1
|
Wu Y, Wu Y, Wang C, Xiong N, Ji W, Fu M, Zhu J, Li Z, Lin J, Yang Q. A double-edged sword in antiviral defence: ATG7 binding dicer to promote virus replication. Cell Mol Life Sci 2025; 82:89. [PMID: 39985575 PMCID: PMC11846821 DOI: 10.1007/s00018-025-05603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
RNA interference (RNAi) and autophagy are two pivotal biological processes that regulate virus replication. This study explored the complex relationship between autophagy and RNAi in controlling influenza virus replication. Initially, we reported that influenza virus (H9N2) infection increases the viral load and the expression of autophagy markers while inhibiting the RNAi pathway. Subsequent studies employing autophagy enhancer and inhibitor treatments confirmed that avian influenza virus (AIV, H9N2) promotes viral replication by enhancing autophagy pathways. Further analysis revealed that ATG7, an autophagy protein, can interact with dicer to affect its antiviral functions. Finally, we discovered that infection with other avian RNA viruses, including infectious bursal disease virus (IBDV) and infectious bronchitis virus (IBV), induced the upregulation of ATG7, which blocked the RNAi pathway to facilitate virus replication. Our findings suggested that virus infection might trigger the upregulation of autophagy and downregulation of the RNAi pathway, revealing a complex interaction between these two biological processes in the defence against viral replication.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Yang Wu
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Chenlu Wang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Ningna Xiong
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Wenxin Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Mei Fu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Junpeng Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Zhixin Li
- Ningxia Animal Disease Prevention and Control Center, Yinchuan Ningxia, 750000, China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
2
|
Wu Y, Liu P, Zhou J, Fu M, Wang C, Xiong N, Ji W, Wang Z, Lin J, Yang Q. Virus-derived siRNA: Coronavirus and influenza virus trigger antiviral RNAi immunity in birds. Nucleic Acids Res 2025; 53:gkaf116. [PMID: 39988316 PMCID: PMC11840554 DOI: 10.1093/nar/gkaf116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
RNA interference (RNAi) is a key antiviral immune mechanism in eukaryotes. However, antiviral RNAi in vertebrates has only been observed in cells with poor interferon systems or in viral suppressors of RNAi (VSR) deficiency virus infections. Our research discovered that infecting macrophages with wild-type coronavirus (Infectious bronchitis virus, IBV) and influenza viruses (Avian influenza virus, AIV) can trigger RNAi antiviral immunity and produce a certain amount of virus-derived siRNA (vsiRNA). These vsiRNAs have an inhibitory effect on the virus and carry out targeted silencing along the Dicer-Ago2-vsiRNA axis. Notably, these vsiRNAs are distributed throughout the virus's entire genome, with a predilection for A/U at the 5' and 3' termini of vsiRNA. In addition, Dicer cleavage produces vsiRNA based on the RWM motif, where R represents A/G, W represents A/C, and M represents A/U. We also discovered that avian LGP2 and MDA5 proteins positively impact the expression of the Dicer protein and the Dicer subtype "DicerM." Most importantly, the PS-vsiRNA plasmid combined with nanomaterial polyetherimide (PEI) showed excellent anti-virus activity in specific-pathogen-free (SPF) chickens. These findings show that RNA viruses trigger the production of the vsiRNA in avian somatic cells, which is of great significance for the application of therapeutic vaccines.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Peng Liu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Jie Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Mei Fu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Chenlu Wang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Ningna Xiong
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Wenxin Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00818-9. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Kulmann MI, Taborska E, Benköova B, Palus M, Drobek A, Horvat F, Pasulka J, Malik R, Salyova E, Hönig V, Pellerova M, Borsanyiova M, Nedvedova L, Stepanek O, Bopegamage S, Ruzek D, Svoboda P. Enhanced RNAi does not provide efficient innate antiviral immunity in mice. Nucleic Acids Res 2025; 53:gkae1288. [PMID: 39778869 PMCID: PMC11707545 DOI: 10.1093/nar/gkae1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified the mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi and we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: coxsackievirus B3 and encephalomyocarditis virus from Picornaviridae; tick-borne encephalitis virus from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice did not elicit any antiviral effect, supporting an insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also observed that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Collapse
Affiliation(s)
- Marcos Iuri Roos Kulmann
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Eliska Taborska
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Brigita Benköova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Filip Horvat
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Bioinformatics Group, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Josef Pasulka
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Radek Malik
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Eva Salyova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Michaela Pellerova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Maria Borsanyiova
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Lenka Nedvedova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 1645/31a, CZ-37005Ceske Budejovice, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Shubhada Bopegamage
- Faculty of Medicine, Enterovirus Laboratory, Institute of Microbiology, Slovak Medical University, Limbova 12, 83303Bratislava, Slovakia
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500Brno, Czech Republic
| | - Petr Svoboda
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
5
|
Kim H, Lee YY, Kim VN. The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00805-0. [PMID: 39702526 DOI: 10.1038/s41580-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute. We also highlight newly identified cis-acting elements and their impact on miRNA maturation, informed by advanced high-throughput and structural studies, and discuss recently discovered mechanisms of clustered miRNA processing, target recognition and target-directed miRNA decay (TDMD). Lastly, we explore multiple regulatory layers of miRNA biogenesis, mediated by RNA-protein interactions, miRNA tailing (uridylation or adenylation) and RNA modifications.
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Young-Yoon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Ciechanowska K, Szczepanska A, Szpotkowski K, Wojcik K, Urbanowicz A, Kurzynska-Kokorniak A. The human Dicer helicase domain is capable of ATP hydrolysis and single-stranded nucleic acid binding. BMC Biol 2024; 22:287. [PMID: 39695695 DOI: 10.1186/s12915-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Vertebrates have one Dicer ortholog that generates both microRNAs (miRNAs) and small interfering RNAs (siRNAs), in contrast to the multiple Dicer-like proteins found in flies and plants. Here, we focus on the functions of the human Dicer (hDicer) helicase domain. The helicase domain of hDicer is known to recognize pre-miRNA substrates through interactions with their apical loop regions. Besides interacting with canonical substrates, the hDicer helicase domain has also been suggested to bind many different cellular RNAs; however, a comprehensive study of the biochemical activities and substrate specificity of the hDicer helicase domain towards different nucleic acids has yet to be undertaken. RESULTS Here, we reveal that full-length hDicer, through its helicase domain, hydrolyzes ATP. The ATPase activity of hDicer can only be observed under low-turnover conditions. To the best of our knowledge, this is the first time this activity has been reported for vertebrate Dicers. We also show that the hDicer helicase domain binds single- but not double-stranded RNAs and DNAs and that this binding activity presumably is not nucleotide-dependent. Moreover, the hDicer helicase domain may influence the structure of the RNA to which it binds. CONCLUSIONS Preservation of ATPase activity by hDicer suggests that this enzyme performs many more functions in the cell than is currently assumed. Our findings open new avenues for future studies aimed at defining the cellular activities of hDicer that may be associated with these newly described biochemical properties: ATP hydrolysis and single-stranded nucleic acid binding activities.
