1
|
Kavanagh EW, Tzeng SY, Sharma N, Cutting GR, Green JJ. Ligand-free biodegradable poly(beta-amino ester) nanoparticles for targeted systemic delivery of mRNA to the lungs. Biomaterials 2025; 313:122753. [PMID: 39217793 DOI: 10.1016/j.biomaterials.2024.122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Non-viral nanoparticles (NPs) have seen heightened interest as a delivery method for a variety of clinically relevant nucleic acid cargoes in recent years. While much of the focus has been on lipid NPs, non-lipid NPs, including polymeric NPs, have the possibility of improved efficacy, safety, and targeting, especially to non-liver organs following systemic administration. A safe and effective systemic approach for intracellular delivery to the lungs could overcome limitations to intratracheal/intranasal delivery of NPs and improve clinical benefit for a range of diseases including cystic fibrosis. Here, engineered biodegradable poly (beta-amino ester) (PBAE) NPs are shown to facilitate efficient delivery of mRNA to primary human airway epithelial cells from both healthy donors and individuals with cystic fibrosis. Optimized NP formulations made with differentially endcapped PBAEs and systemically administered in vivo lead to high expression of mRNA within the lungs in BALB/c and C57 B/L mice without requiring a complex targeting ligand. High levels of mRNA-based gene editing were achieved in an Ai9 mouse model across bronchial, epithelial, and endothelial cell populations. No toxicity was observed either acutely or over time, including after multiple systemic administrations of the NPs. The non-lipid biodegradable PBAE NPs demonstrate high levels of transfection in both primary human airway epithelial cells and in vivo editing of lung cell types that are targets for numerous life-limiting diseases particularly single gene disorders such as cystic fibrosis and surfactant deficiencies.
Collapse
Affiliation(s)
- Erin W Kavanagh
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neeraj Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Chemical & Biomolecular Engineering, Materials Science & Engineering, Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Wang D, Ma W, Zhang Y, Wang Y, Sun L, Jiang J, Jiao L, Li R, Zhang Y, Zhang M, Zhou Q. A versatile nanoplatform carrying cascade Pt nanozymes remodeling tumor microenvironment for amplified sonodynamic/chemo therapy of thyroid cancer. Biomaterials 2025; 313:122778. [PMID: 39213978 DOI: 10.1016/j.biomaterials.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Wenqi Ma
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Sun
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jue Jiang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Lianying Jiao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Qi Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
3
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
4
|
Abdel-Hafez SM, Gallei M, Wagner S, Schneider M. Inhalable nano-structured microparticles for extracellular matrix modulation as a potential delivery system for lung cancer. Eur J Pharm Biopharm 2024; 204:114512. [PMID: 39332746 DOI: 10.1016/j.ejpb.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
The use of inhalable nanoparticulate-based systems in the treatment of lung cancer allows for efficient localized delivery to the lungs with less undesirable systemic exposure. For this to be attained, the inhaled particles should have optimum properties for deposition and at the same time avoid pulmonary clearance mechanisms. Drug delivery to solid tumors is furthermore challenging, due to dense extracellular matrix (ECM) formation, which hinders the penetration and diffusion of therapeutic agents. To this end, the aim of the current work is to develop an ECM-modulating nano-structured microparticulate carrier, that not only enables the delivery of therapeutic nanoparticles (NPs) to the lungs, but also enhances their intratumoral penetration. The system is composed of acetalated maltodextrin (AcMD) NPs embedded into a water-soluble trehalose/leucine matrix, in which collagenase was loaded with different mass concentrations (10 %, 30 % and 50 %). The collagenase-containing AcMD nano-structured microparticles (MPs) exhibited suitable median volume diameters (2.58 ± 1.35 to 3.01 ± 0.68 µm), hollow corrugated morphology, sufficient redispersibility, low residual moisture content (2.71 ± 0.17 % to 3.10 ± 0.20 %), and favorable aerodynamic properties (Mass median aerodynamic diameter (MMAD): 1.93 ± 0.06 to 2.80 ± 0.10 µm and fine particle fraction (FPF): 68.02 ± 6.86 % to 69.62 ± 2.01 %). Importantly, collagenase retained as high as 89.5 ± 6.7 % of its enzymatic activity after spray drying. MPs containing 10 % mass content of collagenase did not show signs of cytotoxicity on either human lung adenocarcinoma A549 cells or lung MRC-5 fibroblasts. The nanoparticle penetration was tested using adenocarcinoma A549/MRC-5 co-culture spheroid model, where the inclusion of collagenase resulted in deeper penetration depth of AcMD-NPs.
