/jb.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Shimamura
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshiki Takamatsu
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
23
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
24
|
Sudarshan AS, Dai Z, Gabrielli M, Oosthuizen-Vosloo S, Konstantinidis KT, Pinto AJ. New Drinking Water Genome Catalog Identifies a Globally Distributed Bacterial Genus Adapted to Disinfected Drinking Water Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16475-16487. [PMID: 39235268 PMCID: PMC11411728 DOI: 10.1021/acs.est.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Genome-resolved insights into the structure and function of the drinking water microbiome can advance the effective management of drinking water quality. To enable this, we constructed and curated thousands of metagenome-assembled and isolate genomes from drinking water distribution systems globally to develop a Drinking Water Genome Catalog (DWGC). The current DWGC disproportionately represents disinfected drinking water systems due to a paucity of metagenomes from nondisinfected systems. Using the DWGC, we identify core genera of the drinking water microbiome including a genus (UBA4765) within the order Rhizobiales that is frequently detected and highly abundant in disinfected drinking water systems. We demonstrate that this genus has been widely detected but incorrectly classified in previous amplicon sequencing-based investigations of the drinking water microbiome. Further, we show that a single genome variant (genomovar) within this genus is detected in 75% of drinking water systems included in this study. We propose a name for this uncultured bacterium as "Raskinella chloraquaticus" and describe the genus as "Raskinella" (endorsed by SeqCode). Metabolic annotation and modeling-based predictions indicate that this bacterium is capable of necrotrophic growth, is able to metabolize halogenated compounds, proliferates in a biofilm-based environment, and shows clear indications of disinfection-mediated selection.
Collapse
Affiliation(s)
- Ashwin S Sudarshan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zihan Dai
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf CH-8600, Switzerland
| | - Solize Oosthuizen-Vosloo
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Lezcano MÁ, Bornemann TLV, Sánchez-García L, Carrizo D, Adam PS, Esser SP, Cabrol NA, Probst AJ, Parro V. Hyperexpansion of genetic diversity and metabolic capacity of extremophilic bacteria and archaea in ancient Andean lake sediments. MICROBIOME 2024; 12:176. [PMID: 39300577 PMCID: PMC11411797 DOI: 10.1186/s40168-024-01878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile. RESULTS The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO42--S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota. CONCLUSIONS The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.
Collapse
Affiliation(s)
- María Ángeles Lezcano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain.
- IMDEA Water Institute, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Laura Sánchez-García
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Daniel Carrizo
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Panagiotis S Adam
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Nathalie A Cabrol
- SETI Institute, 339 Bernardo Avenue, Suite 200, Mountain View, CA, 94043, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Víctor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
26
|
Du Q, Wei Y, Zhang L, Ren D, Gao J, Dong X, Bai L, Li J. An improved CRISPR and CRISPR interference (CRISPRi) toolkit for engineering the model methanogenic archaeon Methanococcus maripaludis. Microb Cell Fact 2024; 23:239. [PMID: 39227830 PMCID: PMC11373211 DOI: 10.1186/s12934-024-02492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The type II based CRISPR-Cas system remains restrictedly utilized in archaea, a featured domain of life that ranks parallelly with Bacteria and Eukaryotes. Methanococcus maripaludis, known for rapid growth and genetic tractability, serves as an exemplary model for studying archaeal biology and exploring CO2-based biotechnological applications. However, tools for controlled gene regulation remain deficient and CRISPR-Cas tools still need improved in this archaeon, limiting its application as an archaeal model cellular factory. RESULTS This study not only improved the CRISPR-Cas9 system for optimizing multiplex genome editing and CRISPR plasmid construction efficiencies but also pioneered an effective CRISPR interference (CRISPRi) system for controlled gene regulation in M. maripaludis. We developed two novel strategies for balanced expression of multiple sgRNAs, facilitating efficient multiplex genome editing. We also engineered a strain expressing Cas9 genomically, which simplified the CRISPR plasmid construction and facilitated more efficient genome modifications, including markerless and scarless gene knock-in. Importantly, we established a CRISPRi system using catalytic inactive dCas9, achieving up to 100-fold repression on target gene. Here, sgRNAs targeting near and downstream regions of the transcription start site and the 5'end ORF achieved the highest repression efficacy. Furthermore, we developed an inducible CRISPRi-dCas9 system based on TetR/tetO platform. This facilitated the inducible gene repression, especially for essential genes. CONCLUSIONS Therefore, these advancements not only expand the toolkit for genetic manipulation but also bridge methodological gaps for controlled gene regulation, especially for essential genes, in M. maripaludis. The robust toolkit developed here paves the way for applying M. maripaludis as a vital model archaeal cell factory, facilitating fundamental biological studies and applied biotechnology development of archaea.
