1
|
Hernández-Núñez I, Clark BS. Experimental Framework for Assessing Mouse Retinal Regeneration Through Single-Cell RNA-Sequencing. Methods Mol Biol 2025; 2848:117-134. [PMID: 39240520 DOI: 10.1007/978-1-0716-4087-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Retinal degenerative diseases including age-related macular degeneration and glaucoma are estimated to currently affect more than 14 million people in the United States, with an increased prevalence of retinal degenerations in aged individuals. An expanding aged population who are living longer forecasts an increased prevalence and economic burden of visual impairments. Improvements to visual health and treatment paradigms for progressive retinal degenerations slow vision loss. However, current treatments fail to remedy the root cause of visual impairments caused by retinal degenerations-loss of retinal neurons. Stimulation of retinal regeneration from endogenous cellular sources presents an exciting treatment avenue for replacement of lost retinal cells. In multiple species including zebrafish and Xenopus, Müller glial cells maintain a highly efficient regenerative ability to reconstitute lost cells throughout the organism's lifespan, highlighting potential therapeutic avenues for stimulation of retinal regeneration in humans. Here, we describe how the application of single-cell RNA-sequencing (scRNA-seq) has enhanced our understanding of Müller glial cell-derived retinal regeneration, including the characterization of gene regulatory networks that facilitate/inhibit regenerative responses. Additionally, we provide a validated experimental framework for cellular preparation of mouse retinal cells as input into scRNA-seq experiments, including insights into experimental design and analyses of resulting data.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Maurya S, Lin M, Karnam S, Singh T, Kumar M, Ward E, Sivak J, Flanagan JG, Gronert K. Regulation of Diseases-Associated Microglia in the Optic Nerve by Lipoxin B 4 and Ocular Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585452. [PMID: 38562864 PMCID: PMC10983965 DOI: 10.1101/2024.03.18.585452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The resident astrocyte-retinal ganglion cell (RGC) lipoxin circuit is impaired during retinal stress, which includes ocular hypertension-induced neuropathy. Lipoxin B4 produced by homeostatic astrocytes directly acts on RGCs to increase survival and function in ocular hypertension-induced neuropathy. RGC death in the retina and axonal degeneration in the optic nerve are driven by the complex interactions between microglia and macroglia. Whether LXB4 neuroprotective actions include regulation of other cell types in the retina and/or optic nerve is an important knowledge gap. Methods Cellular targets and signaling of LXB4 in the retina were defined by single-cell RNA sequencing. Retinal neurodegeneration was induced by injecting silicone oil into the anterior chamber of the mouse eyes, which induced sustained and stable ocular hypertension. Morphological characterization of microglia populations in the retina and optic nerve was established by MorphOMICs and pseudotime trajectory analyses. The pathways and mechanisms of action of LXB4 in the optic nerve were investigated using bulk RNA sequencing. Transcriptomics data was validated by qPCR and immunohistochemistry. Differences between experimental groups were assessed by Student's t-test and one-way ANOVA. Results Single-cell transcriptomics identified microglia as a primary target for LXB4 in the healthy retina. LXB4 downregulated genes that drive microglia environmental sensing and reactivity responses. Analysis of microglial function revealed that ocular hypertension induced distinct, temporally defined, and dynamic phenotypes in the retina and, unexpectedly, in the distal myelinated optic nerve. Microglial expression of CD74, a marker of disease-associated microglia in the brain, was only induced in a unique population of optic nerve microglia, but not in the retina. Genetic deletion of lipoxin formation correlated with the presence of a CD74 optic nerve microglia population in normotensive eyes, while LXB4 treatment during ocular hypertension shifted optic nerve microglia toward a homeostatic morphology and non-reactive state and downregulated the expression of CD74. Furthermore, we identified a correlation between CD74 and phospho-phosphoinositide 3-kinases (p-PI3K) expression levels in the optic nerve, which was reduced by LXB4 treatment. Conclusion We identified early and dynamic changes in the microglia functional phenotype, reactivity, and induction of a unique CD74 microglia population in the distal optic nerve as key features of ocular hypertension-induced neurodegeneration. Our findings establish microglia regulation as a novel LXB4 target in the retina and optic nerve. LXB4 maintenance of a homeostatic optic nerve microglia phenotype and inhibition of a disease-associated phenotype are potential neuroprotective mechanisms for the resident LXB4 pathway.
Collapse
Affiliation(s)
- Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Maggie Lin
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Tanirika Singh
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
| | - Matangi Kumar
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Emily Ward
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Jeremy Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, United States
- Vision Science Program, University of California Berkeley, CA, United States
- Infectious Disease and Immunity Program, University of California Berkeley, CA, United States
| |
Collapse
|
3
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024:S0166-2236(24)00182-6. [PMID: 39455342 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
4
|
Huang KC, Gomes C, Shiga Y, Belforte N, VanderWall KB, Lavekar SS, Fligor CM, Harkin J, Hetzer SM, Patil SV, Di Polo A, Meyer JS. Acquisition of neurodegenerative features in isogenic OPTN(E50K) human stem cell-derived retinal ganglion cells associated with autophagy disruption and mTORC1 signaling reduction. Acta Neuropathol Commun 2024; 12:164. [PMID: 39425218 PMCID: PMC11487784 DOI: 10.1186/s40478-024-01872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research, with great potential for the use of hPSC-derived RGCs for studies of human retinal development, in vitro disease modeling, drug discovery, as well as their potential use for cell replacement therapeutics. Of all these possibilities, the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention, due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies, many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants. Thus, to further advance this field of research, in the current study we leveraged an isogenic hPSC model with a glaucoma-associated mutation in the Optineurin (OPTN) protein, which plays a prominent role in autophagy. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor AMPK, along with subsequent neurodegeneration in OPTN(E50K) RGCs differentiated from hPSCs, and have further validated some of these findings in a mouse model of ocular hypertension. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN(E50K) RGCs. Taken together, these results highlighted that autophagy disruption resulted in increased autophagic demand which was associated with downregulated signaling through mTORC1, contributing to the degeneration of RGCs.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yukihiro Shiga
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Kirstin B VanderWall
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sailee S Lavekar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shelby M Hetzer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shruti V Patil
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Saha A, Bucci T, Baudin J, Sinha R. Regional tuning of photoreceptor adaptation in the primate retina. Nat Commun 2024; 15:8821. [PMID: 39394185 PMCID: PMC11470117 DOI: 10.1038/s41467-024-53061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
Adaptation in cone photoreceptors allows our visual system to effectively operate over an enormous range of light intensities. However, little is known about the properties of cone adaptation in the specialized region of the primate central retina called the fovea, which is densely packed with cones and mediates high-acuity central vision. Here we show that macaque foveal cones exhibit weaker and slower luminance adaptation compared to cones in the peripheral retina. We find that this difference in adaptive properties between foveal and peripheral cones is due to differences in the magnitude of a hyperpolarization-activated current, Ih. This Ih current regulates the strength and time course of luminance adaptation in peripheral cones where it is more prominent than in foveal cones. A weaker and slower adaptation in foveal cones helps maintain a higher sensitivity for a longer duration which may be well-suited for maximizing the collection of high-acuity information at the fovea during gaze fixation between rapid eye movements.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Theodore Bucci
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA.
