1
|
Neurocognitive dynamics of human cooperation unveiled by intracranial recordings. Nat Neurosci 2025:10.1038/s41593-024-01825-x. [PMID: 39748108 DOI: 10.1038/s41593-024-01825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Antonelli F, Bernardi F, Koul A, Novembre G, Papaleo F. Emotions in multi-brain dynamics: A promising research frontier. Neurosci Biobehav Rev 2025; 168:105965. [PMID: 39617219 DOI: 10.1016/j.neubiorev.2024.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
Emotions drive and influence social interactions. Actions and reactions driven by emotions are dynamically modulated by continuous feedback loops between all interacting subjects. In this framework, interacting brains operate as an integrated system, with neural dynamics coevolving over time. Neuronal synchronization across brains has been observed in a range of species, including humans, monkeys, bats, and mice. This inter-neural synchrony (INS) has been proposed as a potential mechanism facilitating social interaction by enabling the functional integration of multiple brains. However, the role of emotions in modulating these processes remains underexplored and warrants further investigation. Here we provide a brief overview of studies on inter-neural synchrony in humans and other species, emphasizing the critical role that emotions might play in shaping multibrain dynamics.
Collapse
Affiliation(s)
- Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Fabrizio Bernardi
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy
| | - Atesh Koul
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Giacomo Novembre
- Neuroscience of Perception and Action Laboratory, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Roma 00161, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, Genova 16163, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy.
| |
Collapse
|
3
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
4
|
Greer D, Lei T, Kryshtal A, Jessen ZF, Schwartz GW. Visual identification of conspecifics shapes social behavior in mice. Curr Biol 2024:S0960-9822(24)01582-3. [PMID: 39706174 DOI: 10.1016/j.cub.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
Recognizing conspecifics-others of the same species-in order to determine how to interact with them appropriately is a fundamental goal of animal sensory systems. It has undergone selective pressure in nearly all species. Mice have a large repertoire of social behaviors that are the subject of a rapidly growing field of study in neuroscience. Mouse social interactions likely incorporate all available sensory modalities, and the vast majority of studies have not attempted to isolate them. Our understanding of the role of vision in mouse social interactions remains overlooked, given the prominence of olfactory research in this area. To address this, we developed a behavioral platform that allowed us to present a subject mouse with the visual information of stimulus mice in isolation from olfactory, acoustic, and tactile cues. Our results indicate that the visual identification of the sex or individual identity of other mice influences behavior. These findings highlight the underappreciated role of vision in mouse social interactions and open new avenues to study the visual circuits underlying social behavior.
Collapse
Affiliation(s)
- Devon Greer
- Northwestern Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA.
| | - Tianhao Lei
- Northwestern Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA
| | - Anna Kryshtal
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zachary F Jessen
- Northwestern Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL 60611, USA.
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Wang J, Meng F, Xu C, Zhang Y, Liang K, Han C, Gao Y, Yu X, Li Z, Zeng X, Ni J, Tan H, Yang J, Ma Y. Simultaneous intracranial recordings of interacting brains reveal neurocognitive dynamics of human cooperation. Nat Neurosci 2024:10.1038/s41593-024-01824-y. [PMID: 39672965 DOI: 10.1038/s41593-024-01824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/17/2024] [Indexed: 12/15/2024]
Abstract
Cooperative interactions profoundly shape individual and collective behaviors of social animals. Successful cooperation requires coordinated efforts by cooperators toward collective goals. However, the underlying behavioral dynamics and neuronal mechanisms within and between cooperating brains remain largely unknown. We recorded intracranial electrophysiological signals from human pairs engaged in a cooperation game. We show that teammate coordination and goal pursuit make distinct contributions to the behavioral cooperation dynamics. Increases and decreases in high-gamma activity in the temporoparietal junction (TPJ) and amygdala distinguish between establishing and maintaining cooperation and forecast transitions between these two states. High-gamma activity from distinct neuronal populations encodes teammate coordination and goal pursuit motives, with populations of TPJ neurons preferentially tracking dominant motives of different cooperation states. Across cooperating brains, high-gamma activity in the TPJ and amygdala synchronizes in a state-dependent manner that predicts how well cooperators coordinate. These findings provide fine-grained understandings of human cooperation dynamics as a state-dependent process with distinctive neurocognitive profiles of each state.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Fangang Meng
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Kun Liang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Gao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zizhou Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xiaoyu Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Huixin Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
6
|
De Felice S, Chand T, Croy I, Engert V, Goldstein P, Holroyd CB, Kirsch P, Krach S, Ma Y, Scheele D, Schurz M, Schweinberger SR, Hoehl S, Vrticka P. Relational neuroscience: Insights from hyperscanning research. Neurosci Biobehav Rev 2024; 169:105979. [PMID: 39674533 DOI: 10.1016/j.neubiorev.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models. We propose the term 'Relational Neuroscience' to collate the interdisciplinary research field devoted to modelling the inter-brain dynamics subserving human connections, spanning from real-time joint experiences to long-term social bonds. Hyperscanning, i.e., simultaneously measuring brain activity from multiple individuals, has proven to be a highly promising technique to investigate inter-brain dynamics. Here, we discuss how hyperscanning can help investigate questions within the field of Relational Neuroscience, considering a variety of subfields, including cooperative interactions in dyads and groups, empathy, attachment and bonding, and developmental neuroscience. While presenting Relational Neuroscience in the light of hyperscanning, our discussion also takes into account behaviour, physiology and endocrinology to properly interpret inter-brain dynamics within social contexts. We consider the strengths but also the limitations and caveats of hyperscanning to answer questions about interacting people. The aim is to provide an integrative framework for future work to build better theories across a variety of contexts and research subfields to model human sociality.
Collapse
Affiliation(s)
| | - Tara Chand
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Sonipat, Haryana, India; Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Veronika Engert
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Pavel Goldstein
- Integrative Pain Laboratory, School of Public Health, University of Haifa, Haifa, Israel
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychology, University of Heidelberg, Germany; German Center for Mental Health (DZPG), Site Mannheim-Heidelberg-Ulm, Germany
| | - Sören Krach
- Klinik für Psychiatrie und Psychotherapie, University of Lübeck, Lübeck, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Ruhr University Bochum, Germany
| | - Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Department of General Psychology, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - Pascal Vrticka
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
7
|
Lai CH, Park G, Xu P, Sun X, Ge Q, Jin Z, Betts S, Liu X, Liu Q, Simha R, Zeng C, Lu H, Du J. Decoding the hidden variabilities in mPFC descending pathways across emotional states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596238. [PMID: 38853906 PMCID: PMC11160632 DOI: 10.1101/2024.05.28.596238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Effective emotional regulation, crucial for adaptive behavior, is mediated by the medial prefrontal cortex (mPFC) via connections to the basolateral amygdala (BLA) and nucleus accumbens (NAc), traditionally considered functionally similar in modulating reward and aversion responses. However, how the mPFC balances these descending pathways to control behavioral outcomes remains unclear. We found that while overall firing patterns appeared consistent across emotional states, deeper analysis revealed distinct variabilities. Specifically, mPFC→BLA neurons, especially "center-ON" neurons, exhibited heightened activity during anxiety-related behaviors, highlighting their role in anxiety encoding. Conversely, mPFC→NAc neurons were more active during exploratory behaviors, implicating them in processing positive emotional states. Notably, mPFC→NAc neurons showed significant pattern decorrelation during social interactions, suggesting a pivotal role in encoding social preference. Additionally, chronic emotional states affected these pathways differently: positive states enhanced mPFC→NAc activity, while negative states boosted mPFC→BLA activity. These findings challenge the assumed functional similarity and highlight distinct contributions to emotional regulation, suggesting new avenues for therapeutic interventions.