Collapse
Affiliation(s)
- Kinga Ciechanowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Agnieszka Szczepanska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Klaudia Wojcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, Poznan, 61-704, Poland.
| |
Collapse
|
7
|
Mao FY, Tu MJ, Traber GM, Yu AM. Comparison of Three Computational Tools for the Prediction of RNA Tertiary Structures. Noncoding RNA 2024; 10:55. [PMID: 39585047 PMCID: PMC11587127 DOI: 10.3390/ncrna10060055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Understanding the structures of noncoding RNAs (ncRNAs) is important for the development of RNA-based therapeutics. There are inherent challenges in employing current experimental techniques to determine the tertiary (3D) structures of RNAs with high complexity and flexibility in folding, which makes computational methods indispensable. In this study, we compared the utilities of three advanced computational tools, namely RNAComposer, Rosetta FARFAR2, and the latest AlphaFold 3, to predict the 3D structures of various forms of RNAs, including the small interfering RNA drug, nedosiran, and the novel bioengineered RNA (BioRNA) molecule showing therapeutic potential. Our results showed that, while RNAComposer offered a malachite green aptamer 3D structure closer to its crystal structure, the performances of RNAComposer and Rosetta FARFAR2 largely depend upon the secondary structures inputted, and Rosetta FARFAR2 predictions might not even recapitulate the typical, inverted "L" shape tRNA 3D structure. Overall, AlphaFold 3, integrating molecular dynamics principles into its deep learning framework, directly predicted RNA 3D structures from RNA primary sequence inputs, even accepting several common post-transcriptional modifications, which closely aligned with the experimentally determined structures. However, there were significant discrepancies among three computational tools in predicting the distal loop of human pre-microRNA and larger BioRNA (tRNA fused pre-miRNA) molecules whose 3D structures have not been characterized experimentally. While computational predictions show considerable promise, their notable strengths and limitations emphasize the needs for experimental validation of predictions besides characterization of more RNA 3D structures.
Collapse
Affiliation(s)
| | | | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, 2700 Stockton Blvd, Sacramento, CA 95817, USA
| |
Collapse
|
8
|
Gaucherand L, Baldaccini M, Pfeffer S. Beyond RNAi: How the Dicer protein modulates the antiviral innate immune response in mammalian cells: Mammalian Dicer could regulate the innate immune response in an RNAi-independent manner as a result of losing long dsRNA processive activity. Bioessays 2024; 46:e2400173. [PMID: 39248656 DOI: 10.1002/bies.202400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
While Dicer plays an important antiviral role through the RNAi pathway in plants and invertebrates, its contribution to antiviral immunity in vertebrates and more specifically mammals is more controversial. The apparent limited RNAi activity in mammalian cells has been attributed to the reduced long dsRNA processive activity of mammalian Dicer, as well as a functional incompatibility between the RNAi and IFN pathways. Why Dicer has lost this antiviral activity in the profit of the IFN pathway is still unclear. We propose that the primary direct antiviral activity of Dicer has been functionally replaced by other sensors in the IFN pathway, leading to its specialization toward microRNA maturation. As a result, Dicer can regulate the innate immune response and prevent basal activation of the IFN pathway in mammals. Here, we discuss this hypothesis, highlighting how the adaptation of the helicase domain of mammalian Dicer may be key to this process.
Collapse
Affiliation(s)
- Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| |
Collapse
|
9
|
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E, Stravopodis DJ. TRBP2, a Major Component of the RNAi Machinery, Is Subjected to Cell Cycle-Dependent Regulation in Human Cancer Cells of Diverse Tissue Origin. Cancers (Basel) 2024; 16:3701. [PMID: 39518139 PMCID: PMC11545598 DOI: 10.3390/cancers16213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transactivation Response Element RNA-binding Protein (TRBP2) is a double-stranded RNA-binding protein widely known for its critical contribution to RNA interference (RNAi), a conserved mechanism of gene-expression regulation mediated through small non-coding RNA moieties (ncRNAs). Nevertheless, TRBP2 has also proved to be involved in other molecular pathways and biological processes, such as cell growth, organism development, spermatogenesis, and stress response. Mutations or aberrant expression of TRBP2 have been previously associated with diverse human pathologies, including Alzheimer's disease, cardiomyopathy, and cancer, with TRBP2 playing an essential role(s) in proliferation, invasion, and metastasis of tumor cells. METHODS Hence, the present study aims to investigate, via employment of advanced flow cytometry, immunofluorescence, cell transgenesis and bioinformatics technologies, new, still elusive, functions and properties of TRBP2, particularly regarding its cell cycle-specific control during cancer cell division. RESULTS We have identified a novel, mitosis-dependent regulation of TRBP2 protein expression, as clearly evidenced by the lack of its immunofluorescence-facilitated detection during mitotic phases, in several human cancer cell lines of different tissue origin. Notably, the obtained TRBP2-downregulation patterns seem to derive from molecular mechanisms that act independently of oncogenic activities (e.g., malignancy grade), metastatic capacities (e.g., low versus high), and mutational signatures (e.g., p53-/- or p53ΔΥ126) of cancer cells. CONCLUSIONS Taken together, we herein propose that TRBP2 serves as a novel cell cycle-dependent regulator, likely exerting mitosis-suppression functions, and, thus, its mitosis-specific downregulation can hold strong promise to be exploited for the efficient and successful prognosis, diagnosis, and (radio-/chemo-)therapy of diverse human malignancies, in the clinic.
Collapse
Affiliation(s)
- Eleni I. Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
| | - Panos Kakoulidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Informatics and Telecommunications, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Nikolaos V. Angelis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, Dubai 17155, United Arab Emirates
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| |
Collapse
|
10
|
Le TNY, Le CT, Nguyen TA. Determinants of selectivity in the dicing mechanism. Nat Commun 2024; 15:8989. [PMID: 39420173 PMCID: PMC11487123 DOI: 10.1038/s41467-024-53322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Our research elucidates the cleavage processes of the RNase III enzyme, DICER, which plays a crucial role in the production of small RNAs, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Utilizing high-throughput dicing assays, we expose the bipartite pairing rule that dictates the cleavage sites of DICER. Furthermore, we decode the intricate recognition mechanism of the primary YCR motif and identify an analogous secondary YCR motif that influences DICER's cleavage choices. Collectively, our findings clarify the bipartite pairing rule and enhance our understanding of the role of RNA motifs in modulating DICER's cleavage activity, laying the groundwork for future research on their roles in miRNA biogenesis and gene regulation.
Collapse
Affiliation(s)
- Thi Nhu-Y Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Cong Truc Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China.
| |
Collapse
|
11
|
Bug DS, Moiseev IS, Porozov YB, Petukhova NV. Shedding light on the DICER1 mutational spectrum of uncertain significance in malignant neoplasms. Front Mol Biosci 2024; 11:1441180. [PMID: 39421690 PMCID: PMC11484276 DOI: 10.3389/fmolb.2024.1441180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The Dicer protein is an indispensable player in such fundamental cell pathways as miRNA biogenesis and regulation of protein expression in a cell. Most recently, both germline and somatic mutations in DICER1 have been identified in diverse types of cancers, which suggests Dicer mutations can lead to cancer progression. In addition to well-known hotspot mutations in RNAase III domains, DICER1 is characterized by a wide spectrum of variants in all the functional domains; most are of uncertain significance and unstated clinical effects. Moreover, various new somatic DICER1 mutations continuously appear in cancer genome sequencing. The latest contemporary methods of variant effect prediction utilize machine learning algorithms on bulk data, yielding suboptimal correlation with biological data. Consequently, such analysis should be conducted based on the functional and structural characteristics of each protein, using a well-grounded targeted dataset rather than relying on large amounts of unsupervised data. Domains are the functional and evolutionary units of a protein; the analysis of the whole protein should be based on separate and independent examinations of each domain by their evolutionary reconstruction. Dicer represents a hallmark example of a multidomain protein, and we confirmed the phylogenetic multidomain approach being beneficial for the clinical effect prediction of Dicer variants. Because Dicer was suggested to have a putative role in hematological malignancies, we examined variants of DICER1 occurring outside the well-known hotspots of the RNase III domain in this type of cancer using phylogenetic reconstruction of individual domain history. Examined substitutions might disrupt the Dicer function, which was demonstrated by molecular dynamic simulation, where distinct structural alterations were observed for each mutation. Our approach can be utilized to study other multidomain proteins and to improve clinical effect evaluation.