Collapse
Affiliation(s)
- Salma M Abdel-Hafez
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Markus Gallei
- Polymer Chemistry, Saarland University, 66123 Saarbrücken, Germany; Saarene, Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Sylvia Wagner
- Department Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Kim YM, Guk T, Jang MK, Park SC, Lee JR. Targeted delivery of amphotericin B-loaded PLGA micelles displaying lipopeptides to drug-resistant Candida-infected skin. Int J Biol Macromol 2024; 279:135402. [PMID: 39245114 DOI: 10.1016/j.ijbiomac.2024.135402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Amphotericin B (AmB) is an antifungal agent administered for the management of serious systemic fungal infections. However, its clinical application is limited because of its water insolubility and side effects. Herein, to apply the minimum dose of AmB that can be used to manage fungal infections, a targeted drug delivery system was designed using lipopeptides and poly(lactide-co-glycolide) (PLGA). Lipopeptides conjugated with PEGylated distearoyl phosphoethanolamine (DSPE) and short peptides via a maleimide-thiol reaction formed nanosized micelles with PLGA and AmB. The antifungal effects of AmB-loaded micelles containing lipopeptides were remarkably enhanced both in vitro and in vivo. Moreover, the intravenous injection of these micelles demonstrated their in vivo targeting capacity of short peptides in a mouse model infected with drug-resistant Candida albicans. Our findings suggest that short antifungal peptides displayed on the surfaces of micelles represent a promising therapeutic candidate for targeting drug-resistant fungal infections.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Taeuk Guk
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| | - Jung Ro Lee
- National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea.
| |
Collapse
|
6
|
Liu Y, Jia Z, Wang Y, Song Y, Yan L, Zhang C. Exploring the mechanisms of Huangqin Qingfei Decoction on acute lung injury by LC-MS combined network pharmacology analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155979. [PMID: 39208658 DOI: 10.1016/j.phymed.2024.155979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a respiratory disease characterized by pulmonary inflammation and increased microvascular permeability, resulting in significant mortality and a lack of effective pharmacological treatment. Huangqin Qingfei Decoction (HQQFD), a Traditional Chinese Medicine (TCM) prescription known for its heat-clearing and detoxifying properties, has shown efficacy in treating ALI. However, the underlying mechanisms of HQQFD to against ALI remain to be elucidated. PURPOSE This study aims to discover the mechanisms and the principal bioactive compounds contributing to HQQFD's protective effects in the treatment of ALI. METHODS An ultra-high performance liquid chromatography-Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap HRMS) method was employed to characterize the chemical profile in HQQFD and xenobiotics (prototypes and metabolites) in rat lung tissue. Based on prototypes identified, a symptom-guided pharmacological networks of ALI were performed. Molecular docking and extensive literature reviews were conducted to validate our findings. RESULTS A total of 105 compounds were identified in HQQFD, and a total of 194 HQQFD-related xenobiotics (30 prototypes and 