1
|
Stoer AC, Fennel K. Carbon-centric dynamics of Earth's marine phytoplankton. Proc Natl Acad Sci U S A 2024; 121:e2405354121. [PMID: 39467120 PMCID: PMC11551431 DOI: 10.1073/pnas.2405354121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024] Open
Abstract
Marine phytoplankton are fundamental to Earth's ecology and biogeochemistry. Our understanding of the large-scale dynamics of phytoplankton biomass has greatly benefited from, and is largely based on, satellite ocean color observations from which chlorophyll-a (Chla), a commonly used proxy for carbon biomass, can be estimated. However, ocean color satellites only measure a small portion of the surface ocean, meaning that subsurface phytoplankton biomass is not directly monitored. Chla is also an imperfect proxy for carbon biomass because cellular physiology drives large variations in their ratio. The global network of Biogeochemical (BGC)-Argo floats now makes it possible to complement satellite observations by addressing both these issues at once. In our study, we use ~100,000 water-column profiles from BGC-Argo to describe Earth's phytoplankton carbon biomass and its spatiotemporal variability. We estimate the global stock of open ocean phytoplankton biomass at ~314 Tg C, half of which is present at depths not accessible through satellite detection. We also compare the seasonal cycles of carbon biomass stocks and surface Chla visible from space and find that surface Chla does not accurately identify the timing of the peak annual biomass in two-thirds of the ocean. Our study is a demonstration of global-scale, depth-resolved monitoring of Earth's phytoplankton, which will be crucial for understanding future climate-related changes and the effects of geoengineering interventions if implemented.
Collapse
Affiliation(s)
- Adam C. Stoer
- Department of Oceanography, Dalhousie University, Halifax, NSB3H4R2, Canada
| | - Katja Fennel
- Department of Oceanography, Dalhousie University, Halifax, NSB3H4R2, Canada
| |
Collapse
|
2
|
Piedade GJ, Schön ME, Lood C, Fofanov MV, Wesdorp EM, Biggs TEG, Wu L, Bolhuis H, Fischer MG, Yutin N, Dutilh BE, Brussaard CPD. Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape. Nat Commun 2024; 15:9192. [PMID: 39448562 PMCID: PMC11502894 DOI: 10.1038/s41467-024-53317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The Southern Ocean microbial ecosystem, with its pronounced seasonal shifts, is vulnerable to the impacts of climate change. Since viruses are key modulators of microbial abundance, diversity, and evolution, we need a better understanding of the effects of seasonality on the viruses in this region. Our comprehensive exploration of DNA viral diversity in the Southern Ocean reveals a unique and largely uncharted viral landscape, of which 75% was previously unidentified in other oceanic areas. We uncover novel viral taxa at high taxonomic ranks, expanding our understanding of crassphage, polinton-like virus, and virophage diversity. Nucleocytoviricota viruses represent an abundant and diverse group of Antarctic viruses, highlighting their potential as important regulators of phytoplankton population dynamics. Our temporal analysis reveals complex seasonal patterns in marine viral communities (bacteriophages, eukaryotic viruses) which underscores the apparent interactions with their microbial hosts, whilst deepening our understanding of their roles in the world's most sensitive and rapidly changing ecosystem.
Collapse
Affiliation(s)
- Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Max E Schön
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Cédric Lood
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Mikhail V Fofanov
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Ella M Wesdorp
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Tristan E G Biggs
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Lingyi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, 69120, Heidelberg, Germany
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands.
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Nef C, Pierella Karlusich JJ, Bowler C. From nets to networks: tools for deciphering phytoplankton metabolic interactions within communities and their global significance. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230172. [PMID: 39034691 PMCID: PMC11293860 DOI: 10.1098/rstb.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
Our oceans are populated with a wide diversity of planktonic organisms that form complex dynamic communities at the base of marine trophic networks. Within such communities are phytoplankton, unicellular photosynthetic taxa that provide an estimated half of global primary production and support biogeochemical cycles, along with other essential ecosystem services. One of the major challenges for microbial ecologists has been to try to make sense of this complexity. While phytoplankton distributions can be well explained by abiotic factors such as temperature and nutrient availability, there is increasing evidence that their ecological roles are tightly linked to their metabolic interactions with other plankton members through complex mechanisms (e.g. competition and symbiosis). Therefore, unravelling phytoplankton metabolic interactions is the key for inferring their dependency on, or antagonism with, other taxa and better integrating them into the context of carbon and nutrient fluxes in marine trophic networks. In this review, we attempt to summarize the current knowledge brought by ecophysiology, organismal imaging, in silico predictions and co-occurrence networks using 'omics data, highlighting successful combinations of approaches that may be helpful for future investigations of phytoplankton metabolic interactions within their complex communities.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| | | | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| |
Collapse
|
4
|
Podbielski I, Hamm T, Lenz M. Customized digestion protocols for copepods, euphausiids, chaetognaths and fish larvae facilitate the isolation of ingested microplastics. Sci Rep 2024; 14:19985. [PMID: 39198558 PMCID: PMC11358325 DOI: 10.1038/s41598-024-70366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Degradation of oceanic plastic waste leads to the formation of microplastics that are ingested by a wide range of animals. Yet, the amounts that are taken up, especially by small zooplankton, are largely unknown. This is mostly due to the complex methodology that is required for isolating ingested microplastics from organisms. We developed customised, effective and benign digestion protocols for four important zooplankton taxa (copepods, euphausiids, chaetognaths and fish larvae), and assessed their digestion efficacy and their potential to cause particle loss or to alter microplastics using six polymers (HDPE, LDPE, PS, PET, PVC, PMMA). All protocols are based on an incubation of the organic matrix with 10% KOH at 38 °C, which is optionally combined with digestive enzymes (chitinase, proteinase K). This yielded digestion efficacies of > 98.2%, recovery rates of > 91.8%, < 2.4% change in microplastics' size, while no visual alteration of the microplastics and no changes in their spectra were observed when analysing them with a hyperspectral imaging camera. The proposed protocols are inexpensive (< 2.15 € per sample), but require several days when enzymatic digestion is included. They will facilitate research on microplastic ingestion by small marine organisms and thus enable well-founded conclusions about the threat that microplastics pose to these animals as well as about the role of biota in determining the vertical distribution of microplastics in oceanic environments.
Collapse
Affiliation(s)
- Imke Podbielski
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Thea Hamm
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- The Lower Saxon Wadden Sea National Park Authority, Wilhelmshaven, Germany
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
5
|
Casillo A, D'Amico R, Lanzetta R, Corsaro MM. Marine Delivery Vehicles: Molecular Components and Applications of Bacterial Extracellular Vesicles. Mar Drugs 2024; 22:363. [PMID: 39195479 DOI: 10.3390/md22080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the cells. Marine bacteria release extracellular vesicles (EVs), small membrane-bound structures of 40 nm to 1 µm diameter, into their surrounding environment. The vesicles contain various cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may contribute to dissolved organic carbon, thus facilitating heterotroph growth. This review will focus on marine bacterial EVs, analyzing their structure, composition, functions, and applications.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Raffaele D'Amico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| |
Collapse
|
6
|
Liu Y, Zhu C, Liang Y, McMinn A, Zheng K, Wang Z, Wang H, Ren L, Shao H, Sung YY, Mok WJ, Wong LL, Wang M. Genome analysis of vB_SupP_AX, a novel N4-like phage infecting Sulfitobacter. Int Microbiol 2024; 27:1297-1306. [PMID: 38190086 DOI: 10.1007/s10123-023-00476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.