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
6
|
Uribe-Salazar JM, Kaya G, Weyenberg K, Radke B, Hino K, Soto DC, Shiu JL, Zhang W, Ingamells C, Haghani NK, Xu E, Rosas J, Simó S, Miesfeld J, Glaser T, Baraban SC, Jao LE, Dennis MY. Zebrafish models of human-duplicated SRGAP2 reveal novel functions in microglia and visual system development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612570. [PMID: 39314374 PMCID: PMC11418993 DOI: 10.1101/2024.09.11.612570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The expansion of the human SRGAP2 family, resulting in a human-specific paralog SRGAP2C, likely contributed to altered evolutionary brain features. The introduction of SRGAP2C in mouse models is associated with changes in cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions. However, the significance of SRGAP2 duplication beyond neocortex development has not been elucidated due to the embryonic lethality of complete Srgap2 knockout in mice. Using zebrafish, we show that srgap2 knockout results in viable offspring and that these larvae phenocopy "humanized" SRGAP2C larvae, including altered morphometric features (i.e., reduced body length and inter-eye distance) and differential expression of synapse-, axonogenesis-, and vision-related genes. Through single-cell transcriptome analysis, we demonstrate a skewed balance of excitatory and inhibitory neurons that likely contribute to increased susceptibility to seizures displayed by Srgap2 mutant larvae, a phenotype resembling SRGAP2 loss-of-function in a child with early infantile epileptic encephalopathy. Single-cell data also shows strong endogenous expression of srgap2 in microglia with mutants exhibiting altered membrane dynamics and likely delayed maturation of microglial cells. Microglia cells expressing srgap2 were also detected in the developing eye together with altered expression of genes related to axonogenesis in mutant retinal cells. Consistent with the perturbed gene expression in the retina, we found that SRGAP2 mutant larvae exhibited increased sensitivity to broad and fine visual cues. Finally, comparing the transcriptomes of relevant cell types between human (+SRGAP2C) and non-human primates (-SRGAP2C) revealed significant overlaps of gene alterations with mutant cells in our zebrafish models; this suggests that SRGAP2C plays a similar role altering microglia and the visual system in modern humans. Together, our functional characterization of conserved ortholog Srgap2 and human SRGAP2C in zebrafish uncovered novel gene functions and highlights the strength of cross-species analysis in understanding the development of human-specific features.
Collapse
Affiliation(s)
- José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Gulhan Kaya
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - KaeChandra Weyenberg
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Brittany Radke
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Jia-Lin Shiu
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Wenzhu Zhang
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Cole Ingamells
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Nicholas K. Haghani
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Emily Xu
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| | - Joseph Rosas
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Joel Miesfeld
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, WI, USA
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Scott C. Baraban
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Famiglietti EV. Mammalian Retinal Bipolar Cells: Morphological Identification and Systematic Classification in Rabbit Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613998. [PMID: 39345639 PMCID: PMC11429971 DOI: 10.1101/2024.09.19.613998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal bipolar cells (BCs) convey visual signals from photoreceptors to more than 50 types of rabbit retinal ganglion cells (Famiglietti, 2020). More than 40 years ago, 10-11 types of bipolar cell were recognized in rabbit and cat retinas (Famiglietti, 1981). Twenty years later 10 were identified in mouse, rat, and monkey (Gosh et al., 2004), while recent molecular genetic studies indicate that there are 15 types of bipolar cell in mouse retina (Shekhar et al., 2016). The present detailed study of more than 800 bipolar cells in ten Golgi-impregnated rabbit retinas indicates that there are 14-16 types of cone bipolar cell and one type of rod bipolar cell in rabbit retina. These have been carefully analyzed in terms of dendritic and axonal morphology, and axon terminal stratification with respect to fiducial starburst amacrine cells. In fortuitous proximity, several types of bipolar cell can be related to identified ganglion cells by stratification and by contacts suggestive of synaptic connection. These results are compared with other studies of rabbit bipolar cells. Homologies with bipolar cells of mouse and monkey are considered in functional terms.
Collapse
|
8
|
Xu Z, Kunala K, Murphy P, Patak L, Puthussery T, McGregor J. Foveal Retinal Ganglion Cells Develop Altered Calcium Dynamics Weeks After Photoreceptor Ablation. OPHTHALMOLOGY SCIENCE 2024; 4:100520. [PMID: 38881601 PMCID: PMC11179405 DOI: 10.1016/j.xops.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 06/18/2024]
Abstract
Purpose Physiological changes in retinal ganglion cells (RGCs) have been reported in rodent models of photoreceptor (PR) loss, but this has not been investigated in primates. By expressing both a calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR) in foveal RGCs of the macaque, we reactivated RGCs in vivo and assessed their response in the weeks and years after PR loss. Design We used an in vivo calcium imaging approach to record optogenetically evoked activity in deafferented RGCs in primate fovea. Cellular scale recordings were made longitudinally over a 10-week period after PR ablation and compared with responses from RGCs that had lost PR input >2 years prior. Participants Three eyes received PR ablation, the right eye of a male Macaca mulatta (M1), the left eye of a female Macaca fascicularis (M2), and the right eye of a male Macaca fascicularis (M3). Two animals were used for in vivo recording, 1 for histological assessment. Methods Cones were ablated with an ultrafast laser delivered through an adaptive optics scanning light ophthalmoscope (AOSLO). A 0.5 second pulse of 25 Hz 660 nm light optogenetically stimulated RGCs, and the resulting GCaMP fluorescence signal was recorded using an AOSLO. Measurements were repeated over 10 weeks immediately after PR ablation, at 2.3 years and in control RGCs. Main Outcome Measures The calcium rise time, decay constant, and sensitivity index of optogenetic-mediated RGC were derived from GCaMP fluorescence recordings from 221 RGCs (animal M1) and 218 RGCs (animal M2) in vivo. Results After PR ablation, the mean decay constant of the calcium response in RGCs decreased 1.5-fold (standard deviation 1.6 ± 0.5 seconds to 0.6 ± 0.3 seconds) over the 10-week observation period in subject 1 and 2.1-fold (standard deviation 2.5 ± 0.5 seconds to 1.2 ± 0.2 seconds) within 8 weeks in subject 2. Calcium rise time and sensitivity index were stable. Optogenetic reactivation remained possible 2.3 years after PR ablation. Conclusions Altered calcium dynamics developed in primate foveal RGCs in the weeks after PR ablation. The mean decay constant of optogenetic-mediated calcium responses decreased 1.5- to twofold. This is the first report of this phenomenon in primate retina and further work is required to understand the role these changes play in cell survival and activity. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Zhengyang Xu
- Institute of Optics, University of Rochester, Rochester, New York
| | - Karteek Kunala
- Center for Visual Science, University of Rochester Medical Center, Rochester, New York
| | - Peter Murphy
- Institute of Optics, University of Rochester, Rochester, New York
| | - Laura Patak
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, California
- Vision Science Graduate Program, University of California Berkeley, Berkeley, California
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, California
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California
| | - Juliette McGregor
- Center for Visual Science, University of Rochester Medical Center, Rochester, New York
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
9
|
Warwick RA, Riccitelli S, Heukamp AS, Yaakov H, Swain BP, Ankri L, Mayzel J, Gilead N, Parness-Yossifon R, Di Marco S, Rivlin-Etzion M. Top-down modulation of the retinal code via histaminergic neurons of the hypothalamus. SCIENCE ADVANCES 2024; 10:eadk4062. [PMID: 39196935 PMCID: PMC11352916 DOI: 10.1126/sciadv.adk4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
The mammalian retina is considered an autonomous circuit, yet work dating back to Ramon y Cajal indicates that it receives inputs from the brain. How such inputs affect retinal processing has remained unknown. We confirmed brain-to-retina projections of histaminergic neurons from the mouse hypothalamus. Histamine application ex vivo altered the activity of various retinal ganglion cells (RGCs), including direction-selective RGCs that gained responses to high motion velocities. These results were reproduced in vivo with optic tract recordings where histaminergic retinopetal axons were activated chemogenetically. Such changes could improve vision of fast-moving objects (e.g., while running), which fits with the known increased activity of histaminergic neurons during arousal. An antihistamine drug reduced optomotor responses to high-speed moving stimuli in freely moving mice. In humans, the same antihistamine nonuniformly modulated visual sensitivity across the visual field, indicating an evolutionary conserved function of the histaminergic system. Our findings expose a previously unappreciated role for brain-to-retina projections in modulating retinal function.