Collapse
|
8
|
Isaac J, Murugan M. Interconnected neural circuits mediating social reward. Trends Neurosci 2024; 47:1041-1054. [PMID: 39532581 PMCID: PMC11633286 DOI: 10.1016/j.tins.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Across species, social behaviors are shaped and maintained through positive reinforcement of affiliative social interactions. As with nonsocial rewards, the reinforcing properties of social interactions have been shown to involve interplay between various brain regions and the mesolimbic reward system. In this review, we summarize findings from rodent research on the neural circuits that encode and mediate different components of social reward-seeking behavior. We explore methods to parse and study social reward-related behaviors using available behavioral paradigms. We also compare the neural mechanisms that support social versus nonsocial reward-seeking. Finally, we discuss how internal state and neuromodulatory systems affect reward-seeking behavior and the neural circuits that underlie social reward.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Roche EC, Redcay E, Romeo RR. Caregiver-child neural synchrony: Magic, mirage, or developmental mechanism? Dev Cogn Neurosci 2024; 71:101482. [PMID: 39693894 DOI: 10.1016/j.dcn.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Young children transition in and out of synchronous states with their caregivers across physiology, behavior, and brain activity, but what do these synchronous periods mean? One body of two-brain studies using functional near-infrared spectroscopy (fNIRS) finds that individual, family, and moment-to-moment behavioral and contextual factors are associated with caregiver-child neural synchrony, while another body of literature finds that neural synchrony is associated with positive child outcomes. Taken together, it is tempting to conclude that caregiver-child neural synchrony may act as a foundational developmental mechanism linking children's experiences to their healthy development, but many questions remain. In this review, we synthesize recent findings and open questions from caregiver-child studies using fNIRS, which is uniquely well suited for use with caregivers and children, but also laden with unique constraints. Throughout, we highlight open questions alongside best practices for optimizing two-brain fNIRS to examine hypothesized developmental mechanisms. We particularly emphasize the need to consider immediate and global stressors as context for interpretation of neural synchrony findings, and the need for full inclusion of socioeconomically and racially diverse families in future studies.
Collapse
Affiliation(s)
- Ellen C Roche
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Elizabeth Redcay
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Rachel R Romeo
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| |
Collapse
|
10
|
Markus A, Shamay-Tsoory SG. Hyperscanning: from inter-brain coupling to causality. Front Hum Neurosci 2024; 18:1497034. [PMID: 39606786 PMCID: PMC11599244 DOI: 10.3389/fnhum.2024.1497034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
In hyperscanning studies, participants perform a joint task while their brain activation is simultaneously recorded. Evidence of inter-brain coupling is examined, in these studies, as a predictor of behavioral change. While the field of hyperscanning has made significant strides in unraveling the associations between inter-brain coupling and changes in social interactions, drawing causal conclusions between brain and behavior remains challenging. This difficulty arises from factors like the inherently different timescales of behavioral responses and measured cerebral activity, as well as the predominant focus of existing methods on associations rather than causality. Specifically, a question remains as to whether inter-brain coupling between specific brain regions leads to changes in behavioral synchrony, or vice-versa. We propose two novel approaches to addressing this question. The first method involves using dyadic neurofeedback, wherein instances of inter-brain coupling are directly reinforced. Such a system could examine if continuous changes of inter-brain coupling are the result of deliberate mutual attempts to synchronize. The second method employs statistical approaches, including Granger causality and Structural Equation Modeling (SEM). Granger causality assesses the predictive influence of one time series on another, enabling the identification of directional neural interactions that drive behavior. SEM allows for detailed modeling of both direct and indirect effects of inter-brain coupling on behavior. We provide an example of data analysis with the SEM approach, discuss the advantages and limitations of each approach and posit that applying these approaches could provide significant insights into how inter-brain coupling supports crucial processes that occur in social interactions.
Collapse
Affiliation(s)
- Andrey Markus
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center, Haifa, Israel
| | - Simone G. Shamay-Tsoory
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center, Haifa, Israel
| |
Collapse
|
11
|
Brusman LE, Sadino JM, Fultz AC, Kelberman MA, Dowell RD, Allen MA, Donaldson ZR. Single nucleus RNA-sequencing reveals transcriptional synchrony across different relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587112. [PMID: 39605537 PMCID: PMC11601461 DOI: 10.1101/2024.03.27.587112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As relationships mature, partners share common goals, improve their ability to work together, and experience coordinated emotions. However, the neural underpinnings responsible for this unique, pair-specific experience remain largely unexplored. Here, we used single nucleus RNA-sequencing to examine the transcriptional landscape of the nucleus accumbens (NAc) in socially monogamous prairie voles in peer or mating-based relationships. We show that, regardless of pairing type, prairie voles exhibit transcriptional synchrony with a partner. Further, we identify genes expressed in oligodendrocyte progenitor cells that are synchronized between partners, correlated with dyadic behavior, and sensitive to partner separation. Together, our data indicate that the pair-specific social environment profoundly shapes transcription in the NAc. This provides a potential biological mechanism by which shared social experience reinforces and strengthens relationships.
Collapse
Affiliation(s)
- Liza E. Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Allison C. Fultz
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Michael A. Kelberman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Biofrontiers Institute, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Mary A. Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Biofrontiers Institute, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| |
Collapse
|
12
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586152. [PMID: 38585753 PMCID: PMC10996534 DOI: 10.1101/2024.03.21.586152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J. Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Sofia E. Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Arlene J. George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Nguyen T, Kungl MT, Hoehl S, White LO, Vrtička P. Visualizing the invisible tie: Linking parent-child neural synchrony to parents' and children's attachment representations. Dev Sci 2024; 27:e13504. [PMID: 38523055 DOI: 10.1111/desc.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
It is a central tenet of attachment theory that individual differences in attachment representations organize behavior during social interactions. Secure attachment representations also facilitate behavioral synchrony, a key component of adaptive parent-child interactions. Yet, the dynamic neural processes underlying these interactions and the potential role of attachment representations remain largely unknown. A growing body of research indicates that interpersonal neural synchrony (INS) could be a potential neurobiological correlate of high interaction and relationship quality. In this study, we examined whether interpersonal neural and behavioral synchrony during parent-child interaction is associated with parent and child attachment representations. In total, 140 parents (74 mothers and 66 fathers) and their children (age 5-6 years; 60 girls and 80 boys) engaged in cooperative versus individual problem-solving. INS in frontal and temporal regions was assessed with functional near-infrared spectroscopy hyperscanning. Attachment representations were ascertained by means of the Adult Attachment Interview in parents and a story-completion task in children, alongside video-coded behavioral synchrony. Findings revealed increased INS during cooperative versus individual problem solving across all dyads (𝛸2(2) = 9.37, p = 0.009). Remarkably, individual differences in attachment representations were associated with INS but not behavioral synchrony (p > 0.159) during cooperation. More specifically, insecure maternal attachment representations were related to higher mother-child INS in frontal regions (𝛸2(3) = 9.18, p = 0.027). Conversely, secure daughter attachment representations were related to higher daughter-parent INS within temporal regions (𝛸2(3) = 12.58, p = 0.006). Our data thus provide further indication for INS as a promising correlate to probe the neurobiological underpinnings of attachment representations in the context of early parent-child interactions. RESEARCH HIGHLIGHTS: We assessed attachment representations using narrative measures and interpersonal neural synchrony (INS) during parent-child problem-solving. Dyads including mothers with insecure attachment representations showed higher INS in left prefrontal regions. Dyads including daughters with secure attachment representations showed higher INS in right temporo-parietal regions. INS is a promising correlate to probe the neurobiological underpinnings of attachment representations in the context of parent-child interactions, especially within the mutual prediction framework.
