1
|
Watson JF, Vargas-Barroso V, Morse-Mora RJ, Navas-Olive A, Tavakoli MR, Danzl JG, Tomschik M, Rössler K, Jonas P. Human hippocampal CA3 uses specific functional connectivity rules for efficient associative memory. Cell 2025; 188:501-514.e18. [PMID: 39667938 DOI: 10.1016/j.cell.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Our brain has remarkable computational power, generating sophisticated behaviors, storing memories over an individual's lifetime, and producing higher cognitive functions. However, little of our neuroscience knowledge covers the human brain. Is this organ truly unique, or is it a scaled version of the extensively studied rodent brain? Combining multicellular patch-clamp recording with expansion-based superresolution microscopy and full-scale modeling, we determined the cellular and microcircuit properties of the human hippocampal CA3 region, a fundamental circuit for memory storage. In contrast to neocortical networks, human hippocampal CA3 displayed sparse connectivity, providing a circuit architecture that maximizes associational power. Human synapses showed unique reliability, high precision, and long integration times, exhibiting both species- and circuit-specific properties. Together with expanded neuronal numbers, these circuit characteristics greatly enhanced the memory storage capacity of CA3. Our results reveal distinct microcircuit properties of the human hippocampus and begin to unravel the inner workings of our most complex organ.
Collapse
Affiliation(s)
- Jake F Watson
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria.
| | | | | | - Andrea Navas-Olive
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria
| | - Mojtaba R Tavakoli
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Tomschik
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Jonas
- Institute of Science and Technology (ISTA), 3400 Klosterneuburg, Austria.
| |
Collapse
|
2
|
Micheva KD, Simhal AK, Schardt J, Smith SJ, Weinberg RJ, Owen SF. Data-driven synapse classification reveals a logic of glutamate receptor diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628056. [PMID: 39713368 PMCID: PMC11661198 DOI: 10.1101/2024.12.11.628056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenna Schardt
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27514
| | - Scott F. Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Lead contact
| |
Collapse
|
3
|
Barzó P, Szöts I, Tóth M, Csajbók ÉA, Molnár G, Tamás G. Electrophysiology and Morphology of Human Cortical Supragranular Pyramidal Cells in a Wide Age Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.13.598792. [PMID: 38915496 PMCID: PMC11195274 DOI: 10.1101/2024.06.13.598792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 years of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Ildikó Szöts
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Martin Tóth
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Phillips WA, Bachmann T, Spratling MW, Muckli L, Petro LS, Zolnik T. Cellular psychology: relating cognition to context-sensitive pyramidal cells. Trends Cogn Sci 2025; 29:28-40. [PMID: 39353837 DOI: 10.1016/j.tics.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
'Cellular psychology' is a new field of inquiry that studies dendritic mechanisms for adapting mental events to the current context, thus increasing their coherence, flexibility, effectiveness, and comprehensibility. Apical dendrites of neocortical pyramidal cells have a crucial role in cognition - those dendrites receive input from diverse sources, including feedback, and can amplify the cell's feedforward transmission if relevant in that context. Specialized subsets of inhibitory interneurons regulate this cooperative context-sensitive processing by increasing or decreasing amplification. Apical input has different effects on cellular output depending on whether we are awake, deeply asleep, or dreaming. Furthermore, wakeful thought and imagery may depend on apical input. High-resolution neuroimaging in humans supports and complements evidence on these cellular mechanisms from other mammals.
Collapse
Affiliation(s)
- William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Talis Bachmann
- Institute of Psychology, University of Tartu, Tartu, Estonia.
| | - Michael W Spratling
- Department of Behavioral and Cognitive Sciences, University of Luxembourg, L-4366 Esch-Belval, Luxembourg
| | - Lars Muckli
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QB, UK; Imaging Centre of Excellence, College of Medical, Veterinary and Life Sciences, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, UK
| | - Lucy S Petro
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QB, UK; Imaging Centre of Excellence, College of Medical, Veterinary and Life Sciences, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, UK
| | - Timothy Zolnik
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
5
|
Wierda K, Nyitrai H, Lejeune A, Vlaeminck I, Leysen E, Theys T, de Wit J, Vanderhaeghen P, Libé-Philippot B. Protocol to process fresh human cerebral cortex biopsies for patch-clamp recording and immunostaining. STAR Protoc 2024; 5:103313. [PMID: 39292560 PMCID: PMC11424940 DOI: 10.1016/j.xpro.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024] Open
Abstract
Cerebral cortex biopsies enable the investigation of native developing and mature human brain tissue. Here, we present a protocol to process human cortical biopsies from the surgical theater to the laboratory. We describe steps for the preparation of viable acute slices for patch-clamp recording using dedicated chemical solutions for transport and sectioning. We then explain procedures for tissue fixation and post hoc immunostaining to correlate physiological properties to morphological features and protein detection. For complete details on the use and execution of this protocol, please refer to Libé-Philippot et al.1.
Collapse
Affiliation(s)
- Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium.
| | - Hajnalka Nyitrai
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Amélie Lejeune
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Elke Leysen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tom Theys
- KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Aizenbud I, Yoeli D, Beniaguev D, de Kock CPJ, London M, Segev I. What makes human cortical pyramidal neurons functionally complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628883. [PMID: 39763809 PMCID: PMC11702691 DOI: 10.1101/2024.12.17.628883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Humans exhibit unique cognitive abilities within the animal kingdom, but the neural mechanisms driving these advanced capabilities remain poorly understood. Human cortical neurons differ from those of other species, such as rodents, in both their morphological and physiological characteristics. Could the distinct properties of human cortical neurons help explain the superior cognitive capabilities of humans? Understanding this relationship requires a metric to quantify how neuronal properties contribute to the functional complexity of single neurons, yet no such standardized measure currently exists. Here, we propose the Functional Complexity Index (FCI), a generalized, deep learning-based framework to assess the input-output complexity of neurons. By comparing the FCI of cortical pyramidal neurons from different layers in rats and humans, we identified key morpho-electrical factors that underlie functional complexity. Human cortical pyramidal neurons were found to be significantly more functionally complex than their rat counterparts, primarily due to differences in dendritic membrane area and branching pattern, as well as density and nonlinearity of NMDA-mediated synaptic receptors. These findings reveal the structural-biophysical basis for the enhanced functional properties of human neurons.