Collapse
Affiliation(s)
- Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China.
- Haide College, Ocean University of China, Qingdao, China.
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
- The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Gragnolati M, Rolim FA, Pereira-Filho GH, Athayde ACS, Ciotti ÁM, Motta FS. Vertical structure of reef fish assemblages and light penetration reveal new boundaries of mesophotic ecosystems in the subtropical Southwestern Atlantic. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106527. [PMID: 38688110 DOI: 10.1016/j.marenvres.2024.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
In the Southwest Atlantic, fisheries and in situ observations suggest that mesophotic reefs occur further south than has been reported in the literature, and a description of these subtropical regions is still lacking. We used Baited Remote Underwater stereo-Videos to explore unrevealed patterns in the vertical structure of fish assemblages on subtropical Atlantic reefs, contrasting shallow and mesophotic habitats. Our data on species turnover and light penetration reveal that in the subtropical Atlantic, the boundaries between shallow and mesophotic habitats occur at depths of 18 m, which is shallower than most previous studies have shown. Generalized additive mixed models identified different environmental and management factors as important predictor variables that explain distribution of fish assemblages' attributes. Besides adding new evidence about mesophotic limits, we described variations in the vertical structure of fish assemblages, providing important information for the description and conservation of mesophotic environments in subtropical regions.
Collapse
Affiliation(s)
- Maisha Gragnolati
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Dr. Carvalho de Mendonça, 144, 11070-100, Santos, São Paulo, Brazil.
| | - Fernanda A Rolim
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Dr. Carvalho de Mendonça, 144, 11070-100, Santos, São Paulo, Brazil
| | - Guilherme H Pereira-Filho
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Dr. Carvalho de Mendonça, 144, 11070-100, Santos, São Paulo, Brazil
| | - Ana Clara S Athayde
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Dr. Carvalho de Mendonça, 144, 11070-100, Santos, São Paulo, Brazil
| | - Áurea M Ciotti
- Aquarela Lab, Rodovia Manoel Hypólito do Rego, Km 131, 50 S/N, Centro de Biologia Marinha, Universidade de São Paulo, 11600-000, São Sebastião, São Paulo, Brazil
| | - Fabio S Motta
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Dr. Carvalho de Mendonça, 144, 11070-100, Santos, São Paulo, Brazil.
| |
Collapse
|
8
|
Thompson C, Ortmann AC, Bolhuis H, Makhalanyane T, Thompson F. Harnessing marine microbiomes to develop a sustainable, all-Atlantic bioeconomy. MLIFE 2024; 3:163-166. [PMID: 38948138 PMCID: PMC11211665 DOI: 10.1002/mlf2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Cristiane Thompson
- Institute of BiologyFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Alice C. Ortmann
- Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - Henk Bolhuis
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ)The Netherlands
| | - Thulani Makhalanyane
- Department of Microbiology, School of Data Science and Computational ThinkingStellenbosch UniversityStellenboschSouth Africa
| | - Fabiano Thompson
- Institute of BiologyFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| |
Collapse
|
9
|
Rey-Velasco X, Lucena T, Belda A, Gasol JM, Sánchez O, Arahal DR, Pujalte MJ. Genomic and phenotypic characterization of 26 novel marine bacterial strains with relevant biogeochemical roles and widespread presence across the global ocean. Front Microbiol 2024; 15:1407904. [PMID: 38863746 PMCID: PMC11165706 DOI: 10.3389/fmicb.2024.1407904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Prokaryotes dominate global oceans and shape biogeochemical cycles, yet most taxa remain uncultured and uncharacterized as of today. Here we present the characterization of 26 novel marine bacterial strains from a large isolate collection obtained from Blanes Bay (NW Mediterranean) microcosm experiments made in the four seasons. Morphological, cultural, biochemical, physiological, nutritional, genomic, and phylogenomic analyses were used to characterize and phylogenetically place the novel isolates. The strains represent 23 novel bacterial species and six novel genera: three novel species pertaining to class Alphaproteobacteria (families Rhodobacteraceae and Sphingomonadaceae), six novel species and three new genera from class Gammaproteobacteria (families Algiphilaceae, Salinispheraceae, and Alteromonadaceae), 13 novel species and three novel genera from class Bacteroidia (family Flavobacteriaceae), and one new species from class Rhodothermia (family Rubricoccaceae). The bacteria described here have potentially relevant roles in the cycles of carbon (e.g., carbon fixation or energy production via proteorhodopsin), nitrogen (e.g., denitrification or use of urea), sulfur (oxidation of sulfur compounds), phosphorus (acquisition and use of different forms of phosphorus and remodeling of membrane phospholipids), and hydrogen (oxidation of hydrogen to obtain energy). We mapped the genomes of the presented strains to the Tara Oceans metagenomes to reveal that these strains were globally distributed, with those of the family Flavobacteriaceae being the most widespread and abundant, while Rhodothermia being the rarest and most localized. While molecular-only approaches are also important, our study stresses the importance of culturing as a powerful tool to further understand the functioning of marine bacterial communities.
Collapse
Affiliation(s)
| | - Teresa Lucena
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| | - Ana Belda
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David R. Arahal
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| | - María J. Pujalte
- Departamento de Microbiología y Ecología, Universitat de València, València, Spain
| |
Collapse
|
10
|
Jędruch A, Bełdowski J, Bełdowska M. Mercury dynamics at the base of the pelagic food web of the Gulf of Gdańsk, southern Baltic Sea. MARINE POLLUTION BULLETIN 2024; 202:116363. [PMID: 38621354 DOI: 10.1016/j.marpolbul.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdańsk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.
Collapse
Affiliation(s)
- Agnieszka Jędruch
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry and Biochemistry, Powstańców Warszawy 55, 81-712 Sopot, Poland; University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Jacek Bełdowski
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry and Biochemistry, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Magdalena Bełdowska
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Chemical Oceanography and Marine Geology, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
11
|
Logares R. Decoding populations in the ocean microbiome. MICROBIOME 2024; 12:67. [PMID: 38561814 PMCID: PMC10983722 DOI: 10.1186/s40168-024-01778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
Understanding the characteristics and structure of populations is fundamental to comprehending ecosystem processes and evolutionary adaptations. While the study of animal and plant populations has spanned a few centuries, microbial populations have been under scientific scrutiny for a considerably shorter period. In the ocean, analyzing the genetic composition of microbial populations and their adaptations to multiple niches can yield important insights into ecosystem function and the microbiome's response to global change. However, microbial populations have remained elusive to the scientific community due to the challenges associated with isolating microorganisms in the laboratory. Today, advancements in large-scale metagenomics and metatranscriptomics facilitate the investigation of populations from many uncultured microbial species directly from their habitats. The knowledge acquired thus far reveals substantial genetic diversity among various microbial species, showcasing distinct patterns of population differentiation and adaptations, and highlighting the significant role of selection in structuring populations. In the coming years, population genomics is expected to significantly increase our understanding of the architecture and functioning of the ocean microbiome, providing insights into its vulnerability or resilience in the face of ongoing global change. Video Abstract.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Catalonia, 08003, Spain.