163 metabolites) were detected in rat lung tissue. Based on prototypes identified in rat lung, a symptom-guided pharmacological networks of ALI were constructed, AKT1, TNF, EGFR, MMP2, GSK3B, STAT3, MAPK8, IL-6, CDK2 and TP53 were finally identified as key targets. Subsequently, 11 compounds with protective and therapeutic activity were selected by molecular docking analysis, including genipin 1-gentiobioside, chrysin-6-C-α-L-arabinoside-8-C-β-d-glucoside, scutellarin, chrysin-6-C-β-d-glucoside-8-C-α-L-arabinoside, 6''-O-[(E)-p-coumaroyl] genipin-gentiobioside, apigenin 7-O-glucoside, baicalin, dihydrobaicalin, wogonoside, crocin I, crocetin. Bioinformatics and literature analysis suggested that, baicalin, wogonoside, genipin 1-gentiobioside and crocetin may be the primary active compounds of HQQFD, potentially targeting GSK3B, MAPK8, IL-6, AKT1 and TNF for HQQFD in addressing ALI. The therapeutic effects of HQQFD may be mediated through the IL-17 and PI3K-AKT signaling pathways. CONCLUSION The predominant components of HQQFD against ALI are baicalein, wogonoside, genipin 1-gentiobiosid and crocetin, with the IL-17 and PI3K-AKT pathways playing crucial roles. This study provides a foundational guide for future research and introduces innovative methods for exploring the mechanisms of other drug combinations or TCM formulas.
Collapse
Affiliation(s)
- Yanping Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhe Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Wang K, Zhu S, Zhang Y, Wang Y, Bian Z, Lu Y, Shao Q, Jin X, Xu X, Mo R. Targeting the GTPase RAN by liposome delivery for tackling cancer stemness-emanated therapeutic resistance. J Control Release 2024; 375:589-600. [PMID: 39245420 DOI: 10.1016/j.jconrel.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cancer therapeutic resistance as a common hallmark of cancer is often responsible for treatment failure and poor patient survival. Cancer stem-like cells (CSCs) are one of the main contributors to therapeutic resistance, cancer relapse and metastasis. Through screening from our in-house library of natural products, we found polyphyllin II (PPII) as a potent anti-CSC compound for triple-negative breast cancer (TNBC). To enhance anti-CSC selectivity and improve druggability of PPII, we leverage the liposome-mediated delivery technique for increasing solubility of PPII, and more significantly, attaining broader therapeutic window. Liposomal PPII demonstrates its marked potency to inhibit tumor growth, post-surgical recurrence and metastasis compared to commercial liposomal chemotherapeutics in the mouse models of CSC-enriched TNBC tumor. We further identify PPII as an inhibitor of the Ras-related nuclear (RAN) protein whose upregulated expression is correlated with poor clinical outcomes. The direct binding of PPII to RAN reduces TNBC stemness, thereby suppressing tumor progression. Our work offers a significance from drug discovery to drug delivery benefiting from liposome technique for targeted treatment of high-stemness tumor.
Collapse
Affiliation(s)
- Kaili Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenqian Bian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yougong Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Quanlin Shao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmacy, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu 322001, Zhejiang, China.