Collapse
Affiliation(s)
- Rebekah A. Warwick
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bani Prasad Swain
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Mayzel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Gilead
- Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel
| | | | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | |
Collapse
|
10
|
Shayler DW, Stachelek K, Cambier L, Lee S, Bai J, Reid MW, Weisenberger DJ, Bhat B, Aparicio JG, Kim Y, Singh M, Bay M, Thornton ME, Doyle EK, Fouladian Z, Erberich SG, Grubbs BH, Bonaguidi MA, Craft CM, Singh HP, Cobrinik D. Identification and characterization of early human photoreceptor states and cell-state-specific retinoblastoma-related features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.28.530247. [PMID: 38915659 PMCID: PMC11195049 DOI: 10.1101/2023.02.28.530247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Human cone photoreceptors differ from rods and serve as the retinoblastoma cell-of-origin, yet the developmental basis for their distinct behaviors is poorly understood. Here, we used deep full-length single-cell RNA-sequencing to distinguish post-mitotic cone and rod developmental states and identify cone-specific features that contribute to retinoblastomagenesis. The analyses revealed early post-mitotic cone- and rod-directed populations characterized by higher THRB or NRL regulon activities, an immature photoreceptor precursor population with concurrent cone and rod gene and regulon expression, and distinct early and late cone and rod maturation states distinguished by maturation-associated declines in RAX regulon activity. Unexpectedly, both L/M cone and rod precursors co-expressed NRL and THRB RNAs, yet they differentially expressed functionally antagonistic NRL and THRB isoforms and prematurely terminated THRB transcripts. Early L/M cone precursors exhibited successive expression of several lncRNAs along with MYCN, which composed the seventh most L/M-cone-specific regulon, and SYK, which contributed to the early cone precursors' proliferative response to RB1 loss. These findings reveal previously unrecognized photoreceptor precursor states and a role for early cone-precursor-intrinsic SYK expression in retinoblastoma initiation.
Collapse
Affiliation(s)
- Dominic W.H. Shayler
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin Stachelek
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Cancer Biology and Genomics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda Cambier
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sunhye Lee
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jinlun Bai
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark W. Reid
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Daniel J. Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bhavana Bhat
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Yeha Kim
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Mitali Singh
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maxwell Bay
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E. Thornton
- Maternal-Fetal Medicine Division of the Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eamon K. Doyle
- Department of Radiology and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephan G. Erberich
- Department of Radiology and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H. Grubbs
- Maternal-Fetal Medicine Division of the Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Bonaguidi
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Development, Stem Cell, and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheryl Mae Craft
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hardeep P. Singh
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
An MJ, Kim JY, Kim J, Kim DH, Shin GS, Lee HM, Jo AR, Park Y, Hwangbo Y, Kim CH, Kim MJ, Jung YS, Kim J, Rhee S, Seo SB, Kim JW. Reorganization of H3K9me heterochromatin leads to neuronal impairment via the cascading destruction of the KDM3B-centered epigenomic network. iScience 2024; 27:110380. [PMID: 39165843 PMCID: PMC11334829 DOI: 10.1016/j.isci.2024.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
Histone H3K9 methylated heterochromatin silences repetitive non-coding sequences and lineage-specific genes during development, but how tissue-specific genes escape from heterochromatin in differentiated cells is unclear. Here, we examine age-dependent transcriptomic profiling of terminally differentiated mouse retina to identify epigenetic regulators involved in heterochromatin reorganization. The single-cell RNA sequencing analysis reveals a gradual downregulation of Kdm3b in cone photoreceptors during aging. Disruption of Kdm3b (Kdm3b +/- ) of 12-month-old mouse retina leads to the decreasing number of cones via apoptosis, and it changes the morphology of cone ribbon synapses. Integration of the transcriptome with epigenomic analysis in Kdm3b +/- retinas demonstrates gains of heterochromatin features in synapse assembly and vesicle transport genes that are downregulated via the accumulation of H3K9me1/2. Contrarily, losses of heterochromatin in apoptotic genes exacerbated retinal neurodegeneration. We propose that the KDM3B-centered epigenomic network is crucial for balancing of cone photoreceptor homeostasis via the modulation of gene set-specific heterochromatin features during aging.
Collapse
Affiliation(s)
- Mi-Jin An
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Ji-Young Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jinho Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Dae-Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun-Min Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Ah-Ra Jo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yuna Park
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yujeong Hwangbo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Mi Jin Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sang-Beom Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
12
|
Gomes C, Huang KC, Harkin J, Baker A, Hughes JM, Pan Y, Tutrow K, VanderWall KB, Lavekar SS, Hernandez M, Cummins TR, Canfield SG, Meyer JS. Induction of astrocyte reactivity promotes neurodegeneration in human pluripotent stem cell models. Stem Cell Reports 2024; 19:1122-1136. [PMID: 39094561 PMCID: PMC11368677 DOI: 10.1016/j.stemcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Reactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Cátia Gomes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kang-Chieh Huang
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aaron Baker
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason M Hughes
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yanling Pan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kaylee Tutrow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kirstin B VanderWall
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sailee S Lavekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Melody Hernandez
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Theodore R Cummins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Scott G Canfield
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jason S Meyer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
El Hajji S, Shiga Y, Belforte N, Solorio YC, Tastet O, D’Onofrio P, Dotigny F, Prat A, Arbour N, Fortune B, Di Polo A. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. SCIENCE ADVANCES 2024; 10:eadl5722. [PMID: 39110798 PMCID: PMC11305393 DOI: 10.1126/sciadv.adl5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.
Collapse
Affiliation(s)
- Sana El Hajji
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nicolas Belforte
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Philippe D’Onofrio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Florence Dotigny
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Kaylor JJ, Frederiksen R, Bedrosian CK, Huang M, Stennis-Weatherspoon D, Huynh T, Ngan T, Mulamreddy V, Sampath AP, Fain GL, Travis GH. RDH12 allows cone photoreceptors to regenerate opsin visual pigments from a chromophore precursor to escape competition with rods. Curr Biol 2024; 34:3342-3353.e6. [PMID: 38981477 PMCID: PMC11303097 DOI: 10.1016/j.cub.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.
Collapse
Affiliation(s)
- Joanna J Kaylor
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rikard Frederiksen
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Christina K Bedrosian
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Melody Huang
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - David Stennis-Weatherspoon
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Theodore Huynh
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tiffany Ngan
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Varsha Mulamreddy
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Alapakkam P Sampath
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gordon L Fain
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gabriel H Travis
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA; University of California Los Angeles, Department of Biological Chemistry, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Starr AL, Fraser HB. A general principle governing neuronal evolution reveals a human-accelerated neuron type potentially underlying the high prevalence of autism in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606407. [PMID: 39131279 PMCID: PMC11312593 DOI: 10.1101/2024.08.02.606407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The remarkable ability of a single genome sequence to encode a diverse collection of distinct cell types, including the thousands of cell types found in the mammalian brain, is a key characteristic of multicellular life. While it has been observed that some cell types are far more evolutionarily conserved than others, the factors driving these differences in evolutionary rate remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under greater selective constraint than rarer neuronal types, leading to variation in their rates of evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-sequencing datasets from three distinct regions of the mammalian neocortex. We found a strikingly consistent relationship where more abundant neuronal subtypes show greater gene expression conservation between species, which replicated across three independent datasets covering >106 neurons from six species. Based on this principle, we discovered that the most abundant type of neocortical neurons-layer 2/3 intratelencephalic excitatory neurons-has evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this accelerated evolution was accompanied by the dramatic down-regulation of autism-associated genes, which was likely driven by polygenic positive selection specific to the human lineage. In sum, we introduce a general principle governing neuronal evolution and suggest that the exceptionally high prevalence of autism in humans may be a direct result of natural selection for lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also rendering an abundant class of neurons more sensitive to perturbation.