Collapse
Affiliation(s)
- Qing Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Yufei Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
| | - Derong Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jian Gao
- School of Basic Medical Sciences, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China.
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing, 100101, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
27
|
Hug LA. The ever-changing tree of life. Nat Microbiol 2024:10.1038/s41564-024-01768-w. [PMID: 39095498 DOI: 10.1038/s41564-024-01768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
28
|
Hamm JN, Liao Y, von Kügelgen A, Dombrowski N, Landers E, Brownlee C, Johansson EMV, Whan RM, Baker MAB, Baum B, Bharat TAM, Duggin IG, Spang A, Cavicchioli R. The parasitic lifestyle of an archaeal symbiont. Nat Commun 2024; 15:6449. [PMID: 39085207 PMCID: PMC11291902 DOI: 10.1038/s41467-024-49962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
DPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood. Here, we show that a DPANN archaeon (Candidatus Nanohaloarchaeum antarcticus) engages in parasitic interactions with its host (Halorubrum lacusprofundi) that result in host cell lysis. During these interactions, the nanohaloarchaeon appears to enter, or be engulfed by, the host cell. Our results provide experimental evidence for a predatory-like lifestyle of an archaeon, suggesting that at least some DPANN archaea may have roles in controlling host populations and their ecology.
Collapse
Affiliation(s)
- Joshua N Hamm
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ.
| | - Yan Liao
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
| | - Evan Landers
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher Brownlee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Fluorescence Analysis Facility, Molecular Horizons, University of Wollongong, Keiraville, NSW, 2522, Australia
| | - Emma M V Johansson
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Renee M Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew A B Baker
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Buzz Baum
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
29
|
Tsurumaki M, Sato A, Saito M, Kanai A. Comprehensive analysis of insertion sequences within rRNA genes of CPR bacteria and biochemical characterization of a homing endonuclease encoded by these sequences. J Bacteriol 2024; 206:e0007424. [PMID: 38856219 PMCID: PMC11270868 DOI: 10.1128/jb.00074-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024] Open
Abstract
The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of Candidatus (Ca.) Saccharibacteria and the 16S rRNA genes of Ca. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from Ca. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs. IMPORTANCE Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.
Collapse
Affiliation(s)
- Megumi Tsurumaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
30
|
Megrian D, Martinez M, Alzari PM, Wehenkel AM. Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604723. [PMID: 39091723 PMCID: PMC11291035 DOI: 10.1101/2024.07.23.604723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
MoeA, or gephyrin in higher eukaryotes, is crucial for molybdenum cofactor biosynthesis required in redox reactions. Gephyrin is a moonlighting protein also involved in postsynaptic receptor clustering, a feature thought to be a recent evolutionary trait. We showed previously that a repurposed copy of MoeA (Glp) is involved in bacterial cell division. To investigate how MoeA acquired multifunctionality, we used phylogenetic inference and protein structure analyses to understand the diversity and evolutionary history of MoeA. Glp-expressing Bacteria have at least two copies of the gene, and our analysis suggests that Glp has lost its enzymatic role. In Archaea we identified an ancestral duplication where one of the paralogs might bind tungsten instead of molybdenum. In eukaryotes, the acquisition of the moonlighting activity of gephyrin comprised three major events: first, MoeA was obtained from Bacteria by early eukaryotes, second, MogA was fused to the N-terminus of MoeA in the ancestor of opisthokonts, and finally, it acquired the function of anchoring GlyR receptors in neurons. Our results support the functional versatility and adaptive nature of the MoeA scaffold, which has been repurposed independently both in eukaryotes and bacteria to carry out analogous functions in network organization at the cell membrane.