Collapse
Affiliation(s)
- Ido Aizenbud
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniela Yoeli
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Beniaguev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christiaan PJ de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU Amsterdam
| | - Michael London
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Hagger-Vaughan N, Kolnier D, Storm JF. Non-apical plateau potentials and persistent firing induced by metabotropic cholinergic modulation in layer 2/3 pyramidal cells in the rat prefrontal cortex. PLoS One 2024; 19:e0314652. [PMID: 39656720 DOI: 10.1371/journal.pone.0314652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite. Thus, surprisingly, these PPs persisted when the apical dendrite was cut off (~50 μm from the soma), and were sustained by local calcium application only to the somatic and basal dendritic compartments. The prefrontal L2/3PCs have been postulated to have a key role in consciousness, according to the Global Neuronal Workspace Theory: their long-range cortico-cortical connections provide the architecture required for the "global work-space", "ignition", amplification, and sustained, reverberant activity, considered essential for conscious access. The PPs in L2/3PCs caused sustained spiking that profoundly altered the input-output relationships of these neurons, resembling the sustained activity suggested to underlie working memory and the mechanism underlying "behavioural time scale synaptic plasticity" in hippocampal pyramidal cells. The non-apical L2/3 PPs depended on metabotropic cholinergic (mAChR) or glutamatergic (mGluR) modulation, which is probably essential also for conscious brain states and experience, in both wakefulness and dreaming. Pharmacological tests indicated that the non-apical L2/3 PPs depend on transient receptor potential (TRP) cation channels, both TRPC4 and TRPC5, and require external calcium (Ca2+) and internal Ca2+ stores, but not voltage-gated Ca2+ channels, unlike Ca2+-dependent PPs in other cortical pyramidal neurons. These L2/3 non-apical plateau potentials may be involved in prefrontal functions, such as access consciousness, working memory, and executive functions such as planning, decision-making, and outcome prediction.
Collapse
Affiliation(s)
- Nicholas Hagger-Vaughan
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel Kolnier
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johan F Storm
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Liu M, Sun X. Temporal integration on the dendrites of fast-spiking basket cells. Sci Rep 2024; 14:30278. [PMID: 39632942 PMCID: PMC11618596 DOI: 10.1038/s41598-024-81655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Neurons receive synaptic inputs with diverse temporal patterns in vivo, and their integration of these patterns is critical for understanding information processing mechanisms in the brain. Fast-spiking basket cells, which perform both supralinear and sublinear dendritic integration, are essential for inhibitory control in the hippocampus. However, their responses and the mechanisms underlying different temporal input patterns remain unclear. To address this question, we apply inputs with varying windows of time to a detailed compartmental model of basket cells. Our results reveal that when synaptic inputs are randomly dispersed, temporal integration in FS BCs exhibits a sigmoid-like response within the temporal window. In contrast, synchronous input protocols more effectively elicit action potentials, while asynchronous inputs generate more spikes in response to suprathreshold stimuli. Further analysis shows that the supralinear dendrites of fast-spiking basket cells primarily mediate this nonlinearity to asynchronous inputs, owing to their larger dendritic diameters. Moreover, we discover that delayed rectifier [Formula: see text] channels reduce sensitivity to synchronous inputs, whereas N-type [Formula: see text] channels enhance sensitivity to asynchronous inputs. These results provide insights into the mechanisms underlying the temporal coding of fast-spiking basket cells, which is crucial for understanding their role in neuronal oscillations.
Collapse
Affiliation(s)
- Ming Liu
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
- Key Laboratory of Mathematics and Information Networks (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing, 100876, China.
| |
Collapse
|
9
|
Hildebrandt M, Kotewitsch M, Kaupp S, Salomon S, Schuster S, Machnik P. Stabilizing selection in an identified multisensory neuron in blind cavefish. Proc Natl Acad Sci U S A 2024; 121:e2415854121. [PMID: 39556758 PMCID: PMC11626160 DOI: 10.1073/pnas.2415854121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
The ability to follow the evolutionary trajectories of specific neuronal cell types has led to major insights into the evolution of the vertebrate brain. Here, we study how cave life in the Mexican tetra (Astyanax mexicanus) has affected an identified giant multisensory neuron, the Mauthner neuron (MN). Because this neuron is crucial in driving rapid escapes, the absence of predation risk in the cave forms predicts a massive reduction in this neuron. Moreover, the absence of functional eyes in the A. mexicanus Pachón form predicts an even stronger reduction in the cell's large ventral dendrite that receives visual inputs in sighted fish species. We succeeded in recording in vivo from this neuron in the blind cavefish and two surface tetra (A. mexicanus and Astyanax aeneus), which offers unique chances to simultaneously study evolutionary changes in morphology and function in this giant neuron. In contrast to the predictions, we find that cave life, while sufficient to remove vision, has neither affected the cell's morphology nor its functional properties. This specifically includes the cell's ventral dendrite. Furthermore, cave life did not increase the variance in morphological or functional features. Rather, variability in surface and cave forms was the same, which suggests a complex stabilizing selection in this neuron and a continued role of its ventral dendrite. We found that adult cavefish are potent predators that readily attack smaller fish. So, one of the largely unknown stabilizing factors could be using the MN in such attacks and, in the young fish, escaping them.
Collapse
Affiliation(s)
| | - Mona Kotewitsch
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Sabrina Kaupp
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Sophia Salomon
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| | - Peter Machnik
- Department of Animal Physiology, University of Bayreuth, Bayreuth95440, Germany
| |
Collapse
|
10
|
Steyn C, Mishi R, Fillmore S, Verhoog MB, More J, Rohlwink UK, Melvill R, Butler J, Enslin JMN, Jacobs M, Sauka-Spengler T, Greco M, Quiñones S, Dulla CG, Raimondo JV, Figaji A, Hockman D. A temporal cortex cell atlas highlights gene expression dynamics during human brain maturation. Nat Genet 2024; 56:2718-2730. [PMID: 39567748 PMCID: PMC11631765 DOI: 10.1038/s41588-024-01990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The human brain undergoes protracted postnatal maturation, guided by dynamic changes in gene expression. Most studies exploring these processes have used bulk tissue analyses, which mask cell-type-specific gene expression dynamics. Here, using single-nucleus RNA sequencing on temporal lobe tissue, including samples of African ancestry, we build a joint pediatric and adult atlas of 75 cell subtypes, which we verify with spatial transcriptomics. We explore the differences between pediatric and adult cell subtypes, revealing the genes and pathways that change during brain maturation. Our results highlight excitatory neuron subtypes, including the LTK and FREM subtypes, that show elevated expression of genes associated with cognition and synaptic plasticity in pediatric tissue. The resources we present here improve our understanding of the brain during its development and contribute to global efforts to build an inclusive brain cell map.