| |
Collapse
|
12
|
Yang L, Qian Y, Zhang Z, Li T, Lin X, Fu L, Zhou S, Kong XY, Jiang L, Wen L. A marine bacteria-inspired electrochemical regulation for continuous uranium extraction from seawater and salt lake brine. Chem Sci 2024; 15:4538-4546. [PMID: 38516083 PMCID: PMC10952061 DOI: 10.1039/d4sc00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Oceans and salt lakes contain vast amounts of uranium. Uranium recovery from natural water not only copes with radioactive pollution in water but also can sustain the fuel supply for nuclear power. The adsorption-assisted electrochemical processes offer a promising route for efficient uranium extraction. However, competitive hydrogen evolution greatly reduces the extraction capacity and the stability of electrode materials with electrocatalytic activity. In this study, we got inspiration from the biomineralisation of marine bacteria under high salinity and biomimetically regulated the electrochemical process to avoid the undesired deposition of metal hydroxides. The uranium uptake capacity can be increased by more than 20% without extra energy input. In natural seawater, the designed membrane electrode exhibits an impressive extraction capacity of 48.04 mg-U per g-COF within 21 days (2.29 mg-U per g-COF per day). Furthermore, in salt lake brine with much higher salinity, the membrane can extract as much uranium as 75.72 mg-U per g-COF after 32 days (2.37 mg-U per g-COF per day). This study provides a general basis for the performance optimisation of uranium capture electrodes, which is beneficial for sustainable access to nuclear energy sources from natural water systems.
Collapse
Affiliation(s)
- Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiangbin Lin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lin Fu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
13
|
Kang HC, Jeong HJ, Ok JH, Lim AS, Lee K, You JH, Park SA, Eom SH, Lee SY, Lee KH, Jang SH, Yoo YD, Lee MJ, Kim KY. Food web structure for high carbon retention in marine plankton communities. SCIENCE ADVANCES 2023; 9:eadk0842. [PMID: 38100582 PMCID: PMC10848704 DOI: 10.1126/sciadv.adk0842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Total annual net primary productions in marine and terrestrial ecosystems are similar. However, a large portion of the newly produced marine phytoplankton biomass is converted to carbon dioxide because of predation. Which food web structure retains high carbon biomass in the plankton community in the global ocean? In 6954 individual samples or locations containing phytoplankton, unicellular protozooplankton, and multicellular metazooplankton in the global ocean, phytoplankton-dominated bottom-heavy pyramids held higher carbon biomass than protozooplankton-dominated middle-heavy diamonds or metazooplankton-dominated top-heavy inverted pyramids. Bottom-heavy pyramids predominated, but the high predation impact by protozooplankton on phytoplankton or the vertical migration of metazooplankton temporarily changed bottom-heavy pyramids to middle-heavy diamonds or top-heavy inverted pyramids but returned to bottom-heavy pyramids shortly. This finding has profound implications for carbon retention by plankton communities in the global ocean.
Collapse
Affiliation(s)
- Hee Chang Kang
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Hee Ok
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - An Suk Lim
- Division of Life Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Ji Hyun You
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Ah Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Se Hee Eom
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Yeon Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Ha Lee
- Food and Nutrition Tech, CJ CheilJedang, Suwon 16495, South Korea
| | - Se Hyeon Jang
- Department of Oceanography, Chonnam National University, Gwangju 61186, South Korea
| | - Yeong Du Yoo
- Department of Oceanography, Kunsan National University, Kunsan 54150, South Korea
| | - Moo Joon Lee
- Department of Marine Biotechnology, Anyang University, Incheon 23038, South Korea
| | - Kwang Young Kim
- Department of Oceanography, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
14
|
Junger PC, Sarmento H, Giner CR, Mestre M, Sebastián M, Morán XAG, Arístegui J, Agustí S, Duarte CM, Acinas SG, Massana R, Gasol JM, Logares R. Global biogeography of the smallest plankton across ocean depths. SCIENCE ADVANCES 2023; 9:eadg9763. [PMID: 37939185 PMCID: PMC10631730 DOI: 10.1126/sciadv.adg9763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography were partially understood. Comprehending whether these microorganisms are structured by niche versus neutral processes is relevant in the context of global change. We investigate the ecological processes (selection, dispersal, and drift) structuring global-ocean picoplanktonic communities inhabiting the epipelagic (0 to 200 meters), mesopelagic (200 to 1000 meters), and bathypelagic (1000 to 4000 meters) zones. We found that selection decreased, while dispersal limitation increased with depth, possibly due to differences in habitat heterogeneity and dispersal barriers such as water masses and bottom topography. Picoplankton β-diversity positively correlated with environmental heterogeneity and water mass variability, but this relationship tended to be weaker for eukaryotes than for prokaryotes. Community patterns were more pronounced in the Mediterranean Sea, probably because of its cross-basin environmental heterogeneity and deep-water isolation. We conclude that different combinations of ecological mechanisms shape the biogeography of the ocean microbiome across depths.
Collapse
Affiliation(s)
- Pedro C. Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Caterina R. Giner
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Mireia Mestre
- Centro COPAS-COASTAL, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Marta Sebastián
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Xosé Anxelu G. Morán
- Centro Oceanográfico de Gijón/Xixón (IEO, CSIC), Gijón/Xixón, Asturias 33212, Spain
| | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35214, Spain
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Silvia G. Acinas
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Ramon Massana
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| |
Collapse
|
15
|
Vipindas PV, Jabir T, Venkatachalam S, Yang EJ, Jain A, Krishnan KP. Vertical segregation and phylogenetic characterization of archaea and archaeal ammonia monooxygenase gene in the water column of the western Arctic Ocean. Extremophiles 2023; 27:24. [PMID: 37668803 DOI: 10.1007/s00792-023-01310-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Archaea constitute a substantial fraction of marine microbial biomass and play critical roles in the biogeochemistry of oceans. However, studies on their distribution and ecology in the Arctic Ocean are relatively scarce. Here, we studied the distributions of archaea and archaeal ammonia monooxygenase (amoA) gene in the western Arctic Ocean, using the amplicon sequencing approach from the sea surface to deep waters up to 3040 m depth. A total of five archaeal phyla, Nitrososphaerota, "Euryarchaeota", "Halobacteriota," "Nanoarchaeota", and Candidatus Thermoplasmatota, were detected. We observed a clear, depth-dependent vertical segregation among archaeal communities. Ca. Thermoplasmatota (66.8%) was the most dominant phylum in the surface waters. At the same time, Nitrososphaerota (55.9%) was dominant in the deep waters. Most of the amoA gene OTUs (99%) belonged to the Nitrosopumilales and were further clustered into five subclades ("NP-Alpha", "NP-Delta", "NP-Epsilon", "NP-Gamma", and "NP-Theta"). "NP-Epsilon" was the most dominant clade throughout the water column and "NP_Alpha" showed higher abundance only in the deeper water. Salinity and inorganic nutrient concentrations were the major factors that determined the vertical segregation of archaea. We anticipate that the observed differences in the vertical distribution of archaea might contribute to the compartmentalization of dark carbon fixation and nitrification in deeper water and organic matter degradation in surface waters of the Arctic Ocean.