Collapse
Affiliation(s)
- Daniela Megrian
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
- Institut Pasteur de Montevideo, Bioinformatics Unit, 11200 Montevideo, Uruguay
| | - Mariano Martinez
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| | - Pedro M Alzari
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
| | - Anne Marie Wehenkel
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| |
Collapse
|
31
|
Kim N, Ma J, Kim W, Kim J, Belenky P, Lee I. Genome-resolved metagenomics: a game changer for microbiome medicine. Exp Mol Med 2024; 56:1501-1512. [PMID: 38945961 PMCID: PMC11297344 DOI: 10.1038/s12276-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junyeong Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wonjong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
32
|
Seymour JR, Brumley DR, Stocker R, Raina JB. Swimming towards each other: the role of chemotaxis in bacterial interactions. Trends Microbiol 2024; 32:640-649. [PMID: 38212193 DOI: 10.1016/j.tim.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Chemotaxis allows microorganisms to direct movement in response to chemical stimuli. Bacteria use this behaviour to develop spatial associations with animals and plants, and even larger microbes. However, current theory suggests that constraints imposed by the limits of chemotactic sensory systems will prevent sensing of chemical gradients emanating from cells smaller than a few micrometres, precluding the utility of chemotaxis in interactions between individual bacteria. Yet, recent evidence has revealed surprising levels of bacterial chemotactic precision, as well as a role for chemotaxis in metabolite exchange between bacterial cells. If indeed widespread, chemotactic sensing between bacteria could represent an important, but largely overlooked, phenotype within interbacterial interactions, and play a significant role in shaping cooperative and competitive relationships.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia.
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| |
Collapse
|
33
|
Greening C, Cabotaje PR, Valentin Alvarado LE, Leung PM, Land H, Rodrigues-Oliveira T, Ponce-Toledo RI, Senger M, Klamke MA, Milton M, Lappan R, Mullen S, West-Roberts J, Mao J, Song J, Schoelmerich M, Stairs CW, Schleper C, Grinter R, Spang A, Banfield JF, Berggren G. Minimal and hybrid hydrogenases are active from archaea. Cell 2024; 187:3357-3372.e19. [PMID: 38866018 PMCID: PMC11216029 DOI: 10.1016/j.cell.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia.
| | - Princess R Cabotaje
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Luis E Valentin Alvarado
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Moritz Senger
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Max A Klamke
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Milton
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Susan Mullen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jacob West-Roberts
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jie Mao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marie Schoelmerich
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | | | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, the Netherlands; Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jillian F Banfield
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA.
| | - Gustav Berggren
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
34
|
Ravi J, Anantharaman V, Chen SZ, Brenner EP, Datta P, Aravind L, Gennaro ML. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 2024; 9:e0084723. [PMID: 38809013 PMCID: PMC11237479 DOI: 10.1128/msystems.00847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Samuel Zorn Chen
- Computer Science Engineering Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Evan Pierce Brenner
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pratik Datta
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
35
|
Padalko A, Nair G, Sousa FL. Fusion/fission protein family identification in Archaea. mSystems 2024; 9:e0094823. [PMID: 38700364 PMCID: PMC11237513 DOI: 10.1128/msystems.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.
Collapse
Affiliation(s)
- Anastasiia Padalko
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Govind Nair
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Quadri SR, Jin P, Wang K, Qiao H, Dhulappa A, Luo ZH, Wang S, Narsing Rao MP. Taxonomic Reframe of Some Species of the Genera Haloferax and Halobellus. Curr Microbiol 2024; 81:216. [PMID: 38850425 DOI: 10.1007/s00284-024-03695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 06/10/2024]
Abstract
Haloferax and Halobellus are the representatives of the family Haloferacaceae and they are dominant in hypersaline ecosystems. Some Haloferax and Halobellus species exhibit a close evolutionary relationship. Genomic, phylogenetic (based on 16S rRNA gene sequence), and phylogenomic analysis were performed to evaluate the taxonomic positions of the genera Haloferax and Halobellus. Based on the results we propose to reclassify Halobellus ramosii as a later heterotypic synonym of Halobellus inordinatus; Haloferax lucentense and Haloferax alexandrinum as later heterotypic synonyms of Haloferax volcanii.
Collapse
Affiliation(s)
- Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Northern Borders, Arar, 91431, Kingdom of Saudi Arabia
| | - Pinjiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Kangkang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Hui Qiao
- Dengta City Development Reform Affairs Service Center, Dengta, 150499, China
| | - Awalagaway Dhulappa
- Department of Microbiology, Maharani's Science College for Women, Bangalore, 560001, India
| | - Zhen-Hao Luo
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030, Vienna, Austria
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Manik Prabhu Narsing Rao
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile.