Collapse
Affiliation(s)
- D. S. Bug
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| | - I. S. Moiseev
- R. M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Yu. B. Porozov
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
- Advitam Laboratory, Belgrade, Serbia
| | - N. V. Petukhova
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| |
Collapse
|
12
|
Chung HJ, Nguyen TNC, Lee JW, Huh Y, Ko S, Lim H, Seo H, Ha YG, Chang JH, Woo JS, Song JJ, Kim SW, Lee JS, Mo JS, Park B, Min KW, Yoon JH, Kim MS, Jung J, Jeong NY. Targeting the Hippo pathway in Schwann cells ameliorates peripheral nerve degeneration via a polypharmacological mechanism. Neurotherapeutics 2024; 21:e00458. [PMID: 39384453 PMCID: PMC11585884 DOI: 10.1016/j.neurot.2024.e00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024] Open
Abstract
Peripheral neuropathies (PNs) are common diseases in elderly individuals characterized by Schwann cell (SC) dysfunction and irreversible Wallerian degeneration (WD). Although the molecular mechanisms of PN onset and progression have been widely studied, therapeutic opportunities remain limited. In this study, we investigated the pharmacological inhibition of Mammalian Ste20-like kinase 1/2 (MST1/2) by using its chemical inhibitor, XMU-MP-1 (XMU), against WD. XMU treatment suppressed the proliferation, dedifferentiation, and demyelination of SCs in models of WD in vitro, in vivo, and ex vivo. As a downstream mediator of canonical and noncanonical Hippo/MST1 pathway activation, the mature microRNA (miRNA) let-7b and its binding partners quaking homolog (QKI)/nucleolin (NCL) modulated miRNA-mediated silencing of genes involved in protein transport. Hence, direct phosphorylation of QKI and NCL by MST1 might be critical for WD onset and pathogenesis. Moreover, p38α/mitogen-activated protein kinase 14 (p38α) showed a strong affinity for XMU, and therefore, it may be an alternative XMU target for controlling WD in SCs. Taken together, our findings provide new insights into the Hippo/MST pathway function in PNs and suggest that XMU is a novel multitargeted therapeutic for elderly individuals with PNs.
Collapse
Affiliation(s)
- Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, Busan 49267, South Korea
| | - Thy N C Nguyen
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
| | - Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Youngbuhm Huh
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Heejin Lim
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Cheongju 28119, South Korea
| | - Hyewon Seo
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, South Korea
| | - Young-Geun Ha
- Department of Chemistry, College of Convergence Science, Kyonggi University, Suwon 16227, South Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, South Korea
| | - So-Woon Kim
- Department of Pathology, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul 02447, South Korea
| | - Jin San Lee
- Department of Neurology, College of Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul 02447, South Korea
| | - Jung-Soon Mo
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Kyung-Won Min
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oncology Science, College of Medicine, The University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea.
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, South Korea.
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 49201, South Korea.
| |
Collapse
|
13
|
Yi G, Ye M, Carrique L, El-Sagheer A, Brown T, Norbury CJ, Zhang P, Gilbert RJC. Structural basis for activity switching in polymerases determining the fate of let-7 pre-miRNAs. Nat Struct Mol Biol 2024; 31:1426-1438. [PMID: 39054354 PMCID: PMC11402785 DOI: 10.1038/s41594-024-01357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Tumor-suppressor let-7 pre-microRNAs (miRNAs) are regulated by terminal uridylyltransferases TUT7 and TUT4 that either promote let-7 maturation by adding a single uridine nucleotide to the pre-miRNA 3' end or mark them for degradation by the addition of multiple uridines. Oligo-uridylation is increased in cells by enhanced TUT7/4 expression and especially by the RNA-binding pluripotency factor LIN28A. Using cryogenic electron microscopy, we captured high-resolution structures of active forms of TUT7 alone, of TUT7 plus pre-miRNA and of both TUT7 and TUT4 bound with pre-miRNA and LIN28A. Our structures reveal that pre-miRNAs engage the enzymes in fundamentally different ways depending on the presence of LIN28A, which clamps them onto the TUTs to enable processive 3' oligo-uridylation. This study reveals the molecular basis for mono- versus oligo-uridylation by TUT7/4, as determined by the presence of LIN28A, and thus their mechanism of action in the regulation of cell fate and in cancer.
Collapse
Affiliation(s)
- Gangshun Yi
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Calleva Centre for Evolution and Human Science, Magdalen College, Oxford, UK
| | - Mingda Ye
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Loic Carrique
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Afaf El-Sagheer
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Institute for Life Sciences, University of Southampton Highfield Campus, Southampton, UK
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Chris J Norbury
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Peijun Zhang
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Robert J C Gilbert
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Calleva Centre for Evolution and Human Science, Magdalen College, Oxford, UK.
| |
Collapse
|
14
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
15
|
Buccheri V, Pasulka J, Malik R, Loubalova Z, Taborska E, Horvat F, Roos Kulmann MI, Jenickova I, Prochazka J, Sedlacek R, Svoboda P. Functional canonical RNAi in mice expressing a truncated Dicer isoform and long dsRNA. EMBO Rep 2024; 25:2896-2913. [PMID: 38769420 PMCID: PMC11239679 DOI: 10.1038/s44319-024-00148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.
Collapse
Grants
- 20-03950X Czech Science Foundation
- 647403 EC | European Research Council (ERC)
- LO1419 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2018126 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2023036 Ministry of Education, Youth, and Sports of the Czech Republic
- LM2023050 Ministry of Education, Youth, and Sports of the Czech Republic
- 90254 Ministry of Education, Youth, and Sports of the Czech Republic
- 90255 Ministry of Education, Youth, and Sports of the Czech Republic
- PhD fellowship Charles University
- RVO 68378050 Czech Academy of Sciences
Collapse
Affiliation(s)
- Valeria Buccheri
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Josef Pasulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Zuzana Loubalova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eliska Taborska
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marcos Iuri Roos Kulmann
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Irena Jenickova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, 4, Czech Republic.
| |
Collapse
|
16
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. Caenorhabditis elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. eLife 2024; 13:RP93979. [PMID: 38747717 PMCID: PMC11095941 DOI: 10.7554/elife.93979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
- Claudia D Consalvo
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Helen M Donelick
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Debra M Eckert
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Peter S Shen
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
17
|
Formaggioni A, Cavalli G, Hamada M, Sakamoto T, Plazzi F, Passamonti M. The Evolution and Characterization of the RNA Interference Pathways in Lophotrochozoa. Genome Biol Evol 2024; 16:evae098. [PMID: 38713108 PMCID: PMC11114477 DOI: 10.1093/gbe/evae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
In animals, three main RNA interference mechanisms have been described so far, which respectively maturate three types of small noncoding RNAs (sncRNAs): miRNAs, piRNAs, and endo-siRNAs. The diversification of these mechanisms is deeply linked with the evolution of the Argonaute gene superfamily since each type of sncRNA is typically loaded by a specific Argonaute homolog. Moreover, other protein families play pivotal roles in the maturation of sncRNAs, like the DICER ribonuclease family, whose DICER1 and DICER2 paralogs maturate respectively miRNAs and endo-siRNAs. Within Metazoa, the distribution of these families has been only studied in major groups, and there are very few data for clades like Lophotrochozoa. Thus, we here inferred the evolutionary history of the animal Argonaute and DICER families including 43 lophotrochozoan species. Phylogenetic analyses along with newly sequenced sncRNA libraries suggested that in all Trochozoa, the proteins related to the endo-siRNA pathway have been lost, a part of them in some phyla (i.e. Nemertea, Bryozoa, Entoprocta), while all of them in all the others. On the contrary, early diverging phyla, Platyhelminthes and Syndermata, showed a complete endo-siRNA pathway. On the other hand, miRNAs were revealed the most conserved and ubiquitous mechanism of the metazoan RNA interference machinery, confirming their pivotal role in animal cell regulation.
