1
|
Bhatt DK, Janzen T, Daemen T, Weissing FJ. Effects of virus-induced immunogenic cues on oncolytic virotherapy. Sci Rep 2024; 14:28861. [PMID: 39572761 PMCID: PMC11582614 DOI: 10.1038/s41598-024-80542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
Oncolytic virotherapy is a promising form of cancer treatment that uses viruses to infect and kill cancer cells. In addition to their direct effects on cancer cells, the viruses stimulate various immune responses partly directed against the tumour. Efforts are made to genetically engineer oncolytic viruses to enhance their immunogenic potential. However, the interplay between tumour growth, viral infection, and immune responses is complex and not fully understood, leading to variable and sometimes counterintuitive therapeutic outcomes. Here, we employ a spatio-temporal model to shed more light on this interplay. We investigate systematically how the properties of virus-induced immunogenic signals (their half-life, rate of spread, and potential to promote T-cell-mediated cytotoxicity) affect the therapeutic outcome. Our simulations reveal that strong immunogenic signals, combined with faster diffusion rates, improve the spread of immune activation, leading to better tumour eradication. However, replicate simulations suggest that the outcome of virotherapy is more stochastic than generally appreciated. Our model shows that virus-induced immune responses can interfere with virotherapy, by targeting virus-infected cancer cells and/or by impeding viral spread. In the presence of immune responses, the mode of virus introduction is important, with systemic viral delivery throughout the tumour yielding the most favourable outcomes. The timing of virus introduction also plays a critical role; depending on the efficacy of the immune response, a later start of virotherapy can be advantageous. Overall, our results emphasise that the rational design of oncolytic viruses requires optimising virus-induced immunogenic signals and strategies that balance viral spread with immune activity for improved therapeutic success.
Collapse
Affiliation(s)
- Darshak K Bhatt
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thijs Janzen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Chen XD, Chen Z, Wythes G, Zhang Y, Orr BC, Sun G, Chao YK, Navarro Torres A, Thao K, Vallurupalli M, Sun J, Borji M, Tkacik E, Chen H, Bernstein BE, Chen F. Helicase-assisted continuous editing for programmable mutagenesis of endogenous genomes. Science 2024; 386:eadn5876. [PMID: 39388570 DOI: 10.1126/science.adn5876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/14/2024] [Indexed: 10/12/2024]
Abstract
Deciphering the context-specific relationship between sequence and function is a major challenge in genomics. Existing tools for inducing locus-specific hypermutation and evolution in the native genome context are limited. Here we present a programmable platform for long-range, locus-specific hypermutation called helicase-assisted continuous editing (HACE). HACE leverages CRISPR-Cas9 to target a processive helicase-deaminase fusion that incurs mutations across large (>1000-base pair) genomic intervals. We applied HACE to identify mutations in mitogen-activated protein kinase kinase 1 (MEK1) that confer kinase inhibitor resistance, to dissect the impact of individual variants in splicing factor 3B subunit 1 (SF3B1)-dependent missplicing, and to evaluate noncoding variants in a stimulation-dependent immune enhancer of CD69. HACE provides a powerful tool for investigating coding and noncoding variants, uncovering combinatorial sequence-to-function relationships, and evolving new biological functions.
Collapse
Affiliation(s)
- Xi Dawn Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Zeyu Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - George Wythes
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yifan Zhang
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benno C Orr
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gary Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Kai Chao
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrea Navarro Torres
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ka Thao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Jing Sun
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mehdi Borji
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emre Tkacik
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley E Bernstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fei Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Salom D, Wu A, Liu CC, Palczewski K. The Impact of Nanobodies on G Protein-Coupled Receptor Structural Biology and Their Potential as Therapeutic Agents. Mol Pharmacol 2024; 106:155-163. [PMID: 39107078 PMCID: PMC11413913 DOI: 10.1124/molpharm.124.000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
The family of human G protein-coupled receptors (GPCRs) comprises about 800 different members, with about 35% of current pharmaceutical drugs targeting GPCRs. However, GPCR structural biology, necessary for structure-guided drug design, has lagged behind that of other membrane proteins, and it was not until the year 2000 when the first crystal structure of a GPCR (rhodopsin) was solved. Starting in 2007, the determination of additional GPCR structures was facilitated by protein engineering, new crystallization techniques, complexation with antibody fragments, and other strategies. More recently, the use of camelid heavy-chain-only antibody fragments (nanobodies) as crystallographic chaperones has revolutionized the field of GPCR structural biology, aiding in the determination of more than 340 GPCR structures to date. In most cases, the GPCR structures solved as complexes with nanobodies (Nbs) have revealed the binding mode of cognate or non-natural ligands; in a few cases, the same Nb has acted as an orthosteric or allosteric modulator of GPCR signaling. In this review, we summarize the multiple ingenious strategies that have been conceived and implemented in the last decade to capitalize on the discovery of nanobodies to study GPCRs from a structural perspective. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) are major pharmacological targets, and the determination of their structures at high resolution has been essential for structure-guided drug design and for insights about their functions. Single-domain antibodies (nanobodies) have greatly facilitated the structural determination of GPCRs by forming complexes directly with the receptors or indirectly through protein partners.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Arum Wu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Chang C Liu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| |
Collapse
|
4
|
Zhao N, Zhou J, Tao T, Wang Q, Tang J, Li D, Gou S, Guan Z, Olajide JS, Lin J, Wang S, Li X, Zhou J, Gao Z, Wang G. Evolved cytidine and adenine base editors with high precision and minimized off-target activity by a continuous directed evolution system in mammalian cells. Nat Commun 2024; 15:8140. [PMID: 39289397 PMCID: PMC11408606 DOI: 10.1038/s41467-024-52483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Continuous directed evolution of base editors (BEs) has been successful in bacteria cells, but not yet in mammalian cells. Here, we report the development of a Continuous Directed Evolution system in Mammalian cells (CDEM). CDEM enables the BE evolution in a full-length manner with Cas9 nickase. We harness CDEM to evolve the deaminases of cytosine base editor BE3 and adenine base editors, ABEmax and ABE8e. The evolved cytidine deaminase variants on BE4 architecture show not only narrowed editing windows, but also higher editing purity and low off-target activity without a trade-off in on-targeting activity. The evolved ABEmax and ABE8e variants exhibit narrowed or shifted editing windows to different extents, and lower off-target effects. The results illustrate that CDEM is a simple but powerful approach to continuously evolve BEs without size restriction in the mammalian environment, which is advantageous over continuous directed evolution system in bacteria cells.
Collapse
Affiliation(s)
- Na Zhao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
- Guangzhou JinHua JiYin Technology Co., Ltd., Guangzhou, China
| | - Jian Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China.
- Department of Laboratory Medicines, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China.
| | - Tianfu Tao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qi Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jie Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dengluan Li
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shixue Gou
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhihong Guan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Joshua Seun Olajide
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jiejing Lin
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shuo Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Jiankui Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zongliang Gao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| | - Gang Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China.
| |
Collapse
|
5
|
Chu W, Guo Y, Wu Y, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Enhancing Cellular and Enzymatic Properties Through In Vivo Continuous Evolution. Chembiochem 2024:e202400564. [PMID: 39248206 DOI: 10.1002/cbic.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Directed evolution seeks to evolve target genes at a rate far exceeding the natural mutation rate, thereby endowing cellular and enzymatic properties with desired traits. In vivo continuous directed evolution achieves these purposes by generating libraries within living cells, enabling a continuous cycle of mutant generation and selection, enhancing the exploration of gene variants. Continuous evolution has become powerful tools for unraveling evolution mechanism and improving cellular and enzymatic properties. This review categorizes current continuous evolution into three distinct classes: non-targeted chromosomal, targeted chromosomal, and extra-chromosomal hypermutation approaches. It also compares various continuous evolution strategies based on different principles, providing a reference for selecting suitable methods for specific evolutionary goals. Furthermore, this review discusses the two primary limitations for further widespread application of in vivo continuous evolution, which are lack of general applicability and insufficient mutagenic capability. We envision that developing generally applicable mutagenic components and methods to enhance mutation rates for in vivo continuous evolution are promising future directions for wide range applications of continuous evolution.