| |
Collapse
|
37
|
Chen Y, Dong X, Sun Z, Xu C, Zhang X, Qin S, Geng W, Cao H, Zhai B, Li X, Wu N. Potential coupling of microbial methane, nitrogen, and sulphur cycling in the Okinawa Trough cold seep sediments. Microbiol Spectr 2024; 12:e0349023. [PMID: 38690913 PMCID: PMC11237511 DOI: 10.1128/spectrum.03490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/13/2024] [Indexed: 05/03/2024] Open
Abstract
The Okinawa Trough (OT) is a back-arc basin with a wide distribution of active cold seep systems. However, our understanding of the metabolic function of microbial communities in the cold seep sediments of the OT remains limited. In this study, we investigated the vertical profiles of functional genes involved in methane, nitrogen, and sulphur cycling in the cold seep sediments of the OT. Furthermore, we explored the possible coupling mechanisms between these biogeochemical cycles. The study revealed that the majority of genes associated with the nitrogen and sulphur cycles were most abundant in the surface sediment layers. However, only the key genes responsible for sulphur disproportionation (sor), nitrogen fixation (nifDKH), and methane metabolism (mcrABG) were more prevalent within sulfate-methane transition zone (SMTZ). Significant positive correlations (P < 0.05) were observed between functional genes involved in sulphur oxidation, thiosulphate disproportionation with denitrification, and dissimilatory nitrate reduction to ammonium (DNRA), as well as between AOM/methanogenesis and nitrogen fixation, and between sulphur disproportionation and AOM. A genome of Filomicrobium (class Alphaproteobacteria) has demonstrated potential in chemoautotrophic activities, particularly in coupling DNRA and denitrification with sulphur oxidation. Additionally, the characterized sulfate reducers such as Syntrophobacterales have been found to be capable of utilizing nitrate as an electron acceptor. The predominant methanogenic/methanotrophic groups in the OT sediments were identified as H2-dependent methylotrophic methanogens (Methanomassiliicoccales and Methanofastidiosales) and ANME-1a. This study offered a thorough understanding of microbial ecosystems in the OT cold seep sediments, emphasizing their contribution to nutrient cycling.IMPORTANCEThe Okinawa Trough (OT) is a back-arc basin formed by extension within the continental lithosphere behind the Ryukyu Trench arc system. Cold seeps are widespread in the OT. While some studies have explored microbial communities in OT cold seep sediments, their metabolic potential remains largely unknown. In this study, we used metagenomic analysis to enhance comprehension of the microbial community's role in nutrient cycling and proposed hypotheses on the coupling process and mechanisms involved in biogeochemical cycles. It was revealed that multiple metabolic pathways can be performed by a single organism or microbes that interact with each other to carry out various biogeochemical cycling. This data set provided a genomic road map on microbial nutrient cycling in OT sediment microbial communities.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Cuiling Xu
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xilin Zhang
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shuangshuang Qin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Wei Geng
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hong Cao
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bin Zhai
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xuecheng Li
- China Offshore Fugro Geosolutions (Shenzhen)Co.Ltd., Shenzhen, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
38
|
Wang YC, Mao Y, Fu HM, Wang J, Weng X, Liu ZH, Xu XW, Yan P, Fang F, Guo JS, Shen Y, Chen YP. New insights into functional divergence and adaptive evolution of uncultured bacteria in anammox community by complete genome-centric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171530. [PMID: 38453092 DOI: 10.1016/j.scitotenv.2024.171530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Anaerobic ammonium-oxidation (anammox) bacteria play a crucial role in global nitrogen cycling and wastewater nitrogen removal, but they share symbiotic relationships with various other microorganisms. Functional divergence and adaptive evolution of uncultured bacteria in anammox community remain underexplored. Although shotgun metagenomics based on short reads has been widely used in anammox research, metagenome-assembled genomes (MAGs) are often discontinuous and highly contaminated, which limits in-depth analyses of anammox communities. Here, for the first time, we performed Pacific Biosciences high-fidelity (HiFi) long-read sequencing on the anammox granule sludge sample from a lab-scale bioreactor, and obtained 30 accurate and complete metagenome-assembled genomes (cMAGs). These cMAGs were obtained by selecting high-quality circular contigs from initial assemblies of long reads generated by HiFi sequencing, eliminating the need for Illumina short reads, binning, and reassembly. One new anammox species