Collapse
Affiliation(s)
- Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Gianmarco Cavalli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama, Japan
| | | | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Fu Y, Zhu W, Zhou Y, Su Y, Li Z, Zhang D, Zhang D, Shen J, Liang J. RACK1A promotes hypocotyl elongation by scaffolding light signaling components in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:956-972. [PMID: 38558526 DOI: 10.1111/jipb.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.
Collapse
Affiliation(s)
- Yajuan Fu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yeling Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujing Su
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dayan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyu Shen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiansheng Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
19
|
Le CT, Nguyen TD, Nguyen TA. Two-motif model illuminates DICER cleavage preferences. Nucleic Acids Res 2024; 52:1860-1877. [PMID: 38167721 PMCID: PMC10899750 DOI: 10.1093/nar/gkad1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
In humans, DICER is a key regulator of gene expression through its production of miRNAs and siRNAs by processing miRNA precursors (pre-miRNAs), short-hairpin RNAs (shRNAs), and long double-stranded RNAs (dsRNAs). To advance our understanding of this process, we employed high-throughput dicing assays using various shRNA variants and both wild-type and mutant DICER. Our analysis revealed that DICER predominantly cleaves shRNAs at two positions, specifically at 21 (DC21) and 22 (DC22) nucleotides from their 5'-end. Our investigation identified two different motifs, mWCU and YCR, that determine whether DICER cleaves at DC21 or DC22, depending on their locations in shRNAs/pre-miRNAs. These motifs can work together or independently to determine the cleavage sites of DICER. Furthermore, our findings indicate that dsRNA-binding domain (dsRBD) of DICER enhances its cleavage, and mWCU strengthens the interaction between dsRBD and RNA, leading to an even greater enhancement of the cleavage. Conversely, YCR functions independently of dsRBD. Our study proposes a two-motif model that sheds light on the intricate regulatory mechanisms involved in gene expression by elucidating how DICER recognizes its substrates, providing valuable insights into this critical biological process.
Collapse
Affiliation(s)
- Cong Truc Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Trung Duc Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| |
Collapse
|
20
|
Liu R, Yu X, Cao X, Wang X, Liang Y, Qi W, Ye Y, Zao X. Downregulation of ST6GAL2 Correlates to Liver Inflammation and Predicts Adverse Prognosis in Hepatocellular Carcinoma. J Inflamm Res 2024; 17:565-580. [PMID: 38318244 PMCID: PMC10843983 DOI: 10.2147/jir.s437291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 2 (ST6GAL2), a member of the sialic acid transferase family, is differentially expressed in diverse cancers. However, it remains poorly understood in tumorigenesis and impacts on immune cell infiltration (ICI) in hepatocellular carcinoma (HCC). Patients and Methods Herein, the expression, diagnosis, prognosis, functional enrichment, genetic alterations, immune characteristics, and targeted drugs of ST6GAL2 in HCC were researched by conducting bioinformatics analysis, in vivo, and in vitro experiments. Results ST6GAL2 was remarkably decreased in HCC compared to non-tumor tissues, portending a poor prognosis associated with high DNA methylation levels. Functional enrichment and GSVA analyses revealed that ST6GAL2 might function through the extracellular matrix, PI3K-Akt signaling pathways, and tumor inflammation signature. We found that ST6GAL2 expression was proportional to ICI, immunostimulator, and immune subtypes. ST6GAL2 expression first increased and then decreased during the progression of liver inflammation to HCC. The dysfunctional experiment indicated that ST6GAL2 might exert immunosuppressive effects during HCC progression through regulating ICI. Several broad-spectrum anticancer drugs were obtained by drug sensitivity prediction analysis of ST6GAL2. Conclusion In conclusion, ST6GAL2 was a reliable prognostic biomarker strongly associated with ICI, and could be a potential immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yijun Liang
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| |
Collapse
|
21
|
Dadhwal G, Samy H, Bouvette J, El-Azzouzi F, Dagenais P, Legault P. Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3'-end modifications. Cell Mol Life Sci 2024; 81:53. [PMID: 38261114 PMCID: PMC10806991 DOI: 10.1007/s00018-023-05090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.
Collapse
Affiliation(s)
- Gunjan Dadhwal
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Hebatallah Samy
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Jonathan Bouvette
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Department, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
| | - Fatima El-Azzouzi
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Biochemistry Department, Wake Forest Biotech Place, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA
| | - Pierre Dagenais
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Pascale Legault
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
22
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
23
|
Cottrell KA, Andrews RJ, Bass BL. The competitive landscape of the dsRNA world. Mol Cell 2024; 84:107-119. [PMID: 38118451 PMCID: PMC10843539 DOI: 10.1016/j.molcel.2023.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Bofill-De Ros X, Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biol 2024; 21:1-8. [PMID: 38031325 PMCID: PMC10761092 DOI: 10.1080/15476286.2023.2288741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
MicroRNAs are a class of small regulatory RNAs that mediate regulation of protein synthesis by recognizing sequence elements in mRNAs. MicroRNAs are processed through a series of steps starting from transcription and primary processing in the nucleus to precursor processing and mature function in the cytoplasm. It is also in the cytoplasm where levels of mature microRNAs can be modulated through decay mechanisms. Here, we review the recent progress in the lifetime of a microRNA at all steps required for maintaining their homoeostasis. The increasing knowledge about microRNA regulation upholds great promise as therapeutic targets.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ulf Andersson Vang Ørom
- RNA Biology and Innovation, Institute of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Liu X, Lin L, Cai Q, Sheng H, Zeng R, Zhao Y, Qiu X, Liu H, Huang L, Liang W, He J. Construction and Validation of a Prognostic Model Based on Novel Senescence-Related Genes in Non-Small Cell Lung Cancer Patients with Drug Sensitivity and Tumor Microenvironment. Adv Biol (Weinh) 2023; 7:e2300190. [PMID: 37518773 DOI: 10.1002/adbi.202300190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Cellular senescence contributes to cancer pathogenesis and immune regulation. Using the LASSO Cox regression, we developed a 12-gene prognostic signature for lung adenocarcinoma (LUAD) from The Cancer Genome Atlas (TCGA) and a Gene Expression Omnibus (GEO) dataset. We assessed gene expression, drug sensitivity, immune infiltration, and conducted cell line experiments. High-risk LUAD patients showed increased mortality risk and shorter survival (P < 0.001). Senescence-related gene analysis indicated differences in protein phosphorylation and DNA methylation between normal individuals and LUAD patients. The high-risk group showed a positive association with PD-L1 expression (P = 0.003). Single-cell sequencing data suggested PEBP1 might significantly impact T cell infiltration. We predicted potential sensitive compounds for 12 senescence genes and found GAPDH promoted cell line proliferation. We established a novel prognostic system based on a newly identified senescence gene. High-risk patients had elevated immunosuppressive markers, and PEBP1 might influence T cell infiltration significantly. GAPDH, expressed at higher levels in tumors, could affect cancer progression. Our drug prediction model may guide treatment selection.