Collapse
Affiliation(s)
- Weiran Chu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Guo
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
Lockyer JL, Reading A, Vicenzi S, Zbela A, Viswanathan S, Delandre C, Newland JW, McMullen JPD, Marshall OJ, Gasperini R, Foa L, Lin JY. Selective optogenetic inhibition of Gα q or Gα i signaling by minimal RGS domains disrupts circuit functionality and circuit formation. Proc Natl Acad Sci U S A 2024; 121:e2411846121. [PMID: 39190348 PMCID: PMC11388284 DOI: 10.1073/pnas.2411846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
Collapse
Affiliation(s)
- Jayde L Lockyer
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Agnieszka Zbela
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Saranya Viswanathan
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jake W Newland
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - John P D McMullen
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Owen J Marshall
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Sandy Bay, TAS 7005, Australia
| | - John Y Lin
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
7
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Sajkowska JJ, Tsang CH, Kozielewicz P. Application of FRET- and BRET-based live-cell biosensors in deorphanization and ligand discovery studies on orphan G protein-coupled receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100174. [PMID: 39084335 DOI: 10.1016/j.slasd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.
Collapse
Affiliation(s)
- Joanna J Sajkowska
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Choi Har Tsang
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
9
|
Helenek C, Krzysztoń R, Petreczky J, Wan Y, Cabral M, Coraci D, Balázsi G. Synthetic gene circuit evolution: Insights and opportunities at the mid-scale. Cell Chem Biol 2024; 31:1447-1459. [PMID: 38925113 PMCID: PMC11330362 DOI: 10.1016/j.chembiol.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Directed evolution focuses on optimizing single genetic components for predefined engineering goals by artificial mutagenesis and selection. In contrast, experimental evolution studies the adaptation of entire genomes in serially propagated cell populations, to provide an experimental basis for evolutionary theory. There is a relatively unexplored gap at the middle ground between these two techniques, to evolve in vivo entire synthetic gene circuits with nontrivial dynamic function instead of single parts or whole genomes. We discuss the requirements for such mid-scale evolution, with hypothetical examples for evolving synthetic gene circuits by appropriate selection and targeted shuffling of a seed set of genetic components in vivo. Implementing similar methods should aid the rapid generation, functionalization, and optimization of synthetic gene circuits in various organisms and environments, accelerating both the development of biomedical and technological applications and the understanding of principles guiding regulatory network evolution.
Collapse
Affiliation(s)
- Christopher Helenek
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rafał Krzysztoń
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julia Petreczky
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yiming Wan
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariana Cabral
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Damiano Coraci
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
10
|
Chen A, Zhang XD, Đelmaš AĐ, Weitz DA, Milcic K. Systems and Methods for Continuous Evolution of Enzymes. Chemistry 2024; 30:e202400880. [PMID: 38780896 DOI: 10.1002/chem.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Directed evolution generates novel biomolecules with desired functions by iteratively diversifying the genetic sequence of wildtype biomolecules, relaying the genetic information to the molecule with function, and selecting the variants that progresses towards the properties of interest. While traditional directed evolution consumes significant labor and time for each step, continuous evolution seeks to automate all steps so directed evolution can proceed with minimum human intervention and dramatically shortened time. A major application of continuous evolution is the generation of novel enzymes, which catalyze reactions under conditions that are not favorable to their wildtype counterparts, or on altered substrates. The challenge to continuously evolve enzymes lies in automating sufficient, unbiased gene diversification, providing selection for a wide array of reaction types, and linking the genetic information to the phenotypic function. Over years of development, continuous evolution has accumulated versatile strategies to address these challenges, enabling its use as a general tool for enzyme engineering. As the capability of continuous evolution continues to expand, its impact will increase across various industries. In this review, we summarize the working mechanisms of recently developed continuous evolution strategies, discuss examples of their applications focusing on enzyme evolution, and point out their limitations and future directions.
Collapse
Affiliation(s)
- Anqi Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
| | - Xinge Diana Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
| | | | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Karla Milcic
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
11
|
den Boon JA, Nishikiori M, Zhan H, Ahlquist P. Positive-strand RNA virus genome replication organelles: structure, assembly, control. Trends Genet 2024; 40:681-693. [PMID: 38724328 DOI: 10.1016/j.tig.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 08/09/2024]
Abstract
Positive-strand RNA [(+)RNA] viruses include pandemic SARS-CoV-2, tumor-inducing hepatitis C virus, debilitating chikungunya virus (CHIKV), lethal encephalitis viruses, and many other major pathogens. (+)RNA viruses replicate their RNA genomes in virus-induced replication organelles (ROs) that also evolve new viral species and variants by recombination and mutation and are crucial virus control targets. Recent cryo-electron microscopy (cryo-EM) reveals that viral RNA replication proteins form striking ringed 'crowns' at RO vesicle junctions with the cytosol. These crowns direct RO vesicle formation, viral (-)RNA and (+)RNA synthesis and capping, innate immune escape, and transfer of progeny (+)RNA genomes into translation and encapsidation. Ongoing studies are illuminating crown assembly, sequential functions, host factor interactions, etc., with significant implications for control and beneficial uses of viruses.
Collapse
Affiliation(s)
- Johan A den Boon
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Masaki Nishikiori
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Hong Zhan
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
| | - Paul Ahlquist
- Rowe Center for Virology, Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI.
| |
Collapse
|
12
|
Azzam T, Du JJ, Flowers MW, Ali AV, Hunn JC, Vijayvargiya N, Knagaram R, Bogacz M, Maravillas KE, Sastre DE, Fields JK, Mirzaei A, Pierce BG, Sundberg EJ. Combinatorially restricted computational design of protein-protein interfaces to produce IgG heterodimers. SCIENCE ADVANCES 2024; 10:eadk8157. [PMID: 38598628 PMCID: PMC11006224 DOI: 10.1126/sciadv.adk8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.
Collapse
Affiliation(s)
- Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria W. Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adeela V. Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy C. Hunn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nina Vijayvargiya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rushil Knagaram
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kino E. Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diego E. Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James K. Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ardalan Mirzaei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20850, USA
| | - Eric J. Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Jewel D, Kelemen RE, Huang RL, Zhu Z, Sundaresh B, Malley K, Pham Q, Loynd C, Huang Z, van Opijnen T, Chatterjee A. Enhanced Directed Evolution in Mammalian Cells Yields a Hyperefficient Pyrrolysyl tRNA for Noncanonical Amino Acid Mutagenesis. Angew Chem Int Ed Engl 2024; 63:e202316428. [PMID: 38279536 PMCID: PMC10922736 DOI: 10.1002/anie.202316428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/28/2024]
Abstract
Heterologous tRNAs used for noncanonical amino acid (ncAA) mutagenesis in mammalian cells typically show poor activity. We recently introduced a virus-assisted directed evolution strategy (VADER) that can enrich improved tRNA mutants from naïve libraries in mammalian cells. However, VADER was limited to processing only a few thousand mutants; the inability to screen a larger sequence space precluded the identification of highly active variants with distal synergistic mutations. Here, we report VADER2.0, which can process significantly larger mutant libraries. It also employs a novel library design, which maintains base-pairing between distant residues in the stem regions, allowing us to pack a higher density of functional mutants within a fixed sequence space. VADER2.0 enabled simultaneous engineering of the entire acceptor stem of M. mazei pyrrolysyl tRNA (tRNAPyl ), leading to a remarkably improved variant, which facilitates more efficient incorporation of a wider range of ncAAs, and enables facile development of viral vectors and stable cell-lines for ncAA mutagenesis.