affiliated with Candidatus Jettenia and three species affiliated with novel families were found in this anammox community. cMAG-centric analysis revealed functional divergence in general and nitrogen metabolism among the anammox community members, and they might adopt a cross-feeding strategy in organic matter, cofactors, and vitamins. Furthermore, we identified 63 mobile genetic elements (MGEs) and 50 putative horizontal gene transfer (HGT) events within these cMAGs. The results suggest that HGT events and MGEs related to phage and integration or excision, particularly transposons containing tnpA in anammox bacteria, might play important roles in the adaptive evolution of this anammox community. The cMAGs generated in the present study could be used to establish of a comprehensive database for anammox bacteria and associated microorganisms. These findings highlight the advantages of HiFi sequencing for the studies of complex mixed cultures and advance the understanding of anammox communities.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, Guangdong, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Zi-Hao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
39
|
Lamont RJ. Three's a crowd: Saccharibacteria episymbiosis modulates phage predation of host bacteria. Proc Natl Acad Sci U S A 2024; 121:e2405822121. [PMID: 38684001 PMCID: PMC11087802 DOI: 10.1073/pnas.2405822121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY40202
| |
Collapse
|
40
|
Cui Z, Li Y, Jing X, Luan X, Liu N, Liu J, Meng Y, Xu J, Valentine DL. Cycloalkane degradation by an uncultivated novel genus of Gammaproteobacteria derived from China's marginal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133904. [PMID: 38422739 DOI: 10.1016/j.jhazmat.2024.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The consumption of cycloalkanes is prevalent in low-temperature marine environments, likely influenced by psychrophilic microorganisms. Despite their significance, the primary active species responsible for marine cycloalkane degradation remain largely unidentified due to cultivation challenges. In this study, we provide compelling evidence indicating that the uncultured genus C1-B045 of Gammaproteobacteria is a pivotal participant in cycloalkane decomposition within China's marginal seas. Notably, the relative abundance of C1-B045 surged from 15.9% in the methylcyclohexane (MCH)-consuming starter culture to as high as 97.5% in MCH-utilizing extinction cultures following successive dilution-to-extinction and incubation cycles. We used stable isotope probing, Raman-activated gravity-driven encapsulation, and 16 S rRNA gene sequencing to link cycloalkane-metabolizing phenotype to genotype at the single-cell level. By annotating key enzymes (e.g., alkane monooxygenase, cyclohexanone monooxygenase, and 6-hexanolactone hydrolase) involved in MCH metabolism within C1-B045's representative metagenome-assembled genome, we developed a putative MCH degradation pathway.
Collapse
Affiliation(s)
- Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China.
| | - Yingchao Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Xiao Luan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, People's Republic of China
| | - Na Liu
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Jinyan Liu
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
41
|
Boden JS, Zhong J, Anderson RE, Stüeken EE. Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics. Nat Commun 2024; 15:3703. [PMID: 38697988 PMCID: PMC11066067 DOI: 10.1038/s41467-024-47914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Phosphorus plays a crucial role in controlling biological productivity, but geological estimates of phosphate concentrations in the Precambrian ocean, during life's origin and early evolution, vary over several orders of magnitude. While reduced phosphorus species may have served as alternative substrates to phosphate, their bioavailability on the early Earth remains unknown. Here, we reconstruct the phylogenomic record of life on Earth and find that phosphate transporting genes (pnas) evolved in the Paleoarchean (ca. 3.6-3.2 Ga) and are consistent with phosphate concentrations above modern levels ( > 3 µM). The first gene optimized for low phosphate levels (pstS; <1 µM) appeared around the same time or in the Mesoarchean depending on the reconstruction method. Most enzymatic pathways for metabolising reduced phosphorus emerged and expanded across the tree of life later. This includes phosphonate-catabolising CP-lyases, phosphite-oxidising pathways and hypophosphite-oxidising pathways. CP-lyases are particularly abundant in dissolved phosphate concentrations below 0.1 µM. Our results thus indicate at least local regions of declining phosphate levels through the Archean, possibly linked to phosphate-scavenging Fe(III), which may have limited productivity. However, reduced phosphorus species did not become widely used until after the Paleoproterozoic Great Oxidation Event (2.3 Ga), possibly linked to expansion of the biosphere at that time.