Collapse
Affiliation(s)
- Trinh Nguyen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Developmental and Educational Psychology, University of Vienna, Vienna, Austria
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy
| | - Melanie T Kungl
- Department of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Hoehl
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Developmental and Educational Psychology, University of Vienna, Vienna, Austria
| | - Lars O White
- Department of Child and Adolescent Psychiatry, University of Leipzig, Leipzig, Germany
- Clinical Psychology, Psychological University Berlin, Berlin, Germany
| | - Pascal Vrtička
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
14
|
Ren W, Yu S, Guo K, Lu C, Zhang YQ. Disrupted Human-Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402493. [PMID: 39257367 PMCID: PMC11538694 DOI: 10.1002/advs.202402493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Indexed: 09/12/2024]
Abstract
Dogs interact with humans effectively and intimately. However, the neural underpinnings for such interspecies social communication are not understood. It is known that interbrain activity coupling, i.e., the synchronization of neural activity between individuals, represents the neural basis of social interactions. Here, previously unknown cross-species interbrain activity coupling in interacting human-dog dyads is reported. By analyzing electroencephalography signals from both dogs and humans, it is found that mutual gaze and petting induce interbrain synchronization in the frontal and parietal regions of the human-dog dyads, respectively. The strength of the synchronization increases with growing familiarity of the human-dog dyad over five days, and the information flow analysis suggests that the human is the leader while the dog is the follower during human-dog interactions. Furthermore, dogs with Shank3 mutations, which represent a promising complementary animal model of autism spectrum disorders (ASD), show a loss of interbrain coupling and reduced attention during human-dog interactions. Such abnormalities are rescued by the psychedelic lysergic acid diethylamide (LSD). The results reveal previously unknown interbrain synchronizations within an interacting human-dog dyad which may underlie the interspecies communication, and suggest a potential of LSD for the amelioration of social impairment in patients with ASD.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain‐inspired IntelligenceInstitute of Automation, Chinese Academy of SciencesBeijing100190China
| | - Kun Guo
- School of PsychologyUniversity of LincolnBrayford PoolLincolnLN6 7TSUK
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Yong Q. Zhang
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- School of Life SciencesHubei UniversityWuhan430062China
| |
Collapse
|
15
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Pomberger T, Kaplan KS, Carter R, Harmon TC, Mooney R. A Cortical Site that Encodes Vocal Expression and Reception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618282. [PMID: 39464134 PMCID: PMC11507715 DOI: 10.1101/2024.10.15.618282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Socially effective vocal communication requires brain regions that encode expressive and receptive aspects of vocal communication in a social context-dependent manner. Here, we combined a novel behavioral assay with microendoscopy to interrogate neuronal activity in the posterior insula (pIns) in socially interacting mice as they switched rapidly between states of vocal expression and reception. We found that distinct but spatially intermingled subsets of pIns neurons were active during vocal expression and reception. Notably, pIns activity during vocal expression increased prior to vocal onset and was also detected in congenitally deaf mice, pointing to a motor signal. Furthermore, receptive pIns activity depended strongly on social cues, including female odorants. Lastly, tracing experiments reveal that deep layer neurons in the pIns directly bridge the auditory thalamus to a midbrain vocal gating region. Therefore, the pIns is a site that encodes vocal expression and reception in a manner that depends on social context.
Collapse
Affiliation(s)
- Thomas Pomberger
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | - Rene Carter
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Thomas C Harmon
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
17
|
Conde-Moro AR, Rocha-Almeida F, Gebara E, Delgado-García JM, Sandi C, Gruart A. Involvement of prelimbic cortex neurons and related circuits in the acquisition of a cooperative learning by pairs of rats. Cogn Neurodyn 2024; 18:2637-2658. [PMID: 39555258 PMCID: PMC11564578 DOI: 10.1007/s11571-024-10107-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 11/19/2024] Open
Abstract
Social behaviors such as cooperation are crucial for mammals. A deeper knowledge of the neuronal mechanisms underlying cooperation can be beneficial for people suffering from pathologies with impaired social behavior. Our aim was to study the brain activity when two animals synchronize their behavior to obtain a mutual reinforcement. In a previous work, we showed that the activity of the prelimbic cortex (PrL) was enhanced during cooperation in rats, especially in the ones leading most cooperative trials (leader rats). In this study, we investigated the specific cells in the PrL contributing to cooperative behaviors. To this end, we collected rats' brains at key moments of the learning process to analyze the levels of c-FOS expression in the main cellular groups of the PrL. Leader rats showed increased c-FOS activity in cells expressing D1 receptors during cooperation. Besides, we analyzed the levels of anxiety, dominance, and locomotor behavior, finding that leader rats are in general less anxious and less dominant than followers. We also recorded local field potentials (LFPs) from the PrL, the nucleus accumbens septi (NAc), and the basolateral amygdala (BLA). A spectral analysis showed that delta activity in PrL and NAc increased when rats cooperated, while BLA activity in delta and theta bands decreased considerably during cooperation. The PrL and NAc also increased their connectivity in the high theta band during cooperation. Thus, the present work identifies the specific PrL cell types engaged in this behavior, as well as the way this information is propagated to selected downstream brain regions (BLA, NAc). Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10107-y.
Collapse
Affiliation(s)
- A. R. Conde-Moro
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - F. Rocha-Almeida
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - E. Gebara
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - C. Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - A. Gruart
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
18
|
Klibaite U, Li T, Aldarondo D, Akoad JF, Ölveczky BP, Dunn TW. Mapping the landscape of social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615451. [PMID: 39386488 PMCID: PMC11463623 DOI: 10.1101/2024.09.27.615451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Social interaction is integral to animal behavior. However, we lack tools to describe it with quantitative rigor, limiting our understanding of its principles and neuropsychiatric disorders, like autism, that perturb it. Here, we present a technique for high-resolution 3D tracking of postural dynamics and social touch in freely interacting animals, solving the challenging subject occlusion and part assignment problems using 3D geometric reasoning, graph neural networks, and semi-supervised learning. We collected over 140 million 3D postures in interacting rodents, featuring new monogenic autism rat lines lacking reports of social behavioral phenotypes. Using a novel multi-scale embedding approach, we identified a rich landscape of stereotyped actions, interactions, synchrony, and body contact. This enhanced phenotyping revealed a spectrum of changes in autism models and in response to amphetamine that were inaccessible to conventional measurements. Our framework and large library of interactions will greatly facilitate studies of social behaviors and their neurobiological underpinnings.
Collapse
Affiliation(s)
- Ugne Klibaite
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Tianqing Li
- Department of Biomedical Engineering, Duke University
| | | | - Jumana F. Akoad
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Bence P. Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Timothy W. Dunn
- Department of Biomedical Engineering, Duke University
- Program in Neuroscience, Harvard University
- Lead Contact
| |
Collapse
|
19
|
Raam T, Li Q, Gu L, Elagio G, Lim KY, Zhang X, Correa SM, Hong W. Neural basis of collective social behavior during environmental challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613378. [PMID: 39345632 PMCID: PMC11429680 DOI: 10.1101/2024.09.17.613378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Humans and animals have a remarkable capacity to collectively coordinate their behavior to respond to environmental challenges. However, the underlying neurobiology remains poorly understood. Here, we found that groups of mice self-organize into huddles at cold ambient temperature during the thermal challenge assay. We found that mice make active (self-initiated) and passive (partner-initiated) decisions to enter or exit a huddle. Using microendoscopic calcium imaging, we found that active and passive decisions are encoded distinctly within the dorsomedial prefrontal cortex (dmPFC). Silencing dmPFC activity in some mice reduced their active decision-making, but also induced a compensatory increase in active decisions by non-manipulated partners, conserving the group's overall huddle time. These findings reveal how collective behavior is implemented in neurobiological mechanisms to meet homeostatic needs during environmental challenges.