Collapse
Affiliation(s)
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Lee SCS, Wei AJ, Martin PR, Grünert U. Thorny and Tufted Retinal Ganglion Cells Express the Transcription Factor Forkhead Proteins Foxp1 and Foxp2 in Marmoset (Callithrix jacchus). J Comp Neurol 2024; 532:e25663. [PMID: 39235164 DOI: 10.1002/cne.25663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The transcription factor forkhead/winged-helix domain proteins Foxp1 and Foxp2 have previously been studied in mouse retina, where they are expressed in retinal ganglion cells named F-mini and F-midi. Here we show that both transcription factors are expressed by small subpopulations (on average less than 10%) of retinal ganglion cells in the retina of the marmoset monkey (Callithrix jacchus). The morphology of Foxp1- and Foxp2-expressing cells was revealed by intracellular DiI injections of immunofluorescent cells. Foxp1- and Foxp2-expressing cells comprised multiple types of wide-field ganglion cells, including broad thorny cells, narrow thorny cells, and tufted cells. The large majority of Foxp2-expressing cells were identified as tufted cells. Tufted cells stratify broadly in the middle of the inner plexiform layer. They resemble broad thorny cells but their proximal dendrites are bare of branches and the distal dendrites branch frequently forming dense dendritic tufts. Double labeling with calretinin, a previously established marker for broad thorny and narrow thorny cells, showed that only a small proportion of ganglion cells co-expressed calretinin and Foxp1 or Foxp2 supporting the idea that the two markers are differentially expressed in retinal ganglion cells of marmoset retina.
Collapse
Affiliation(s)
- Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anlai J Wei
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Kunze VP, Angueyra JM, Ball JM, Thomsen MB, Li X, Sabnis A, Nadal-Nicolás FM, Li W. Neurexin 3 is Essential for the Specific Wiring of a Color Pathway in the Mammalian Retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.13.527055. [PMID: 36909547 PMCID: PMC10002642 DOI: 10.1101/2023.02.13.527055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Precise wiring within sensory systems is critical for the accurate transmission of information. In the visual system, S-cone photoreceptors specialize in detecting short-wavelength light, crucial to color perception and environmental cue detection. S-cones form specific synapses with S-cone bipolar cells (SCBCs), a connection that is remarkably consistent across species. Yet, the molecular mechanisms guiding this specificity remain unexplored. To address this, we used the cone-dominant ground squirrel for deep-sequencing of cone subtype transcriptomes and identified Nrxn3 as an essential molecule for the S-cone to SCBC synapse. Using transgenic mouse models, we further examined the role of Nrxn3 in S-cones and discovered a significant reduction of SCBC connections in the absence of Nrxn3. This finding extends the known functions of neurexins, typically associated with synapse regulation, by highlighting their essential role in a specific synaptic connection for the first time. Moreover, the differentially expressed genes identified here pave the way for further investigations into the unique functions of cone subtypes.
Collapse
|
19
|
Corrigan EK, DeBerardine M, Poddar A, Turrero García M, Schmitz MT, Harwell CC, Paredes MF, Krienen FM, Pollen AA. Conservation, alteration, and redistribution of mammalian striatal interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605664. [PMID: 39131311 PMCID: PMC11312536 DOI: 10.1101/2024.07.29.605664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Mammalian brains vary in size, structure, and function, but the extent to which evolutionarily novel cell types contribute to this variation remains unresolved1-4. Recent studies suggest there is a primate-specific population of striatal inhibitory interneurons, the TAC3 interneurons5. However, there has not yet been a detailed analysis of the spatial and phylogenetic distribution of this population. Here, we profile single cell gene expression in the developing pig (an ungulate) and ferret (a carnivore), representing 94 million years divergence from primates, and assign newborn inhibitory neurons to initial classes first specified during development6. We find that the initial class of TAC3 interneurons represents an ancestral striatal population that is also deployed towards the cortex in pig and ferret. In adult mouse, we uncover a rare population expressing Tac2, the ortholog of TAC3, in ventromedial striatum, prompting a reexamination of developing mouse striatal interneuron initial classes by targeted enrichment of their precursors. We conclude that the TAC3 interneuron initial class is conserved across Boreoeutherian mammals, with the mouse population representing Th striatal interneurons, a subset of which expresses Tac2. This study suggests that initial classes of telencephalic inhibitory neurons are largely conserved and that during evolution, neuronal types in the mammalian brain change through redistribution and fate refinement, rather than by derivation of novel precursors early in development.
Collapse
Affiliation(s)
- Emily K. Corrigan
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aunoy Poddar
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Miguel Turrero García
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Corey C. Harwell
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA
| | - Mercedes F. Paredes
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Fenna M. Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alex A. Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Lin Y, Pan Z, Zeng Y, Yang Y, Dai Z. Detecting novel cell type in single-cell chromatin accessibility data via open-set domain adaptation. Brief Bioinform 2024; 25:bbae370. [PMID: 39073828 DOI: 10.1093/bib/bbae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Recent advances in single-cell technologies enable the rapid growth of multi-omics data. Cell type annotation is one common task in analyzing single-cell data. It is a challenge that some cell types in the testing set are not present in the training set (i.e. unknown cell types). Most scATAC-seq cell type annotation methods generally assign each cell in the testing set to one known type in the training set but neglect unknown cell types. Here, we present OVAAnno, an automatic cell types annotation method which utilizes open-set domain adaptation to detect unknown cell types in scATAC-seq data. Comprehensive experiments show that OVAAnno successfully identifies known and unknown cell types. Further experiments demonstrate that OVAAnno also performs well on scRNA-seq data. Our codes are available online at https://github.com/lisaber/OVAAnno/tree/master.
Collapse
Affiliation(s)
- Yuefan Lin
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zixiang Pan
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuansong Zeng
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiming Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
21
|
Fitzpatrick MJ, Krizan J, Hsiang JC, Shen N, Kerschensteiner D. A pupillary contrast response in mice and humans: Neural mechanisms and visual functions. Neuron 2024; 112:2404-2422.e9. [PMID: 38697114 PMCID: PMC11257825 DOI: 10.1016/j.neuron.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
In the pupillary light response (PLR), increases in ambient light constrict the pupil to dampen increases in retinal illuminance. Here, we report that the pupillary reflex arc implements a second input-output transformation; it senses temporal contrast to enhance spatial contrast in the retinal image and increase visual acuity. The pupillary contrast response (PCoR) is driven by rod photoreceptors via type 6 bipolar cells and M1 ganglion cells. Temporal contrast is transformed into sustained pupil constriction by the M1's conversion of excitatory input into spike output. Computational modeling explains how the PCoR shapes retinal images. Pupil constriction improves acuity in gaze stabilization and predation in mice. Humans exhibit a PCoR with similar tuning properties to mice, which interacts with eye movements to optimize the statistics of the visual input for retinal encoding. Thus, we uncover a conserved component of active vision, its cell-type-specific pathway, computational mechanisms, and optical and behavioral significance.