Collapse
Affiliation(s)
- Xiwen Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- School of Clinical Medicine, Henan University, Kaifeng, 475000, China
| | - Qi Cai
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Hongxu Sheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Ruiqi Zeng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Xinyi Qiu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- First Clinical School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Huiting Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Linchong Huang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- The First People's Hospital of Zhaoqing, Zhaoqing, 526000, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
- Southern Medical University, Guangzhou, 510120, China
| |
Collapse
|
26
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
27
|
Weng Q, Wu Q, Zheng Q. New discoveries on how DICER efficiently processes pre-miRNA. MedComm (Beijing) 2023; 4:e430. [PMID: 38034100 PMCID: PMC10685087 DOI: 10.1002/mco2.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The latest study identified the "GYM motif" on precursor microRNA (pre-miRNA) for the first time and highlighted its key role in DICER specifically recognizing and efficiently cleaving pre-miRNA to produce miRNA. In addition, the dicing state of DICER efficiently processing pre-miRNA was revealed, which was previously difficult to capture.
Collapse
Affiliation(s)
- Qi Weng
- Department of PharmacyQuzhou People's HospitalThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouChina
| | - Qi Wu
- Core FacilityQuzhou People's HospitalThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouChina
| | - Quan Zheng
- Core FacilityQuzhou People's HospitalThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouChina
| |
Collapse
|
28
|
Camino LP, Dutta A, Barroso S, Pérez-Calero C, Katz JN, García-Rubio M, Sung P, Gómez-González B, Aguilera A. DICER ribonuclease removes harmful R-loops. Mol Cell 2023; 83:3707-3719.e5. [PMID: 37827159 PMCID: PMC11034902 DOI: 10.1016/j.molcel.2023.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/08/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
R-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids. Now, we show that the RNase DICER also resolves R-loops. Biochemical analysis reveals that DICER acts by specifically cleaving the RNA within R-loops. Importantly, a DICER RNase mutant impaired in R-loop processing causes a strong accumulation of R-loops in cells. Our results thus not only reveal a function of DICER as an R-loop resolvase independent of DROSHA but also provide evidence for the role of multi-functional RNA processing factors in the maintenance of genome integrity in higher eukaryotes.
Collapse
Affiliation(s)
- Lola P Camino
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Arijit Dutta
- Greehey Children's Cancer Research Institute, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Jeffrey N Katz
- Greehey Children's Cancer Research Institute, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Patrick Sung
- Greehey Children's Cancer Research Institute, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, CSIC, 41092 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
29
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
30
|
Deng T, Su S, Yuan X, He J, Huang Y, Ma J, Wang J. Structural mechanism of R2D2 and Loqs-PD synergistic modulation on DmDcr-2 oligomers. Nat Commun 2023; 14:5228. [PMID: 37633971 PMCID: PMC10460399 DOI: 10.1038/s41467-023-40919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Small interference RNAs are the key components of RNA interference, a conserved RNA silencing or viral defense mechanism in many eukaryotes. In Drosophila melanogaster, Dicer-2 (DmDcr-2)-mediated RNAi pathway plays important roles in defending against viral infections and protecting genome integrity. During the maturation of siRNAs, two cofactors can regulate DmDcr-2's functions: Loqs-PD that is required for dsRNA processing, and R2D2 that is essential for the subsequent loading of siRNAs into effector Ago2 to form RISC complexes. However, due to the lack of structural information, it is still unclear whether R2D2 and Loqs-PD affect the functions of DmDcr-2 simultaneously. Here we present several cryo-EM structures of DmDcr-2/R2D2/Loqs-PD complex bound to dsRNAs with various lengths by the Helicase domain. These structures revealed that R2D2 and Loqs-PD can bind to different regions of DmDcr-2 without interfering with each other. Furthermore, the cryo-EM results demonstrate that these complexes can form large oligomers and assemble into fibers. The formation and depolymerization of these oligomers are associated with ATP hydrolysis. These findings provide insights into the structural mechanism of DmDcr-2 and its cofactors during siRNA processing.
Collapse
Affiliation(s)
- Ting Deng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Xun Yuan
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinqiu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China.
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
31
|
Szpotkowski K, Wójcik K, Kurzyńska-Kokorniak A. Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques. Comput Struct Biotechnol J 2023; 21:2858-2872. [PMID: 37216015 PMCID: PMC10195699 DOI: 10.1016/j.csbj.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Klaudia Wójcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Kurzyńska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
32
|
Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife 2023; 12:e85120. [PMID: 37068011 PMCID: PMC10159624 DOI: 10.7554/elife.85120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Antiviral defense in ecdysozoan invertebrates requires Dicer with a helicase domain capable of ATP hydrolysis. But despite well-conserved ATPase motifs, human Dicer is incapable of ATP hydrolysis, consistent with a muted role in antiviral defense. To investigate this enigma, we used ancestral protein reconstruction to resurrect Dicer's helicase in animals and trace the evolutionary trajectory of ATP hydrolysis. Biochemical assays indicated ancient Dicer possessed ATPase function, that like extant invertebrate Dicers, is stimulated by dsRNA. Analyses revealed that dsRNA stimulates ATPase activity by increasing ATP affinity, reflected in Michaelis constants. Deuterostome Dicer-1 ancestor, while exhibiting lower dsRNA affinity, retained some ATPase activity; importantly, ATPase activity was undetectable in the vertebrate Dicer-1 ancestor, which had even lower dsRNA affinity. Reverting residues in the ATP hydrolysis pocket was insufficient to rescue hydrolysis, but additional substitutions distant from the pocket rescued vertebrate Dicer-1's ATPase function. Our work suggests Dicer lost ATPase function in the vertebrate ancestor due to loss of ATP affinity, involving motifs distant from the active site, important for coupling dsRNA binding to the active conformation. By competing with Dicer for viral dsRNA, RIG-I-like receptors important for interferon signaling may have allowed or actively caused loss of ATPase function.
Collapse
Affiliation(s)
| | | | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of FloridaGainesvilleUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
33
|
Mei Y, Khan H, Shishikura M, Ishiyama S, Khan A, Orita H, Brock MV. pfeRNAs-A Novel Class of Small Non-coding RNAs With Real Translational Potential. J Surg Res 2023; 284:237-244. [PMID: 36599285 PMCID: PMC9911372 DOI: 10.1016/j.jss.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Small non-coding RNAs (sncRNAs) are defined by being less than 200 nucleotides (nt) in length, and consequently, have been divided into many different subclasses including mature microRNA (miRNA), small interfering RNA (siRNA), piwi-interacting RNA (piRNA), protein functional effector sncRNA (pfeRNA), precursor miRNA (pre-miRNA), small nucleolar RNA (snoRNA), 5S ribosome RNA (5SrRNA), 5.8SrRNA, and small nuclear RNA (snRNA). Except for the class of pfeRNAs, the discovery, identification, biogenesis, characterization, and function of other sncRNAs have been well documented. Herein, we provide a review, written especially for clinicians, of the least understood class of functional sncRNAs, the pfeRNAs, focusing on their initial discovery, identification, unique features, function, as well as their exciting clinical translational potential.
Collapse
Affiliation(s)
- Yuping Mei
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Hamza Khan
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Maria Shishikura
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Shun Ishiyama
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Gastroenterology and Minimally Invasive Surgery, Juntendo University, Tokyo, Japan
| | - Ali Khan
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hajime Orita
- Department of Gastroenterology and Minimally Invasive Surgery, Juntendo University, Tokyo, Japan
| | - Malcolm V Brock
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
34
|
Mucorales and Mucormycosis: Recent Insights and Future Prospects. J Fungi (Basel) 2023; 9:jof9030335. [PMID: 36983503 PMCID: PMC10058716 DOI: 10.3390/jof9030335] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The classification of Mucorales encompasses a collection of basal fungi that have traditionally demonstrated an aversion to modern genetic manipulation techniques. This aversion led to a scarcity of knowledge regarding their biology compared to other fungal groups. However, the emergence of mucormycosis, a fungal disease caused by Mucorales, has attracted the attention of the clinical field, mainly because available therapies are ineffective for decreasing the fatal outcome associated with the disease. This revitalized curiosity about Mucorales and mucormycosis, also encouraged by the recent COVID-19 pandemic, has spurred a significant and productive effort to uncover their mysteries in recent years. Here, we elaborate on the most remarkable breakthroughs related to the recently discovered genetic advances in Mucorales and mucormycosis. The utilization of a few genetic study models has enabled the identification of virulence factors in Mucorales that were previously described in other pathogens. More notably, recent investigations have identified novel genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, providing fresh avenues to devise new strategies against mucormycosis. Finally, new study models are allowing virulence studies that were previously hampered in Mucorales, predicting a prolific future for the field.