Collapse
Affiliation(s)
- Joanne S Boden
- School of Earth and Environmental Sciences, University of St. Andrews, Bute Building, Queen's terrace, St. Andrews, Fife, United Kingdom.
| | - Juntao Zhong
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rika E Anderson
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Eva E Stüeken
- School of Earth and Environmental Sciences, University of St. Andrews, Bute Building, Queen's terrace, St. Andrews, Fife, United Kingdom
| |
Collapse
|
42
|
Gago JF, Viver T, Urdiain M, Ferreira E, Robledo P, Rossello-Mora R. Metagenomics of two aquifers with thermal anomalies in Mallorca Island, and proposal of new uncultivated taxa named following the rules of SeqCode. Syst Appl Microbiol 2024; 47:126506. [PMID: 38640749 DOI: 10.1016/j.syapm.2024.126506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Groundwater offers an intriguing blend of distinctive physical and chemical conditions, constituting a challenge for microbial life. In Mallorca, the largest island of Balearic archipelago, harbours a variety of thermal anomalies (i.e., geothermal manifestation where surface aquifers exhibiting temperatures exceeding the regional average). The metagenomes of two aquifers in the centre and southern of the island showed Pseudomonadota to be the most represented phylum when using extracted 16S rRNA gene sequences. However, the microbial structures within and between aquifers were remarkably diverse but similar in their metabolic profiles as revealed by the metagenome-assembled genomes (MAGs) pointing to a prevalence of aerobic chemolithoautotrophic and heterotrophic metabolisms, especially in the Llucmajor aquifer. Also, some evidences of anaerobic lifestyles were detected, which would indicate that these environments either could suffer episodes of oxygen depletion or the anaerobes had been transported from deeper waters. We believe that the local environmental factors (temperature, external inputs or chemistry) seem to be more relevant than the connection and, eventually, transport of microbial cells within the aquifer in determining the highly divergent structures. Notably, most of the reconstructed genomes belonged to undescribed bacterial lineages and from them two high-quality MAGs could be classified as novel taxa named following the rules of the Code for Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Accordingly, we propose the new species and genus Costitxia debesea gen. nov., sp. nov., affiliated with the novel family Costitxiaceae fam. nov., order Costitxiales ord. nov. and class Costitxiia class. nov.; and the new new species and genus Lloretia debesea gen. nov. sp. nov. affiliated with the novel family Lloretiaceae fam. nov.
Collapse
Affiliation(s)
- Juan F Gago
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain.
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Elaine Ferreira
- The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain
| | - Pedro Robledo
- Unit of Geological and Mining Institute of Spain in Balearic Islands (IGME-CSIC), Palma de Mallorca, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| |
Collapse
|
43
|
Ding S, Hamm JN, Bale NJ, Sinninghe Damsté JS, Spang A. Selective lipid recruitment by an archaeal DPANN symbiont from its host. Nat Commun 2024; 15:3405. [PMID: 38649682 PMCID: PMC11035636 DOI: 10.1038/s41467-024-47750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
The symbiont Ca. Nanohaloarchaeum antarcticus is obligately dependent on its host Halorubrum lacusprofundi for lipids and other metabolites due to its lack of certain biosynthetic genes. However, it remains unclear which specific lipids or metabolites are acquired from its host, and how the host responds to infection. Here, we explored the lipidome dynamics of the Ca. Nha. antarcticus - Hrr. lacusprofundi symbiotic relationship during co-cultivation. By using a comprehensive untargeted lipidomic methodology, our study reveals that Ca. Nha. antarcticus selectively recruits 110 lipid species from its host, i.e., nearly two-thirds of the total number of host lipids. Lipid profiles of co-cultures displayed shifts in abundances of bacterioruberins and menaquinones and changes in degree of bilayer-forming glycerolipid unsaturation. This likely results in increased membrane fluidity and improved resistance to membrane disruptions, consistent with compensation for higher metabolic load and mechanical stress on host membranes when in contact with Ca. Nha. antarcticus cells. Notably, our findings differ from previous observations of other DPANN symbiont-host systems, where no differences in lipidome composition were reported. Altogether, our work emphasizes the strength of employing untargeted lipidomics approaches to provide details into the dynamics underlying a DPANN symbiont-host system.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Joshua N Hamm
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands.
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Texel, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Hassani Y, Aboudharam G, Drancourt M, Grine G. The discovery of Candidatus Nanopusillus phoceensis sheds light on the diversity of the microbiota nanoarchaea. iScience 2024; 27:109488. [PMID: 38595798 PMCID: PMC11001627 DOI: 10.1016/j.isci.2024.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
To further assess the spectrum of nanoarchaea in human microbiota, we prospectively searched for nanoarchaea in 110 leftover stool specimens, using the complementary approaches of PCR-sequencing screening, fluorescent in situ hybridization, scanning electron microscopy and metagenomics. These investigations yielded a nanoarchaea, Candidatus Nanopusillus phoceensis sp. nov., detected in stool samples by specific PCR-based assays. Microscopic observations indicated its close contact with the archaea Methanobrevibacter smithii. Genomic sequencing revealed 607,775-bp contig with 24.5% G + C content encoding 30 tRNAs, 3 rRNA genes, and 1,403 coding DNA sequences, of which 719 were assigned to clusters of orthologous groups. Ca. Nanopusillus phoceensis is only the second nanoarchaea to be detected in humans, expanding our knowledge of the repertoire of nanoarchaea associated with the human microbiota and encouraging further research to explore the repertoire of this emerging group of nanomicrobes in clinical samples.