Collapse
Affiliation(s)
- Michael J Fitzpatrick
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jenna Krizan
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
22
|
Lambiri DW, Levin LA. Maculopapillary Bundle Degeneration in Optic Neuropathies. Curr Neurol Neurosci Rep 2024; 24:203-218. [PMID: 38833037 DOI: 10.1007/s11910-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Degeneration of the maculopapillary bundle (MPB) is a prominent feature in a spectrum of optic neuropathies. MPB-selective degeneration is seen in specific conditions, such as nutritional and toxic optic neuropathies, Leber hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA). Despite their distinct etiologies and clinical presentations, which encompass variations in age of incidence and monocular or binocular onset, these disorders share a core molecular mechanism: compromised mitochondrial homeostasis. This disruption is characterized by dysfunctions in mitochondrial metabolism, biogenesis, and protein synthesis. This article provides a comprehensive understanding of the MPB's role in optic neuropathies, emphasizing the importance of mitochondrial mechanisms in the pathogenesis of these conditions. RECENT FINDINGS Optical coherence tomography studies have characterized the retinal nerve fiber layer changes accompanying mitochondrial-affiliated optic neuropathies. Selective thinning of the temporal optic nerve head is preceded by thickening in early stages of these disorders which correlates with reductions in macular ganglion cell layer thinning and vascular atrophy. A recently proposed mechanism underpinning the selective atrophy of the MPB involves the positive feedback of reactive oxygen species generation as a common consequence of mitochondrial dysfunction. Additionally, new research has revealed that the MPB can undergo degeneration in the early stages of glaucoma, challenging the historically held belief that this area was not involved in this common optic neuropathy. A variety of anatomical risk factors influence the propensity of glaucomatous MPB degeneration, and cases present distinct patterns of ganglion cell degeneration that are distinct from those observed in mitochondria-associated diseases. This review synthesizes clinical and molecular research on primary MPB disorders, highlighting the commonalities and differences in their pathogenesis. KEY POINTS (BOX) 1. Temporal degeneration of optic nerve fibers accompanied by cecocentral scotoma is a hallmark of maculopapillary bundle (MPB) degeneration. 2. Mechanisms of MPB degeneration commonly implicate mitochondrial dysfunction. 3. Recent research challenges the traditional belief that the MPB is uninvolved in glaucoma by showing degeneration in the early stages of this common optic neuropathy, yet with features distinct from other MPB-selective neuropathies. 4. Reactive oxygen species generation is a mechanism linking mitochondrial mechanisms of MPB-selective optic neuropathies, but in-vivo and in-vitro studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Darius W Lambiri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
23
|
Li J, Choi J, Cheng X, Ma J, Pema S, Sanes JR, Mardon G, Frankfort BJ, Tran NM, Li Y, Chen R. Comprehensive single-cell atlas of the mouse retina. iScience 2024; 27:109916. [PMID: 38812536 PMCID: PMC11134544 DOI: 10.1016/j.isci.2024.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity by characterizing cell types across tissues and species. While several mouse retinal scRNA-seq datasets exist, each dataset is either limited in cell numbers or focused on specific cell classes, thereby hindering comprehensive gene expression analysis across all retina types. To fill the gap, we generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse retinas, enriched for rare population cells via antibody-based magnetic cell sorting. Integrating this dataset with public datasets, we constructed the Mouse Retina Cell Atlas (MRCA) for wild-type mice, encompassing over 330,000 cells, characterizing 12 major classes and 138 cell types. The MRCA consolidates existing knowledge, identifies new cell types, and is publicly accessible via CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal, providing a user-friendly resource for the mouse retina research community.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shahil Pema
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin J. Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas M. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Luo Z, Shah S, Tanasa B, Chang KC, Goldberg JL. Gene regulatory roles of growth and differentiation factors in retinal development. iScience 2024; 27:110100. [PMID: 38947520 PMCID: PMC11214324 DOI: 10.1016/j.isci.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Retinal ganglion cell (RGC) differentiation is tightly controlled by extrinsic and intrinsic factors. Growth and differentiation factor 15 (GDF-15) promotes RGC differentiation, opposite to GDF-11 which inhibits RGC differentiation, both in the mouse retina and in human stem cells. To deepen our understanding of how these two closely related molecules confer opposing effects on retinal development, here we assess the transcriptional profiles of mouse retinal progenitors exposed to exogenous GDF-11 or -15. We find a dichotomous effect of GDF-15 on RGC differentiation, decreasing RGCs expressing residual pro-proliferative genes and increasing RGCs expressing non-proliferative genes, suggestive of greater RGC maturation. Furthermore, GDF-11 promoted the differentiation of photoreceptors and amacrine cells. These data enhance our understanding of the mechanisms underlying the differentiation of RGCs and photoreceptors from retinal progenitors and suggest new approaches to the optimization of protocols for the differentiation of these cell types.
Collapse
Affiliation(s)
- Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sahil Shah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Bogdan Tanasa
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
25
|
Xu Y, Tummala SR, Chen X, Vardi N. VDAC in Retinal Health and Disease. Biomolecules 2024; 14:654. [PMID: 38927058 PMCID: PMC11201675 DOI: 10.3390/biom14060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.
Collapse
Affiliation(s)
- Ying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Shanti R. Tummala
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Xiongmin Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D'Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Nat Ecol Evol 2024; 8:1165-1179. [PMID: 38627529 DOI: 10.1038/s41559-024-02404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions. The specialized downstream circuit for rod signalling, called the primary rod pathway, is well characterized in mammals, but circuitry for rod signalling in non-mammals is largely unknown. Here we demonstrate that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA sequencing, we identified two bipolar cell types in zebrafish that are related to mammalian rod bipolar cell (RBCs), the only bipolar type that directly carries rod signals from the outer to the inner retina in the primary rod pathway. By combining electrophysiology, histology and ultrastructural reconstruction of the zebrafish RBCs, we found that, similar to mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells postsynaptic to one RBC type is strikingly similar to that of mammalian RBCs and their amacrine partners, suggesting that the cell types and circuit design of the primary rod pathway emerged before the divergence of teleost fish and mammals. The second RBC type, which forms separate pathways, was either lost in mammals or emerged in fish.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
| | - Yvonne Kölsch
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Florence D D'Orazi
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Vision Science Center, University of Washington, Seattle, WA, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA.
- BioRTC, Yobe State University, Damatsuru, Yobe, Nigeria.
| |
Collapse
|
27
|
Baden T. The vertebrate retina: a window into the evolution of computation in the brain. Curr Opin Behav Sci 2024; 57:None. [PMID: 38899158 PMCID: PMC11183302 DOI: 10.1016/j.cobeha.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 06/21/2024]
Abstract
Animal brains are probably the most complex computational machines on our planet, and like everything in biology, they are the product of evolution. Advances in developmental and palaeobiology have been expanding our general understanding of how nervous systems can change at a molecular and structural level. However, how these changes translate into altered function - that is, into 'computation' - remains comparatively sparsely explored. What, concretely, does it mean for neuronal computation when neurons change their morphology and connectivity, when new neurons appear or old ones disappear, or when transmitter systems are slowly modified over many generations? And how does evolution use these many possible knobs and dials to constantly tune computation to give rise to the amazing diversity in animal behaviours we see today? Addressing these major gaps of understanding benefits from choosing a suitable model system. Here, I present the vertebrate retina as one perhaps unusually promising candidate. The retina is ancient and displays highly conserved core organisational principles across the entire vertebrate lineage, alongside a myriad of adjustments across extant species that were shaped by the history of their visual ecology. Moreover, the computational logic of the retina is readily interrogated experimentally, and our existing understanding of retinal circuits in a handful of species can serve as an anchor when exploring the visual circuit adaptations across the entire vertebrate tree of life, from fish deep in the aphotic zone of the oceans to eagles soaring high up in the sky.
Collapse
|
28
|
Lin F, Li Y, Wang J, Jardines S, King R, Chrenek MA, Wiggs JL, Boatright JH, Geisert EE. POU6F2, a risk factor for glaucoma, myopia and dyslexia, labels specific populations of retinal ganglion cells. Sci Rep 2024; 14:10096. [PMID: 38698014 PMCID: PMC11066091 DOI: 10.1038/s41598-024-60444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.