Collapse
Affiliation(s)
- Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Rachel E Kelemen
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Rachel L Huang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Zeyu Zhu
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Kaitlin Malley
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Conor Loynd
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Zeyi Huang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
14
|
Ma P, Zhang S, Huang Q, Gu Y, Zhou Z, Hou W, Yi W, Xu H. Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharm Sin B 2024; 14:492-516. [PMID: 38322331 PMCID: PMC10840438 DOI: 10.1016/j.apsb.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 02/08/2024] Open
Abstract
DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Tian R, Rehm FBH, Czernecki D, Gu Y, Zürcher JF, Liu KC, Chin JW. Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli. Science 2024; 383:421-426. [PMID: 38271510 DOI: 10.1126/science.adk1281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
The evolution of new function in living organisms is slow and fundamentally limited by their critical mutation rate. Here, we established a stable orthogonal replication system in Escherichia coli. The orthogonal replicon can carry diverse cargos of at least 16.5 kilobases and is not copied by host polymerases but is selectively copied by an orthogonal DNA polymerase (O-DNAP), which does not copy the genome. We designed mutant O-DNAPs that selectively increase the mutation rate of the orthogonal replicon by two to four orders of magnitude. We demonstrate the utility of our system for accelerated continuous evolution by evolving a 150-fold increase in resistance to tigecycline in 12 days. And, starting from a GFP variant, we evolved a 1000-fold increase in cellular fluorescence in 5 days.
Collapse
Affiliation(s)
- Rongzhen Tian
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fabian B H Rehm
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dariusz Czernecki
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yangqi Gu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jérôme F Zürcher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
16
|
Chen C, Wang Z, Kang M, Lee KB, Ge X. High-fidelity large-diversity monoclonal mammalian cell libraries by cell cycle arrested recombinase-mediated cassette exchange. Nucleic Acids Res 2023; 51:e113. [PMID: 37941133 PMCID: PMC10711435 DOI: 10.1093/nar/gkad1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
17
|
Jewel D, Pham Q, Chatterjee A. Virus-assisted directed evolution of biomolecules. Curr Opin Chem Biol 2023; 76:102375. [PMID: 37542745 PMCID: PMC10870257 DOI: 10.1016/j.cbpa.2023.102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 08/07/2023]
Abstract
Directed evolution is a powerful technique that uses principles of natural evolution to enable the development of biomolecules with novel functions. However, the slow pace of natural evolution does not support the demand for rapidly generating new biomolecular functions in the laboratory. Viruses offer a unique path to design fast laboratory evolution experiments, owing to their innate ability to evolve much more rapidly than most living organisms, facilitated by a smaller genome size that tolerate a high frequency of mutations, as well as a fast rate of replication. These attributes offer a great opportunity to evolve various biomolecules by linking their activity to the replication of a suitable virus. This review highlights the recent advances in the application of virus-assisted directed evolution of designer biomolecules in both prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Quan Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
18
|
Liu Z, Chen S, Wu J. Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 2023; 41:1168-1181. [PMID: 37088569 DOI: 10.1016/j.tibtech.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Inspired by natural evolution, directed evolution randomly mutates the gene of interest through artificial evolution conditions with variants being screened for the required properties. Directed evolution is vital to the enhancement of protein properties and comprises the construction of libraries with considerable diversity as well as screening methods with sufficient efficiency as key steps. Owing to the various characteristics of proteins, specific methods are urgently needed for library screening, which is one of the main limiting factors in accelerating evolution. This review initially organizes the principles of ultrahigh-throughput screening from the perspective of protein properties. It then provides a comprehensive introduction to the latest progress and future trends in ultrahigh-throughput screening technologies for directed evolution.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
19
|
Seo D, Koh B, Eom GE, Kim HW, Kim S. A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo. Nucleic Acids Res 2023; 51:e59. [PMID: 37070179 PMCID: PMC10250238 DOI: 10.1093/nar/gkad266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Targeted in vivo hypermutation accelerates directed evolution of proteins through concurrent DNA diversification and selection. Although systems employing a fusion protein of a nucleobase deaminase and T7 RNA polymerase present gene-specific targeting, their mutational spectra have been limited to exclusive or dominant C:G→T:A mutations. Here we describe eMutaT7transition, a new gene-specific hypermutation system, that installs all transition mutations (C:G→T:A and A:T→G:C) at comparable frequencies. By using two mutator proteins in which two efficient deaminases, PmCDA1 and TadA-8e, are separately fused to T7 RNA polymerase, we obtained similar numbers of C:G→T:A and A:T→G:C substitutions at a sufficiently high frequency (∼6.7 substitutions in 1.3 kb gene during 80-h in vivo mutagenesis). Through eMutaT7transition-mediated TEM-1 evolution for antibiotic resistance, we generated many mutations found in clinical isolates. Overall, with a high mutation frequency and wider mutational spectrum, eMutaT7transition is a potential first-line method for gene-specific in vivo hypermutation.
Collapse
Affiliation(s)
- Daeje Seo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Bonghyun Koh
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ga-eul Eom
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hye Won Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Lockyer J, Reading A, Vicenzi S, Delandre C, Marshall O, Gasperini R, Foa L, Lin JY. Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539674. [PMID: 37214843 PMCID: PMC10197587 DOI: 10.1101/2023.05.06.539674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein - Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
Collapse
Affiliation(s)
- Jayde Lockyer
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Andrew Reading
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Silvia Vicenzi
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
- Current affiliation, Moores Cancer Center, School of Medicine, Division of Regenerative Medicine, University of California, San Diego, California, USA
| | - Caroline Delandre
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Owen Marshall
- Menzies Institute of Medical Research, University of Tasmania, Tasmania, Australia
| | - Robert Gasperini
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Tasmania, Australia
| | - John Y. Lin
- Tasmanian School of Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
21
|
Mengiste AA, Wilson RH, Weissman RF, Papa III LJ, Hendel SJ, Moore CL, Butty VL, Shoulders MD. Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Res 2023; 51:e31. [PMID: 36715334 PMCID: PMC10085711 DOI: 10.1093/nar/gkad003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
Targeted mutagenesis mediated by nucleotide base deaminase-T7 RNA polymerase fusions has recently emerged as a novel and broadly useful strategy to power genetic diversification in the context of in vivo directed evolution campaigns. Here, we expand the utility of this approach by introducing a highly active adenosine deaminase-T7 RNA polymerase fusion protein (eMutaT7A→G), resulting in higher mutation frequencies to enable more rapid directed evolution. We also assess the benefits and potential downsides of using this more active mutator. We go on to show in Escherichia coli that adenosine deaminase-bearing mutators (MutaT7A→G or eMutaT7A→G) can be employed in tandem with a cytidine deaminase-bearing mutator (MutaT7C→T) to introduce all possible transition mutations simultaneously. We illustrate the efficacy of this in vivo mutagenesis approach by exploring mutational routes to antibacterial drug resistance. This work sets the stage for general application of optimized MutaT7 tools able to induce all types of transition mutations during in vivo directed evolution campaigns across diverse organisms.
Collapse
Affiliation(s)
- Amanuella A Mengiste
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert H Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rachel F Weissman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Louis J Papa III
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel J Hendel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher L Moore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vincent L Butty
- BioMicroCenter, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Klenk C, Scrivens M, Niederer A, Shi S, Mueller L, Gersz E, Zauderer M, Smith ES, Strohner R, Plückthun A. A Vaccinia-based system for directed evolution of GPCRs in mammalian cells. Nat Commun 2023; 14:1770. [PMID: 36997531 PMCID: PMC10063554 DOI: 10.1038/s41467-023-37191-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Directed evolution in bacterial or yeast display systems has been successfully used to improve stability and expression of G protein-coupled receptors for structural and biophysical studies. Yet, several receptors cannot be tackled in microbial systems due to their complex molecular composition or unfavorable ligand properties. Here, we report an approach to evolve G protein-coupled receptors in mammalian cells. To achieve clonality and uniform expression, we develop a viral transduction system based on Vaccinia virus. By rational design of synthetic DNA libraries, we first evolve neurotensin receptor 1 for high stability and expression. Second, we demonstrate that receptors with complex molecular architectures and large ligands, such as the parathyroid hormone 1 receptor, can be readily evolved. Importantly, functional receptor properties can now be evolved in the presence of the mammalian signaling environment, resulting in receptor variants exhibiting increased allosteric coupling between the ligand binding site and the G protein interface. Our approach thus provides insights into the intricate molecular interplay required for GPCR activation.