Collapse
Affiliation(s)
- Yasmine Hassani
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Gerard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Université, 13005 Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Ghiles Grine
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, 13005 Marseille, France
- Ecole de Médecine Dentaire, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
45
|
Spagnuolo R, Scarlata GGM, Paravati MR, Abenavoli L, Luzza F. Change in Diagnosis of Helicobacter pylori Infection in the Treatment-Failure Era. Antibiotics (Basel) 2024; 13:357. [PMID: 38667033 PMCID: PMC11047737 DOI: 10.3390/antibiotics13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a prevalent global health issue, associated with several gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. The landscape of H. pylori treatment has evolved over the years, with increasing challenges due to antibiotic resistance and treatment failure. Traditional diagnostic methods, such as the urea breath test, stool antigen test, and endoscopy with biopsy, are commonly used in clinical practice. However, the emergence of antibiotic-resistant strains has led to a decline in treatment efficacy, necessitating a re-evaluation of common diagnostic tools. This narrative review aims to explore the possible changes in the diagnostic approach of H. pylori infection in the era of treatment failure. Molecular techniques, including polymerase chain reaction and whole genome sequencing, which have high sensitivity and specificity, allow the detection of genes associated with antibiotic resistance. On the other hand, culture isolation and a phenotypic antibiogram could be used in the diagnostic routine, although H. pylori is a fastidious bacterium. However, new molecular approaches are promising tools for detecting the pathogen and its resistance genes. In this regard, more real-life studies are needed to reveal new diagnostic tools suitable for identifying multidrug-resistant H. pylori strains and for outlining proper treatment.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Luzza
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (R.S.); (G.G.M.S.); (M.R.P.); (L.A.)
| |
Collapse
|
46
|
Felipe Benites L, Stephens TG, Van Etten J, James T, Christian WC, Barry K, Grigoriev IV, McDermott TR, Bhattacharya D. Hot springs viruses at Yellowstone National Park have ancient origins and are adapted to thermophilic hosts. Commun Biol 2024; 7:312. [PMID: 38594478 PMCID: PMC11003980 DOI: 10.1038/s42003-024-05931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Julia Van Etten
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timeeka James
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William C Christian
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy R McDermott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
47
|
Peñalver M, Paradela A, Palacios-Cuéllar C, Pucciarelli MG, García-Del Portillo F. Experimental evidence of d-glutamate racemase activity in the uncultivated bacterium Candidatus Saccharimonas aalborgensis. Environ Microbiol 2024; 26:e16621. [PMID: 38558504 DOI: 10.1111/1462-2920.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
The Candidate Phyla Radiation (CPR) encompasses widespread uncultivated bacteria with reduced genomes and limited metabolic capacities. Most CPR bacteria lack the minimal set of enzymes required for peptidoglycan (PG) synthesis, leaving it unclear how these bacteria produce this essential envelope component. In this study, we analysed the distribution of d-amino acid racemases that produce the universal PG components d-glutamate (d-Glu) or d-alanine (d-Ala). We also examined moonlighting enzymes that synthesize d-Glu or d-Ala. Unlike other phyla in the domain Bacteria, CPR bacteria do not exhibit these moonlighting activities and have, at most, one gene encoding either a Glu or Ala racemase. One of these 'orphan' racemases is a predicted Glu racemase (MurICPR) from the CPR bacterium Candidatus Saccharimonas aalborgenesis. The expression of MurICPR restores the growth of a Salmonella d-Glu auxotroph lacking its endogenous racemase and results in the substitution of l-Ala by serine as the first residue in a fraction of the PG stem peptides. In vitro, MurICPR exclusively racemizes Glu as a substrate. Therefore, Ca. Saccharimonas aalborgensis may couple Glu racemization to serine and d-Glu incorporation into the stem peptide. Our findings provide the first insights into the synthesis of PG by an uncultivated environmental bacterium and illustrate how to experimentally test enzymatic activities from CPR bacteria related to PG metabolism.