Collapse
Affiliation(s)
- Fangyu Lin
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Ying Li
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Sandra Jardines
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Rebecca King
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Micah A Chrenek
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Janey L Wiggs
- Massachusetts Eye and Ear, Harvard Medical School Boston, Boston, MA, USA
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, USA
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Godat T, Kohout K, Parkins K, Yang Q, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Noncardinal Color Directions. J Neurosci 2024; 44:e1738232024. [PMID: 38548340 PMCID: PMC11063829 DOI: 10.1523/jneurosci.1738-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - William H Merigan
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York 14607
- Institute of Optics, University of Rochester, Rochester, New York 14611
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, New York 14607
| |
Collapse
|
30
|
Aísa-Marín I, Rovira Q, Díaz N, Calvo-López L, Vaquerizas JM, Marfany G. Specific photoreceptor cell fate pathways are differentially altered in NR2E3-associated diseases. Neurobiol Dis 2024; 194:106463. [PMID: 38485095 DOI: 10.1016/j.nbd.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/21/2024] Open
Abstract
Mutations in NR2E3, a gene encoding an orphan nuclear transcription factor, cause two retinal dystrophies with a distinct phenotype, but the precise role of NR2E3 in rod and cone transcriptional networks remains unclear. To dissect NR2E3 function, we performed scRNA-seq in the retinas of wildtype and two different Nr2e3 mouse models that show phenotypes similar to patients carrying NR2E3 mutations. Our results reveal that rod and cone populations are not homogeneous and can be separated into different sub-classes. We identify a previously unreported cone pathway that generates hybrid cones co-expressing both cone- and rod-related genes. In mutant retinas, this hybrid cone subpopulation is more abundant and includes a subpopulation of rods transitioning towards a cone cell fate. Hybrid photoreceptors with high misexpression of cone- and rod-related genes are prone to regulated necrosis. Overall, our results shed light on the role of NR2E3 in modulating photoreceptor differentiation towards cone and rod fates and explain how different mutations in NR2E3 lead to distinct visual disorders in humans.
Collapse
Affiliation(s)
- Izarbe Aísa-Marín
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain; IBUB-IRSJD, Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Sant Joan de Déu, Barcelona 08028, Spain; CIBERER, Instituto de Salud Carlos III, Barcelona 08028, Spain
| | - Quirze Rovira
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Noelia Díaz
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Laura Calvo-López
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain
| | - Juan M Vaquerizas
- Max-Planck-Institute for Molecular Biomedicine, Münster 48149, Germany; MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK.; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Gemma Marfany
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Spain; IBUB-IRSJD, Institut de Biomedicina de la Universitat de Barcelona-Institut de Recerca Sant Joan de Déu, Barcelona 08028, Spain; CIBERER, Instituto de Salud Carlos III, Barcelona 08028, Spain; DBGen Ocular Genomics, Barcelona 08028, Spain.
| |
Collapse
|
31
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and developmental specialization of foveal cell types in the marmoset. Proc Natl Acad Sci U S A 2024; 121:e2313820121. [PMID: 38598343 PMCID: PMC11032471 DOI: 10.1073/pnas.2313820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Ruiqi Xin
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
32
|
Vlasits AL, Syeda M, Wickman A, Guzman P, Schmidt TM. Atypical retinal function in a mouse model of Fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585283. [PMID: 38559003 PMCID: PMC10980068 DOI: 10.1101/2024.03.15.585283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Altered function of peripheral sensory neurons is an emerging mechanism for symptoms of autism spectrum disorders. Visual sensitivities are common in autism, but whether differences in the retina might underlie these sensitivities is not well-understood. We explored retinal function in the Fmr1 knockout model of Fragile X syndrome, focusing on a specific type of retinal neuron, the "sustained On alpha" retinal ganglion cell. We found that these cells exhibit changes in dendritic structure and dampened responses to light in the Fmr1 knockout. We show that decreased light sensitivity is due to increased inhibitory input and reduced E-I balance. The change in E-I balance supports maintenance of circuit excitability similar to what has been observed in cortex. These results show that loss of Fmr1 in the mouse retina affects sensory function of one retinal neuron type. Our findings suggest that the retina may be relevant for understanding visual function in Fragile X syndrome.
Collapse
Affiliation(s)
- Anna L Vlasits
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Ophthalmology, University of Illinois, Chicago, IL, USA
- Lead contact
| | - Maria Syeda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Annelise Wickman
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Pedro Guzman
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
33
|
Hsiang JC, Shen N, Soto F, Kerschensteiner D. Distributed feature representations of natural stimuli across parallel retinal pathways. Nat Commun 2024; 15:1920. [PMID: 38429280 PMCID: PMC10907388 DOI: 10.1038/s41467-024-46348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
How sensory systems extract salient features from natural environments and organize them across neural pathways is unclear. Combining single-cell and population two-photon calcium imaging in mice, we discover that retinal ON bipolar cells (second-order neurons of the visual system) are divided into two blocks of four types. The two blocks distribute temporal and spatial information encoding, respectively. ON bipolar cell axons co-stratify within each block, but separate laminarly between them (upper block: diverse temporal, uniform spatial tuning; lower block: diverse spatial, uniform temporal tuning). ON bipolar cells extract temporal and spatial features similarly from artificial and naturalistic stimuli. In addition, they differ in sensitivity to coherent motion in naturalistic movies. Motion information is distributed across ON bipolar cells in the upper and the lower blocks, multiplexed with temporal and spatial contrast, independent features of natural scenes. Comparing the responses of different boutons within the same arbor, we find that axons of all ON bipolar cell types function as computational units. Thus, our results provide insights into the visual feature extraction from naturalistic stimuli and reveal how structural and functional organization cooperate to generate parallel ON pathways for temporal and spatial information in the mammalian retina.
Collapse
Affiliation(s)
- Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
35
|
Hasan N, Gregg RG. Cone Synaptic function is modulated by the leucine rich repeat (LRR) adhesion molecule LRFN2. eNeuro 2024; 11:ENEURO.0120-23.2024. [PMID: 38408870 PMCID: PMC10957230 DOI: 10.1523/eneuro.0120-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Daylight vision is mediated by cone photoreceptors in vertebrates, which synapse with bipolar cells (BCs) and horizontal (HCs) cells. This cone synapse is functionally and anatomically complex, connecting to 8 types of depolarizing BCs (DBCs) and 5 types of hyperpolarizing BCs (HBCs) in mice. The dendrites of DBCs and HCs cells make invaginating ribbon synapses with the cone axon terminal, while HBCs form flat synapses with the cone pedicles. The molecular architecture that underpins this organization is relatively poorly understood. To identify new proteins involved in synapse formation and function we used an unbiased proteomic approach and identified LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2) as a component of the DBC signaling complex. LRFN2 is selectively expressed at cone terminals and co-localizes with PNA, and other DBC signalplex members. In LRFN2 deficient mice, the synaptic markers: LRIT3, ELFN2, mGluR6, TRPM1 and GPR179 are properly localized. Similarly, LRFN2 expression and localization is not dependent on these synaptic proteins. In the absence of LRFN2 the cone-mediated photopic electroretinogram b-wave amplitude is reduced at the brightest flash intensities. These data demonstrate that LRFN2 absence compromises normal synaptic transmission between cones and cone DBCs.Significance Statement Signaling between cone photoreceptors and the downstream bipolar cells is critical to normal vision. Cones synapse with 13 different types of bipolar cells forming an invaginating ribbon synapses with 8 types, and flat synapses with 5 types, to form one of the most complex synapses in the brain. In this report a new protein, LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2), was identified that is expressed at the cone synapse. Using Lrfn2 knockout mice we show LRFN2 is required for the normal cone signaling.