Collapse
Affiliation(s)
- Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Maria Scrivens
- Vaccinex, Inc., 1895 Mt. Hope Avenue, Rochester, New York, 14620, NY, USA
| | - Anina Niederer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Shuying Shi
- Vaccinex, Inc., 1895 Mt. Hope Avenue, Rochester, New York, 14620, NY, USA
| | - Loretta Mueller
- Vaccinex, Inc., 1895 Mt. Hope Avenue, Rochester, New York, 14620, NY, USA
| | - Elaine Gersz
- Vaccinex, Inc., 1895 Mt. Hope Avenue, Rochester, New York, 14620, NY, USA
| | - Maurice Zauderer
- Vaccinex, Inc., 1895 Mt. Hope Avenue, Rochester, New York, 14620, NY, USA
| | - Ernest S Smith
- Vaccinex, Inc., 1895 Mt. Hope Avenue, Rochester, New York, 14620, NY, USA
| | - Ralf Strohner
- MorphoSys AG, Semmelweisstr. 7, 82152, Planegg, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
23
|
Malinverni D, Babu MM. Data-driven design of orthogonal protein-protein interactions. Sci Signal 2023; 16:eabm4484. [PMID: 36853962 DOI: 10.1126/scisignal.abm4484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Engineering protein-protein interactions to generate new functions presents a challenge with great potential for many applications, ranging from therapeutics to synthetic biology. To avoid unwanted cross-talk with preexisting protein interaction networks in a cell, the specificity and selectivity of newly engineered proteins must be controlled. Here, we developed a computational strategy that mimics gene duplication and the divergence of preexisting interacting protein pairs to design new interactions. We used the bacterial PhoQ-PhoP two-component system as a model system to demonstrate the feasibility of this strategy and validated the approach with known experimental results. The designed protein pairs are predicted to exclusively interact with each other and to be insulated from potential cross-talk with their native partners. Thus, our approach enables exploration of uncharted regions of the protein sequence space and the design of new interacting protein pairs.
Collapse
Affiliation(s)
- Duccio Malinverni
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Department of Structural Biology and Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
24
|
Jewel D, Kelemen RE, Huang RL, Zhu Z, Sundaresh B, Cao X, Malley K, Huang Z, Pasha M, Anthony J, van Opijnen T, Chatterjee A. Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells. Nat Methods 2023; 20:95-103. [PMID: 36550276 PMCID: PMC9855281 DOI: 10.1038/s41592-022-01706-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Site-specific incorporation of unnatural amino acids (Uaas) in living cells relies on engineered aminoacyl-transfer RNA synthetase-tRNA pairs borrowed from a distant domain of life. Such heterologous suppressor tRNAs often have poor intrinsic activity, presumably due to suboptimal interaction with a non-native translation system. This limitation can be addressed in Escherichia coli using directed evolution. However, no suitable selection system is currently available to do the same in mammalian cells. Here we report virus-assisted directed evolution of tRNAs (VADER) in mammalian cells, which uses a double-sieve selection scheme to facilitate single-step enrichment of active yet orthogonal tRNA mutants from naive libraries. Using VADER we developed improved mutants of Methanosarcina mazei pyrrolysyl-tRNA, as well as a bacterial tyrosyl-tRNA. We also show that the higher activity of the most efficient mutant pyrrolysyl-tRNA is specific for mammalian cells, alluding to an improved interaction with the unique mammalian translation apparatus.
Collapse
Affiliation(s)
- Delilah Jewel
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Rachel L Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Zeyu Zhu
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | - Xiaofu Cao
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Kaitlin Malley
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Zeyi Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Muhammad Pasha
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jon Anthony
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
25
|
Hou Q, Jaffrey SR. Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells. RNA Biol 2023; 20:198-206. [PMID: 37129556 PMCID: PMC10155629 DOI: 10.1080/15476286.2023.2206248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
RNA aptamers are structured RNAs that can bind to diverse ligands, including proteins, metabolites, and other small molecules. RNA aptamers are widely used as in vitro affinity reagents. However, RNA aptamers have not been highly successful as bioactive intracellular molecules that can bind target molecules and influence cellular processes. We describe how poor RNA aptamer expression and especially poor RNA aptamer folding have limited the use of RNA aptamers in RNA synthetic biology applications. We discuss innovative new approaches that promote RNA aptamer folding in living cells and how these approaches have improved the function of aptamers in mammalian cells. These new approaches are making RNA aptamer-based synthetic biology and RNA aptamer therapeutic applications much more achievable.
Collapse
Affiliation(s)
- Qian Hou
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R. Jaffrey
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
26
|
Raynaud P, Gauthier C, Jugnarain V, Jean-Alphonse F, Reiter E, Bruneau G, Crépieux P. Intracellular VHHs to monitor and modulate GPCR signaling. Front Endocrinol (Lausanne) 2022; 13:1048601. [PMID: 36465650 PMCID: PMC9708903 DOI: 10.3389/fendo.2022.1048601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Single-domain antibody fragments, also known as VHHs or nanobodies, have opened promising avenues in therapeutics and in exploration of intracellular processes. Because of their unique structural properties, they can reach cryptic regions in their cognate antigen. Intracellular VHHs/antibodies primarily directed against cytosolic proteins or transcription factors have been described. In contrast, few of them target membrane proteins and even less recognize G protein-coupled receptors. These receptors are major therapeutic targets, which reflects their involvement in a plethora of physiological responses. Hence, they elicit a tremendous interest in the scientific community and in the industry. Comprehension of their pharmacology has been obscured by their conformational complexity, that has precluded deciphering their structural properties until the early 2010's. To that respect, intracellular VHHs have been instrumental in stabilizing G protein-coupled receptors in active conformations in order to solve their structure, possibly bound to their primary transducers, G proteins or β-arrestins. In contrast, the modulatory properties of VHHs recognizing the intracellular regions of G protein-coupled receptors on the induced signaling network have been poorly studied. In this review, we will present the advances that the intracellular VHHs have permitted in the field of GPCR signaling and trafficking. We will also discuss the methodological hurdles that linger the discovery of modulatory intracellular VHHs directed against GPCRs, as well as the opportunities they open in drug discovery.
Collapse
Affiliation(s)
- Pauline Raynaud
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Camille Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Vinesh Jugnarain
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Frédéric Jean-Alphonse
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Gilles Bruneau
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| |
Collapse
|
27
|
Denes CE, Cole AJ, Tran MTN, Mohd Khalid MKN, Hewitt AW, Hesselson D, Neely GG. The VEGAS Platform Is Unsuitable for Mammalian Directed Evolution. ACS Synth Biol 2022; 11:3544-3549. [PMID: 36219697 DOI: 10.1021/acssynbio.2c00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Directed evolution uses cycles of gene diversification and selection to generate proteins with novel properties. While traditionally directed evolution is performed in prokaryotic systems, recently a mammalian directed evolution system (viral evolution of genetically actuating sequences, or "VEGAS") has been described. Here we report that the VEGAS system has major limitations that preclude its use for directed evolution. The deconstructed Sindbis virus (SINV) genome that comprises the VEGAS system could no longer promote Sindbis structural gene (SSG)-dependent viral replication. Moreover, viral particles generated using the VEGAS system rapidly lost the target directed evolution transgene, and instead, "cheater" particles, primarily containing RNA encoding SINV structural components, arose. By sequencing, we found that this contamination came from RNA provided during initial SINV packaging, not RNA derived from the VEGAS system. Of note, both the structural RNA and target transgenes used in the VEGAS system contain viral packaging sequences. The impact of SINV "cheater" particles could be potentially overcome in the context of a robust VEGAS circuit, but since SSG complementation is also defective in the VEGAS system, selection for authentic evolution products is not currently possible. Similar results have been obtained in independent laboratories. Taken together, these results show that the VEGAS system does not work as described and, without significant redesign, cannot be used for mammalian directed evolution campaigns.