Collapse
Affiliation(s)
- Christina Steyn
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ruvimbo Mishi
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Stephanie Fillmore
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Matthijs B Verhoog
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jessica More
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ursula K Rohlwink
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Roger Melvill
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - James Butler
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Johannes M N Enslin
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Maria Greco
- Single Cell Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sadi Quiñones
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Libé-Philippot B, Polleux F, Vanderhaeghen P. If you please, draw me a neuron - linking evolutionary tinkering with human neuron evolution. Curr Opin Genet Dev 2024; 89:102260. [PMID: 39357501 PMCID: PMC11625661 DOI: 10.1016/j.gde.2024.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Animal speciation often involves novel behavioral features that rely on nervous system evolution. Human-specific brain features have been proposed to underlie specialized cognitive functions and to be linked, at least in part, to the evolution of synapses, neurons, and circuits of the cerebral cortex. Here, we review recent results showing that, while the human cortex is composed of a repertoire of cells that appears to be largely similar to the one found in other mammals, human cortical neurons do display specialized features at many levels, from gene expression to intrinsic physiological properties. The molecular mechanisms underlying human species-specific neuronal features remain largely unknown but implicate hominid-specific gene duplicates that encode novel molecular modifiers of neuronal function. The identification of human-specific genetic modifiers of neuronal function brings novel insights on brain evolution and function and, could also provide new insights on human species-specific vulnerabilities to brain disorders.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), NeuroMarseille, Marseille, France.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA. https://twitter.com/@fpolleux
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Ting JT, Johansen NJ, Kalmbach BE, Taskin N, Lee B, Clark JK, Kendrick R, Ng L, Radaelli C, Weed N, Enstrom R, Ransford S, Redford I, Walling-Bell S, Dalley R, Tieu M, Goldy J, Jorstad N, Smith K, Bakken T, Lein ES, Owen SF. Distinctive physiology of molecularly identified medium spiny neurons in the macaque putamen. Cell Rep 2024; 43:114963. [PMID: 39514389 DOI: 10.1016/j.celrep.2024.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike is reduced and spike rate adaptation is increased relative to mouse. We use whole-cell brain slice recordings and recover single-cell gene expression using Patch-seq to distinguish macaque MSN cell types. Species differences in the expression of ion channel genes including the calcium-activated chloride channel, ANO2, and an auxiliary subunit of the A-type potassium channel, DPP10, are correlated with species differences in spike rate adaptation and latency to the first spike, respectively. These surprising divergences in physiology better define the strengths and limitations of mouse models for understanding neuronal and circuit function in the primate basal ganglia.
Collapse
Affiliation(s)
- Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA; The Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Neurobiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurobiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Brian Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jason K Clark
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rennie Kendrick
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsay Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachel Enstrom
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Shea Ransford
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ingrid Redford
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Rachel Dalley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nik Jorstad
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kimberly Smith
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Trygve Bakken
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Scott F Owen
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Anufriev G, Furniss D, Farries MC, Seddon AB, Phang S. An experimental demonstration of neuromorphic sensing of chemical species using electro-optical reservoir computing. Sci Rep 2024; 14:27915. [PMID: 39537773 PMCID: PMC11560975 DOI: 10.1038/s41598-024-79395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
A chemical discrimination system based on photonic reservoir computing is demonstrated experimentally for the first time. The system is inspired by the way humans perceive and process visual sensory information. The electro-optical reservoir computing system is a photonic analogue of the human nervous system with the read-out layer acting as the 'brain', and the sensor that of the human eye. A task-specific optimisation of the system is implemented, and the performance of the system for the discrimination between three chemicals is presented. The results are compared to the previously published numerical simulation (Anufriev et al. in Opt Mater Express 12:1767-1783, 2022, 10.1364/OME.449036). This publication provides a feasibility assessment and a demonstration of a practical realisation of photonic reservoir computing for a new neuromorphic sensing system - the next generation sensor with a built-in 'intelligence' which can be trained to 'understand' and to make a real time sensing decision based on the training data.
Collapse
Affiliation(s)
- Gleb Anufriev
- Mid-infrared Photonics Group: George Green Institute for Electromagnetics Research Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - David Furniss
- Mid-infrared Photonics Group: George Green Institute for Electromagnetics Research Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mark C Farries
- Mid-infrared Photonics Group: George Green Institute for Electromagnetics Research Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
- Marine Photonics LTD. Deepdene Cottage, Deepdene Park, Exeter, EX2 4PH, England, UK
| | - Angela B Seddon
- Mid-infrared Photonics Group: George Green Institute for Electromagnetics Research Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sendy Phang
- Mid-infrared Photonics Group: George Green Institute for Electromagnetics Research Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
14
|
Busch SE, Hansel C. Non-allometric expansion and enhanced compartmentalization of Purkinje cell dendrites in the human cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612113. [PMID: 39554002 PMCID: PMC11565726 DOI: 10.1101/2024.09.09.612113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purkinje cell (PC) dendrites are optimized to integrate the vast cerebellar input array and drive the sole cortical output. PCs are classically seen as stereotypical computational units, yet mouse PCs are morphologically diverse and those with multi-branched structure can receive non-canonical climbing fiber (CF) multi-innervation that confers independent compartment-specific signaling. While otherwise uncharacterized, human PCs are universally multi-branched. Do they exceed allometry to achieve enhanced integrative capacities relative to mouse PCs? To answer this, we used several comparative histology techniques in adult human and mouse to analyze cellular morphology, parallel fiber (PF) and CF input arrangement, and regional PC demographics. Human PCs are substantially larger than previously described; they exceed allometric constraint by cortical thickness and are the largest neuron in the brain with 6-7cm total dendritic length. Unlike mouse, human PC dendrites ramify horizontally to form a multi-compartment motif that we show can receive multiple CFs. Human spines are denser (6.9 vs 4.9 spines/μm), larger (~0.36 vs 0.29μm), and include an unreported 'spine cluster' structure-features that may be congruent with enhanced PF association and amplification as human-specific adaptations. By extrapolation, human PCs may receive 500,000 to 1 million synaptic inputs compared with 30-40,000 in mouse. Collectively, human PC morphology and input arrangement is quantitatively and qualitatively distinct from rodent. Multi-branched PCs are more prevalent in posterior and lateral cerebellum, co-varying with functional boundaries, supporting the hypothesis that this morphological motif permits expanded input multiplexing and may subserve task-dependent needs for input association.
Collapse
Affiliation(s)
- Silas E Busch
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Assendorp N, Fossati M, Libé-Philippot B, Christopoulou E, Depp M, Rapone R, Dingli F, Loew D, Vanderhaeghen P, Charrier C. CTNND2 moderates the pace of synaptic maturation and links human evolution to synaptic neoteny. Cell Rep 2024; 43:114797. [PMID: 39352808 DOI: 10.1016/j.celrep.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.
Collapse
Affiliation(s)
- Nora Assendorp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Matteo Fossati
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Marine Depp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Roberta Rapone
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
16
|
Lenz M, Kruse P, Eichler A, Straehle J, Hemeling H, Stöhr P, Beck J, Vlachos A. Clinical parameters affect the structure and function of superficial pyramidal neurons in the adult human neocortex. Brain Commun 2024; 6:fcae351. [PMID: 39474044 PMCID: PMC11518857 DOI: 10.1093/braincomms/fcae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/04/2024] [Indexed: 01/05/2025] Open
Abstract
The interplay between neuronal structure and function underpins the dynamic nature of neocortical networks. Despite extensive studies in animal models, our understanding of structure-function interrelations in the adult human brain remains incomplete. Recent methodological advances have facilitated the functional analysis of individual neurons within the human neocortex, providing a new understanding of fundamental brain processes. However, the factors contributing to patient-specific neuronal properties have not been thoroughly explored. In this observational study, we investigated the structural and functional variability of superficial pyramidal neurons in the adult human neocortex. Using whole-cell patch-clamp recordings and post hoc analyses of dendritic spine morphology in acute neocortical slice preparations from surgical resections of seven patients, we assessed age-related effects on excitatory neurotransmission, membrane properties and dendritic spine morphologies. These results specify age as an endogenous factor that might affect the structural and functional properties of superficial pyramidal neurons.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Phyllis Stöhr
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
17
|
Zhao HT, Schmidt ER. Human-specific genetic modifiers of cortical architecture and function. Curr Opin Genet Dev 2024; 88:102241. [PMID: 39111228 PMCID: PMC11547859 DOI: 10.1016/j.gde.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Evolution of the cerebral cortex is thought to have been critical for the emergence of our cognitive abilities. Major features of cortical evolution include increased neuron number and connectivity and altered morpho-electric properties of cortical neurons. Significant progress has been made in identifying human-specific genetic modifiers (HSGMs), some of which are involved in shaping these features of cortical architecture. But how did these evolutionary changes support the emergence of our cognitive abilities? Here, we highlight recent studies aimed at examining the impact of HSGMs on cortical circuit function and behavior. We also discuss the need for greater insight into the link between evolution of cortical architecture and the functional and computational properties of neuronal circuits, as we seek to provide a neurobiological foundation for human cognition.