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Nayak M, Das RP, Kumbhare LB, Singh BG, Iwaoka M, Kunwar A. Diseleno-albumin, a native bio-inspired drug free therapeutic protein induces apoptosis in lung cancer cells through mitochondrial oxidation. Int J Biol Macromol 2024; 279:135141. [PMID: 39208899 DOI: 10.1016/j.ijbiomac.2024.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Macromolecular therapeutic is the emerging concept in the fields of drug delivery and drug discovery. The present study reports the design and development of a serum albumin based macromolecular chemotherapeutic by conjugating bovine serum albumin (BSA) with 3,3'-diselenodipropionic acid (DSePA), a pharmacologically active organo-diselenide (R-Se-Se-R). The reaction conditions were optimised to achieve the controlled conjugation of BSA with DSePA without causing any significant alteration in its physico-chemical properties or secondary structure and crosslinking. The chemical characterisation of the reaction product through various spectroscopic techniques viz., FT-IR, Raman, XPS, AAS and MALDI-TOF-MS, established the conjugation of about ∼5 DSePA molecules per BSA molecule. The DSePA conjugated BSA (Se-Se-BSA) showed considerable stability in aqueous and lyophilized forms. The cytotoxicity studies by involving cell lines of cancerous and non-cancerous origins indicated that Se-Se-BSA selectively inhibited the proliferation of cancerous cells. The cellular uptake studies by physically labelling Se-Se-BSA with curcumin and following its intracellular fluorescence confirmed that uptake efficiency of Se-Se-BSA was almost similar to that of native BSA. Finally, studies on the mechanism of action of Se-Se-BSA in the A549 (lung adenocarcinoma) cells revealed that it induced mitochondrial ROS generation followed by mitochondrial dysfunction, activation of caspases and apoptosis. Together, these results demonstrate a bio-inspired approach of exploring diselenide (-Se-Se-) grafted serum albumin as the potential drug free therapeutic for anticancer application.
Collapse
Affiliation(s)
- Minati Nayak
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ram Pada Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Michio Iwaoka
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
9
|
Mishra AP, Kumar R, Harilal S, Nigam M, Datta D, Singh S, Waranuch N, Chittasupho C. Demystifying the management of cancer through smart nano-biomedicine via regulation of reactive oxygen species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03469-x. [PMID: 39480523 DOI: 10.1007/s00210-024-03469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Advancements in therapeutic strategies and combinatorial approaches for cancer management have led to the majority of cancers in the initial stages to be regarded as treatable and curable. However, certain high-grade cancers in the initial stages are still regarded as chronic and difficult to manage, requiring novel therapeutic strategies. In this era of targeted and precision therapy, novel strategies for targeted delivery of drug and synergistic therapies, integrating nanotherapeutics, polymeric materials, and modulation of the tumor microenvironment are being developed. One such strategy is the study and utilization of smart-nano biomedicine, which refers to stimuli-responsive polymeric materials integrated with the anti-cancer drug that can modulate the reactive oxygen species (ROS) in the tumor microenvironment or can be ROS responsive for the mitigation as well as management of various cancers. The article explores in detail the ROS, its types, and sources; the antioxidant system, including scavengers and their role in cancer; the ROS-responsive targeted polymeric materials, including synergistic therapies for the treatment of cancer via modulating the ROS in the tumor microenvironment, involving therapeutic strategies promoting cancer cell death; and the current landscape and future prospects.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rajesh Kumar
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India.
| | - Seetha Harilal
- Faculty of Pharmaceutical Sciences, Kerala University of Health Sciences, Kerala, 680596, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal Karnataka, 576104, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Centre, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
10
|