Collapse
Affiliation(s)
- Tara Raam
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Qin Li
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| | - Linfan Gu
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| | - Gabrielle Elagio
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Kayla Y. Lim
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Xingjian Zhang
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, University of California, Los Angeles, CA, USA
- Department of Bioengineering; University of California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Isaac J, Karkare SC, Balasubramanian H, Schappaugh N, Javier JL, Rashid M, Murugan M. Sex differences in neural representations of social and nonsocial reward in the medial prefrontal cortex. Nat Commun 2024; 15:8018. [PMID: 39271723 PMCID: PMC11399386 DOI: 10.1038/s41467-024-52294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The reinforcing nature of social interactions is necessary for the maintenance of appropriate social behavior. However, the neural substrates underlying social reward processing and how they might differ based on the sex and internal state of the animal remains unknown. It is also unclear whether these neural substrates are shared with those involved in nonsocial rewarding processing. We developed a fully automated, two choice (social-sucrose) operant assay in which mice choose between social and nonsocial rewards to directly compare the reward-related behaviors associated with two competing stimuli. We performed cellular resolution calcium imaging of medial prefrontal cortex (mPFC) neurons in male and female mice across varying states of water restriction and social isolation. We found that mPFC neurons maintain largely non-overlapping, flexible representations of social and nonsocial reward that vary with internal state in a sex-dependent manner. Additionally, optogenetic manipulation of mPFC activity during the reward period of the assay disrupted reward-seeking behavior across male and female mice. Thus, using a two choice operant assay, we have identified sex-dependent, non-overlapping neural representations of social and nonsocial reward in the mPFC that vary with internal state and that are essential for appropriate reward-seeking behavior.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Sonia Corbett Karkare
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Hymavathy Balasubramanian
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | | | - Jarildy Larimar Javier
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Maha Rashid
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
22
|
Gabriel CJ, Gupta T, Sanchez-Fuentes A, Zeidler Z, Wilke SA, DeNardo LA. Transformations in prefrontal ensemble activity underlying rapid threat avoidance learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610165. [PMID: 39257764 PMCID: PMC11383712 DOI: 10.1101/2024.08.28.610165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The capacity to learn cues that predict aversive outcomes, and understand how to avoid those outcomes, is critical for adaptive behavior. Naturalistic avoidance often means accessing a safe location, but whether a location is safe depends on the nature of the impending threat. These relationships must be rapidly learned if animals are to survive. The prelimbic subregion (PL) of the medial prefrontal cortex (mPFC) integrates learned associations to influence these threat avoidance strategies. Prior work has focused on the role of PL activity in avoidance behaviors that are fully established, leaving the prefrontal mechanisms that drive rapid avoidance learning poorly understood. To determine when and how these learning-related changes emerge, we recorded PL neural activity using miniscope calcium imaging as mice rapidly learned to avoid a threatening cue by accessing a safe location. Over the course of learning, we observed enhanced modulation of PL activity representing intersections of a threatening cue with safe or risky locations and movements between them. We observed rapid changes in PL population dynamics that preceded changes observable in the encoding of individual neurons. Successful avoidance could be predicted from cue-related population dynamics during early learning. Population dynamics during specific epochs of the conditioned tone period correlated with the modeled learning rates of individual animals. In contrast, changes in single-neuron encoding occurred later, once an avoidance strategy had stabilized. Together, our findings reveal the sequence of PL changes that characterize rapid threat avoidance learning.
Collapse
|
23
|
Zhu LS, Lai C, Zhou CW, Chen HY, Liu ZQ, Guo Z, Man H, Du HY, Lu Y, Hu F, Chen Z, Shu K, Zhu LQ, Liu D. Postsynaptic lncRNA Sera/Pkm2 pathway orchestrates the transition from social competition to rank by remodeling the neural ensemble in mPFC. Cell Discov 2024; 10:87. [PMID: 39160208 PMCID: PMC11333582 DOI: 10.1038/s41421-024-00706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Individuals' continuous success in competitive interactions with conspecifics strongly affects their social hierarchy. Medial prefrontal cortex (mPFC) is the key brain region mediating both social competition and hierarchy. However, the molecular regulatory mechanisms underlying the neural ensemble in the mPFC remains unclear. Here, we demonstrate that in excitatory neurons of prelimbic cortex (PL), lncRNA Sera remodels the utilization of Pkm Exon9 and Exon10, resulting in a decrease in the Pkm1/2 ratio in highly competitive mice. By employing a tet-on/off system, we disrupt or rebuild the normal Pkm1/2 ratio by controlling the expression of Pkm2 in PL excitatory neurons. We find that long-term Pkm2 modulation induces timely competition alteration and hysteretic rank change, through phosphorylating the Ser845 site of GluA1. Together, this study uncovers a crucial role of lncRNA Sera/Pkm2 pathway in the transition of social competition to rank by remodeling neural ensemble in mPFC.
Collapse
Affiliation(s)
- Ling-Shuang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao-Wen Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Yang Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Hui-Yun Du
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youming Lu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dan Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Crivelli D, Balconi M. From physical to digital: A theoretical-methodological primer on designing hyperscanning investigations to explore remote exchanges. Soc Neurosci 2024:1-9. [PMID: 39043222 DOI: 10.1080/17470919.2024.2380725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/25/2024]
Abstract
As individuals increasingly engage in social interactions through digital mediums, understanding the neuroscientific underpinnings of such exchanges becomes a critical challenge and a valuable opportunity. In line with a second-person neuroscience approach, understanding the forms of interpersonal syntonisation that occur during digital interactions is pivotal for grasping the mechanisms underlying successful collaboration in virtual spaces. The hyperscanning paradigm, involving the simultaneous monitoring of the brains and bodies of multiple interacting individuals, seems to be a powerful tool for unravelling the neural correlates of interpersonal syntonisation in social exchanges. We posit that such approach can now open new windows on interacting brains' responses even to digitally-conveyed social cues, offering insights into how social information is processed in the absence of traditional face-to-face settings. Yet, such paradigm shift raises challenging methodological questions, which should be answered properly to conduct significant and informative hyperscanning investigations. Here, we provide an introduction to core methodological issues dedicated to novices approaching the design of hyperscanning investigations of remote exchanges in natural settings, focusing on the selection of neuroscientific devices, synchronization of data streams, and data analysis approaches. Finally, a methodological checklist for devising robust hyperscanning studies on digital interactions is presented.
Collapse
Affiliation(s)
- Davide Crivelli
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Faculty of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
25
|
Láng T, Dimén D, Oláh S, Puska G, Dobolyi A. Medial preoptic circuits governing instinctive social behaviors. iScience 2024; 27:110296. [PMID: 39055958 PMCID: PMC11269931 DOI: 10.1016/j.isci.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The medial preoptic area (MPOA) has long been implicated in maternal and male sexual behavior. Modern neuroscience methods have begun to reveal the cellular networks responsible, while also implicating the MPOA in other social behaviors, affiliative social touch, and aggression. The social interactions rely on input from conspecifics whose most important modalities in rodents are olfaction and somatosensation. These inputs bypass the cerebral cortex to reach the MPOA to influence the social function. Hormonal inputs also directly act on MPOA neurons. In turn, the MPOA controls social responses via various projections for reward and motor output. The MPOA thus emerges as one of the major brain centers for instinctive social behavior. While key elements of MPOA circuits have been identified, a synthesis of these new data is now provided for further studies to reveal the mechanisms by which the area controls social interactions.