Collapse
Affiliation(s)
- Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India.
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| | - Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| | - Eun Jin Yang
- Division of Ocean Sciences, Korea Polar Research Institute, 26 Songdo-dong, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Anand Jain
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, Ministry of Earth Sciences, National Centre for Polar and Ocean Research, Vasco-da-Gama, Goa, 403 804, India
| |
Collapse
|
16
|
Deutschmann IM, Krabberød AK, Latorre F, Delage E, Marrasé C, Balagué V, Gasol JM, Massana R, Eveillard D, Chaffron S, Logares R. Disentangling temporal associations in marine microbial networks. MICROBIOME 2023; 11:83. [PMID: 37081491 PMCID: PMC10120119 DOI: 10.1186/s40168-023-01523-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbial interactions are fundamental for Earth's ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks. Yet, microbial interactions are dynamic and we have limited knowledge of how they change over time. Here, we investigate the dynamics of microbial associations in a 10-year marine time series in the Mediterranean Sea using an approach inferring a time-resolved (temporal) network from a single static network. RESULTS A single static network including microbial eukaryotes and bacteria was built using metabarcoding data derived from 120 monthly samples. For the decade, we aimed to identify persistent, seasonal, and temporary microbial associations by determining a temporal network that captures the interactome of each individual sample. We found that the temporal network appears to follow an annual cycle, collapsing, and reassembling when transiting between colder and warmer waters. We observed higher association repeatability in colder than in warmer months. Only 16 associations could be validated using observations reported in literature, underlining our knowledge gap in marine microbial ecological interactions. CONCLUSIONS Our results indicate that marine microbial associations follow recurrent temporal dynamics in temperate zones, which need to be accounted for to better understand the functioning of the ocean microbiome. The constructed marine temporal network may serve as a resource for testing season-specific microbial interaction hypotheses. The applied approach can be transferred to microbiome studies in other ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Ina Maria Deutschmann
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain.
| | - Anders K Krabberød
- Department of Biosciences/Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, p.b. 1066 Blindern, N-0316, Oslo, Norway
| | - Francisco Latorre
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Erwan Delage
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Cèlia Marrasé
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Vanessa Balagué
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Josep M Gasol
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Damien Eveillard
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de La Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
17
|
Coy SR, Utama B, Spurlin JW, Kim JG, Deshmukh H, Lwigale P, Nagasaki K, Correa AMS. Visualization of RNA virus infection in a marine protist with a universal biomarker. Sci Rep 2023; 13:5813. [PMID: 37037845 PMCID: PMC10086069 DOI: 10.1038/s41598-023-31507-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
Half of the marine virosphere is hypothesized to be RNA viruses (kingdom Orthornavirae) that infect abundant micro-eukaryotic hosts (e.g. protists). To test this, quantitative approaches that broadly track infections in situ are needed. Here, we describe a technique-dsRNA-Immunofluorescence (dsRIF)-that uses a double-stranded RNA (dsRNA) targeting monoclonal antibody to assess host infection status based on the presence of dsRNA, a replicative intermediate of all Orthornavirae infections. We show that the dinoflagellate Heterocapsa circularisquama produces dsRIF signal ~ 1000 times above background autofluorescence when infected by the + ssRNA virus HcRNAV. dsRNA-positive virocells were detected across > 50% of the 48-h infection cycle and accumulated to represent at least 63% of the population. Photosynthetic and chromosomal integrity remained intact during peak replication, indicating HcRNAV infection does not interrupt these processes. This work validates the use of dsRIF on marine RNA viruses and their hosts, setting the stage for quantitative environmental applications that will accelerate understanding of virus-driven ecosystem impacts.
Collapse
Affiliation(s)
- Samantha R Coy
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Oceanography, Texas A&M University, College Station, TX, USA.
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - James W Spurlin
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Julia G Kim
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | | |
Collapse
|
18
|
Doni L, Oliveri C, Lasa A, Di Cesare A, Petrin S, Martinez-Urtaza J, Coman F, Richardson A, Vezzulli L. Large-scale impact of the 2016 Marine Heatwave on the plankton-associated microbial communities of the Great Barrier Reef (Australia). MARINE POLLUTION BULLETIN 2023; 188:114685. [PMID: 36739716 DOI: 10.1016/j.marpolbul.2023.114685] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The Great Barrier Reef (GBR) is the world's largest coral ecosystem and is threatened by climate change. This study investigated the impact of the 2016 Marine Heatwave (MHW) on plankton associated microbial communities along a ∼800 km transect in the GBR. 16S rRNA gene metabarcoding of archived plankton samples collected from November 2014 to August 2016 in this region showed a significant increase in Planctomycetes and bacteria belonging to the genus Vibrio and Synechococcus during and after the heatwave. Notably, Droplet Digital PCR and targeted metagenomic analysis applied on samples collected four months after the MHW event revealed the presence of several potential pathogenic Vibrio species previously associated with diseases in aquatic animals. Overall, the 2016 MHW significantly impacted the surface picoplankton community and fostered the spread of potentially pathogenic bacteria across the GBR providing an additional threat for marine biodiversity in this area.
Collapse
Affiliation(s)
- Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Aide Lasa
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy; Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Departamento de Ecología y Biología Animal, Universidade de Vigo, 36310 Vigo, Spain
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Verbania 28922, Italy
| | - Sara Petrin
- Laboratory of Microbial ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro 35020, Italy
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Frank Coman
- CSIRO Oceans and Atmosphere, EcoSciences Precinct, 41 Boggo Road, Dutton Park, Brisbane 4102, QLD, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), St Lucia, QLD, Australia
| | - Anthony Richardson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), St Lucia, QLD, Australia; Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, University of Queensland, Saint Lucia 4072, QLD, Australia
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| |
Collapse
|
19
|
Juhas M. The World of Microorganisms. BRIEF LESSONS IN MICROBIOLOGY 2023:1-16. [DOI: 10.1007/978-3-031-29544-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Abstract
Viruses are the most abundant biological entity in the ocean and infect a wide range of microbial life across bacteria, archaea, and eukaryotes. In this essay, we take a journey across several orders of magnitude in the scales of biological organization, time, and space of host-virus interactions in the ocean, aiming to shed light on their ecological relevance. We start from viruses infecting microbial host cells by delivering their genetic material in seconds across nanometer-size membranes, which highjack their host's metabolism in a few minutes to hours, leading to a profound transcriptomic and metabolic rewiring. The outcome of lytic infection leads to a release of virions and signaling molecules that can reach neighboring cells a few millimeters away, resulting in a population whose heterogeneous infection level impacts the surrounding community for days. These population dynamics can leave unique metabolic and biogeochemical fingerprints across scales of kilometers and over several decades. One of the biggest challenges in marine microbiology is to assess the impact of viruses across these scales, from the single cell to the ecosystem level. Here, we argue that the advent of new methodologies and conceptual frameworks represents an exciting time to pursue these efforts and propose a set of important challenges for the field. A better understanding of host-virus interactions across scales will inform models of global ocean ecosystem function in different climate change scenarios.