Collapse
|
35
|
Sequence determinant of small RNA production by DICER. Nature 2023; 615:323-330. [PMID: 36813957 DOI: 10.1038/s41586-023-05722-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
RNA silencing relies on specific and efficient processing of double-stranded RNA by Dicer, which yields microRNAs (miRNAs) and small interfering RNAs (siRNAs)1,2. However, our current knowledge of the specificity of Dicer is limited to the secondary structures of its substrates: a double-stranded RNA of approximately 22 base pairs with a 2-nucleotide 3' overhang and a terminal loop3-11. Here we found evidence pointing to an additional sequence-dependent determinant beyond these structural properties. To systematically interrogate the features of precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with pre-miRNA variants and human DICER (also known as DICER1). Our analyses revealed a deeply conserved cis-acting element, termed the 'GYM motif' (paired G, paired pyrimidine and mismatched C or A), near the cleavage site. The GYM motif promotes processing at a specific position and can override the previously identified 'ruler'-like counting mechanisms from the 5' and 3' ends of pre-miRNA3-6. Consistently, integrating this motif into short hairpin RNA or Dicer-substrate siRNA potentiates RNA interference. Furthermore, we find that the C-terminal double-stranded RNA-binding domain (dsRBD) of DICER recognizes the GYM motif. Alterations in the dsRBD reduce processing and change cleavage sites in a motif-dependent fashion, affecting the miRNA repertoire in cells. In particular, the cancer-associated R1855L substitution in the dsRBD strongly impairs GYM motif recognition. This study uncovers an ancient principle of substrate recognition by metazoan Dicer and implicates its potential in the design of RNA therapeutics.
Collapse
|
36
|
Anobile DP, Poirier EZ. RNA interference, an emerging component of antiviral immunity in mammals. Biochem Soc Trans 2023; 51:137-146. [PMID: 36606711 DOI: 10.1042/bst20220385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Antiviral RNA interference (RNAi) is an immune pathway that can, in certain conditions, protect mammalian cells against RNA viruses. It depends on the recognition and dicing of viral double-stranded RNA by a protein of the Dicer family, which leads to the production of viral small interfering RNAs (vsiRNAs) that sequence-specifically guide the degradation of cognate viral RNA. If the first line of defence against viruses relies on type-I and type-III interferons (IFN) in mammals, certain cell types such as stem cells, that are hyporesponsive for IFN, instead use antiviral RNAi via the expression of a specific antiviral Dicer. In certain conditions, antiviral RNAi can also contribute to the protection of differentiated cells. Indeed, abundant vsiRNAs are detected in infected cells and efficiently guide the degradation of viral RNA, especially in cells infected with viruses disabled for viral suppressors of RNAi (VSRs), which are virally encoded blockers of antiviral RNAi. The existence and importance of antiviral RNAi in differentiated cells has however been debated in the field, because data document mutual inhibition between IFN and antiviral RNAi. Recent developments include the engineering of a small molecule inhibitor of VSR to probe antiviral RNAi in vivo, as well as the detection of vsiRNAs inside extracellular vesicles in the serum of infected mice. It suggests that using more complex, in vivo models could allow to unravel the contribution of antiviral RNAi to immunity at the host level.
Collapse
Affiliation(s)
- Dario Pasquale Anobile
- Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Enzo Z Poirier
- Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
37
|
Komatsu S, Kitai H, Suzuki HI. Network Regulation of microRNA Biogenesis and Target Interaction. Cells 2023; 12:306. [PMID: 36672241 PMCID: PMC9856966 DOI: 10.3390/cells12020306] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are versatile, post-transcriptional regulators of gene expression. Canonical miRNAs are generated through the two-step DROSHA- and DICER-mediated processing of primary miRNA (pri-miRNA) transcripts with optimal or suboptimal features for DROSHA and DICER cleavage and loading into Argonaute (AGO) proteins, whereas multiple hairpin-structured RNAs are encoded in the genome and could be a source of non-canonical miRNAs. Recent advances in miRNA biogenesis research have revealed details of the structural basis of miRNA processing and cluster assistance mechanisms that facilitate the processing of suboptimal hairpins encoded together with optimal hairpins in polycistronic pri-miRNAs. In addition, a deeper investigation of miRNA-target interaction has provided insights into the complexity of target recognition with distinct outcomes, including target-mediated miRNA degradation (TDMD) and cooperation in target regulation by multiple miRNAs. Therefore, the coordinated or network regulation of both miRNA biogenesis and miRNA-target interaction is prevalent in miRNA biology. Alongside recent advances in the mechanistic investigation of miRNA functions, this review summarizes recent findings regarding the ordered regulation of miRNA biogenesis and miRNA-target interaction.
Collapse
Affiliation(s)
- Shintaro Komatsu
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu 501-1193, Japan
| |
Collapse
|
38
|
Structural Modifications of siRNA Improve Its Performance In Vivo. Int J Mol Sci 2023; 24:ijms24020956. [PMID: 36674473 PMCID: PMC9862127 DOI: 10.3390/ijms24020956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The use of small interfering RNA (siRNA) in the clinic gives a wide range of possibilities for the treatment of previously incurable diseases. However, the main limitation for biomedical applications is their delivery to target cells and organs. Currently, delivery of siRNA to liver cells is a solved problem due to the bioconjugation of siRNA with N-acetylgalactosamine; other organs remain challenging for siRNA delivery to them. Despite the important role of the ligand in the composition of the bioconjugate, the structure and molecular weight of siRNA also play an important role in the delivery of siRNA. The basic principle is that siRNAs with smaller molecular weights are more efficient at entering cells, whereas siRNAs with larger molecular weights have advantages at the organism level. Here we review the relationships between siRNA structure and its biodistribution and activity to find new strategies for improving siRNA performance.
Collapse
|
39
|
Torrez RM, Ohi MD, Garner AL. Structural Insights into the Advances and Mechanistic Understanding of Human Dicer. Biochemistry 2023; 62:1-16. [PMID: 36534787 PMCID: PMC11467861 DOI: 10.1021/acs.biochem.2c00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNase III endoribonuclease Dicer was discovered to be associated with cleavage of double-stranded RNA in 2001. Since then, many advances in our understanding of Dicer function have revealed that the enzyme plays a major role not only in microRNA biology but also in multiple RNA interference-related pathways. Yet, there is still much to be learned regarding Dicer structure-function in relation to how Dicer and Dicer-like enzymes initiate their cleavage reaction and release the desired RNA product. This Perspective describes the latest advances in Dicer structural studies, expands on what we have learned from this data, and outlines key gaps in knowledge that remain to be addressed. More specifically, we focus on human Dicer and highlight the intermediate processing steps where there is a lack of structural data to understand how the enzyme traverses from pre-cleavage to cleavage-competent states. Understanding these details is necessary to model Dicer's function as well as develop more specific microRNA-targeted therapeutics for the treatment of human diseases.