Collapse
Affiliation(s)
- Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Addiction and Neuroplasticity Laboratory, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Szilvia Oláh
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
26
|
Lee S, Williams ZM. Role of Prefrontal Cortex Circuitry in Maintaining Social Homeostasis. Biol Psychiatry 2024:S0006-3223(24)01455-0. [PMID: 39019390 DOI: 10.1016/j.biopsych.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Homeostasis is a fundamental concept in biology and ensures the stability of life by maintaining the constancy of physiological processes. Recent years have witnessed a surge in research interest in these physiological processes, with a growing focus on understanding the mechanisms underlying social homeostasis. This shift in focus underscores our increasing understanding of the importance of social interactions and their impact on individual well-being. In this review, we explore the interconnected research across 3 primary categories: understanding the neural mechanisms influencing set points, defining contemporary factors that can disrupt social homeostasis, and identifying the potential contributions of social homeostatic failure in the development of psychiatric diseases. We also delve into the role of the prefrontal cortex and its circuitry in regulating social behavior, decision-making processes, and the manifestation of neuropsychiatric disorders, such as depression and anxiety. Finally, we examine the influence of more recent factors such as growing social media exposure and the COVID-19 pandemic on mental health, highlighting their disruptive effects. We also identify gaps in current literature through the analysis of research trends and propose future research directions to advance our understanding of social homeostasis, with implications for mental health interventions.
Collapse
Affiliation(s)
- SeungHyun Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
27
|
Mack NR, Bouras NN, Gao WJ. Prefrontal Regulation of Social Behavior and Related Deficits: Insights From Rodent Studies. Biol Psychiatry 2024; 96:85-94. [PMID: 38490368 DOI: 10.1016/j.biopsych.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The prefrontal cortex (PFC) is well known as the executive center of the brain, combining internal states and goals to execute purposeful behavior, including social actions. With the advancement of tools for monitoring and manipulating neural activity in rodents, substantial progress has been made in understanding the specific cell types and neural circuits within the PFC that are essential for processing social cues and influencing social behaviors. Furthermore, combining these tools with translationally relevant behavioral paradigms has also provided novel insights into the PFC neural mechanisms that may contribute to social deficits in various psychiatric disorders. This review highlights findings from the past decade that have shed light on the PFC cell types and neural circuits that support social information processing and distinct aspects of social behavior, including social interactions, social memory, and social dominance. We also explore how the PFC contributes to social deficits in rodents induced by social isolation, social fear conditioning, and social status loss. These studies provide evidence that the PFC uses both overlapping and unique neural mechanisms to support distinct components of social cognition. Furthermore, specific PFC neural mechanisms drive social deficits induced by different contexts.
Collapse
Affiliation(s)
- Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
28
|
Dong Z, Feng Y, Diego K, Baggetta AM, Sweis BM, Pennington ZT, Lamsifer SI, Zaki Y, Sangiuliano F, Philipsberg PA, Morales-Rodriguez D, Kircher D, Slesinger P, Shuman T, Aharoni D, Cai DJ. Simultaneous dual-color calcium imaging in freely-behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601770. [PMID: 39005306 PMCID: PMC11244962 DOI: 10.1101/2024.07.03.601770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Miniaturized fluorescence microscopes (miniscopes) enable imaging of calcium events from a large population of neurons in freely behaving animals. Traditionally, miniscopes have only been able to record from a single fluorescence wavelength. Here, we present a new open-source dual-channel Miniscope that simultaneously records two wavelengths in freely behaving animals. To enable simultaneous acquisition of two fluorescent wavelengths, we incorporated two CMOS sensors into a single Miniscope. To validate our dual-channel Miniscope, we imaged hippocampal CA1 region that co-expressed a dynamic calcium indicator (GCaMP) and a static nuclear signal (tdTomato) while mice ran on a linear track. Our results suggest that, even when neurons were registered across days using tdTomato signals, hippocampal spatial coding changes over time. In conclusion, our novel dual-channel Miniscope enables imaging of two fluorescence wavelengths with minimal crosstalk between the two channels, opening the doors to a multitude of new experimental possibilities. Teaser Novel open-source dual-channel Miniscope that simultaneously records two wavelengths with minimal crosstalk in freely behaving animals.
Collapse
|
29
|
Ruble S, Kramer C, West L, Payne K, Ness H, Erickson G, Scott A, Diehl MM. Active avoidance recruits the anterior cingulate cortex regardless of social context in male and female rats. RESEARCH SQUARE 2024:rs.3.rs-3750422. [PMID: 38260416 PMCID: PMC10802695 DOI: 10.21203/rs.3.rs-3750422/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Actively avoiding danger is necessary for survival. Most research has focused on the behavioral and neurobiological processes when individuals avoid danger alone, under solitary conditions. Therefore, little is known about how social context affects active avoidance. Using a modified version of the platform-mediated avoidance task in rats, we investigated whether the presence of a social partner attenuates conditioned freezing and enhances avoidance learning compared to avoidance learned under solitary conditions. Rats spent a similar percentage of time avoiding during the tone under both conditions; however, rats trained under social conditions exhibited greater freezing during the tone as well as lower rates of darting and food seeking compared to solitary rats. Under solitary conditions, we observed higher levels of avoidance in females compared to males, which was not present in rats trained under social conditions. To gain greater mechanistic insight, we optogenetically inactivated glutamatergic projection neurons in the anterior cingulate cortex (ACC) following avoidance training. Photoinactivation of ACC neurons reduced expression of avoidance under social conditions both in the presence and absence of the partner. Under solitary conditions, photoinactivation of ACC delayed avoidance in males but blocked avoidance in females. Our findings suggest that avoidance is mediated by the ACC, regardless of social context, and may be dysfunctional in those suffering from trauma-related disorders. Furthermore, sex differences in prefrontal circuits mediating active avoidance warrant further investigation, given that females experience a higher risk of developing anxiety disorders.
Collapse
Affiliation(s)
- Shannon Ruble
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Cassandra Kramer
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Lexe West
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Karissa Payne
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Halle Ness
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Greg Erickson
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Alyssa Scott
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| | - Maria M Diehl
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
30
|
Yu JH, Napoli JL, Lovett-Barron M. Understanding collective behavior through neurobiology. Curr Opin Neurobiol 2024; 86:102866. [PMID: 38852986 PMCID: PMC11439442 DOI: 10.1016/j.conb.2024.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
A variety of organisms exhibit collective movement, including schooling fish and flocking birds, where coordinated behavior emerges from the interactions between group members. Despite the prevalence of collective movement in nature, little is known about the neural mechanisms producing each individual's behavior within the group. Here we discuss how a neurobiological approach can enrich our understanding of collective behavior by determining the mechanisms by which individuals interact. We provide examples of sensory systems for social communication during collective movement, highlight recent discoveries about neural systems for detecting the position and actions of social partners, and discuss opportunities for future research. Understanding the neurobiology of collective behavior can provide insight into how nervous systems function in a dynamic social world.
Collapse
Affiliation(s)
- Jo-Hsien Yu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. https://twitter.com/anitajhyu
| | - Julia L Napoli
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. https://twitter.com/juliadoingneuro
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
31
|
Marriot Haresign I, A M Phillips E, V Wass S. Why behaviour matters: Studying inter-brain coordination during child-caregiver interaction. Dev Cogn Neurosci 2024; 67:101384. [PMID: 38657470 PMCID: PMC11059326 DOI: 10.1016/j.dcn.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Modern technology allows for simultaneous neuroimaging from interacting caregiver-child dyads. Whereas most analyses that examine the coordination between brain regions within an individual brain do so by measuring changes relative to observed events, studies that examine coordination between two interacting brains generally do this by measuring average intra-brain coordination across entire blocks or experimental conditions. In other words, they do not examine changes in inter-brain coordination relative to individual behavioural events. Here, we discuss the limitations of this approach. First, we present data suggesting that fine-grained temporal interdependencies in behaviour can leave residual artifact in neuroimaging data. We show how artifact can manifest as both power and (through that) phase synchrony effects in EEG and affect wavelet transform coherence in fNIRS analyses. Second, we discuss different possible mechanistic explanations of how inter-brain coordination is established and maintained. We argue that non-event-locked approaches struggle to differentiate between them. Instead, we contend that approaches which examine how interpersonal dynamics change around behavioural events have better potential for addressing possible artifactual confounds and for teasing apart the overlapping mechanisms that drive changes in inter-brain coordination.