Collapse
Affiliation(s)
- Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
22
|
Durfort A, Mariani G, Tulloch V, Savoca MS, Troussellier M, Mouillot D. Recovery of carbon benefits by overharvested baleen whale populations is threatened by climate change. Proc Biol Sci 2022; 289:20220375. [PMID: 36321488 PMCID: PMC9627705 DOI: 10.1098/rspb.2022.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the importance of marine megafauna on ecosystem functioning, their contribution to the oceanic carbon cycle is still poorly known. Here, we explored the role of baleen whales in the biological carbon pump across the southern hemisphere based on the historical and forecasted abundance of five baleen whale species. We modelled whale-mediated carbon sequestration through the sinking of their carcasses after natural death. We provide the first temporal dynamics of this carbon pump from 1890 to 2100, considering both the effects of exploitation and climate change on whale populations. We reveal that at their pre-exploitation abundance, the five species of southern whales could sequester 4.0 × 105 tonnes of carbon per year (tC yr-1). This estimate dropped to 0.6 × 105 tC yr-1 by 1972 following commercial whaling. However, with the projected restoration of whale populations under a RCP8.5 climate scenario, the sequestration would reach 1.7 × 105 tC yr-1 by 2100, while without climate change, recovered whale populations could sequester nearly twice as much (3.2 × 105 tC yr-1) by 2100. This highlights the persistence of whaling damages on whale populations and associated services as well as the predicted harmful impacts of climate change on whale ecosystem services.
Collapse
Affiliation(s)
- Anaëlle Durfort
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Gaël Mariani
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Vivitskaia Tulloch
- Department of Forest and Conservation Science, University of British Columbia, Vancouver, BC, Canada
| | | | | | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
23
|
Kwan V, Fong J, Ng CSL, Huang D. Temporal and spatial dynamics of tropical macroalgal contributions to blue carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154369. [PMID: 35259389 DOI: 10.1016/j.scitotenv.2022.154369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Blue carbon ecosystems are a vital part of nature-based climate solutions due to their capacity to store and sequester carbon, but often exclude macroalgal beds even though they can form highly productive coastal ecosystems. Recent estimates of macroalgal contributions to global carbon sequestration are derived primarily from temperate kelp forests, while tropical macroalgal carbon stock in living biomass is still unclear. Here, using Singapore as a case study, we integrate field surveys and remote sensing data to estimate living macroalgal carbon stock. Results show that macroalgae in Singapore account for up to 650 Mg C biomass stock, which is greater than the aboveground carbon found in seagrass meadows but lower than that in mangrove forests. Ulva and Sargassum dominate macroalgal assemblages and biomass along the coast, with both genera exhibiting distinct spatio-temporal variation. The annual range of macroalgal biomass carbon is estimated to be 450 Mg C yr-1, or 0.77 Mg C ha-1 yr-1. Noting the uncertainties of the fate of macroalgal biomass carbon, we estimate the potential sequestration rate and find that it is comparable to mature terrestrial ecosystems such as tropical grasslands and temperate forests. This study demonstrates that macroalgal seasonality allows for a consistent amount of biomass carbon to either be exported and eventually sequestered, or harvested for utilization on an annual basis. These findings on macroalgal growth patterns and their considerable contributions to tropical coastal carbon pool add to the growing support for macroalgae to be formally included in blue carbon assessments.
Collapse
Affiliation(s)
- Valerie Kwan
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| | - Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Chin Soon Lionel Ng
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore.
| |
Collapse
|
24
|
Abstract
Microbial communities have essential roles in ocean ecology and planetary health. Microbes participate in nutrient cycles, remove huge quantities of carbon dioxide from the air and support ocean food webs. The taxonomic and functional diversity of the global ocean microbiome has been revealed by technological advances in sampling, DNA sequencing and bioinformatics. A better understanding of the ocean microbiome could underpin strategies to address environmental and societal challenges, including achievement of multiple Sustainable Development Goals way beyond SDG 14 'life below water'. We propose a set of priorities for understanding and protecting the ocean microbiome, which include delineating interactions between microbiota, sustainably applying resources from oceanic microorganisms and creating policy- and funder-friendly ocean education resources, and discuss how to achieve these ambitious goals.
Collapse
|
25
|
Xie L, Zhang R, Luo YW. Assessment of Explicit Representation of Dynamic Viral Processes in Regional Marine Ecological Models. Viruses 2022; 14:v14071448. [PMID: 35891428 PMCID: PMC9324674 DOI: 10.3390/v14071448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Viruses, the most abundant microorganisms in the ocean, play important roles in marine ecosystems, mainly by killing their hosts and contributing to nutrient recycling. However, in models simulating ecosystems in real marine environments, the virus-mediated mortality (VMM) rates of their hosts are implicitly represented by constant parameters, thus ignoring the dynamics caused by interactions between viruses and hosts. Here, we construct a model explicitly representing marine viruses and the VMM rates of major hosts, heterotrophic bacteria, and apply it to two sites in the oligotrophic North Pacific and the more productive Arabian Sea. The impacts of the viral processes were assessed by comparing model results with the viral processes enabled and disabled. For reliable assessments, a data assimilation method was used to objectively optimize the model parameters in each run. The model generated spatiotemporally variable VMM rates, generally decreasing in the subsurface but increasing at the surface. Although the dynamics introduced by viruses could be partly stabilized by the ecosystems, they still caused substantial changes to the bacterial abundance, primary production and carbon export, with the changes greater at the more productive site. Our modeling experiments reveal the importance of explicitly simulating dynamic viral processes in marine ecological models.
Collapse
|
26
|
Baeshen M, Alkaladi A, Alhejen A, Bataweel N, Abdelkader H, Suliman abuzahrah S. Exploring the Taxonomic and Functional Diversity of Marine Benthic Micro-Eukaryotes Along the Red Sea Coast of Jeddah City. Saudi J Biol Sci 2022; 29:103342. [PMID: 35846388 PMCID: PMC9278075 DOI: 10.1016/j.sjbs.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Backgrounds Diverse marine habitats along Jeddah's Red Sea coast support rich biodiversity. Few studies have been done on its diverse communities, especially its microbial counterparts. Metagenomic analysis of marine benthic micro-eukaryotic communities was performed for the first time on the Red Sea coast of Jeddah. This research looks into their community structure and metabolic potential. Methods Next-generation sequencing was used to examine the micro-eukaryotic communities of seven sedimentary soil samples from four Jeddah coast locations. After isolating DNA from seven benthic sedimentary soil samples, the 18S rDNA V4 regions were amplified and sequenced on the Illumina MiSeq. It was also verified using an Agilent Technologies 2100 Bioanalyzer with a DNA 1000 chip (Agilent Technologies, Fisher Scientific). A standard curve of fluorescence readings generated by qPCR quantification using the Illumina library was achieved using the GS FLX library. Metagenomic data analysis was used to evaluate the microbial communities' biochemical and enzymatic allocations in studied samples. Results Blast analysis showed that the top ten phyla were Annelida, Eukaryota, Diatomea, Porifera, Phragmoplastophyta, Arthropoda, Dinoflagellata, Xenacoelomorpha Nematoda, and uncultured. Annelida was also found in the highest percentage (93%), in the sample M followed by Porifera (64%), the most abundant in the control sample then Eukaryotes (61%), Phragmatoplastophyta (55%), Arthropoda, and Diatomea (the least common) (32%). community diversity analysis: using Shannon and inverse Simpson indices showed sediment composition to be effective. Also, PICRUST2 indicated that the most abundant pathways were pyruvate fermentation to isobutanol, pyrimidine deoxyribonucleotide phosphorylation, adenosine ribonucleotide de novo biosynthesis, guanosine ribonucleotide de novo biosynthesis, NAD salvage pathway I, the super pathway of glyoxylate bypass and aerobic respiration I (cytochrome c). Conclusion Results showed that high throughput metagenomics could reveal species diversity and estimate gene profiles. Environmental factors appear to be more important than geographic variation in determining the structure of these microbial communities. This study provides the first report of marine benthic micro-eukaryotic communities found on the Red Sea coast of Jeddah and will serve as a good platform for future research.