Collapse
Affiliation(s)
- Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA
| | - Ewoud Re Schmidt
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
18
|
Dembrow NC, Sawchuk S, Dalley R, Opitz-Araya X, Hudson M, Radaelli C, Alfiler L, Walling-Bell S, Bertagnolli D, Goldy J, Johansen N, Miller JA, Nasirova K, Owen SF, Parga-Becerra A, Taskin N, Tieu M, Vumbaco D, Weed N, Wilson J, Lee BR, Smith KA, Sorensen SA, Spain WJ, Lein ES, Perlmutter SI, Ting JT, Kalmbach BE. Areal specializations in the morpho-electric and transcriptomic properties of primate layer 5 extratelencephalic projection neurons. Cell Rep 2024; 43:114718. [PMID: 39277859 PMCID: PMC11488157 DOI: 10.1016/j.celrep.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology and morphology of infragranular glutamatergic neurons by performing Patch-seq experiments in brain slices from the temporal cortex (TCx) and motor cortex (MCx) of the macaque. We confirm that transcriptomically defined extratelencephalically projecting neurons of layer 5 (L5 ET neurons) include retrogradely labeled corticospinal neurons in the MCx and find multiple physiological properties and ion channel genes that distinguish L5 ET from non-ET neurons in both areas. Additionally, while infragranular ET and non-ET neurons retain distinct neuronal properties across multiple regions, there are regional morpho-electric and gene expression specializations in the L5 ET subclass, providing mechanistic insights into the specialized functional architecture of the primate neocortex.
Collapse
Affiliation(s)
- Nikolai C Dembrow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Epilepsy Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA.
| | - Scott Sawchuk
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachel Dalley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Mark Hudson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | - Lauren Alfiler
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Scott F Owen
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Alejandro Parga-Becerra
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Vumbaco
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julia Wilson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - William J Spain
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Epilepsy Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Jonathan T Ting
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Brian E Kalmbach
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
19
|
Cihak HL, Kilpatrick ZP. Robustly encoding certainty in a metastable neural circuit model. Phys Rev E 2024; 110:034404. [PMID: 39425424 DOI: 10.1103/physreve.110.034404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
Localized persistent neural activity can encode delayed estimates of continuous variables. Common experiments require that subjects store and report the feature value (e.g., orientation) of a particular cue (e.g., oriented bar on a screen) after a delay. Visualizing recorded activity of neurons along their feature tuning reveals activity bumps whose centers wander stochastically, degrading the estimate over time. Bump position therefore represents the remembered estimate. Recent work suggests bump amplitude may represent estimate certainty reflecting a probabilistic population code for a Bayesian posterior. Idealized models of this type are fragile due to the fine tuning common to constructed continuum attractors in dynamical systems. Here we propose an alternative metastable model for robustly supporting multiple bump amplitudes by extending neural circuit models to include quantized nonlinearities. Asymptotic projections of circuit activity produce low-dimensional evolution equations for the amplitude and position of bump solutions in response to external stimuli and noise perturbations. Analysis of reduced equations accurately characterizes phase variance and the dynamics of amplitude transitions between stable discrete values. More salient cues generate bumps of higher amplitude which wander less, consistent with experiments showing certainty correlates with more accurate memories.
Collapse
|
20
|
Lee SY, Kozalakis K, Baftizadeh F, Campagnola L, Jarsky T, Koch C, Anastassiou CA. Cell-class-specific electric field entrainment of neural activity. Neuron 2024; 112:2614-2630.e5. [PMID: 38838670 PMCID: PMC11309920 DOI: 10.1016/j.neuron.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Electric fields affect the activity of neurons and brain circuits, yet how this happens at the cellular level remains enigmatic. Lack of understanding of how to stimulate the brain to promote or suppress specific activity significantly limits basic research and clinical applications. Here, we study how electric fields impact subthreshold and spiking properties of major cortical neuronal classes. We find that neurons in the rodent and human cortex exhibit strong, cell-class-dependent entrainment that depends on stimulation frequency. Excitatory pyramidal neurons, with their slower spike rate, entrain to both slow and fast electric fields, while inhibitory classes like Pvalb and Sst (with their fast spiking) predominantly phase-lock to fast fields. We show that this spike-field entrainment is the result of two effects: non-specific membrane polarization occurring across classes and class-specific excitability properties. Importantly, these properties are present across cortical areas and species. These findings allow for the design of selective and class-specific neuromodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Costas A Anastassiou
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
21
|
Regele-Blasco E, Palmer LM. The plasticity of pyramidal neurons in the behaving brain. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230231. [PMID: 38853566 PMCID: PMC11407500 DOI: 10.1098/rstb.2023.0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Neurons are plastic. That is, they change their activity according to different behavioural conditions. This endows pyramidal neurons with an incredible computational power for the integration and processing of synaptic inputs. Plasticity can be investigated at different levels of investigation within a single neuron, from spines to dendrites, to synaptic input. Although most of our knowledge stems from the in vitro brain slice preparation, plasticity plays a vital role during behaviour by providing a flexible substrate for the execution of appropriate actions in our ever-changing environment. Owing to advances in recording techniques, the plasticity of neurons and the neural networks in which they are embedded is now beginning to be realized in the in vivo intact brain. This review focuses on the structural and functional synaptic plasticity of pyramidal neurons, with a specific focus on the latest developments from in vivo studies. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Elena Regele-Blasco
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| | - Lucy M. Palmer
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| |
Collapse
|
22
|
Spyropoulos G, Schneider M, van Kempen J, Gieselmann MA, Thiele A, Vinck M. Distinct feedforward and feedback pathways for cell-type specific attention effects. Neuron 2024; 112:2423-2434.e7. [PMID: 38759641 PMCID: PMC7616856 DOI: 10.1016/j.neuron.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Selective attention is thought to depend on enhanced firing activity in extrastriate areas. Theories suggest that this enhancement depends on selective inter-areal communication via gamma (30-80 Hz) phase-locking. To test this, we simultaneously recorded from different cell types and cortical layers of macaque V1 and V4. We find that while V1-V4 gamma phase-locking between local field potentials increases with attention, the V1 gamma rhythm does not engage V4 excitatory-neurons, but only fast-spiking interneurons in L4 of V4. By contrast, attention enhances V4 spike-rates in both excitatory and inhibitory cells, most strongly in L2/3. The rate increase in L2/3 of V4 precedes V1 in time. These findings suggest enhanced signal transmission with attention does not depend on inter-areal gamma phase-locking and show that the endogenous gamma rhythm has cell-type- and layer-specific effects on downstream target areas. Similar findings were made in the mouse visual system, based on opto-tagging of identified interneurons.