Collapse
Affiliation(s)
- Christopher E Denes
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander J Cole
- Centenary Institute and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Minh Thuan Nguyen Tran
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | | | - Alex W Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Daniel Hesselson
- Centenary Institute and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - G Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Wingler LM, Feld AP. Nanobodies as Probes and Modulators of Cardiovascular G Protein-Coupled Receptors. J Cardiovasc Pharmacol 2022; 80:342-353. [PMID: 34840268 DOI: 10.1097/fjc.0000000000001185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/06/2021] [Indexed: 01/31/2023]
Abstract
ABSTRACT Understanding the activation of G protein-coupled receptors (GPCRs) is of paramount importance to the field of cardiovascular medicine due to the critical physiological roles of these receptors and their prominence as drug targets. Although many cardiovascular GPCRs have been extensively studied as model receptors for decades, new complexities in their regulation continue to emerge. As a result, there is an ongoing need to develop novel approaches to monitor and to modulate GPCR activation. In less than a decade, nanobodies, or recombinant single-domain antibody fragments from camelids, have become indispensable tools for interrogating GPCRs both in purified systems and in living cells. Nanobodies have gained traction rapidly due to their biochemical tractability and their ability to recognize defined states of native proteins. Here, we review how nanobodies have been adopted to elucidate the structure, pharmacology, and signaling of cardiovascular GPCRs, resolving long-standing mysteries and revealing unexpected mechanisms. We also discuss how advancing technologies to discover nanobodies with tailored specificities may expand the impact of these tools for both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | |
Collapse
|
29
|
Wei T, Lai W, Chen Q, Zhang Y, Sun C, He X, Zhao G, Fu X, Liu C. Exploiting spatial dimensions to enable parallelized continuous directed evolution. Mol Syst Biol 2022; 18:e10934. [PMID: 36129229 PMCID: PMC9491160 DOI: 10.15252/msb.202210934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Current strategies to improve the throughput of continuous directed evolution technologies often involve complex mechanical fluid-controlling system or robotic platforms, which limits their popularization and application in general laboratories. Inspired by our previous study on bacterial range expansion, in this study, we report a system termed SPACE for rapid and extensively parallelizable evolution of biomolecules by introducing spatial dimensions into the landmark phage-assisted continuous evolution system. Specifically, M13 phages and chemotactic Escherichia coli cells were closely inoculated onto a semisolid agar. The phages came into contact with the expanding front of the bacterial range, and then comigrated with the bacteria. This system leverages competition over space, wherein evolutionary progress is closely associated with the production of spatial patterns, allowing the emergence of improved or new protein functions. In a prototypical problem, SPACE remarkably simplified the process and evolved the promoter recognition of T7 RNA polymerase (RNAP) to a library of 96 random sequences in parallel. These results establish SPACE as a simple, easy to implement, and massively parallelizable platform for continuous directed evolution in general laboratories.
Collapse
Affiliation(s)
- Ting Wei
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wangsheng Lai
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qian Chen
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Zhang
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Chenjian Sun
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Guoping Zhao
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- CAS Key Laboratory for Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
30
|
Niu Z, Luo Z, Sun P, Ning L, Jin X, Chen G, Guo C, Zhi L, Chang W, Zhu W. In Vitro Nanobody Library Construction by Using Gene Designated-Region Pan-Editing Technology. BIODESIGN RESEARCH 2022; 2022:9823578. [PMID: 37850144 PMCID: PMC10521727 DOI: 10.34133/2022/9823578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/09/2022] [Indexed: 10/19/2023] Open
Abstract
Camelid single-domain antibody fragments (nanobodies) are an emerging force in therapeutic biopharmaceuticals and clinical diagnostic reagents in recent years. Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting the large-scale application of nanobodies. In this study, we developed three kinds of gene designated-region pan-editing (GDP) technologies to introduce multiple mutations in complementarity-determining regions (CDRs) of nanobodies in vitro. Including the integration of G-quadruplex fragments in CDRs, which induces the spontaneous multiple mutations in CDRs; however, these mutant sequences are highly similar, resulting in a lack of sequences diversity in the CDRs. We also used CDR-targeting traditional gRNA-guided base-editors, which effectively diversify the CDRs. And most importantly, we developed the self-assembling gRNAs, which are generated by reprogrammed tracrRNA hijacking of endogenous mRNAs as crRNAs. Using base-editors guided by self-assembling gRNAs, we can realize the iteratively diversify the CDRs. And we believe the last GDP technology is highly promising in immunization-free nanobody library construction, and the full development of this novel nanobody discovery platform can realize the synthetic evolution of nanobodies in vitro.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Zhixia Luo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Pengyang Sun
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Linwei Ning
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Xinru Jin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Guanxu Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| | - Wei Chang
- Department of Oncology, Xinxiang First People’s Hospital, The Affiliated People’s Hospital of Xinxiang Medical University, Xinxiang 453000China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003 Henan, China
| |
Collapse
|
31
|
Nishikiori M, den Boon JA, Unchwaniwala N, Ahlquist P. Crowning Touches in Positive-Strand RNA Virus Genome Replication Complex Structure and Function. Annu Rev Virol 2022; 9:193-212. [PMID: 35610038 DOI: 10.1146/annurev-virology-092920-021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positive-strand RNA viruses, the largest genetic class of eukaryotic viruses, include coronaviruses and many other established and emerging pathogens. A major target for understanding and controlling these viruses is their genome replication, which occurs in virus-induced membrane vesicles that organize replication steps and protect double-stranded RNA intermediates from innate immune recognition. The structure of these complexes has been greatly illuminated by recent cryo-electron microscope tomography studies with several viruses. One key finding in diverse systems is the organization of crucial viral RNA replication factors in multimeric rings or crowns that among other functions serve as exit channels gating release of progeny genomes to the cytosol for translation and encapsidation. Emerging results suggest that these crowns serve additional important purposes in replication complex assembly, function, and interaction with downstream processes such as encapsidation. The findings provide insights into viral function and evolution and new bases for understanding, controlling, and engineering positive-strand RNA viruses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Masaki Nishikiori
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johan A den Boon
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Current affiliation: Assembly Biosciences, Inc., South San Francisco, California, USA
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA; .,Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Laeremans T, Sands ZA, Claes P, De Blieck A, De Cesco S, Triest S, Busch A, Felix D, Kumar A, Jaakola VP, Menet C. Accelerating GPCR Drug Discovery With Conformation-Stabilizing VHHs. Front Mol Biosci 2022; 9:863099. [PMID: 35677880 PMCID: PMC9170359 DOI: 10.3389/fmolb.2022.863099] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
The human genome encodes 850 G protein-coupled receptors (GPCRs), half of which are considered potential drug targets. GPCRs transduce extracellular stimuli into a plethora of vital physiological processes. Consequently, GPCRs are an attractive drug target class. This is underlined by the fact that approximately 40% of marketed drugs modulate GPCRs. Intriguingly 60% of non-olfactory GPCRs have no drugs or candidates in clinical development, highlighting the continued potential of GPCRs as drug targets. The discovery of small molecules targeting these GPCRs by conventional high throughput screening (HTS) campaigns is challenging. Although the definition of success varies per company, the success rate of HTS for GPCRs is low compared to other target families (Fujioka and Omori, 2012; Dragovich et al., 2022). Beyond this, GPCR structure determination can be difficult, which often precludes the application of structure-based drug design approaches to arising HTS hits. GPCR structural studies entail the resource-demanding purification of native receptors, which can be challenging as they are inherently unstable when extracted from the lipid matrix. Moreover, GPCRs are flexible molecules that adopt distinct conformations, some of which need to be stabilized if they are to be structurally resolved. The complexity of targeting distinct therapeutically relevant GPCR conformations during the early discovery stages contributes to the high attrition rates for GPCR drug discovery programs. Multiple strategies have been explored in an attempt to stabilize GPCRs in distinct conformations to better understand their pharmacology. This review will focus on the use of camelid-derived immunoglobulin single variable domains (VHHs) that stabilize disease-relevant pharmacological states (termed ConfoBodies by the authors) of GPCRs, as well as GPCR:signal transducer complexes, to accelerate drug discovery. These VHHs are powerful tools for supporting in vitro screening, deconvolution of complex GPCR pharmacology, and structural biology purposes. In order to demonstrate the potential impact of ConfoBodies on translational research, examples are presented of their role in active state screening campaigns and structure-informed rational design to identify de novo chemical space and, subsequently, how such matter can be elaborated into more potent and selective drug candidates with intended pharmacology.