Collapse
|
27
|
Hurd CL, Law CS, Bach LT, Britton D, Hovenden M, Paine ER, Raven JA, Tamsitt V, Boyd PW. Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. JOURNAL OF PHYCOLOGY 2022; 58:347-363. [PMID: 35286717 DOI: 10.1111/jpy.13249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Carbon sequestration is defined as the secure storage of carbon-containing molecules for >100 years, and in the context of carbon dioxide removal for climate mitigation, the origin of this CO2 is from the atmosphere. On land, trees globally sequester substantial amounts of carbon in woody biomass, and an analogous role for seaweeds in ocean carbon sequestration has been suggested. The purposeful expansion of natural seaweed beds and aquaculture systems, including into the open ocean (ocean afforestation), has been proposed as a method of increasing carbon sequestration and use in carbon trading and offset schemes. However, to verify whether CO2 fixed by seaweeds through photosynthesis leads to carbon sequestration is extremely complex in the marine environment compared to terrestrial systems, because of the need to jointly consider: the comparatively rapid turnover of seaweed biomass, tracing the fate of carbon via particulate and dissolved organic carbon pathways in dynamic coastal waters, and the key role of atmosphere-ocean CO2 exchange. We propose a Forensic Carbon Accounting approach, in which a thorough analysis of carbon flows between the atmosphere and ocean, and into and out of seaweeds would be undertaken, for assessing the magnitude of CO2 removal and robust attribution of carbon sequestration to seaweeds.
Collapse
Affiliation(s)
- Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Cliff S Law
- National Institute of Water and Atmospheric Research, Wellington, 6021, New Zealand
- Department of Marine Science, University of Otago, Dunedin, 9016, New Zealand
| | - Lennart T Bach
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Mark Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Ellie R Paine
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- Climate Change Cluster, University of Technology, Sydney, Ultimo, New South Wales, 2006, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Veronica Tamsitt
- University of South Florida College of Marine Science, 830 1st St S, St Petersburg, Florida, 33701, USA
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
28
|
Heinrichs ME, Heyerhoff B, Arslan-Gatz BS, Seidel M, Niggemann J, Engelen B. Deciphering the Virus Signal Within the Marine Dissolved Organic Matter Pool. Front Microbiol 2022; 13:863686. [PMID: 35694303 PMCID: PMC9184803 DOI: 10.3389/fmicb.2022.863686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are ubiquitously distributed in the marine environment, influencing microbial population dynamics and biogeochemical cycles on a large scale. Due to their small size, they fall into the oceanographic size-class definition of dissolved organic matter (DOM; <0.7 μm). The purpose of our study was to investigate if there is a detectable imprint of virus particles in natural DOM following standard sample preparation and molecular analysis routines using ultrahigh-resolution mass spectrometry (FT-ICR-MS). Therefore, we tested if a molecular signature deriving from virus particles can be detected in the DOM fingerprint of a bacterial culture upon prophage induction and of seawater containing the natural microbial community. Interestingly, the virus-mediated lysate of the infected bacterial culture differed from the cell material of a physically disrupted control culture in its molecular composition. Overall, a small subset of DOM compounds correlated significantly with virus abundances in the bacterial culture setup, accounting for <1% of the detected molecular formulae and <2% of the total signal intensity of the DOM dataset. These were phosphorus- and nitrogen-containing compounds and they were partially also detected in DOM samples from other studies that included high virus abundances. While some of these formulae matched with typical biomolecules that are constituents of viruses, others matched with bacterial cell wall components. Thus, the identified DOM molecular formulae were probably not solely derived from virus particles but were partially also derived from processes such as the virus-mediated bacterial cell lysis. Our results indicate that a virus-derived DOM signature is part of the natural DOM and barely detectable within the analytical window of ultrahigh-resolution mass spectrometry when a high natural background is present.
Collapse
Affiliation(s)
- Mara E. Heinrichs
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Benedikt Heyerhoff
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Berin S. Arslan-Gatz
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Michael Seidel
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Jutta Niggemann
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Bert Engelen
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
29
|
Caracciolo M, Rigaut-Jalabert F, Romac S, Mahé F, Forsans S, Gac JP, Arsenieff L, Manno M, Chaffron S, Cariou T, Hoebeke M, Bozec Y, Goberville E, Le Gall F, Guilloux L, Baudoux AC, de Vargas C, Not F, Thiébaut E, Henry N, Simon N. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol Ecol 2022; 31:3761-3783. [PMID: 35593305 PMCID: PMC9543310 DOI: 10.1111/mec.16539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 μm) and ribosomal DNA metabarcoding (size fraction >3 μm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009–2016) at the SOMLIT‐Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA‐derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laure Arsenieff
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Samuel Chaffron
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS, UMR6004, Université de Nantes, Ecole Centrale de Nantes, 44322, Nantes, France
| | - Thierry Cariou
- Institut de recherche pour le développement (IRD), Délégation Régionale Ouest, IMAGO, Plouzané, France
| | - Mark Hoebeke
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, 29680, Roscoff, France
| | | | - Eric Goberville
- Unité biologie des organismes et écosystèmes aquatiques (BOREA), Muséum National D'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, CP53, 61 rue Buffon 75005, Paris, France
| | | | - Loïc Guilloux
- Sorbonne Université, Roscoff, France.,Mediterranean Institute of Oceanography (MIO), Campus de Luminy case 901, 163 Av. de Luminy, 13288 Marseille cedex 9, France
| | | | - Colomban de Vargas
- Sorbonne Université, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | | | - Eric Thiébaut
- Sorbonne Université, Roscoff, France.,Sorbonne Université, CNRS, OSU STAMAR, UMS2017, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Nicolas Henry
- Sorbonne Université, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, 29680, Roscoff, France
| | | |
Collapse
|
30
|
Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes. Viruses 2022; 14:v14050887. [PMID: 35632629 PMCID: PMC9146016 DOI: 10.3390/v14050887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present study, a lytic Synechococcus phage, namely S-SZBM1, was isolated and identified. Cyanophage S-SZBM1 has a double-stranded DNA genome of 177,834 bp with a G+C content of 43.31% and contains a total of 218 predicted ORFs and six tRNA genes. Phylogenetic analysis and nucleotide-based intergenomic similarity suggested that cyanophage S-SZBM1 belongs to a new genus under the family Kyanoviridae. A variety of auxiliary metabolic genes (AMGs) that have been proved or speculated to relate to photosynthesis, carbon metabolism, nucleotide synthesis and metabolism, cell protection, and other cell metabolism were identified in cyanophage S-SZBM1 genome and may affect host processes during infection. In addition, 24 of 32 predicted structural proteins were identified by a high-throughput proteome analysis which were potentially involved in the assembly processes of virion. The genomic and proteomic analysis features of cyanophage S-SZBM1 offer a valuable insight into the interactions between cyanophages and their hosts during infection.