Shi L, Li LJ, Sun XY, Chen YY, Luo D, He LP, Ji HJ, Gao WP, Shen HX. Er-Dong-Xiao-Ke decoction regulates lipid metabolism via PPARG-mediated UCP2/AMPK signaling to alleviate diabetic meibomian gland dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118484. [PMID: 38925318 DOI: 10.1016/j.jep.2024.118484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Meibomian gland dysfunction (MGD), complicated by type 2 diabetes, is associated with a high incidence of ocular surface disease, and no effective drug treatment exists. Diabetes mellitus (DM) MGD shows a notable disturbance in lipid metabolism. Er-Dong-Xiao-Ke decoction (EDXKD) has important functions in nourishing yin, clearing heat, and removing blood stasis, which are effective in the treatment of DM MGD. AIM OF THE STUDY To observe the therapeutic effect of EDXKD on DM MGD and its underlying molecular mechanism. MATERIALS AND METHODS After establishing a type 2 DM (T2DM)-induced MGD rat model, different doses of EDXKD and T0070907 were administered. The chemical constituents of EDXKD were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the molecular mechanism of EDXKD in treating DM MGD was predicted using network pharmacology. Lipid metabolism in DM meibomian glands (MGs) was analyzed using LC-MS/MS, and lipid biomarkers were screened and identified. Histological changes and lipid accumulation in MGs were detected by staining, and Peroxisome proliferator-activated receptor gamma (PPARG) expression in MG acinar cells was detected by immunofluorescence. The expression of lipid metabolism-related factors was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or western blotting. RESULTS EDXKD reduced lipid accumulation in the MGs and improved the ocular surface index in DM MGD rats. The main active components of EDXKD had advantages in lipid regulation. Additionally, the PPARG signaling pathway was the key pathway of EDXKD in the treatment of DM MGD. Twelve lipid metabolites were biomarkers of EDXKD in the treatment of DM MGD, and glycerophospholipid metabolism was the main pathway of lipid regulation. Moreover, EDXKD improved lipid deposition in the acini and upregulated the expression of PPARG. Further, EDXKD regulated the PPARG-mediated UCP2/AMPK signaling network, inhibited lipid production, and promoted lipid transport. CONCLUSION EDXKD is an effective treatment for MGD in patients with T2DM. EDXKD can regulate lipids by regulating the PPARG-mediated UCP2/AMPK signaling network, as it reduced lipid accumulation in the MGs of DM MGD rats, promoted lipid metabolism, and improved MG function and ocular surface indices.
Collapse
Affiliation(s)
- Li Shi
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Liu-Jiao Li
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xin-Yi Sun
- Department of Endocrinology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yi-Ying Chen
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Dan Luo
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lu-Ping He
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Hui-Jie Ji
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Wei-Ping Gao
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Hu-Xing Shen
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
11
|
Feng Y, Liu C, Cui W, Yang L, Wu D, Zhang H, Wang X, Sun Y, He B, Dai W, Zhang Q. Engineering supramolecular peptide nanofibers for in vivo platelet-hitchhiking beyond ligand-receptor recognition. SCIENCE ADVANCES 2024; 10:eadq2072. [PMID: 39441939 PMCID: PMC11498226 DOI: 10.1126/sciadv.adq2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Ex vivo or in vivo cell-hitchhiking has emerged as a potential means for efficient drug delivery and various disease therapies. However, many challenges remain, such as the complicated engineering process and dependence on ligand-receptor interaction. Here, we present a simple in vivo platelet-hitchhiking strategy based on self-assembling peptides without ligand modification. The engineered peptide nanofibers can hitchhike ultrafast (<5 s) and efficiently on both resting and activated platelets in a receptor-independent and species-independent manner. Mechanistic studies showed that unique secondary structure of nanofibers, which lead to surface exposure of hydrophobic and hydrogen bond-forming groups, might primarily contribute to the selective and efficient platelet-hitchhiking behavior. After intravenous injection, these peptide nanofibers hitchhiked in situ on circulating platelets and achieved almost 20-fold lung accumulation. Our study provides not only a different paradigm of in vivo platelet-hitchhiking beyond ligand-receptor recognition but also a potential strategy for lung-targeted drug delivery and pulmonary disease therapy.