Collapse
|
33
|
Molina RS, Rix G, Mengiste AA, Alvarez B, Seo D, Chen H, Hurtado J, Zhang Q, Donato García-García J, Heins ZJ, Almhjell PJ, Arnold FH, Khalil AS, Hanson AD, Dueber JE, Schaffer DV, Chen F, Kim S, Ángel Fernández L, Shoulders MD, Liu CC. In vivo hypermutation and continuous evolution. NATURE REVIEWS. METHODS PRIMERS 2022; 2:37. [PMID: 37073402 PMCID: PMC10108624 DOI: 10.1038/s43586-022-00130-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rosana S. Molina
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Gordon Rix
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Amanuella A. Mengiste
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Beatriz Alvarez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Daeje Seo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Haiqi Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juan Hurtado
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Qiong Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jorge Donato García-García
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona 2514, Nuevo Mexico, C.P. 45138, Zapopan, Jalisco, Mexico
| | - Zachary J. Heins
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Patrick J. Almhjell
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Frances H. Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ahmad S. Khalil
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - John E. Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley and San Francisco, Berkeley, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California Berkeley and San Francisco, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92617, USA
| |
Collapse
|
34
|
Xie VC, Styles MJ, Dickinson BC. Methods for the directed evolution of biomolecular interactions. Trends Biochem Sci 2022; 47:403-416. [PMID: 35427479 PMCID: PMC9022280 DOI: 10.1016/j.tibs.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
Noncovalent interactions between biomolecules such as proteins and nucleic acids coordinate all cellular processes through changes in proximity. Tools that perturb these interactions are and will continue to be highly valuable for basic and translational scientific endeavors. By taking cues from natural systems, such as the adaptive immune system, we can design directed evolution platforms that can generate proteins that bind to biomolecules of interest. In recent years, the platforms used to direct the evolution of biomolecular binders have greatly expanded the range of types of interactions one can evolve. Herein, we review recent advances in methods to evolve protein-protein, protein-RNA, and protein-DNA interactions.
Collapse
Affiliation(s)
| | - Matthew J Styles
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Sowlati-Hashjin S, Gandhi A, Garton M. Dawn of a New Era for Membrane Protein Design. BIODESIGN RESEARCH 2022; 2022:9791435. [PMID: 37850134 PMCID: PMC10521746 DOI: 10.34133/2022/9791435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/20/2022] [Indexed: 10/19/2023] Open
Abstract
A major advancement has recently occurred in the ability to predict protein secondary structure from sequence using artificial neural networks. This new accessibility to high-quality predicted structures provides a big opportunity for the protein design community. It is particularly welcome for membrane protein design, where the scarcity of solved structures has been a major limitation of the field for decades. Here, we review the work done to date on the membrane protein design and set out established and emerging tools that can be used to most effectively exploit this new access to structures.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| | - Aanshi Gandhi
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| | - Michael Garton
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
36
|
Babakhanova S, Jung EE, Namikawa K, Zhang H, Wang Y, Subach OM, Korzhenevskiy DA, Rakitina TV, Xiao X, Wang W, Shi J, Drobizhev M, Park D, Eisenhard L, Tang H, Köster RW, Subach FV, Boyden ES, Piatkevich KD. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Sci 2022; 31:728-751. [PMID: 34913537 PMCID: PMC8862398 DOI: 10.1002/pro.4261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 107 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days. We employed this approach to develop a set of green and near-infrared fluorescent proteins with enhanced intracellular brightness. The developed near-infrared fluorescent proteins demonstrated high performance for fluorescent labeling of neurons in culture and in vivo in model organisms such as Caenorhabditis elegans, Drosophila, zebrafish, and mice. Spectral properties of the optimized near-infrared fluorescent proteins enabled crosstalk-free multicolor imaging in combination with common green and red fluorescent proteins, as well as dual-color near-infrared fluorescence imaging. The described method has a great potential to be adopted by protein engineers due to its simplicity and practicality. We also believe that the new enhanced fluorescent proteins will find wide application for in vivo multicolor imaging of small model organisms.
Collapse
|
37
|
Dyer RP, Weiss GA. Making the cut with protease engineering. Cell Chem Biol 2022; 29:177-190. [PMID: 34921772 PMCID: PMC9127713 DOI: 10.1016/j.chembiol.2021.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Proteases cut with enviable precision and regulate diverse molecular events in biology. Such qualities drive a seemingly inexhaustible appetite for proteases with new activities and capabilities. Comprising 25% of the total industrial enzyme market, proteases appear in consumer goods, such as detergents, textile processing, and numerous foods; additionally, proteases include 25 US Food and Drug Administration-approved medicines and various research tools. Recent advances in protease engineering strategies address target specificity, catalytic efficiency, and stability. This guide to protease engineering surveys best practices and emerging strategies. We further highlight gaps and flexibilities inherent to each system that suggest opportunities for new technology development along with engineered proteases to solve challenges in proteomics, protein sequencing, and synthetic gene circuits.
Collapse
Affiliation(s)
- Rebekah P Dyer
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA; Department of Pharmaceutical Sciences, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA.
| |
Collapse
|
38
|
DeBenedictis EA, Chory EJ, Gretton DW, Wang B, Golas S, Esvelt KM. Systematic molecular evolution enables robust biomolecule discovery. Nat Methods 2022; 19:55-64. [PMID: 34969982 DOI: 10.1038/s41592-021-01348-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Evolution occurs when selective pressures from the environment shape inherited variation over time. Within the laboratory, evolution is commonly used to engineer proteins and RNA, but experimental constraints have limited the ability to reproducibly and reliably explore factors such as population diversity, the timing of environmental changes and chance on outcomes. We developed a robotic system termed phage- and robotics-assisted near-continuous evolution (PRANCE) to comprehensively explore biomolecular evolution by performing phage-assisted continuous evolution in high-throughput. PRANCE implements an automated feedback control system that adjusts the stringency of selection in response to real-time measurements of each molecular activity. In evolving three distinct types of biomolecule, we find that evolution is reproducibly altered by both random chance and the historical pattern of environmental changes. This work improves the reliability of protein engineering and enables the systematic analysis of the historical, environmental and random factors governing biomolecular evolution.