Collapse
Affiliation(s)
| | | | - Sam V Wass
- Department of Psychology, University of East London, London, UK
| |
Collapse
|
32
|
Lee J, Kwak D, Lee GU, Kim CY, Kim J, Park SH, Choi JH, Lee SQ, Choe HK. Social context modulates multibrain broadband dynamics and functional brain-to-brain coupling in the group of mice. Sci Rep 2024; 14:11439. [PMID: 38769416 PMCID: PMC11106301 DOI: 10.1038/s41598-024-62070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Although mice are social, multiple animals' neural activities are rarely explored. To characterise the neural activities during multi-brain interaction, we simultaneously recorded local field potentials (LFP) in the prefrontal cortex of four mice. The social context and locomotive states predominately modulated the entire LFP structure. The power of lower frequency bands-delta to alpha-were correlated with each other and anti-correlated with gamma power. The high-to-low-power ratio (HLR) provided a useful measure to understand LFP changes along the change of behavioural and locomotive states. The HLR during huddled conditions was lower than that during non-huddled conditions, dividing the social context into two. Multi-brain analyses of HLR indicated that the mice in the group displayed high cross-correlation. The mice in the group often showed unilateral precedence of HLR by Granger causality analysis, possibly comprising a hierarchical social structure. Overall, this study shows the importance of the social environment in brain dynamics and emphasises the simultaneous multi-brain recordings in social neuroscience.
Collapse
Affiliation(s)
- Jeongyoon Lee
- Brain Science Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42996, Republic of Korea
| | - Damhyeon Kwak
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Gwang Ung Lee
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Chan Yeong Kim
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Jihoon Kim
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea
| | - Sang Hyun Park
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42996, Republic of Korea
| | - Jee Hyun Choi
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sung Q Lee
- Electronics Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea.
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| | - Han Kyoung Choe
- Department of Brain Sciences, DGIST, Daegu, 42996, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42996, Republic of Korea.
- Korean Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
33
|
Chen C, Altafi M, Corbu MA, Trenk A, van den Munkhof H, Weineck K, Bender F, Carus-Cadavieco M, Bakhareva A, Korotkova T, Ponomarenko A. The dynamic state of a prefrontal-hypothalamic-midbrain circuit commands behavioral transitions. Nat Neurosci 2024; 27:952-963. [PMID: 38499854 PMCID: PMC11089001 DOI: 10.1038/s41593-024-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.
Collapse
Affiliation(s)
- Changwan Chen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mihaela-Anca Corbu
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Aleksandra Trenk
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Hanna van den Munkhof
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Kristin Weineck
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Franziska Bender
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Marta Carus-Cadavieco
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Alisa Bakhareva
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Tatiana Korotkova
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany.
| |
Collapse
|
34
|
Zhang M, Yin Z, Zhang X, Zhang H, Bao M, Xuan B. Neural mechanisms distinguishing two types of cooperative problem-solving approaches: An fNIRS hyperscanning study. Neuroimage 2024; 291:120587. [PMID: 38548038 DOI: 10.1016/j.neuroimage.2024.120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Collaborative cooperation (CC) and division of labor cooperation (DLC) are two prevalent forms of cooperative problem-solving approaches in daily life. Despite extensive research on the neural mechanisms underlying cooperative problem-solving approaches, a notable gap exists between the neural processes that support CC and DLC. The present study utilized a functional near-infrared spectroscopy (fNIRS) hyperscanning technique along with a classic cooperative tangram puzzle task to investigate the neural mechanisms engaged by both friends and stranger dyads during CC versus DLC. The key findings of this study were as follows: (1) Dyads exhibited superior behavioral performance in the DLC task than in the CC task. The CC task bolstered intra-brain functional connectivity and inter-brain synchrony (IBS) in regions linked to the mirror neuron system (MNS), spatial perception (SP) and cognitive control. (2) Friend dyads showed stronger IBS in brain regions associated with the MNS than stranger dyads. (3) Perspective-taking predicted not only dyads' behavioral performance in the CC task but also their IBS in brain regions associated with SP during the DLC task. Taken together, these findings elucidate the divergent behavioral performance and neural connection patterns between the two cooperative problem-solving approaches. This study provides novel insights into the various neurocognitive processes underlying flexible coordination strategies in real-world cooperative contexts.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Psychology, Shanghai Normal University, 100, Guilin Road, Shanghai 200234, China
| | - Zijun Yin
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Xue Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Hui Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Mingjing Bao
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China.
| |
Collapse
|
35
|
Fang S, Luo Z, Wei Z, Qin Y, Zheng J, Zhang H, Jin J, Li J, Miao C, Yang S, Li Y, Liang Z, Yu XD, Zhang XM, Xiong W, Zhu H, Gan WB, Huang L, Li B. Sexually dimorphic control of affective state processing and empathic behaviors. Neuron 2024; 112:1498-1517.e8. [PMID: 38430912 DOI: 10.1016/j.neuron.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.
Collapse
Affiliation(s)
- Shunchang Fang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengyi Luo
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zicheng Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxin Qin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyan Zheng
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongyang Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianhua Jin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiali Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chenjian Miao
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shana Yang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yonglin Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zirui Liang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Dan Yu
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao Min Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Xiong
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | | | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| | - Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| |
Collapse
|
36
|
Zhang XY, Wu WX, Shen LP, Ji MJ, Zhao PF, Yu L, Yin J, Xie ST, Xie YY, Zhang YX, Li HZ, Zhang QP, Yan C, Wang F, De Zeeuw CI, Wang JJ, Zhu JN. A role for the cerebellum in motor-triggered alleviation of anxiety. Neuron 2024; 112:1165-1181.e8. [PMID: 38301648 DOI: 10.1016/j.neuron.2024.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Xia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi 214002, China
| | - Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Peng-Fei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute of Physical Education, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Yong Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CN Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, Department of Anesthesiology, Nanjing Drum Tower Hospital, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
37
|
Moutoussis M. Would You Act Out of Spite? Toward Understanding the Neurocomputational Underpinnings of Spite Sensitivity in Persecutory Ideation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:372-374. [PMID: 38583930 DOI: 10.1016/j.bpsc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Michael Moutoussis
- Department of Imaging Neuroscience, University College London, London, United Kingdom.
| |
Collapse
|
38
|
Li Y, Wu S, Xu J, Wang H, Zhu Q, Shi W, Fang Y, Jiang F, Tong S, Zhang Y, Guo X. Interbrain substrates of role switching during mother-child interaction. Hum Brain Mapp 2024; 45:e26672. [PMID: 38549429 PMCID: PMC10979116 DOI: 10.1002/hbm.26672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Mother-child interaction is highly dynamic and reciprocal. Switching roles in these back-and-forth interactions serves as a crucial feature of reciprocal behaviors while the underlying neural entrainment is still not well-studied. Here, we designed a role-controlled cooperative task with dual EEG recording to explore how differently two brains interact when mothers and children hold different roles. When children were actors and mothers were observers, mother-child interbrain synchrony emerged primarily within the theta oscillations and the frontal lobe, which highly correlated with children's attachment to their mothers (self-reported by mothers). When their roles were reversed, this synchrony was shifted to the alpha oscillations and the central area and associated with mothers' perception of their relationship with their children. The results suggested an observer-actor neural alignment within the actor's oscillations, which was related to the actor-toward-observer emotional bonding. Our findings contribute to the understanding of how interbrain synchrony is established and dynamically changed during mother-child reciprocal interaction.