Collapse
Affiliation(s)
- Yan Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Chenyang Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Weiping Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, (China)
| | - Liuqing Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Di Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
| | - Yuqian Sun
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing 100044, (China)
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, (China)
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, (China)
| |
Collapse
|
12
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
13
|
Kan X, Ma J, Ma J, Li D, Li F, Cao Y, Huang C, Li Y, Liu P. Dual-targeted TfRA4-DNA1-Ag@AuNPs: An innovative radiosensitizer for enhancing radiotherapy in glioblastoma multiforme. Colloids Surf B Biointerfaces 2024; 245:114328. [PMID: 39442410 DOI: 10.1016/j.colsurfb.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Radiation therapy (RT) is one of the most effective and widely used treatment methods for glioblastoma multiforme (GBM). However, its efficacy is often compromised by the inherent radioresistance of tumor cells, while the restrictive nature of the blood-brain barrier (BBB) specifically impedes the delivery of radiosensitizer. Thus, we constructed and characterized polyethylene glycol (PEG)-functionalized silver-gold core-shell nanoparticles (PSGNPs) targeting both BBB (TfRA4) and GBM (DNA1) (TDSGNPs). Afterwards, studies conducted both in vitro and in vivo were employed to assess the BBB penetration capabilities, abilities of GBM targeting and radiosensitization effect. Transmission electron microscope images of PSGNPs showed a core-shell structure, and the results of ultraviolet-visible absorption spectroscopy and dynamic light scattering displayed that TDSGNPs were successfully constructed with excellent dispersion properties. TDSGNPs could be specifically taken up by U87MG cells and the uptake peaked at 24 h. TDSGNPs combined with RT obviously increased the apoptosis proportion of the cells. It was shown by the in vitro and in vivo investigations that TDSGNPs could target U87MG cells after crossing the BBB, and further study revealed that TDSGNPs showed an uptake peak in the tumor sites after 3 h intravenous injection. The radiosensitization of TDSGNPs was better than that of the nanoparticles modified with single aptamers and the median survival of tumor-bearing mice was greatly extended. This study demonstrated that TDSGNPs could penetrate BBB to target GBM, functioning as a promising radiosensitizer for the targeted therapy of GBM.
Collapse
Affiliation(s)
- Xuechun Kan
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Jing Ma
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Jun Ma
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, PR China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Fan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Cheng Huang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China; Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
14
|
Subramanian S, Jain M, Misra R, Jain R. Peptide-based therapeutics targeting genetic disorders. Drug Discov Today 2024; 29:104209. [PMID: 39419376 DOI: 10.1016/j.drudis.2024.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Genetic disorders (GDs) are challenging to treat owing to a lack of optimal treatment regimens and intricate and often difficult-to-understand underlying biological processes. Limited therapeutic approaches, which mostly provide symptomatic relief, are available. To date, a limited number of peptide-based drugs for the treatment of GDs are available, and several candidates are under clinical study. This review provides mechanistic insights into GDs and potential target areas where peptide-based drugs are beneficial. In addition, it emphasizes the usefulness of peptides as carriers for gene delivery, biomarkers for mutation detection and peptide-based vaccines for treating GDs.
Collapse
Affiliation(s)
- Shweta Subramanian
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India.
| |
Collapse
|
15
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
16
|
Nosrati Z, Chen YA, Bergamo M, Rodríguez-Rodríguez C, Chan J, Shojania K, Kherani RB, Chin C, Kelsall JT, Dehghan N, Colwill AM, Collins D, Saatchi K, Häfeli UO. Prodrug Nanomedicine for Synovium Targeted Therapy of Inflammatory Arthritis: Insights from Animal Model and Human Synovial Joint Fluid. Adv Healthc Mater 2024:e2401936. [PMID: 39380387 DOI: 10.1002/adhm.