Collapse
Affiliation(s)
- Erika A DeBenedictis
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Emma J Chory
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dana W Gretton
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Wang
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefan Golas
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin M Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Iqbal Z, Sadaf S. Forty Years of Directed Evolution and its Continuously Evolving Technology Toolbox - A Review of the Patent Landscape. Biotechnol Bioeng 2021; 119:693-724. [PMID: 34923625 DOI: 10.1002/bit.28009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
Generating functional protein variants with novel or improved characteristics has been a goal of the biotechnology industry and life sciences, for decades. Rational design and directed evolution are two major pathways to achieve the desired ends. Whilst rational protein design approach has made substantial progress, the idea of using a method based on cycles of mutagenesis and natural selection to develop novel binding proteins, enzymes and structures has attracted great attention. Laboratory evolution of proteins/enzymes requires new tools and analytical approaches to create genetic diversity and identifying variants with desired traits. In this pursuit, construction of sufficiently large libraries of target molecules to search for improved variants and the need for new protocols to alter the properties of target molecules has been a continuing challenge in the directed evolution experiments. This review will discuss the in vivo and in vitro gene diversification tools, library screening or selection approaches, and artificial intelligence/machine-learning-based strategies to mutagenesis developed in the last forty years to accelerate the natural process of evolution in creating new functional protein variants, optimization of microbial strains and transformation of enzymes into industrial machines. Analyzing patent position over these techniques and mechanisms also constitutes an integral and distinctive part of this review. The aim is to provide an up-to-date resource/technology toolbox for research-based and pharmaceutical companies to discover the boundaries of competitor's intellectual property (IP) portfolio, their freedom-to-operate in the relevant IP landscape, and the need for patent due diligence analysis to rule out whether use of a particular patented mutagenesis method, library screening/selection technique falls outside the safe harbor of experimental use exemption. While so doing, we have referred to some recent cases that emphasize the significance of selecting a suitable gene diversification strategy in directed evolution experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zarina Iqbal
- PakPat World Intellectual Property Protection Services, Lahore, 54000, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
40
|
Cao C, Kang HJ, Singh I, Chen H, Zhang C, Ye W, Hayes BW, Liu J, Gumpper RH, Bender BJ, Slocum ST, Krumm BE, Lansu K, McCorvy JD, Kroeze WK, English JG, DiBerto JF, Olsen RHJ, Huang XP, Zhang S, Liu Y, Kim K, Karpiak J, Jan LY, Abraham SN, Jin J, Shoichet BK, Fay JF, Roth BL. Structure, function and pharmacology of human itch GPCRs. Nature 2021; 600:170-175. [PMID: 34789874 PMCID: PMC9150435 DOI: 10.1038/s41586-021-04126-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- Humans
- Models, Molecular
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/ultrastructure
- Pruritus/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/ultrastructure
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/ultrastructure
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Isha Singh
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengwei Zhang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenlei Ye
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Byron W Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian J Bender
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Katherine Lansu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wesley K Kroeze
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Justin G English
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joel Karpiak
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Lily Y Jan
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA, USA.
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Morrison MS, Wang T, Raguram A, Hemez C, Liu DR. Disulfide-compatible phage-assisted continuous evolution in the periplasmic space. Nat Commun 2021; 12:5959. [PMID: 34645844 PMCID: PMC8514426 DOI: 10.1038/s41467-021-26279-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
The directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.
Collapse
Affiliation(s)
- Mary S Morrison
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Tina Wang
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Colin Hemez
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
42
|
Jones K, Snodgrass HM, Belsare K, Dickinson BC, Lewis JC. Phage-Assisted Continuous Evolution and Selection of Enzymes for Chemical Synthesis. ACS CENTRAL SCIENCE 2021; 7:1581-1590. [PMID: 34584960 PMCID: PMC8461764 DOI: 10.1021/acscentsci.1c00811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 05/04/2023]
Abstract
Ligand-dependent biosensors are valuable tools for coupling the intracellular concentrations of small molecules to easily detectable readouts such as absorbance, fluorescence, or cell growth. While ligand-dependent biosensors are widely used for monitoring the production of small molecules in engineered cells and for controlling or optimizing biosynthetic pathways, their application to directed evolution for biocatalysts remains underexplored. As a consequence, emerging continuous evolution technologies are rarely applied to biocatalyst evolution. Here, we develop a panel of ligand-dependent biosensors that can detect a range of small molecules. We demonstrate that these biosensors can link enzymatic activity to the production of an essential phage protein to enable biocatalyst-dependent phage-assisted continuous evolution (PACE) and phage-assisted continuous selection (PACS). By combining these phage-based evolution and library selection technologies, we demonstrate that we can evolve enzyme variants with improved and expanded catalytic properties. Finally, we show that the genetic diversity resulting from a highly mutated PACS library is enriched for active enzyme variants with altered substrate scope. These results lay the foundation for using phage-based continuous evolution and selection technologies to engineer biocatalysts with novel substrate scope and reactivity.
Collapse
Affiliation(s)
- Krysten
A. Jones
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harrison M. Snodgrass
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Ketaki Belsare
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- E-mail:
| | - Jared C. Lewis
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- E-mail:
| |
Collapse
|
43
|
Reinkemeier CD, Lemke EA. Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation. Cell 2021; 184:4886-4903.e21. [PMID: 34433013 PMCID: PMC8480389 DOI: 10.1016/j.cell.2021.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/03/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use these film-like organelles to equip eukaryotic cells with dual orthogonal expanded genetic codes that enable the specific reprogramming of distinct translational machineries with single-residue precision. The ability to spatially tune the output of translation within tens of nanometers is not only important for synthetic biology but has implications for understanding the function of membrane-associated protein condensation in cells. 2D phase separation was utilized to design orthogonal enzymes Film-like organelles maintained distinct suppressor tRNA microenvironments Dual film-like synthetic organelles enabled orthogonal translation in eukaryotes Cells were equipped with two expanded genetic codes in addition to the canonical one
Collapse
Affiliation(s)
- Christopher D Reinkemeier
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
44
|
Dewey JA, Azizi SA, Lu V, Dickinson BC. A System for the Evolution of Protein-Protein Interaction Inducers. ACS Synth Biol 2021; 10:2096-2110. [PMID: 34319091 DOI: 10.1021/acssynbio.1c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecules that induce interactions between proteins, often referred to as "molecular glues", are increasingly recognized as important therapeutic modalities and as entry points for rewiring cellular signaling networks. Here, we report a new PACE-based method to rapidly select and evolve molecules that mediate interactions between otherwise noninteracting proteins: rapid evolution of protein-protein interaction glues (rePPI-G). By leveraging proximity-dependent split RNA polymerase-based biosensors, we developed E. coli-based detection and selection systems that drive gene expression outputs only when interactions between target proteins are induced. We then validated the system using engineered bivalent molecular glues, showing that rePPI-G robustly selects for molecules that induce the target interaction. Proof-of-concept evolutions demonstrated that rePPI-G reduces the "hook effect" of the engineered molecular glues, due at least in part to tuning the interaction affinities of each individual component of the bifunctional molecule. Altogether, this work validates rePPI-G as a continuous, phage-based evolutionary technology for optimizing molecular glues, providing a strategy for developing molecules that reprogram protein-protein interactions.
Collapse
Affiliation(s)
- Jeffrey A. Dewey
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Vivian Lu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| |
Collapse
|
45
|
Liu L, Limsakul P, Meng X, Huang Y, Harrison RES, Huang TS, Shi Y, Yu Y, Charupanit K, Zhong S, Lu S, Zhang J, Chien S, Sun J, Wang Y. Integration of FRET and sequencing to engineer kinase biosensors from mammalian cell libraries. Nat Commun 2021; 12:5031. [PMID: 34413312 PMCID: PMC8376904 DOI: 10.1038/s41467-021-25323-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
The limited sensitivity of Förster Resonance Energy Transfer (FRET) biosensors hinders their broader applications. Here, we develop an approach integrating high-throughput FRET sorting and next-generation sequencing (FRET-Seq) to identify sensitive biosensors with varying substrate sequences from large-scale libraries directly in mammalian cells, utilizing the design of self-activating FRET (saFRET) biosensor. The resulting biosensors of Fyn and ZAP70 kinases exhibit enhanced performance and enable the dynamic imaging of T-cell activation mediated by T cell receptor (TCR) or chimeric antigen receptor (CAR), revealing a highly organized ZAP70 subcellular activity pattern upon TCR but not CAR engagement. The ZAP70 biosensor elucidates the role of immunoreceptor tyrosine-based activation motif (ITAM) in affecting ZAP70 activation to regulate CAR functions. A saFRET biosensor-based high-throughput drug screening (saFRET-HTDS) assay further enables the identification of an FDA-approved cancer drug, Sunitinib, that can be repurposed to inhibit ZAP70 activity and autoimmune-disease-related T-cell activation.