Collapse
Affiliation(s)
- Georgios Spyropoulos
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Dabrowski AK, Goldberg EM. A Human Touch: Hominid-Specific LRRC37B Regulates Axon Initial Segment Excitability. Epilepsy Curr 2024; 24:286-288. [PMID: 39309051 PMCID: PMC11412392 DOI: 10.1177/15357597241253683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 09/25/2024] Open
Abstract
LRRC37B Is a Human Modifier of Voltage-Gated Sodium Channels and Axon Excitability in Cortical Neurons Libé-Philippot B, Lejeune A, Wierda K, Louros N, Erkol E, Vlaeminck I, Beckers S, Gaspariunaite V, Bilheu A, Konstantoulea K, Nyitrai H, De Vleeschouwer M, Vennekens KM, Vidal N, Bird TW, Soto DC, Jaspers T, Dewilde M, Dennis MY, Rousseau F, Comoletti D, Schymkowitz J, Theys T, de Wit J, Vanderhaeghen P. Cell . 2023;186(26):5766-5783.e25. doi:10.1016/j.cell.2023.11.028 . PMID: 38134874 The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) b-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.
Collapse
Affiliation(s)
- Ania K Dabrowski
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia Department of Neurology, Department of Neuroscience, The Perelman School of Medicine at The University of Pennsylvania
| |
Collapse
|
24
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
26
|
Bullmann T, Kaas T, Ritzau-Jost A, Wöhner A, Kirmann T, Rizalar FS, Holzer M, Nerlich J, Puchkov D, Geis C, Eilers J, Kittel RJ, Arendt T, Haucke V, Hallermann S. Human iPSC-Derived Neurons with Reliable Synapses and Large Presynaptic Action Potentials. J Neurosci 2024; 44:e0971232024. [PMID: 38724283 PMCID: PMC11170674 DOI: 10.1523/jneurosci.0971-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.
Collapse
Affiliation(s)
- Torsten Bullmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Thomas Kaas
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Anne Wöhner
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Toni Kirmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Jana Nerlich
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Robert J Kittel
- Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig 04103, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
27
|
O’Hare JK, Wang J, Shala MD, Polleux F, Losonczy A. Variable recruitment of distal tuft dendrites shapes new hippocampal place fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582144. [PMID: 38464058 PMCID: PMC10925200 DOI: 10.1101/2024.02.26.582144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hippocampal pyramidal neurons support episodic memory by integrating complementary information streams into new 'place fields'. Distal tuft dendrites are widely thought to initiate place field formation by locally generating prolonged, globally-spreading Ca 2+ spikes known as plateau potentials. However, the hitherto experimental inaccessibility of distal tuft dendrites in the hippocampus has rendered their in vivo function entirely unknown. Here we gained direct optical access to this elusive dendritic compartment. We report that distal tuft dendrites do not serve as the point of origin for place field-forming plateau potentials. Instead, the timing and extent of peri-formation distal tuft recruitment is variable and closely predicts multiple properties of resultant place fields. Therefore, distal tuft dendrites play a more powerful role in hippocampal feature selectivity than simply initiating place field formation. Moreover, place field formation is not accompanied by global Ca 2+ influx as previously thought. In addition to shaping new somatic place fields, distal tuft dendrites possess their own local place fields. Tuft place fields are back-shifted relative to that of their soma and appear to maintain somatic place fields via post-formation plateau potentials. Through direct in vivo observation, we provide a revised dendritic basis for hippocampal feature selectivity during navigational learning.
Collapse
Affiliation(s)
- Justin K. O’Hare
- Department of Neuroscience, Columbia University; New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, United States
| | - Jamie Wang
- Department of Biomedical Engineering, Duke University; Durham, NC, United States
| | - Margjele D. Shala
- Department of Neuroscience, Columbia University; New York, NY, United States
| | - Franck Polleux
- Department of Neuroscience, Columbia University; New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University; New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, United States
- Lead contact
| |
Collapse
|
28
|
Sandoval SO, Cappuccio G, Kruth K, Osenberg S, Khalil SM, Méndez-Albelo NM, Padmanabhan K, Wang D, Niciu MJ, Bhattacharyya A, Stein JL, Sousa AMM, Waxman EA, Buttermore ED, Whye D, Sirois CL, Williams A, Maletic-Savatic M, Zhao X. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go. Stem Cell Reports 2024; 19:796-816. [PMID: 38759644 PMCID: PMC11297560 DOI: 10.1016/j.stemcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gerarda Cappuccio
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karina Kruth
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Sivan Osenberg
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Saleh M Khalil
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Center for Visual Science, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark J Niciu
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aislinn Williams
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA.
| | - Mirjana Maletic-Savatic
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
29
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
30
|
Lee AT, Chang EF, Paredes MF, Nowakowski TJ. Large-scale neurophysiology and single-cell profiling in human neuroscience. Nature 2024; 630:587-595. [PMID: 38898291 DOI: 10.1038/s41586-024-07405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.
Collapse
Affiliation(s)
- Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Steyn C, Mishi R, Fillmore S, Verhoog MB, More J, Rohlwink UK, Melvill R, Butler J, Enslin JMN, Jacobs M, Sauka-Spengler T, Greco M, Quiñones S, Dulla CG, Raimondo JV, Figaji A, Hockman D. Cell type-specific gene expression dynamics during human brain maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560114. [PMID: 37808657 PMCID: PMC10557738 DOI: 10.1101/2023.09.29.560114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The human brain undergoes protracted post-natal maturation, guided by dynamic changes in gene expression. Most studies exploring these processes have used bulk tissue analyses, which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric and adult atlas of 75 cell subtypes, which we verify with spatial transcriptomics. We explore the differences between paediatric and adult cell types, revealing the genes and pathways that change during brain maturation. Our results highlight excitatory neuron subtypes, including the LTK and FREM subtypes, that show elevated expression of genes associated with cognition and synaptic plasticity in paediatric tissue. The new resources we present here improve our understanding of the brain during its development and contribute to global efforts to build an inclusive brain cell map.