Collapse
Affiliation(s)
- Nazarul Hasan
- Departments of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky 40202
- Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky 40202
| | - Ronald G. Gregg
- Departments of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky 40202
- Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
36
|
Williams BN, Draper A, Lang PF, Lewis TR, Smith AL, Mayerl SJ, Rougié M, Simon JM, Arshavsky VY, Greenwald SH, Gamm DM, Pinilla I, Philpot BD. Heterogeneity in the progression of retinal pathologies in mice harboring patient mimicking Impg2 mutations. Hum Mol Genet 2024; 33:448-464. [PMID: 37975905 PMCID: PMC10877459 DOI: 10.1093/hmg/ddad199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Biallelic mutations in interphotoreceptor matrix proteoglycan 2 (IMPG2) in humans cause retinitis pigmentosa (RP) with early macular involvement, albeit the disease progression varies widely due to genetic heterogeneity and IMPG2 mutation type. There are currently no treatments for IMPG2-RP. To aid preclinical studies toward eventual treatments, there is a need to better understand the progression of disease pathology in appropriate animal models. Toward this goal, we developed mouse models with patient mimicking homozygous frameshift (T807Ter) or missense (Y250C) Impg2 mutations, as well as mice with a homozygous frameshift mutation (Q244Ter) designed to completely prevent IMPG2 protein expression, and characterized the trajectory of their retinal pathologies across postnatal development until late adulthood. We found that the Impg2T807Ter/T807Ter and Impg2Q244Ter/Q244Ter mice exhibited early onset gliosis, impaired photoreceptor outer segment maintenance, appearance of subretinal deposits near the optic disc, disruption of the outer retina, and neurosensorial detachment, whereas the Impg2Y250C/Y250C mice exhibited minimal retinal pathology. These results demonstrate the importance of mutation type in disease progression in IMPG2-RP and provide a toolkit and preclinical data for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Brittany N Williams
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Adam Draper
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Patrick F Lang
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University, Durham, NC 27705, United States
| | - Audrey L Smith
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Steven J Mayerl
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Marie Rougié
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Jeremy M Simon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC 27705, United States
| | | | - David M Gamm
- Department of Ophthalmology and Visual Sciences, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza 50009, Spain
- Aragón Health Research Institute (IIS Aragón), Zaragoza 50009, Spain
- Department of Surgery, University of Zaragoza, Zaragoza 50009, Spain
| | - Benjamin D Philpot
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, United States
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
37
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
38
|
Ye F, Wang J, Li J, Mei Y, Guo G. Mapping Cell Atlases at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305449. [PMID: 38145338 PMCID: PMC10885669 DOI: 10.1002/advs.202305449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Recent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications. This review provides a broad overview of the cellular diversity and dynamics across various biological systems. In addition, the incorporation of machine learning techniques into cell atlas analyses opens up exciting prospects for the field of integrative biology.
Collapse
Affiliation(s)
- Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiang310058China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310000China
| |
Collapse
|
39
|
Li J, Choi J, Cheng X, Ma J, Pema S, Sanes JR, Mardon G, Frankfort BJ, Tran NM, Li Y, Chen R. Comprehensive single-cell atlas of the mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577060. [PMID: 38328114 PMCID: PMC10849744 DOI: 10.1101/2024.01.24.577060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity at the single-cell resolution by classifying and characterizing cell types in multiple tissues and species. While several mouse retinal scRNA-seq reference datasets have been published, each dataset either has a relatively small number of cells or is focused on specific cell classes, and thus is suboptimal for assessing gene expression patterns across all retina types at the same time. To establish a unified and comprehensive reference for the mouse retina, we first generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse whole retinas. This dataset was generated through the targeted enrichment of rare population cells via antibody-based magnetic cell sorting. By integrating this new dataset with public datasets, we conducted an integrated analysis to construct the Mouse Retina Cell Atlas (MRCA) for wild-type mice, which encompasses over 330,000 single cells. The MRCA characterizes 12 major classes and 138 cell types. It captured consensus cell type characterization from public datasets and identified additional new cell types. To facilitate the public use of the MRCA, we have deposited it in CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal for visualization and gene expression exploration. The comprehensive MRCA serves as an easy-to-use, one-stop data resource for the mouse retina communities.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Justin Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shahil Pema
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02130, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin J. Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nicholas M. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Zhu D, Brookes DH, Busia A, Carneiro A, Fannjiang C, Popova G, Shin D, Donohue KC, Lin LF, Miller ZM, Williams ER, Chang EF, Nowakowski TJ, Listgarten J, Schaffer DV. Optimal trade-off control in machine learning-based library design, with application to adeno-associated virus (AAV) for gene therapy. SCIENCE ADVANCES 2024; 10:eadj3786. [PMID: 38266077 PMCID: PMC10807795 DOI: 10.1126/sciadv.adj3786] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Adeno-associated viruses (AAVs) hold tremendous promise as delivery vectors for gene therapies. AAVs have been successfully engineered-for instance, for more efficient and/or cell-specific delivery to numerous tissues-by creating large, diverse starting libraries and selecting for desired properties. However, these starting libraries often contain a high proportion of variants unable to assemble or package their genomes, a prerequisite for any gene delivery goal. Here, we present and showcase a machine learning (ML) method for designing AAV peptide insertion libraries that achieve fivefold higher packaging fitness than the standard NNK library with negligible reduction in diversity. To demonstrate our ML-designed library's utility for downstream engineering goals, we show that it yields approximately 10-fold more successful variants than the NNK library after selection for infection of human brain tissue, leading to a promising glial-specific variant. Moreover, our design approach can be applied to other types of libraries for AAV and beyond.
Collapse
Affiliation(s)
- Danqing Zhu
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David H. Brookes
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Akosua Busia
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Galina Popova
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - David Shin
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kevin C. Donohue
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Medicine, University of California San Francisco, San Francisco, CA, USA. 94143
- Kavli Institute of Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Li F. Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zachary M. Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Listgarten
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V. Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Liu J, Yang M, Yu Y, Xu H, Li K, Zhou X. Large language models in bioinformatics: applications and perspectives. ARXIV 2024:arXiv:2401.04155v1. [PMID: 38259343 PMCID: PMC10802675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Large language models (LLMs) are a class of artificial intelligence models based on deep learning, which have great performance in various tasks, especially in natural language processing (NLP). Large language models typically consist of artificial neural networks with numerous parameters, trained on large amounts of unlabeled input using self-supervised or semi-supervised learning. However, their potential for solving bioinformatics problems may even exceed their proficiency in modeling human language. In this review, we will present a summary of the prominent large language models used in natural language processing, such as BERT and GPT, and focus on exploring the applications of large language models at different omics levels in bioinformatics, mainly including applications of large language models in genomics, transcriptomics, proteomics, drug discovery and single cell analysis. Finally, this review summarizes the potential and prospects of large language models in solving bioinformatic problems.
Collapse
Affiliation(s)
- Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Mengyuan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yankai Yu
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Haixia Xu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
42
|
Li L, Zuo S, Liu Y, Yang L, Ge S, Ye F, Chai P, Lu L. Single-Cell Transcriptomic Sequencing Reveals Tissue Architecture and Deciphers Pathological Reprogramming During Retinal Ischemia in Macaca fascicularis. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38214685 PMCID: PMC10790672 DOI: 10.1167/iovs.65.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Purpose Acute retinal arterial ischemia diseases (ARAIDs) are ocular emergencies that require immediate intervention within a restricted therapeutic window to prevent blindness. However, the underlying molecular mechanisms contributing to the pathogenesis of ARAIDs remain enigmatic. Herein, we present the single-cell RNA sequencing (scRNA-seq) alterations during ischemia in the primate retina as a preliminary endeavor in understanding the molecular complexities of ARAIDs. Methods An ophthalmic artery occlusion model was established through ophthalmic artery ligation in two Macaca fascicularis. scRNA-seq and bioinformatics analyses were used to detect retinal changes during ischemia, which are further validated by immunofluorescence analysis. Western blot and flow cytometry assays were performed to measure the microglia polarization status. Results The findings of this study reveal notable changes in the retina under acute ischemic conditions. Particularly, retinal ischemia compromised mitochondrial functions of rod photoreceptors, partly leading to the rapid loss of healthy rods. Furthermore, we observed a noteworthy transcriptional alteration in the activation of microglia induced by ischemia. The targeted correction of the proinflammatory cytokine CXCL8 effectively suppresses microglia M1 polarization in retinal ischemia, ultimately reducing the proinflammatory transformation in vitro. In addition, retina ischemia induced the apoptotic inclination of endothelial cells and the heightened interaction with microglia, which signifies the influence of microglia in disrupting the retinal-blood barrier. Conclusions Our research has successfully identified and described the pathologic alterations occurring in several cell types during a short period of ischemia. These observations provide valuable insights for ameliorating retinal damage and promoting the restoration of vision.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Sipeng Zuo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yan Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Fuxiang Ye
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Krueger MR, Fishman-Williams E, Simó S, Tarantal AF, La Torre A. Expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF in the developing rhesus monkey retina. Differentiation 2024; 135:100743. [PMID: 38147763 PMCID: PMC10868720 DOI: 10.1016/j.diff.2023.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The fovea centralis (fovea) is a specialized region of the primate retina that plays crucial roles in high-resolution visual acuity and color perception. The fovea is characterized by a high density of cone photoreceptors and no rods, and unique anatomical properties that contribute to its remarkable visual capabilities. Early histological analyses identified some of the key events that contribute to foveal development, but the mechanisms that direct the specification of this area are not understood. Recently, the expression of the retinoic acid-metabolizing enzyme CYP26A1 has become a hallmark of some of the retinal specializations found in vertebrates, including the primate fovea and the high-acuity area in avian species. In chickens, the retinoic acid pathway regulates the expression of FGF8 to then direct the development of a rod-free area. Similarly, high levels of CYP26A1, CDKN1A, and NPVF expression have been observed in the primate macula using transcriptomic approaches. However, which retinal cells express these genes and their expression dynamics in the developing primate eye remain unknown. Here, we systematically characterize the expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF during the development of the rhesus monkey retina, from early stages of development in the first trimester until the third trimester (near term). Our data suggest that some of the markers previously proposed to be fovea-specific are not enriched in the progenitors of the rhesus monkey fovea. In contrast, CYP26A1 is expressed at high levels in the progenitors of the fovea, while it localizes in a subpopulation of macular Müller glia cells later in development. Together these data provide invaluable insights into the expression dynamics of several molecules in the nonhuman primate retina and highlight the developmental advancement of the foveal region.