Collapse
Affiliation(s)
- Yamin Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Saishuang Wu
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Jiayang Xu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Haiwa Wang
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Qi Zhu
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Wen Shi
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yue Fang
- China Welfare Institute NurseryShanghaiChina
| | - Fan Jiang
- Department of Developmental and Behavioral PediatricsNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Shanbao Tong
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yunting Zhang
- Child Health Advocacy InstituteNational Children's Medical Center, Shanghai Children's Medical Center, Affiliated to School of Medicine Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Guo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
39
|
Wass S, Greenwood E, Esposito G, Smith C, Necef I, Phillips E. Annual Research Review: 'There, the dance is - at the still point of the turning world' - dynamic systems perspectives on coregulation and dysregulation during early development. J Child Psychol Psychiatry 2024; 65:481-507. [PMID: 38390803 DOI: 10.1111/jcpp.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
During development we transition from coregulation (where regulatory processes are shared between child and caregiver) to self-regulation. Most early coregulatory interactions aim to manage fluctuations in the infant's arousal and alertness; but over time, coregulatory processes become progressively elaborated to encompass other functions such as sociocommunicative development, attention and executive control. The fundamental aim of coregulation is to help maintain an optimal 'critical state' between hypo- and hyperactivity. Here, we present a dynamic framework for understanding child-caregiver coregulatory interactions in the context of psychopathology. Early coregulatory processes involve both passive entrainment, through which a child's state entrains to the caregiver's, and active contingent responsiveness, through which the caregiver changes their behaviour in response to behaviours from the child. Similar principles, of interactive but asymmetric contingency, drive joint attention and the maintenance of epistemic states as well as arousal/alertness, emotion regulation and sociocommunicative development. We describe three ways in which active child-caregiver regulation can develop atypically, in conditions such as Autism, ADHD, anxiety and depression. The most well-known of these is insufficient contingent responsiveness, leading to reduced synchrony, which has been shown across a range of modalities in different disorders, and which is the target of most current interventions. We also present evidence that excessive contingent responsiveness and excessive synchrony can develop in some circumstances. And we show that positive feedback interactions can develop, which are contingent but mutually amplificatory child-caregiver interactions that drive the child further from their critical state. We discuss implications of these findings for future intervention research, and directions for future work.
Collapse
Affiliation(s)
- Sam Wass
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Emily Greenwood
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Giovanni Esposito
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Celia Smith
- Institute of Psychology Psychiatry and Neuroscience, King's College, London, UK
| | - Isil Necef
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Emily Phillips
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| |
Collapse
|
40
|
Li Z, Zhang D. How does the human brain process noisy speech in real life? Insights from the second-person neuroscience perspective. Cogn Neurodyn 2024; 18:371-382. [PMID: 38699619 PMCID: PMC11061069 DOI: 10.1007/s11571-022-09924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Comprehending speech with the existence of background noise is of great importance for human life. In the past decades, a large number of psychological, cognitive and neuroscientific research has explored the neurocognitive mechanisms of speech-in-noise comprehension. However, as limited by the low ecological validity of the speech stimuli and the experimental paradigm, as well as the inadequate attention on the high-order linguistic and extralinguistic processes, there remains much unknown about how the brain processes noisy speech in real-life scenarios. A recently emerging approach, i.e., the second-person neuroscience approach, provides a novel conceptual framework. It measures both of the speaker's and the listener's neural activities, and estimates the speaker-listener neural coupling with regarding of the speaker's production-related neural activity as a standardized reference. The second-person approach not only promotes the use of naturalistic speech but also allows for free communication between speaker and listener as in a close-to-life context. In this review, we first briefly review the previous discoveries about how the brain processes speech in noise; then, we introduce the principles and advantages of the second-person neuroscience approach and discuss its implications to unravel the linguistic and extralinguistic processes during speech-in-noise comprehension; finally, we conclude by proposing some critical issues and calls for more research interests in the second-person approach, which would further extend the present knowledge about how people comprehend speech in noise.
Collapse
Affiliation(s)
- Zhuoran Li
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, 100084 China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084 China
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 334, Mingzhai Building, Beijing, 100084 China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
41
|
Ren Q, Wang S, Li J, Cao K, Zhuang M, Wu M, Geng J, Jia Z, Xie W, Liu A. Novel Social Stimulation Ameliorates Memory Deficit in Alzheimer's Disease Model through Activating α-Secretase. J Neurosci 2024; 44:e1689232024. [PMID: 38418221 PMCID: PMC10957211 DOI: 10.1523/jneurosci.1689-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aβ reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.
Collapse
Affiliation(s)
- Qiaoyun Ren
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Susu Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junru Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Mei Zhuang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junhua Geng
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Shenzhen Research Institute, Southeast University, Shenzhen 518063, China
| |
Collapse
|
42
|
Hegoburu C, Tang Y, Niu R, Ghosh S, Triana Del Rio R, de Araujo Salgado I, Abatis M, Alexandre Mota Caseiro D, van den Burg EH, Grundschober C, Stoop R. Social buffering in rats reduces fear by oxytocin triggering sustained changes in central amygdala neuronal activity. Nat Commun 2024; 15:2081. [PMID: 38453902 PMCID: PMC10920863 DOI: 10.1038/s41467-024-45626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The presence of a companion can reduce fear, but the neural mechanisms underlying this social buffering of fear are incompletely known. We studied social buffering of fear in male and female, and its encoding in the amygdala of male, auditory fear-conditioned rats. Pharmacological, opto,- and/or chemogenetic interventions showed that oxytocin signaling from hypothalamus-to-central amygdala projections underlied fear reduction acutely with a companion and social buffering retention 24 h later without a companion. Single-unit recordings with optetrodes in the central amygdala revealed fear-encoding neurons (showing increased conditioned stimulus-responses after fear conditioning) inhibited by social buffering and blue light-stimulated oxytocinergic hypothalamic projections. Other central amygdala neurons showed baseline activity enhanced by blue light and companion exposure, with increased conditioned stimulus responses that persisted without the companion. Social buffering of fear thus switches the conditioned stimulus from encoding "fear" to "safety" by oxytocin-mediated recruitment of a distinct group of central amygdala "buffer neurons".
Collapse
Affiliation(s)
- Chloe Hegoburu
- Center for Psychiatric Neuroscience, CHUV, Prilly-Lausanne, Switzerland
| | - Yan Tang
- Center for Psychiatric Neuroscience, CHUV, Prilly-Lausanne, Switzerland
| | - Ruifang Niu
- Center for Psychiatric Neuroscience, CHUV, Prilly-Lausanne, Switzerland
| | - Supriya Ghosh
- Center for Psychiatric Neuroscience, CHUV, Prilly-Lausanne, Switzerland
| | | | | | - Marios Abatis
- Center for Psychiatric Neuroscience, CHUV, Prilly-Lausanne, Switzerland
| | | | | | - Christophe Grundschober
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Ron Stoop
- Center for Psychiatric Neuroscience, CHUV, Prilly-Lausanne, Switzerland.
| |
Collapse
|
43
|
Takeuchi N. A dual-brain therapeutic approach using noninvasive brain stimulation based on two-person neuroscience: A perspective review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5118-5137. [PMID: 38872529 DOI: 10.3934/mbe.2024226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Our actions and decisions in everyday life are heavily influenced by social interactions, which are dynamic feedback loops involving actions, reactions, and internal cognitive processes between individual agents. Social interactions induce interpersonal synchrony, which occurs at different biobehavioral levels and comprises behavioral, physiological, and neurological activities. Hyperscanning-a neuroimaging technique that simultaneously measures the activity of multiple brain regions-has provided a powerful second-person neuroscience tool for investigating the phase alignment of neural processes during interactive social behavior. Neural synchronization, revealed by hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates social interactions by prompting appropriate anticipation of and responses to each other's social behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly influenced by the social interaction between the therapist and patient. Dual-brain approaches to personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a brain-to-brain interface can support personalized stimulation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
44
|
Franch M, Yellapantula S, Parajuli A, Kharas N, Wright A, Aazhang B, Dragoi V. Visuo-frontal interactions during social learning in freely moving macaques. Nature 2024; 627:174-181. [PMID: 38355804 PMCID: PMC10959748 DOI: 10.1038/s41586-024-07084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics1. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation. As animals learned to cooperate, visual and executive areas refined the representation of social variables, such as the conspecific or reward, by distributing socially relevant information among neurons in each area. Decoding population activity showed that viewing social cues influences the decision to cooperate. Learning social events increased coordinated spiking between visual and prefrontal cortical neurons, which was associated with improved accuracy of neural populations to encode social cues and the decision to cooperate. These results indicate that the visual-frontal cortical network prioritizes relevant sensory information to facilitate learning social interactions while freely moving macaques interact in a naturalistic environment.