Collapse
Affiliation(s)
- Christina Steyn
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ruvimbo Mishi
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Stephanie Fillmore
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Matthijs B Verhoog
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jessica More
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ursula K Rohlwink
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Roger Melvill
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - James Butler
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Johannes M N Enslin
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology University of Cape Town
- National Health Laboratory Service, South Africa
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Maria Greco
- Single Cell Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sadi Quiñones
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Diesburg DA, Wessel JR, Jones SR. Biophysical Modeling of Frontocentral ERP Generation Links Circuit-Level Mechanisms of Action-Stopping to a Behavioral Race Model. J Neurosci 2024; 44:e2016232024. [PMID: 38561227 PMCID: PMC11097283 DOI: 10.1523/jneurosci.2016-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/09/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Human frontocentral event-related potentials (FC-ERPs) are ubiquitous neural correlates of cognition and control, but their generating multiscale mechanisms remain mostly unknown. We used the Human Neocortical Neurosolver's biophysical model of a canonical neocortical circuit under exogenous thalamic and cortical drive to simulate the cell and circuit mechanisms underpinning the P2, N2, and P3 features of the FC-ERP observed after Stop-Signals in the Stop-Signal task (SST; N = 234 humans, 137 female). We demonstrate that a sequence of simulated external thalamocortical and corticocortical drives can produce the FC-ERP, similar to what has been shown for primary sensory cortices. We used this model of the FC-ERP to examine likely circuit-mechanisms underlying FC-ERP features that distinguish between successful and failed action-stopping. We also tested their adherence to the predictions of the horse-race model of the SST, with specific hypotheses motivated by theoretical links between the P3 and Stop process. These simulations revealed that a difference in P3 onset between successful and failed Stops is most likely due to a later arrival of thalamocortical drive in failed Stops, rather than, for example, a difference in the effective strength of the input. In contrast, the same model predicted that early thalamocortical drives underpinning the P2 and N2 differed in both strength and timing across stopping accuracy conditions. Overall, this model generates novel testable predictions of the thalamocortical dynamics underlying FC-ERP generation during action-stopping. Moreover, it provides a detailed cellular and circuit-level interpretation that supports links between these macroscale signatures and predictions of the behavioral race model.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island 02908
| |
Collapse
|
33
|
Mertens EJ, Leibner Y, Pie J, Galakhova AA, Waleboer F, Meijer J, Heistek TS, Wilbers R, Heyer D, Goriounova NA, Idema S, Verhoog MB, Kalmbach BE, Lee BR, Gwinn RP, Lein ES, Aronica E, Ting J, Mansvelder HD, Segev I, de Kock CPJ. Morpho-electric diversity of human hippocampal CA1 pyramidal neurons. Cell Rep 2024; 43:114100. [PMID: 38607921 PMCID: PMC11106460 DOI: 10.1016/j.celrep.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Eline J Mertens
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Yoni Leibner
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean Pie
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Anna A Galakhova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Femke Waleboer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Julia Meijer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai Heyer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, location VUmc, Amsterdam 1081 HV, the Netherlands
| | - Matthijs B Verhoog
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Peng Y, Bjelde A, Aceituno PV, Mittermaier FX, Planert H, Grosser S, Onken J, Faust K, Kalbhenn T, Simon M, Radbruch H, Fidzinski P, Schmitz D, Alle H, Holtkamp M, Vida I, Grewe BF, Geiger JRP. Directed and acyclic synaptic connectivity in the human layer 2-3 cortical microcircuit. Science 2024; 384:338-343. [PMID: 38635709 DOI: 10.1126/science.adg8828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Antje Bjelde
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Pau Vilimelis Aceituno
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland
| | - Franz X Mittermaier
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Henrike Planert
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, 33617 Bielefeld, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, 33617 Bielefeld, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Pawel Fidzinski
- Clinical Study Center, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Henrik Alle
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
35
|
Marvan T, Phillips WA. Cellular mechanisms of cooperative context-sensitive predictive inference. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100129. [PMID: 38665363 PMCID: PMC11043869 DOI: 10.1016/j.crneur.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
We argue that prediction success maximization is a basic objective of cognition and cortex, that it is compatible with but distinct from prediction error minimization, that neither objective requires subtractive coding, that there is clear neurobiological evidence for the amplification of predicted signals, and that we are unconvinced by evidence proposed in support of subtractive coding. We outline recent discoveries showing that pyramidal cells on which our cognitive capabilities depend usually transmit information about input to their basal dendrites and amplify that transmission when input to their distal apical dendrites provides a context that agrees with the feedforward basal input in that both are depolarizing, i.e., both are excitatory rather than inhibitory. Though these intracellular discoveries require a level of technical expertise that is beyond the current abilities of most neuroscience labs, they are not controversial and acclaimed as groundbreaking. We note that this cellular cooperative context-sensitivity greatly enhances the cognitive capabilities of the mammalian neocortex, and that much remains to be discovered concerning its evolution, development, and pathology.
Collapse
Affiliation(s)
- Tomáš Marvan
- Institute of Philosophy, Czech Academy of Sciences (CAS), Czech Republic
| | | |
Collapse
|
36
|
Pascual-García M, Unkel M, Slotman JA, Bolleboom A, Bouwen B, Houtsmuller AB, Dirven C, Gao Z, Hijazi S, Kushner SA. Morphological correlates of pyramidal cell axonal myelination in mouse and human neocortex. Cereb Cortex 2024; 34:bhae147. [PMID: 38610088 PMCID: PMC11014882 DOI: 10.1093/cercor/bhae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
The axons of neocortical pyramidal neurons are frequently myelinated. Heterogeneity in the topography of axonal myelination in the cerebral cortex has been attributed to a combination of electrophysiological activity, axonal morphology, and neuronal-glial interactions. Previously, we showed that axonal segment length and caliber are critical local determinants of fast-spiking interneuron myelination. However, the factors that determine the myelination of individual axonal segments along neocortical pyramidal neurons remain largely unexplored. Here, we used structured illumination microscopy to examine the extent to which axonal morphology is predictive of the topography of myelination along neocortical pyramidal neurons. We identified critical thresholds for axonal caliber and interbranch distance that are necessary, but not sufficient, for myelination of pyramidal cell axons in mouse primary somatosensory cortex (S1). Specifically, we found that pyramidal neuron axonal segments with a caliber < 0.24 μm or interbranch distance < 18.10 μm are rarely myelinated. Moreover, we further confirmed that these findings in mice are similar for human neocortical pyramidal cell myelination (caliber < 0.25 μm, interbranch distance < 19.00 μm), suggesting that this mechanism is evolutionarily conserved. Taken together, our findings suggest that axonal morphology is a critical correlate of the topography and cell-type specificity of neocortical myelination.
Collapse
Affiliation(s)
- Maria Pascual-García
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Maurits Unkel
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Johan A Slotman
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Anne Bolleboom
- Department of Neuroscience, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Neurosurgery, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Bibi Bouwen
- Department of Neuroscience, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Neurosurgery, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Clemens Dirven
- Department of Neurosurgery, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Sara Hijazi
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
- SNF Center for Precision Psychiatry & Mental Health, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| |
Collapse
|
37
|
Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull 2024; 40:517-532. [PMID: 38194157 PMCID: PMC11003949 DOI: 10.1007/s12264-023-01160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.
Collapse
Affiliation(s)
- Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
38
|
Lee SY, Kozalakis K, Baftizadeh F, Campagnola L, Jarsky T, Koch C, Anastassiou CA. Cell class-specific electric field entrainment of neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.14.528526. [PMID: 36824721 PMCID: PMC9948976 DOI: 10.1101/2023.02.14.528526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Electric fields affect the activity of neurons and brain circuits, yet how this interaction happens at the cellular level remains enigmatic. Lack of understanding on how to stimulate the human brain to promote or suppress specific activity patterns significantly limits basic research and clinical applications. Here we study how electric fields impact the subthreshold and spiking properties of major cortical neuronal classes. We find that cortical neurons in rodent neocortex and hippocampus as well as human cortex exhibit strong and cell class-dependent entrainment that depends on the stimulation frequency. Excitatory pyramidal neurons with their typically slower spike rate entrain to slow and fast electric fields, while inhibitory classes like Pvalb and SST with their fast spiking predominantly phase lock to fast fields. We show this spike-field entrainment is the result of two effects: non-specific membrane polarization occurring across classes and class-specific excitability properties. Importantly, these properties of spike-field and class-specific entrainment are present in cells across cortical areas and species (mouse and human). These findings open the door to the design of selective and class-specific neuromodulation technologies.