Collapse
Affiliation(s)
- Miranda R Krueger
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States
| | - Elizabeth Fishman-Williams
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States
| | - Alice F Tarantal
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States; Department of Pediatrics, University of California, Davis, Davis, CA, 95616, United States; California National Primate Research Center, University of California, Davis, Davis, CA, 95616, United States
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
44
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
45
|
Rasys AM, Wegerski A, Trainor PA, Hufnagel RB, Menke DB, Lauderdale JD. Dynamic changes in ocular shape during human development and its implications for retina fovea formation. Bioessays 2024; 46:e2300054. [PMID: 38037292 DOI: 10.1002/bies.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
The human fovea is known for its distinctive pit-like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta-analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.
Collapse
Affiliation(s)
- Ashley M Rasys
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
| | - Andrew Wegerski
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Anatomy & Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas B Menke
- Department of Genetics, The University of Georgia, Athens, Georgia, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
46
|
Shao M, Zhang W, Li Y, Tang L, Hao ZZ, Liu S. Patch-seq: Advances and Biological Applications. Cell Mol Neurobiol 2023; 44:8. [PMID: 38123823 DOI: 10.1007/s10571-023-01436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.
Collapse
Affiliation(s)
- Mingting Shao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wei Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ye Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
47
|
Qiao M. Factorized discriminant analysis for genetic signatures of neuronal phenotypes. Front Neuroinform 2023; 17:1265079. [PMID: 38156117 PMCID: PMC10752939 DOI: 10.3389/fninf.2023.1265079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
Navigating the complex landscape of single-cell transcriptomic data presents significant challenges. Central to this challenge is the identification of a meaningful representation of high-dimensional gene expression patterns that sheds light on the structural and functional properties of cell types. Pursuing model interpretability and computational simplicity, we often look for a linear transformation of the original data that aligns with key phenotypic features of cells. In response to this need, we introduce factorized linear discriminant analysis (FLDA), a novel method for linear dimensionality reduction. The crux of FLDA lies in identifying a linear function of gene expression levels that is highly correlated with one phenotypic feature while minimizing the influence of others. To augment this method, we integrate it with a sparsity-based regularization algorithm. This integration is crucial as it selects a subset of genes pivotal to a specific phenotypic feature or a combination thereof. To illustrate the effectiveness of FLDA, we apply it to transcriptomic datasets from neurons in the Drosophila optic lobe. We demonstrate that FLDA not only captures the inherent structural patterns aligned with phenotypic features but also uncovers key genes associated with each phenotype.
Collapse
|
48
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. Nat Commun 2023; 14:8256. [PMID: 38086857 PMCID: PMC10716155 DOI: 10.1038/s41467-023-44063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss. This cell loss greatly diminishes vision, with most patients becoming legally blind. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilize a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing variables that complicate answering this question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restore retinal output to near wild-type levels. Late treatment retinas exhibit continued, albeit slowed, loss of sensitivity and signal fidelity among retinal ganglion cells, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
49
|
Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, Sanes JR, Peng YR. Evolutionary and Developmental Specialization of Foveal Cell Types in the Marmoset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570996. [PMID: 38106142 PMCID: PMC10723441 DOI: 10.1101/2023.12.10.570996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high throughput single cell RNA sequencing to profile retinal cells of the common marmoset ( Callithrix jacchus ), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all its foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia, among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for Müller glia in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution. Significance statement The sharpness of our eyesight hinges on a tiny retinal region known as the fovea. The fovea is pivotal for primate vision and is susceptible to diseases like age-related macular degeneration. We studied the fovea in the marmoset-a primate with ancient evolutionary ties. Our data illustrated the cellular and molecular composition of its fovea across different developmental ages. Our findings highlighted a profound cellular consistency among marmosets, humans, and macaques, emphasizing the value of marmosets in visual research and the study of visual diseases.
Collapse
|
50
|
Santiago CP, Gimmen MY, Lu Y, McNally MM, Duncan LH, Creamer TJ, Orzolek LD, Blackshaw S, Singh MS. Comparative Analysis of Single-cell and Single-nucleus RNA-sequencing in a Rabbit Model of Retinal Detachment-related Proliferative Vitreoretinopathy. OPHTHALMOLOGY SCIENCE 2023; 3:100335. [PMID: 37496518 PMCID: PMC10365955 DOI: 10.1016/j.xops.2023.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 07/28/2023]
Abstract
Purpose Proliferative vitreoretinopathy (PVR) is the most common cause of failure of retinal reattachment surgery, and the molecular changes leading to this aberrant wound healing process are currently unknown. Our ultimate goal is to study PVR pathogenesis by employing single-cell transcriptomics to dissect cellular heterogeneity. Design Here we aimed to compare single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) of retinal PVR samples in the rabbit model. Participants Unilateral induction of PVR lesions in rabbit eyes with contralateral eyes serving as controls. Methods Proliferative vitreoretinopathy was induced unilaterally in Dutch Belted rabbits. At different timepoints after PVR induction, retinas were dissociated into either cells or nuclei suspension and processed for scRNA-seq or snRNA-seq. Main Outcome Measures Single cell and nuclei transcriptomic profiles of retinas after PVR induction. Results Single-cell RNA sequencing and snRNA-seq were conducted on retinas at 4 hours and 14 days after disease induction. Although the capture rate of unique molecular identifiers and genes were greater in scRNA-seq samples, overall gene expression profiles of individual cell types were highly correlated between scRNA-seq and snRNA-seq. A major disparity between the 2 sequencing modalities was the cell type capture rate, however, with glial cell types overrepresented in scRNA-seq, and inner retinal neurons were enriched by snRNA-seq. Furthermore, fibrotic Müller glia were overrepresented in snRNA-seq samples, whereas reactive Müller glia were overrepresented in scRNA-seq samples. Trajectory analyses were similar between the 2 methods, allowing for the combined analysis of the scRNA-seq and snRNA-seq data sets. Conclusions These findings highlight limitations of both scRNA-seq and snRNA-seq analysis and imply that use of both techniques together can more accurately identify transcriptional networks critical for aberrant fibrogenesis in PVR than using either in isolation. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Clayton P. Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Megan Y. Gimmen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Yuchen Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Minda M. McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leighton H. Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Tyler J. Creamer
- Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Linda D. Orzolek
- Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland
| | - Mandeep S. Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|