Collapse
|
31
|
Naselli-Flores L, Padisák J. Ecosystem services provided by marine and freshwater phytoplankton. HYDROBIOLOGIA 2022; 850:2691-2706. [PMID: 35106010 PMCID: PMC8795964 DOI: 10.1007/s10750-022-04795-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
Phytoplankton, the ecological group of microalgae adapted to live in apparent suspension in water masses, is much more than an ecosystem's engineer. In this opinion paper, we use our experience as phytoplankton ecologists to list and highlight the services provided by phytoplankton, trying to demonstrate how their activity is fundamental to regulate and sustain Life on our Planet. Although the number of services produced by phytoplankton can be considered less numerous than that produced by other photosynthetic organisms, the ubiquity of this group of organisms, and their thriving across oceanic ecosystems make it one of the biological engines moving our biosphere. Supporting services provided by phytoplankton include almost half of the global primary and oxygen production. In addition, phytoplankton greatly pushes biogeochemical cycles and nutrient (re)cycling, not only in aquatic ecosystems but also in terrestrial ones. In addition, it significantly contributes to climate regulation (regulating services), supplies food, fuels, active ingredients and drugs, and genetic resources (provisioning services), has inspired artistic and craft works, mythology, and, of course, science (cultural services), and much more. Therefore, phytoplankton should be considered in all respects a true biosphere's engineer.
Collapse
Affiliation(s)
- Luigi Naselli-Flores
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 28, 90123 Palermo, Italy
| | - Judit Padisák
- Research Group of Limnology, Centre for Natural Sciences, University of Pannonia, Egyetem u. 10, Veszprém, 8200 Hungary
| |
Collapse
|
32
|
Chen X, Wei W, Xiao X, Wallace D, Hu C, Zhang L, Batt J, Liu J, Gonsior M, Zhang Y, LaRoche J, Hill P, Xu D, Wang J, Jiao N, Zhang R. Heterogeneous viral contribution to dissolved organic matter processing in a long-term macrocosm experiment. ENVIRONMENT INTERNATIONAL 2022; 158:106950. [PMID: 34715430 DOI: 10.1016/j.envint.2021.106950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Viruses saturate environments throughout the world and play key roles in microbial food webs, yet how viral activities affect dissolved organic matter (DOM) processing in natural environments remains elusive. We established a large-scale long-term macrocosm experiment to explore viral dynamics and their potential impacts on microbial mortality and DOM quantity and quality in starved and stratified ecosystems. High viral infection dynamics and the virus-induced cell lysis (6.23-64.68% d-1) was found in the starved seawater macrocosm, which contributed to a significant transformation of microbial biomass into DOM (0.72-5.32 μg L-1 d-1). In the stratified macrocosm, a substantial amount of viral lysate DOM (2.43-17.87 μg L-1 d-1) was released into the upper riverine water, and viral lysis and DOM release (0.35-5.75 μg L-1 d-1) were reduced in the mixed water layer between riverine water and seawater. Viral lysis was stimulated at the bottom of stratified macrocosm, potentially fueled by the sinking of particulate organic carbon. Significant positive and negative associations between lytic viral production and different fluorescent DOM components were found in the starved and stratified macrocosm, indicating the potentially complex viral impacts on the production and utilization of DOM. Results also revealed the significant viral contribution to pools of both relatively higher molecular weight labile DOM and lower molecular weight recalcitrant DOM. Our study suggests that viruses have heterogeneous impact on the cycling and fate of DOM in aquatic environments.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xilin Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Douglas Wallace
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Lianbao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - John Batt
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jihua Liu
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD 20688, United States
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Julie LaRoche
- Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China; Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paul Hill
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Jianning Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, 361102 Xiamen, PR China; Joint Lab for Ocean Research and Education (LORE) of Dalhousie University, Canada, and Shandong University and Xiamen University, PR China.
| |
Collapse
|
33
|
|
34
|
Yang Y, Zhang F, Chen X, Li H, Jiao N, Zhang R. Insignificant Response of Bacterioplankton Community to Elevated pCO 2 During a Short-Term Microcosm Experiment in a Subtropical Eutrophic Coastal Ecosystem. Front Microbiol 2021; 12:730377. [PMID: 34867847 PMCID: PMC8633418 DOI: 10.3389/fmicb.2021.730377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Ocean acidification, as one of the major consequences of global climate change, markedly affects multiple ecosystem functions in disparate marine environments from coastal habitats to the deep ocean. Evaluation of the responses of marine microbial community to the increasing partial pressure of CO2 (pCO2) is crucial to explore the microbe-driven biogeochemical processes in the future ocean. In this study, a microcosm incubation of eutrophic coastal water from Xiamen Bay under elevated pCO2 (about 1,000 μatm) and control (ambient air, about 380-410 μatm) conditions was conducted to investigate the effect of ocean acidification on the natural bacterioplankton community. During the 5-day incubation period, the chlorophyll a concentration and bacterioplankton abundance were not significantly affected by increased pCO2. Hierarchical clustering and non-metric multidimensional scaling analysis based on Bray-Curtis similarity among the bacterioplankton community derived from the 16S rRNA genes revealed an inconspicuous impact of elevated pCO2 on the bacterial community. During the incubation period, Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, and Epsilonbacteraeota were predominant in all microcosms. Despite the distinct temporal variation in the composition of the bacterioplankton community during the experimental period, statistical analyses showed that no significant difference was found on bacterioplankton taxa between elevated pCO2 and control, indicating that the bacterioplankton at the population-level were also insensitive to elevated pCO2. Our results therefore suggest that the bacterioplankton communities in the fluctuating and eutrophic coastal ecosystems appear to be adaptable to the short-term elevated pCO2.