Collapse
Affiliation(s)
- Soo Yeun Lee
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Konstantinos Kozalakis
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | - Luke Campagnola
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, Washington 98101, USA
| | - Costas A Anastassiou
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Center for Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Lead contact:
| |
Collapse
|
39
|
Barlow BSM, Longtin A, Joós B. Impact on backpropagation of the spatial heterogeneity of sodium channel kinetics in the axon initial segment. PLoS Comput Biol 2024; 20:e1011846. [PMID: 38489374 PMCID: PMC10942053 DOI: 10.1371/journal.pcbi.1011846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/21/2024] [Indexed: 03/17/2024] Open
Abstract
In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.
Collapse
Affiliation(s)
- Benjamin S. M. Barlow
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada
- Center for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Béla Joós
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada
- Center for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Luo L, Wang X, Lu J, Chen G, Luan G, Li W, Wang Q, Fang F. Local field potentials, spiking activity, and receptive fields in human visual cortex. SCIENCE CHINA. LIFE SCIENCES 2024; 67:543-554. [PMID: 37957484 DOI: 10.1007/s11427-023-2436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 11/15/2023]
Abstract
The concept of receptive field (RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals, while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials (LFPs) and spiking activity in human visual cortex (V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from low-frequency activity (LFA, 0.5-30 Hz) were larger than those estimated from low-gamma activity (LGA, 30-60 Hz) and high-gamma activity (HGA, 60-150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.
Collapse
Affiliation(s)
- Lu Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- School of Psychology, Beijing Sport University, Beijing, 100084, China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Junshi Lu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Guanpeng Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Key Laboratory of Epilepsy, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Wu Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
41
|
Gowers RP, Schreiber S. How neuronal morphology impacts the synchronisation state of neuronal networks. PLoS Comput Biol 2024; 20:e1011874. [PMID: 38437226 PMCID: PMC10939433 DOI: 10.1371/journal.pcbi.1011874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/14/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
The biophysical properties of neurons not only affect how information is processed within cells, they can also impact the dynamical states of the network. Specifically, the cellular dynamics of action-potential generation have shown relevance for setting the (de)synchronisation state of the network. The dynamics of tonically spiking neurons typically fall into one of three qualitatively distinct types that arise from distinct mathematical bifurcations of voltage dynamics at the onset of spiking. Accordingly, changes in ion channel composition or even external factors, like temperature, have been demonstrated to switch network behaviour via changes in the spike onset bifurcation and hence its associated dynamical type. A thus far less addressed modulator of neuronal dynamics is cellular morphology. Based on simplified and anatomically realistic mathematical neuron models, we show here that the extent of dendritic arborisation has an influence on the neuronal dynamical spiking type and therefore on the (de)synchronisation state of the network. Specifically, larger dendritic trees prime neuronal dynamics for in-phase-synchronised or splayed-out activity in weakly coupled networks, in contrast to cells with otherwise identical properties yet smaller dendrites. Our biophysical insights hold for generic multicompartmental classes of spiking neuron models (from ball-and-stick-type to anatomically reconstructed models) and establish a connection between neuronal morphology and the susceptibility of neural tissue to synchronisation in health and disease.
Collapse
Affiliation(s)
- Robert P Gowers
- Institute for Theoretical Biology, Humboldt-University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
42
|
Guet-McCreight A, Chameh HM, Mazza F, Prevot TD, Valiante TA, Sibille E, Hay E. In-silico testing of new pharmacology for restoring inhibition and human cortical function in depression. Commun Biol 2024; 7:225. [PMID: 38396202 PMCID: PMC10891083 DOI: 10.1038/s42003-024-05907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Reduced inhibition by somatostatin-expressing interneurons is associated with depression. Administration of positive allosteric modulators of α5 subunit-containing GABAA receptor (α5-PAM) that selectively target this lost inhibition exhibit antidepressant and pro-cognitive effects in rodent models of chronic stress. However, the functional effects of α5-PAM on the human brain in vivo are unknown, and currently cannot be assessed experimentally. We modeled the effects of α5-PAM on tonic inhibition as measured in human neurons, and tested in silico α5-PAM effects on detailed models of human cortical microcircuits in health and depression. We found that α5-PAM effectively recovered impaired cortical processing as quantified by stimulus detection metrics, and also recovered the power spectral density profile of the microcircuit EEG signals. We performed an α5-PAM dose-response and identified simulated EEG biomarker candidates. Our results serve to de-risk and facilitate α5-PAM translation and provide biomarkers in non-invasive brain signals for monitoring target engagement and drug efficacy.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | - Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Thomas D Prevot
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada
| | - Etienne Sibille
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
43
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 2024; 31:260-274.e7. [PMID: 38306994 PMCID: PMC10883639 DOI: 10.1016/j.stem.2023.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/01/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Probing how human neural networks operate is hindered by the lack of reliable human neural tissues amenable to the dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate into neurons and form functional neural circuits within and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents, and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
Affiliation(s)
- Yuanwei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xueyan Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakthikumar Mathivanan
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Linghai Kong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yunlong Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yi Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiang Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore; GK Goh Centre for Neuroscience, Duke-NUS Medical School, Singapore, Singapore; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815.
| |
Collapse
|
44
|
Groden M, Moessinger HM, Schaffran B, DeFelipe J, Benavides-Piccione R, Cuntz H, Jedlicka P. A biologically inspired repair mechanism for neuronal reconstructions with a focus on human dendrites. PLoS Comput Biol 2024; 20:e1011267. [PMID: 38394339 PMCID: PMC10917450 DOI: 10.1371/journal.pcbi.1011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/06/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Investigating and modelling the functionality of human neurons remains challenging due to the technical limitations, resulting in scarce and incomplete 3D anatomical reconstructions. Here we used a morphological modelling approach based on optimal wiring to repair the parts of a dendritic morphology that were lost due to incomplete tissue samples. In Drosophila, where dendritic regrowth has been studied experimentally using laser ablation, we found that modelling the regrowth reproduced a bimodal distribution between regeneration of cut branches and invasion by neighbouring branches. Interestingly, our repair model followed growth rules similar to those for the generation of a new dendritic tree. To generalise the repair algorithm from Drosophila to mammalian neurons, we artificially sectioned reconstructed dendrites from mouse and human hippocampal pyramidal cell morphologies, and showed that the regrown dendrites were morphologically similar to the original ones. Furthermore, we were able to restore their electrophysiological functionality, as evidenced by the recovery of their firing behaviour. Importantly, we show that such repairs also apply to other neuron types including hippocampal granule cells and cerebellar Purkinje cells. We then extrapolated the repair to incomplete human CA1 pyramidal neurons, where the anatomical boundaries of the particular brain areas innervated by the neurons in question were known. Interestingly, the repair of incomplete human dendrites helped to simulate the recently observed increased synaptic thresholds for dendritic NMDA spikes in human versus mouse dendrites. To make the repair tool available to the neuroscience community, we have developed an intuitive and simple graphical user interface (GUI), which is available in the TREES toolbox (www.treestoolbox.org).