Collapse
Affiliation(s)
- Rachel M. Torrez
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie D. Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Monitoring the in vivo siRNA release from lipid nanoparticles based on the fluorescence resonance energy transfer principle. Asian J Pharm Sci 2023; 18:100769. [PMID: 36698441 PMCID: PMC9849873 DOI: 10.1016/j.ajps.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization. However, the in vivo distribution and release of siRNA still cannot be effectively monitored. In this study, based on the fluorescence resonance energy transfer (FRET) principle, a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds (Au-DR-siRNA), which were then wrapped with lipid nanoparticles (LNPs) for monitoring the release behaviour of siRNA in vivo. The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells, the fluorescence of Cy5 would change from quenched state to activated state, showing the location and time of siRNA release. Besides, the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds. Therefore, this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA, but also a siRNA delivery system for treating and diagnosing tumors.
Collapse
|
41
|
Huang W, Wu X, Xiang S, Qiao M, Li H, Zhu Y, Zhu Z, Zhao Z. Regulatory of miRNAs in tri-lineage differentiation of C3H10T1/2. Stem Cell Res Ther 2022; 13:521. [PMID: 36414991 PMCID: PMC9682817 DOI: 10.1186/s13287-022-03205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which play a vital role in cell generation, metabolism, apoptosis and stem cell differentiation. C3H10T1/2, a mesenchymal cell extracted from mouse embryos, is capable of osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. Extensive studies have shown that not only miRNAs can directly trigger targeted genes to regulate the tri-lineage differentiation of C3H10T1/2, but it also can indirectly regulate the differentiation by triggering different signaling pathways or various downstream molecules. This paper aims to clarify the regulatory roles of different miRNAs on C3H10T1/2 differentiation, and discussing their balance effect among osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation of C3H10T1/2. We also review the biogenesis of miRNAs, Wnt signaling pathways, MAPK signaling pathways and BMP signaling pathways and provide some specific examples of how these signaling pathways act on C3H10T1/2 tri-lineage differentiation. On this basis, we hope that a deeper understanding of the differentiation and regulation mechanism of miRNAs in C3H10T1/2 can provide a promising therapeutic method for the clinical treatment of bone defects, osteoporosis, osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingxin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanfei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
42
|
Jouravleva K, Golovenko D, Demo G, Dutcher RC, Hall TMT, Zamore PD, Korostelev AA. Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Mol Cell 2022; 82:4049-4063.e6. [PMID: 36182693 PMCID: PMC9637774 DOI: 10.1016/j.molcel.2022.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 12/22/2022]
Abstract
In animals and plants, Dicer enzymes collaborate with double-stranded RNA-binding domain (dsRBD) proteins to convert precursor-microRNAs (pre-miRNAs) into miRNA duplexes. We report six cryo-EM structures of Drosophila Dicer-1 that show how Dicer-1 and its partner Loqs‑PB cooperate (1) before binding pre-miRNA, (2) after binding and in a catalytically competent state, (3) after nicking one arm of the pre-miRNA, and (4) following complete dicing and initial product release. Our reconstructions suggest that pre-miRNA binds a rare, open conformation of the Dicer‑1⋅Loqs‑PB heterodimer. The Dicer-1 dsRBD and three Loqs‑PB dsRBDs form a tight belt around the pre-miRNA, distorting the RNA helix to place the scissile phosphodiester bonds in the RNase III active sites. Pre-miRNA cleavage shifts the dsRBDs and partially closes Dicer-1, which may promote product release. Our data suggest a model for how the Dicer‑1⋅Loqs‑PB complex affects a complete cycle of pre-miRNA recognition, stepwise endonuclease cleavage, and product release.
Collapse
Affiliation(s)
- Karina Jouravleva
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dmitrij Golovenko
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Robert C Dutcher
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol Cell 2022; 82:4064-4079.e13. [DOI: 10.1016/j.molcel.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
44
|
Yan A, Xiong J, Zhu J, Li X, Xu S, Feng X, Ke X, Wang Z, Chen Y, Wang HW, Zhang MQ, Kee K. DAZL regulates proliferation of human primordial germ cells by direct binding to precursor miRNAs and enhances DICER processing activity. Nucleic Acids Res 2022; 50:11255-11272. [DOI: 10.1093/nar/gkac856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Understanding the molecular and cellular mechanisms of human primordial germ cells (hPGCs) is essential in studying infertility and germ cell tumorigenesis. Many RNA-binding proteins (RBPs) and non-coding RNAs are specifically expressed and functional during hPGC developments. However, the roles and regulatory mechanisms of these RBPs and non-coding RNAs, such as microRNAs (miRNAs), in hPGCs remain elusive. In this study, we reported a new regulatory function of DAZL, a germ cell-specific RBP, in miRNA biogenesis and cell proliferation. First, DAZL co-localized with miRNA let-7a in human PGCs and up-regulated the levels of >100 mature miRNAs, including eight out of nine let-7 family, miR21, miR22, miR125, miR10 and miR199. Purified DAZL directly bound to the loops of precursor miRNAs with sequence specificity of GUU. The binding of DAZL to the precursor miRNA increased the maturation of miRNA by enhancing the cleavage activity of DICER. Furthermore, cell proliferation assay and cell cycle analysis confirmed that DAZL inhibited the proliferation of in vitro PGCs by promoting the maturation of these miRNAs. Evidently, the mature miRNAs up-regulated by DAZL silenced cell proliferation regulators including TRIM71. Moreover, DAZL inhibited germline tumor cell proliferation and teratoma formation. These results demonstrate that DAZL regulates hPGC proliferation by enhancing miRNA processing.
Collapse
Affiliation(s)
- An Yan
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Jie Xiong
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Jiadong Zhu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University , Beijing 100044 , China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
| | - Shuting Xu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Xin Ke
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Zhenyi Wang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
- School of Medicine, Tsinghua University , Beijing 100084 , China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University , Beijing 100084 , China
- School of Medicine, Tsinghua University , Beijing 100084 , China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, RL11, Richardson , TX 75080-3021, USA
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University , Beijing 100084 , China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University , Beijing 100084 , China
| |
Collapse
|
45
|
Ruiz-Arroyo VM, Nam Y. Dynamic Protein-RNA recognition in primary MicroRNA processing. Curr Opin Struct Biol 2022; 76:102442. [PMID: 36067707 PMCID: PMC9509664 DOI: 10.1016/j.sbi.2022.102442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
MicroRNAs are prevalent regulators of gene expression, controlling most of the proteome in multicellular organisms. To generate the functional small RNAs, precise processing steps are required. In animals, microRNA biogenesis is initiated by Microprocessor that minimally consists of the Drosha enzyme and its partner, DGCR8. This first step is critical for selecting primary microRNAs, and many RNA-binding proteins and regulatory pathways target both the accuracy and efficiency of microRNA maturation. Structures of Drosha and DGCR8 in complex with primary microRNAs elucidate how RNA structural features rather than sequence provide the framework for substrate recognition. Comparing multiple states of Microprocessor and the closely related Dicer homologs shed light on the dynamic protein-RNA complex assembly and disassembly required to recognize RNAs with diverse sequences via common structural features.
Collapse
Affiliation(s)
- Victor M Ruiz-Arroyo
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. https://twitter.com/@Ruiz_Arroy0
| | - Yunsun Nam
- Department of Biochemistry, Department of Biophysics, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
46
|
Zhang J, Fei Y, Sun L, Zhang QC. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat Methods 2022; 19:1193-1207. [PMID: 36203019 DOI: 10.1038/s41592-022-01623-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Beyond transferring genetic information, RNAs are molecules with diverse functions that include catalyzing biochemical reactions and regulating gene expression. Most of these activities depend on RNAs' specific structures. Therefore, accurately determining RNA structure is integral to advancing our understanding of RNA functions. Here, we summarize the state-of-the-art experimental and computational technologies developed to evaluate RNA secondary and tertiary structures. We also highlight how the rapid increase of experimental data facilitates the integrative modeling approaches for better resolving RNA structures. Finally, we provide our thoughts on the latest advances and challenges in RNA structure determination methods, as well as on future directions for both experimental approaches and artificial intelligence-based computational tools to model RNA structure. Ultimately, we hope the technological advances will deepen our understanding of RNA biology and facilitate RNA structure-based biomedical research such as designing specific RNA structures for therapeutics and deploying RNA-targeting small-molecule drugs.