Collapse
Affiliation(s)
- Yunlan Yang
- College of the Environment and Ecology, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Fei Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen, China.,Laboratory of Marine Biology and Ecology, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huifang Li
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
35
|
Hatton IA, Heneghan RF, Bar-On YM, Galbraith ED. The global ocean size spectrum from bacteria to whales. SCIENCE ADVANCES 2021; 7:eabh3732. [PMID: 34757796 PMCID: PMC8580314 DOI: 10.1126/sciadv.abh3732] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/14/2021] [Indexed: 05/31/2023]
Abstract
It has long been hypothesized that aquatic biomass is evenly distributed among logarithmic body mass size classes. Although this community structure has been observed regionally, mostly among plankton groups, its generality has never been formally tested across all marine life over the global ocean, nor have the impacts of humans on it been globally assessed. Here, we bring together data at the global scale to test the hypothesis from bacteria to whales. We find that biomass within most order of magnitude size classes is indeed remarkably constant, near 1 gigatonne (Gt) wet weight (1015 g), but bacteria and large marine mammals are markedly above and below this value, respectively. Furthermore, human impacts appear to have significantly truncated the upper one-third of the spectrum. This dramatic alteration to what is possibly life’s largest-scale regularity underscores the global extent of human activities.
Collapse
Affiliation(s)
- Ian A. Hatton
- Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany
- Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ryan F. Heneghan
- Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, Barcelona, Spain
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QD 4000, Australia
| | - Yinon M. Bar-On
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eric D. Galbraith
- Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| |
Collapse
|
36
|
Abstract
Microbes are omnipresent in the biosphere and perform biological and chemical processes critical to ecosystem function, nutrient cycling, and global climate regulation. In the ocean, microbes constitute more than two-thirds of biomass with abundances reaching over one million microbial cells per milliliter of seawater. Our understanding of the marine microbial world has rapidly expanded with use of innovative molecular and chemical 'omics tools to uncover previously hidden taxonomic diversity, spatiotemporal distributions, and novel metabolic functions. Recognition that specific microbial taxa cooccur in consistent patterns in the ocean has implicated microbe-microbe interactions as important, but poorly constrained, regulators of microbial activity. Here, I examine cooperative interactions among marine plankton, with a focus on the metabolic "currencies" that establish microbial partnerships in the surface-ocean trade economy. I discuss current and future directions to study microbial metabolic interactions in order to strengthen our understanding of ecosystem interdependencies and their impact on ocean biogeochemistry.
Collapse
Affiliation(s)
- Bryndan P. Durham
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
37
|
Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass. J Fungi (Basel) 2021; 7:jof7090690. [PMID: 34575728 PMCID: PMC8468844 DOI: 10.3390/jof7090690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/01/2023] Open
Abstract
Ergosterol has traditionally been used as a proxy to estimate fungal biomass as it is almost exclusively found in fungal lipid membranes. Ergosterol determination has been mostly used for fungal samples from terrestrial, freshwater, salt marsh- and mangrove-dominated environments or to describe fungal degradation of plant matter. In the open ocean, however, the expected concentrations of ergosterol are orders of magnitude lower than in terrestrial or macrophyte-dominated coastal systems. Consequently, the fungal biomass in the open ocean remains largely unknown. Recent evidence based on microscopy and -omics techniques suggests, however, that fungi contribute substantially to the microbial biomass in the oceanic water column, highlighting the need to accurately determine fungal biomass in the open ocean. We performed ergosterol extractions of an oceanic fungal isolate (Rhodotorula sphaerocarpa) with biomass concentrations varying over nine orders of magnitude. While after the initial chloroform-methanol extraction ~87% of the ergosterol was recovered, a second extraction recovered an additional ~10%. Testing this extraction method on samples collected from the open Atlantic Ocean, we successfully determined ergosterol concentrations as low as 0.12 pM. Thus, this highly sensitive method is well suited for measuring fungal biomass from open ocean waters, including deep-sea environments.
Collapse
|
38
|
Zhu W, Zhang A, Qin C, Guo Y, Pan W, Chen J, Yu G, Li C. Seasonal and spatial variation of protist communities from reef water and open ocean water in patchy coral reef areas of a semi-enclosed bay. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105407. [PMID: 34252862 DOI: 10.1016/j.marenvres.2021.105407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Protists are an important component of the marine ecosystem and play an essential role in material cycle and energy flow, but the distribution of protists in coral reefs have not been fully studied. In this study, high-throughput amplicon sequencing technology was used to study the biodiversity and community structure of protists from coral reefs and open sea areas, with the typical semi-enclosed bay Daya Bay as the research field. There were significant seasonal differences in the dominant phyla of protists, biodiversity index values and βeta diversity (P < 0.05) but no significant differences in the different sampling areas (P > 0.05). The topological parameters of the co-occurrence network showed the protist co-occurrence network in the open sea had more complex interactions and stronger stability than in the coral reef areas because of the hydrodynamics, waves, and relatively poor nutrients. Redundancy analysis and the Mantel test showed that the structure of the protist community was affected by seawater temperature, pH, salinity, and dissolved oxygen. This study analysed the temporal and spatial differences in protists in the coral reef and open sea areas of Daya Bay to provide important information for the study of protist biodiversity and community structure in semi-enclosed bays.
Collapse
Affiliation(s)
- Wentao Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Ankai Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China.
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Wanni Pan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Jisheng Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Guangdong Provincial Key Lab. of Fishery Ecology and Environment, Guangzhou, 510300, China; Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environment, Ministry of Agriculture and Rural Affair, Guangzhou, 510300, China
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Chunhou Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, 518120, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| |
Collapse
|
39
|
Bamunuarachchi NI, Khan F, Kim YM. Antimicrobial Properties of Actively Purified Secondary Metabolites Isolated from Different Marine Organisms. Curr Pharm Biotechnol 2021; 22:920-944. [PMID: 32744964 DOI: 10.2174/1389201021666200730144536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. The emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms are considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. METHODS The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. RESULTS The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. CONCLUSION A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.
Collapse
Affiliation(s)
| | - Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
40
|
Labarre A, López-Escardó D, Latorre F, Leonard G, Bucchini F, Obiol A, Cruaud C, Sieracki ME, Jaillon O, Wincker P, Vandepoele K, Logares R, Massana R. Comparative genomics reveals new functional insights in uncultured MAST species. THE ISME JOURNAL 2021; 15:1767-1781. [PMID: 33452482 PMCID: PMC8163842 DOI: 10.1038/s41396-020-00885-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles.
Collapse
Affiliation(s)
- Aurelie Labarre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| | - David López-Escardó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Francisco Latorre
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, UK
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de biologie François-Jacob, Genoscope, Evry, France
| | | | - Olivier Jaillon
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Patrick Wincker
- Metabolic Genomics, Institut de Biologie François Jacob, Genoscope, CEA, CNRS, Univ Evry, Université Paris Saclay, 91000, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Paris, France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
41
|
LUCA to LECA, the Lucacene: A model for the gigayear delay from the first prokaryote to eukaryogenesis. Biosystems 2021; 205:104415. [PMID: 33812918 DOI: 10.1016/j.biosystems.2021.104415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
It is puzzling why life on Earth consisted of prokaryotes for up to 2.5 ± 0.5 billion years (Gy) before the appearance of the first eukaryotes. This period, from LUCA (Last Universal Common Ancestor) to LECA (Last Eucaryotic Common Ancestor), we have named the Lucacene, to suggest all prokaryotic descendants of LUCA before the appearance of LECA. Here we present a simple model based on horizontal gene transfer (HGT). It is the process of HGT from Bacteria to Archaea and its reverse that we wish to simulate and estimate its duration until eukaryogenesis. Rough quantitation of its parameters shows that the model may explain the long duration of the Lucacene.
Collapse
|