Collapse
Affiliation(s)
- Moritz Groden
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus Liebig University Giessen, Giessen, Germany
| | - Hannah M. Moessinger
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
| | - Barbara Schaffran
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Hermann Cuntz
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus Liebig University Giessen, Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Peter Jedlicka
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus Liebig University Giessen, Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Yan Y, Li X, Gao Y, Mathivanan S, Kong L, Tao Y, Dong Y, Li X, Bhattacharyya A, Zhao X, Zhang SC. 3D Bioprinting of Human Neural Tissues with Functional Connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576289. [PMID: 38328181 PMCID: PMC10849546 DOI: 10.1101/2024.01.18.576289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Probing how the human neural networks operate is hindered by the lack of reliable human neural tissues amenable for dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate to neurons and form functional neural circuits in and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.
Collapse
|
46
|
Masoli S, Sanchez-Ponce D, Vrieler N, Abu-Haya K, Lerner V, Shahar T, Nedelescu H, Rizza MF, Benavides-Piccione R, DeFelipe J, Yarom Y, Munoz A, D'Angelo E. Human Purkinje cells outperform mouse Purkinje cells in dendritic complexity and computational capacity. Commun Biol 2024; 7:5. [PMID: 38168772 PMCID: PMC10761885 DOI: 10.1038/s42003-023-05689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Purkinje cells in the cerebellum are among the largest neurons in the brain and have been extensively investigated in rodents. However, their morphological and physiological properties remain poorly understood in humans. In this study, we utilized high-resolution morphological reconstructions and unique electrophysiological recordings of human Purkinje cells ex vivo to generate computational models and estimate computational capacity. An inter-species comparison showed that human Purkinje cell had similar fractal structures but were larger than those of mouse Purkinje cells. Consequently, given a similar spine density (2/μm), human Purkinje cell hosted approximately 7.5 times more dendritic spines than those of mice. Moreover, human Purkinje cells had a higher dendritic complexity than mouse Purkinje cells and usually emitted 2-3 main dendritic trunks instead of one. Intrinsic electro-responsiveness was similar between the two species, but model simulations revealed that the dendrites could process ~6.5 times (n = 51 vs. n = 8) more input patterns in human Purkinje cells than in mouse Purkinje cells. Thus, while human Purkinje cells maintained spike discharge properties similar to those of rodents during evolution, they developed more complex dendrites, enhancing computational capacity.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Diana Sanchez-Ponce
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Nora Vrieler
- Feinberg school of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Abu-Haya
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vitaly Lerner
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
- Brain and Cognitive Sciences and Center of Visual Science, University of Rochester, Rochester, NY, USA
| | - Tal Shahar
- Department of Neurosurgery, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Ruth Benavides-Piccione
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Javier DeFelipe
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Yosef Yarom
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alberto Munoz
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biología Celular, Universidad Complutense de Madrid, Madrid, Spain
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
47
|
Kim YJ, Driscoll N, Kent N, Paniagua EV, Tabet A, Koehler F, Manthey M, Sahasrabudhe A, Signorelli L, Gregureć D, Anikeeva P. Magnetoelectric Nanodiscs Enable Wireless Transgene-Free Neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573272. [PMID: 38234742 PMCID: PMC10793401 DOI: 10.1101/2023.12.24.573272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Deep-brain stimulation (DBS) with implanted electrodes revolutionized treatment of movement disorders and empowered neuroscience studies. Identifying less invasive alternatives to DBS may further extend its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials offers an alternative to invasive DBS. Here, we synthesize magnetoelectric nanodiscs (MENDs) with a core-double shell Fe3O4-CoFe2O4-BaTiO3 architecture with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 μg/mm2 despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization, which combined with cable theory, corroborates our findings in vitro and informs magnetoelectric stimulation in vivo. MENDs injected into the ventral tegmental area of genetically intact mice at concentrations of 1 mg/mL enable remote control of reward behavior, setting the stage for mechanistic optimization of magnetoelectric neuromodulation and inspiring its future applications in fundamental and translational neuroscience.
Collapse
Affiliation(s)
- Ye Ji Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolette Driscoll
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noah Kent
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emmanuel Vargas Paniagua
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie Manthey
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lorenzo Signorelli
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen - Nuremberg, Erlangen, Germany
| | - Danijela Gregureć
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen - Nuremberg, Erlangen, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
48
|
Libé-Philippot B, Lejeune A, Wierda K, Louros N, Erkol E, Vlaeminck I, Beckers S, Gaspariunaite V, Bilheu A, Konstantoulea K, Nyitrai H, De Vleeschouwer M, Vennekens KM, Vidal N, Bird TW, Soto DC, Jaspers T, Dewilde M, Dennis MY, Rousseau F, Comoletti D, Schymkowitz J, Theys T, de Wit J, Vanderhaeghen P. LRRC37B is a human modifier of voltage-gated sodium channels and axon excitability in cortical neurons. Cell 2023; 186:5766-5783.e25. [PMID: 38134874 PMCID: PMC10754148 DOI: 10.1016/j.cell.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) β-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Amélie Lejeune
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Emir Erkol
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ine Vlaeminck
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Sofie Beckers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Vaiva Gaspariunaite
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Angéline Bilheu
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium
| | - Katerina Konstantoulea
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Hajnalka Nyitrai
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Matthias De Vleeschouwer
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Kristel M Vennekens
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Niels Vidal
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Daniela C Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Tom Jaspers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Cellular and Molecular Medicine, KUL, 3000 Leuven, Belgium
| | - Tom Theys
- KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Research Group Experimental Neurosurgery and Neuroanatomy, KUL, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KUL, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium.
| |
Collapse
|
49
|
Pelkey KA, Vargish GA, Pellegrini LV, Calvigioni D, Chapeton J, Yuan X, Hunt S, Cummins AC, Eldridge MAG, Pickel J, Chittajallu R, Averbeck BB, Tóth K, Zaghloul K, McBain CJ. Evolutionary conservation of hippocampal mossy fiber synapse properties. Neuron 2023; 111:3802-3818.e5. [PMID: 37776852 PMCID: PMC10841147 DOI: 10.1016/j.neuron.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Geoffrey A Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonardo V Pellegrini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Daniela Calvigioni
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio Chapeton
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Friedenberger Z, Harkin E, Tóth K, Naud R. Silences, spikes and bursts: Three-part knot of the neural code. J Physiol 2023; 601:5165-5193. [PMID: 37889516 DOI: 10.1113/jp281510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Collapse
Affiliation(s)
- Zachary Friedenberger
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| | - Emerson Harkin
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katalin Tóth
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Naud
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| |
Collapse
|