Collapse
Affiliation(s)
- Melissa Franch
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Sudha Yellapantula
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Arun Parajuli
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Natasha Kharas
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Anthony Wright
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Valentin Dragoi
- Deparment of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Neuroengineering Initiative, Rice University, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
45
|
Ni J, Yang J, Ma Y. Social bonding in groups of humans selectively increases inter-status information exchange and prefrontal neural synchronization. PLoS Biol 2024; 22:e3002545. [PMID: 38502637 PMCID: PMC10950240 DOI: 10.1371/journal.pbio.3002545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Social groups in various social species are organized with hierarchical structures that shape group dynamics and the nature of within-group interactions. In-group social bonding, exemplified by grooming behaviors among animals and collective rituals and team-building activities in human societies, is recognized as a practical adaptive strategy to foster group harmony and stabilize hierarchical structures in both human and nonhuman animal groups. However, the neurocognitive mechanisms underlying the effects of social bonding on hierarchical groups remain largely unexplored. Here, we conducted simultaneous neural recordings on human participants engaged in-group communications within small hierarchical groups (n = 528, organized into 176 three-person groups) to investigate how social bonding influenced hierarchical interactions and neural synchronizations. We differentiated interpersonal interactions between individuals of different (inter-status) or same (intra-status) social status and observed distinct effects of social bonding on inter-status and intra-status interactions. Specifically, social bonding selectively increased frequent and rapid information exchange and prefrontal neural synchronization for inter-status dyads but not intra-status dyads. Furthermore, social bonding facilitated unidirectional neural alignment from group leader to followers, enabling group leaders to predictively align their prefrontal activity with that of followers. These findings provide insights into how social bonding influences hierarchical dynamics and neural synchronization while highlighting the role of social status in shaping the strength and nature of social bonding experiences in human groups.
Collapse
Affiliation(s)
- Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
46
|
Gustison ML, Muñoz-Castañeda R, Osten P, Phelps SM. Sexual coordination in a whole-brain map of prairie vole pair bonding. eLife 2024; 12:RP87029. [PMID: 38381037 PMCID: PMC10942618 DOI: 10.7554/elife.87029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits. These circuits include known regulators of bonding, such as the bed nucleus of the stria terminalis, paraventricular hypothalamus, ventral pallidum, and prefrontal cortex. They also include brain regions previously unknown to shape bonding, such as ventromedial hypothalamus, medial preoptic area, and the medial amygdala, but that play essential roles in bonding-relevant processes, such as sexual behavior, social reward, and territorial aggression. Contrary to some hypotheses, we found that circuits active during mating and bonding were largely sexually monomorphic. Moreover, c-Fos induction across regions was strikingly consistent between members of a pair, with activity best predicted by rates of ejaculation. A novel cluster of regions centered in the amygdala remained coordinated after bonds had formed, suggesting novel substrates for bond maintenance. Our tools and results provide an unprecedented resource for elucidating the networks that translate sexual experience into an enduring bond.
Collapse
Affiliation(s)
- Morgan L Gustison
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Department of Psychology, Western UniversityLondonCanada
| | - Rodrigo Muñoz-Castañeda
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Pavel Osten
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Institute for Neuroscience, The University of Texas at AustinAustinUnited States
| |
Collapse
|
47
|
Isogai Y. Transcriptional programming of social hierarchy. Neuron 2024; 112:523-525. [PMID: 38387437 DOI: 10.1016/j.neuron.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
In this issue of Neuron, Choi and colleagues1 uncover the direct role of the transcription factor Pou3f1 in regulating dominance hierarchy in mice. Pou3f1 accomplishes this role via its action in specific prefrontal projection neurons that regulate behaviors associated with low social status.
Collapse
Affiliation(s)
- Yoh Isogai
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|
48
|
Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, Kang B, Choi M, Koo JW. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024; 112:611-627.e8. [PMID: 38086372 DOI: 10.1016/j.neuron.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eum Ji Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea
| | - Yun Ha Jeong
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Byungsoo Kang
- Sysoft R&D Center, Daegu 41065, Republic of Korea; Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea.
| |
Collapse
|
49
|
Shamay-Tsoory SG, Marton-Alper IZ, Markus A. Post-interaction neuroplasticity of inter-brain networks underlies the development of social relationship. iScience 2024; 27:108796. [PMID: 38292433 PMCID: PMC10825012 DOI: 10.1016/j.isci.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Inter-brain coupling has been increasingly recognized for its role in supporting connectedness during social communication. Here we investigate whether inter-brain coupling is plastic and persists beyond the offset of social interaction, facilitating the emergence of social closeness. Dyads were concurrently scanned using functional near infrared spectroscopy (fNIRS) while engaging in a task that involved movement synchronization. To assess post-interaction neuroplasticity, participants performed a baseline condition with no interaction before and after the interaction. The results reveal heightened inter-brain coupling in neural networks comprising the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex in the post-task compared to the pre-task baseline. Critically, the right IFG emerged as a highly connected hub, with post-task inter-brain coupling in this region predicting the levels of motivation to connect socially. We suggest that post-interactions inter-brain coupling may reflect consolidation of socially related cues, underscoring the role of inter-brain plasticity in fundamental aspects of relationship development.
Collapse
Affiliation(s)
- Simone G. Shamay-Tsoory
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| | | | - Andrey Markus
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| |
Collapse
|
50
|
Lamontagne A, Gaunet F. Behavioural Synchronisation between Dogs and Humans: Unveiling Interspecific Motor Resonance? Animals (Basel) 2024; 14:548. [PMID: 38396516 PMCID: PMC10886274 DOI: 10.3390/ani14040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Dogs' behavioural synchronisation with humans is of growing scientific interest. However, studies lack a comprehensive exploration of the neurocognitive foundations of this social cognitive ability. Drawing parallels from the mechanisms underlying behavioural synchronisation in humans, specifically motor resonance and the recruitment of mirror neurons, we hypothesise that dogs' behavioural synchronisation with humans is underpinned by a similar mechanism, namely interspecific motor resonance. Based on a literature review, we argue that dogs possess the prerequisites for motor resonance, and we suggest that interspecific behavioural synchronisation relies on the activation of both human and canine mirror neurons. Furthermore, interspecific behavioural studies highlight certain characteristics of motor resonance, including motor contagion and its social modulators. While these findings strongly suggest the potential existence of interspecific motor resonance, direct proof remains to be established. Our analysis thus paves the way for future research to confirm the existence of interspecific motor resonance as the neurocognitive foundation for interspecific behavioural synchronisation. Unravelling the neurocognitive mechanisms underlying this behavioural adjustment holds profound implications for understanding the evolutionary dynamics of dogs alongside humans and improving the day-to-day management of dog-human interactions.
Collapse
Affiliation(s)
- Angélique Lamontagne
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
- Association Agir pour la Vie Animale (AVA), 76220 Cuy-Saint-Fiacre, France
| | - Florence Gaunet
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
| |
Collapse
|