Collapse
Affiliation(s)
- Marcos Peñalver
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Alberto Paradela
- Proteomics Facility, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - César Palacios-Cuéllar
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
48
|
Deng C, Chen T, Qiu Z, Zhou H, Li B, Zhang Y, Xu X, Lian C, Qiao X, Yu K. A mixed blessing of influent leachate microbes in downstream biotreatment systems of a full-scale landfill leachate treatment plant. WATER RESEARCH 2024; 253:121310. [PMID: 38368734 DOI: 10.1016/j.watres.2024.121310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
In landfill leachate treatment plants (LLTPs), the microbiome plays a pivotal role in the decomposition of organic compounds, reduction in nutrient levels, and elimination of toxins. However, the effects of microbes in landfill leachate influents on downstream treatment systems remain poorly understood. To address this knowledge gap, we collected 23 metagenomic and 12 metatranscriptomic samples from landfill leachate and activated sludge from various treatment units in a full-scale LLTP. We successfully recovered 1,152 non-redundant metagenome-assembled genomes (MAGs), encompassing a wide taxonomic range, including 48 phyla, 95 classes, 166 orders, 247 families, 238 genera, and 1,152 species. More diverse microbes were observed in the influent leachate than in the downstream biotreatment systems, among which, an unprecedented ∼30 % of microbes with transcriptional expression migrated from the influent to the biological treatment units. Network analysis revealed that 399 shared MAGs across the four units exhibited high node centrality and degree, thus supporting enhanced interactions and increased stability of microbial communities. Functional reconstruction and genome characterization of MAGs indicated that these shared MAGs possessed greater capabilities for carbon, nitrogen, sulfur, and arsenic metabolism compared to non-shared MAGs. We further identified a novel species of Zixibacteria in the leachate influent with discrete lineages from those in other environments that accounted for up to 17 % of the abundance of the shared microbial community and exhibited notable metabolic versatility. Meanwhile, we presented groundbreaking evidence of the involvement of Zixibacteria-encoded genes in the production of harmful gas emissions, such as N2O and H2S, at the transcriptional level, thus suggesting that influent microbes may pose safety risks to downstream treatment systems. In summary, this study revealed the complex impact of the influent microbiome on LLTP and emphasizes the need to consider these microbial characteristics when designing treatment technologies and strategies for landfill leachate management.
Collapse
Affiliation(s)
- Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810000, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Xuming Xu
- Institute of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
49
|
Zhu P, Hou J, Xiong Y, Xie R, Wang Y, Wang F. Expanded Archaeal Genomes Shed New Light on the Evolution of Isoprenoid Biosynthesis. Microorganisms 2024; 12:707. [PMID: 38674651 PMCID: PMC11052028 DOI: 10.3390/microorganisms12040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Isoprenoids and their derivatives, essential for all cellular life on Earth, are particularly crucial in archaeal membrane lipids, suggesting that their biosynthesis pathways have ancient origins and play pivotal roles in the evolution of early life. Despite all eukaryotes, archaea, and a few bacterial lineages being known to exclusively use the mevalonate (MVA) pathway to synthesize isoprenoids, the origin and evolutionary trajectory of the MVA pathway remain controversial. Here, we conducted a thorough comparison and phylogenetic analysis of key enzymes across the four types of MVA pathway, with the particular inclusion of metagenome assembled genomes (MAGs) from uncultivated archaea. Our findings support an archaeal origin of the MVA pathway, likely postdating the divergence of Bacteria and Archaea from the Last Universal Common Ancestor (LUCA), thus implying the LUCA's enzymatic inability for isoprenoid biosynthesis. Notably, the Asgard archaea are implicated in playing central roles in the evolution of the MVA pathway, serving not only as putative ancestors of the eukaryote- and Thermoplasma-type routes, but also as crucial mediators in the gene transfer to eukaryotes, possibly during eukaryogenesis. Overall, this study advances our understanding of the origin and evolutionary history of the MVA pathway, providing unique insights into the lipid divide and the evolution of early life.
Collapse
Affiliation(s)
- Pengfei Zhu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Jialin Hou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yixuan Xiong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Southern Marine Science and Engineering, Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
50
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. mBio 2024; 15:e0291823. [PMID: 38380943 PMCID: PMC10936187 DOI: 10.1128/mbio.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs. IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|