Collapse
Affiliation(s)
- Longwei Liu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Praopim Limsakul
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- Center of Excellence for Trace Analysis and Biosensor, Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Xianhui Meng
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China
| | - Yan Huang
- Department of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China
| | - Reed E S Harrison
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Tse-Shun Huang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- BioLegend, San Diego, CA, USA
| | - Yiwen Shi
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Yiyan Yu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sheng Zhong
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Shu Chien
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, P.R. China.
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
46
|
Yi X, Khey J, Kazlauskas RJ, Travisano M. Plasmid hypermutation using a targeted artificial DNA replisome. SCIENCE ADVANCES 2021; 7:7/29/eabg8712. [PMID: 34272238 PMCID: PMC8284885 DOI: 10.1126/sciadv.abg8712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Extensive exploration of a protein's sequence space for improved or new molecular functions requires in vivo evolution with large populations. But disentangling the evolution of a target protein from the rest of the proteome is challenging. Here, we designed a protein complex of a targeted artificial DNA replisome (TADR) that operates in live cells to processively replicate one strand of a plasmid with errors. It enhanced mutation rates of the target plasmid up to 2.3 × 105-fold with only a 78-fold increase in off-target mutagenesis. It was used to evolve itself to increase error rate and increase the efficiency of an efflux pump while simultaneously expanding the substrate repertoire. TADR enables multiple simultaneous substitutions to discover functions inaccessible by accumulating single substitutions, affording potential for solving hard problems in molecular evolution and developing biologic drugs and industrial catalysts.
Collapse
Affiliation(s)
- Xiao Yi
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Joleen Khey
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
| | - Romas J Kazlauskas
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Travisano
- BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology Evolution and Behavior, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
47
|
Evolution of KIPPIS as a versatile platform for evaluating intracellularly functional peptide aptamers. Sci Rep 2021; 11:11758. [PMID: 34083659 PMCID: PMC8175380 DOI: 10.1038/s41598-021-91287-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Chimeric proteins have been widely used to evaluate intracellular protein–protein interactions (PPIs) in living cells with various readouts. By combining an interleukin-3-dependent murine cells and chimeric proteins containing a receptor tyrosine kinase c-kit, we previously established a c-kit-based PPI screening (KIPPIS) system to evaluate and select protein binders. In the KIPPIS components, proteins of interest are connected with a chemically inducible helper module and the intracellular domain of the growth-signaling receptor c-kit, which detects PPIs based on cell proliferation as a readout. In this system, proteins of interest can be incorporated into chimeric proteins without any scaffold proteins, which would be advantageous for evaluating interaction between small peptides/domains. To prove this superiority, we apply KIPPIS to 6 peptide aptamer–polypeptide pairs, which are derived from endogenous, synthetic, and viral proteins. Consequently, all of the 6 peptide aptamer–polypeptide interactions are successfully detected by cell proliferation. The detection sensitivity can be modulated in a helper ligand-dependent manner. The assay results of KIPPIS correlate with the activation levels of Src, which is located downstream of c-kit-mediated signal transduction. Control experiments reveal that KIPPIS clearly discriminates interacting aptamers from non-interacting ones. Thus, KIPPIS proves to be a versatile platform for evaluating the binding properties of peptide aptamers.
Collapse
|
48
|
Kajiwara K, Aoki W, Koike N, Ueda M. Development of a yeast cell surface display method using the SpyTag/SpyCatcher system. Sci Rep 2021; 11:11059. [PMID: 34040114 PMCID: PMC8155107 DOI: 10.1038/s41598-021-90593-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
Yeast cell surface display (YSD) has been used to engineer various proteins, including antibodies. Directed evolution, which subjects a gene to iterative rounds of mutagenesis, selection and amplification, is useful for protein engineering. In vivo continuous mutagenesis, which continuously diversifies target genes in the host cell, is a promising tool for accelerating directed evolution. However, combining in vivo continuous evolution and YSD is difficult because mutations in the gene encoding the anchor proteins may inhibit the display of target proteins on the cell surface. In this study, we have developed a modified YSD method that utilises SpyTag/SpyCatcher-based in vivo protein ligation. A nanobody fused with a SpyTag of 16 amino acids and an anchor protein fused with a SpyCatcher of 113 amino acids are encoded by separate gene cassettes and then assembled via isopeptide bond formation. This system achieved a high display efficiency of more than 90%, no intercellular protein ligation events, and the enrichment of target cells by cell sorting. These results suggested that our system demonstrates comparable performance with conventional YSD methods; therefore, it can be an appropriate platform to be integrated with in vivo continuous evolution.
Collapse
Affiliation(s)
- Kaho Kajiwara
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Naoki Koike
- TechnoPro, Inc. TechnoPro R&D, Company, Tokyo, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
- JST, CREST, 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
49
|
Park H, Kim S. Gene-specific mutagenesis enables rapid continuous evolution of enzymes in vivo. Nucleic Acids Res 2021; 49:e32. [PMID: 33406230 PMCID: PMC8034631 DOI: 10.1093/nar/gkaa1231] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023] Open
Abstract
Various in vivo mutagenesis methods have been developed to facilitate fast and efficient continuous evolution of proteins in cells. However, they either modify the DNA region that does not match the target gene, or suffer from low mutation rates. Here, we report a mutator, eMutaT7 (enhanced MutaT7), with very fast in vivo mutation rate and high gene-specificity in Escherichia coli. eMutaT7, a cytidine deaminase fused to an orthogonal RNA polymerase, can introduce up to ∼4 mutations per 1 kb per day, rivalling the rate in typical in vitro mutagenesis for directed evolution of proteins, and promotes rapid continuous evolution of model proteins for antibiotic resistance and allosteric activation. eMutaT7 provides a very simple and tunable method for continuous directed evolution of proteins, and suggests that the fusion of new DNA-modifying enzymes to the orthogonal RNA polymerase is a promising strategy to explore the expanded sequence space without compromising gene specificity.
Collapse
Affiliation(s)
- Hyojin Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
50
|
Ortiz Y, Carrión J, Lahoz-Beltrá R, Gutiérrez M. A Framework for Implementing Metaheuristic Algorithms Using Intercellular Communication. Front Bioeng Biotechnol 2021; 9:660148. [PMID: 34041231 PMCID: PMC8141851 DOI: 10.3389/fbioe.2021.660148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Metaheuristics (MH) are Artificial Intelligence procedures that frequently rely on evolution. MH approximate difficult problem solutions, but are computationally costly as they explore large solution spaces. This work pursues to lay the foundations of general mappings for implementing MH using Synthetic Biology constructs in cell colonies. Two advantages of this approach are: harnessing large scale parallelism capability of cell colonies and, using existing cell processes to implement basic dynamics defined in computational versions. We propose a framework that maps MH elements to synthetic circuits in growing cell colonies to replicate MH behavior in cell colonies. Cell-cell communication mechanisms such as quorum sensing (QS), bacterial conjugation, and environmental signals map to evolution operators in MH techniques to adapt to growing colonies. As a proof-of-concept, we implemented the workflow associated to the framework: automated MH simulation generators for the gro simulator and two classes of algorithms (Simple Genetic Algorithms and Simulated Annealing) encoded as synthetic circuits. Implementation tests show that synthetic counterparts mimicking MH are automatically produced, but also that cell colony parallelism speeds up the execution in terms of generations. Furthermore, we show an example of how our framework is extended by implementing a different computational model: The Cellular Automaton.
Collapse
Affiliation(s)
- Yerko Ortiz
- School of Informatics and Telecommunications, Faculty of Engineering and Sciences, Diego Portales University, Santiago, Chile
| | - Javier Carrión
- School of Informatics and Telecommunications, Faculty of Engineering and Sciences, Diego Portales University, Santiago, Chile
| | - Rafael Lahoz-Beltrá
- Department of Biodiversity, Ecology and Evolution (Biomathematics), Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Martín Gutiérrez
- School of Informatics and Telecommunications, Faculty of Engineering and Sciences, Diego Portales University, Santiago, Chile
| |
Collapse
|