Collapse
Affiliation(s)
- Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuhan Fei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lei Sun
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
47
|
Papanicolaou M, Parker AL, Yam M, Filipe EC, Wu SZ, Chitty JL, Wyllie K, Tran E, Mok E, Nadalini A, Skhinas JN, Lucas MC, Herrmann D, Nobis M, Pereira BA, Law AMK, Castillo L, Murphy KJ, Zaratzian A, Hastings JF, Croucher DR, Lim E, Oliver BG, Mora FV, Parker BL, Gallego-Ortega D, Swarbrick A, O'Toole S, Timpson P, Cox TR. Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nat Commun 2022; 13:4587. [PMID: 35933466 PMCID: PMC9357007 DOI: 10.1038/s41467-022-32255-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse. The distribution and organisation of matrix molecules in the tumour stroma help shape solid tumour progression. Here they perform temporal proteomic profiling of the matrisome during breast cancer progression and show that collagen XII secreted from CAFs provides a pro-invasive microenvironment.
Collapse
Affiliation(s)
- Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Amelia L Parker
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Yam
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Elysse C Filipe
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sunny Z Wu
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kaitlin Wyllie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Emmi Tran
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ellie Mok
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Audrey Nadalini
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Joanna N Skhinas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke A Pereira
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew M K Law
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Lesley Castillo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Elgene Lim
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, Sydney, NSW, Australia
| | - Fatima Valdes Mora
- Cancer Epigenetic Biology and Therapeutics, Personalised Medicine, Children's Cancer Institute, Sydney, NSW, 2031, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra O'Toole
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
48
|
Su S, Wang J, Deng T, Yuan X, He J, Liu N, Li X, Huang Y, Wang HW, Ma J. Structural insights into dsRNA processing by Drosophila Dicer-2-Loqs-PD. Nature 2022; 607:399-406. [PMID: 35768513 PMCID: PMC9279154 DOI: 10.1038/s41586-022-04911-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/25/2022] [Indexed: 12/21/2022]
Abstract
Small interfering RNAs (siRNAs) are the key components for RNA interference (RNAi), a conserved RNA-silencing mechanism in many eukaryotes1,2. In Drosophila, an RNase III enzyme Dicer-2 (Dcr-2), aided by its cofactor Loquacious-PD (Loqs-PD), has an important role in generating 21 bp siRNA duplexes from long double-stranded RNAs (dsRNAs)3,4. ATP hydrolysis by the helicase domain of Dcr-2 is critical to the successful processing of a long dsRNA into consecutive siRNA duplexes5,6. Here we report the cryo-electron microscopy structures of Dcr-2-Loqs-PD in the apo state and in multiple states in which it is processing a 50 bp dsRNA substrate. The structures elucidated interactions between Dcr-2 and Loqs-PD, and substantial conformational changes of Dcr-2 during a dsRNA-processing cycle. The N-terminal helicase and domain of unknown function 283 (DUF283) domains undergo conformational changes after initial dsRNA binding, forming an ATP-binding pocket and a 5'-phosphate-binding pocket. The overall conformation of Dcr-2-Loqs-PD is relatively rigid during translocating along the dsRNA in the presence of ATP, whereas the interactions between the DUF283 and RIIIDb domains prevent non-specific cleavage during translocation by blocking the access of dsRNA to the RNase active centre. Additional ATP-dependent conformational changes are required to form an active dicing state and precisely cleave the dsRNA into a 21 bp siRNA duplex as confirmed by the structure in the post-dicing state. Collectively, this study revealed the molecular mechanism for the full cycle of ATP-dependent dsRNA processing by Dcr-2-Loqs-PD.
Collapse
Affiliation(s)
- Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ting Deng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Yuan
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinqiu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Bolt CC, Lopez-Delisle L, Hintermann A, Mascrez B, Rauseo A, Andrey G, Duboule D. Context-dependent enhancer function revealed by targeted inter-TAD relocation. Nat Commun 2022; 13:3488. [PMID: 35715427 PMCID: PMC9205857 DOI: 10.1038/s41467-022-31241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022] Open
Abstract
The expression of some genes depends on large, adjacent regions of the genome that contain multiple enhancers. These regulatory landscapes frequently align with Topologically Associating Domains (TADs), where they integrate the function of multiple similar enhancers to produce a global, TAD-specific regulation. We asked if an individual enhancer could overcome the influence of one of these landscapes, to drive gene transcription. To test this, we transferred an enhancer from its native location, into a nearby TAD with a related yet different functional specificity. We used the biphasic regulation of Hoxd genes during limb development as a paradigm. These genes are first activated in proximal limb cells by enhancers located in one TAD, which is then silenced when the neighboring TAD activates its enhancers in distal limb cells. We transferred a distal limb enhancer into the proximal limb TAD and found that its new context suppresses its normal distal specificity, even though it is bound by HOX13 transcription factors, which are responsible for the distal activity. This activity can be rescued only when a large portion of the surrounding environment is removed. These results indicate that, at least in some cases, the functioning of enhancer elements is subordinated to the host chromatin context, which can exert a dominant control over its activity.
Collapse
Affiliation(s)
- Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aurélie Hintermann
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Antonella Rauseo
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Guillaume Andrey
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
- Collège de France, 11 Place Marcelin Berthelot, 75231, Paris, France.
| |
Collapse
|
50
|
Yu C, Lei X, Chen F, Mao S, Lv L, Liu H, Hu X, Wang R, Shen L, Zhang N, Meng Y, Shen Y, Chen J, Li P, Huang S, Lin C, Zhang Z, Yuan K. ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent transcription. Nat Commun 2022; 13:3501. [PMID: 35715442 PMCID: PMC9205910 DOI: 10.1038/s41467-022-31197-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Transposable elements (TEs) through evolutionary exaptation have become an integral part of the human genome, offering ample regulatory sequences and shaping chromatin 3D architecture. While the functional impacts of TE-derived sequences on early embryogenesis have been recognized, their roles in malignancy are only starting to emerge. Here we show that many TEs, especially the pluripotency-related human endogenous retrovirus H (HERVH), are abnormally activated in colorectal cancer (CRC) samples. Transcriptional upregulation of HERVH is associated with mutations of several tumor suppressors, particularly ARID1A. Knockout of ARID1A in CRC cells leads to increased transcription at several HERVH loci, which involves compensatory contribution by ARID1B. Suppression of HERVH in CRC cells and patient-derived organoids impairs tumor growth. Mechanistically, HERVH transcripts colocalize with nuclear BRD4 foci, modulating their dynamics and co-regulating many target genes. Altogether, we uncover a critical role for ARID1A in restraining HERVH, whose abnormal activation can promote tumorigenesis by stimulating BRD4-dependent transcription. Here the authors show mutation of the BAF chromatin remodeler subunit ARID1A results in an ARID1B-dependent upregulation of HERVH, an ERV required for the pluripotency regulatory network. These HERVH RNAs can partition into BRD4 foci, affecting BRD4-dependent transcription. Suppression of HERVH in colorectal cancer cells and patient-derived organoids impairs tumor growth.
Collapse
Affiliation(s)
- Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Honglu Liu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueying Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runhan Wang
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Licong Shen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Meng
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yunfan Shen
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiale Chen
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Pishun Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi Huang
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Changwei Lin
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|