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Many patients cannot tolerate low-dose weekly methotrexate (MTX) therapy for inflammatory arthritis treatment due to life-threatening toxicity. Although biologics offer a target-specific therapy, it raises the risk of serious infections and even cancer due to immune system suppression. We introduce an anti-inflammatory arthritis MTX ester prodrug using a long-circulating biocompatible polymeric macromolecule: folic acid (FA) functionalized hyperbranched polyglycerol (HPG). In vitro the drug MTX is incrementally released through pH and enzymatic degradation over 2 weeks. The role of matrix metalloproteinases (MMPs) in site-specific prodrug activation was verified using synovial fluid (SF) of 26 rheumatology patients and 4 healthy controls. Elevated levels of specific MMPs-markers of joint inflammation-positively correlated with enhanced prodrug release explained by acid-catalyzed hydrolysis of esters by proteases. Intravenously administered 111In-radiolabeled prodrug confirmed by SPECT/CT imaging that it accumulated preferentially in inflamed joints while reducing off-target side-effects in a mouse model of rheumatoid arthritis (RA). Added FA as a targeting vector prolonged prodrug action; prodrug with 4x less MTX applied every 2 weeks was as effective as weekly MTX therapy. The preclinical results suggest a prodrug-based strategy for the treatment of inflammatory joint diseases, with potential for other chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V5Z 3P2, Canada
| | - Yun An Chen
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V5Z 3P2, Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V5Z 3P2, Canada
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V5Z 3P2, Canada
| | - Jonathan Chan
- Department of Medicine - Rheumatology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | - Kam Shojania
- Department of Medicine - Rheumatology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | - Raheem B Kherani
- Department of Medicine - Rheumatology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | - Carson Chin
- Burnaby Medical and Surgical Specialists, Burnaby, BC, V3J 1M2, Canada
| | - John T Kelsall
- Department of Medicine - Rheumatology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | | | | | - David Collins
- Department of Medicine - Rheumatology, University of British Columbia, 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V5Z 3P2, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V5Z 3P2, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark, 2100
| |
Collapse
|
17
|
Deng L, Olea AR, Ortiz-Perez A, Sun B, Wang J, Pujals S, Palmans ARA, Albertazzi L. Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device. SMALL METHODS 2024; 8:e2301072. [PMID: 38348928 DOI: 10.1002/smtd.202301072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Indexed: 10/18/2024]
Abstract
The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alis R Olea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Ana Ortiz-Perez
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bingbing Sun
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Silvia Pujals
- Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, 08034, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Lorenzo Albertazzi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
18
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
19
|
Ebrahimi P, Davoudi E, Sadeghian R, Zadeh AZ, Razmi E, Heidari R, Morowvat MH, Sadeghian I. In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7501-7530. [PMID: 38775852 DOI: 10.1007/s00210-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/01/2024] [Indexed: 10/04/2024]
Abstract
Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.
Collapse
Affiliation(s)
- Pouya Ebrahimi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Davoudi
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Amin Zaki Zadeh
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Emran Razmi
- Arak University of Medical Sciences, Arak, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Winnicka A, Brzeszczyńska J, Saluk J, Wigner-Jeziorska P. Nanomedicine in Bladder Cancer Therapy. Int J Mol Sci 2024; 25:10388. [PMID: 39408718 PMCID: PMC11476791 DOI: 10.3390/ijms251910388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms of the genitourinary system. Traditional BC therapies include chemotherapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multidrug resistance pose serious challenges to the benefits of BC therapies. Consequently, current studies focus on the search for new therapeutic solutions. In recent years, there has been a growing interest in using nanotechnology in the treatment of both non-invasive (NMIBC) and invasive bladder cancer (MIBC). Nanotechnology is based on the use of both organic molecules (chitosan, liposomes) and inorganic molecules (superparamagnetic iron oxide nanoparticles) as carriers of active substances. The main aim of such molecules is the targeted transport and prolonged retention of the drug in the target tissue, which increases the therapeutic efficacy of the active substance. This review discusses the numerous types of nanoparticles (including chitosan, polymeric nanoparticles, liposomes, and protein nanoparticles), targeting mechanisms, and approved nanotherapeutics with oncological implications in cancer treatment. We also present nanoformulation applications in phototherapy, gene therapy, and immunotherapy. Moreover, we summarise the current perspectives, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Adrianna Winnicka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Brzeszczyńska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| |
Collapse
|
21
|
Morrison G, Henry N, Kopytynski M, Chen R. A bioinspired pseudopeptide-based intracellular delivery platform enhances the cytotoxicity of a ribosome-inactivating protein through multiple death pathways. Biomater Sci 2024; 12:5010-5022. [PMID: 39177215 PMCID: PMC11342633 DOI: 10.1039/d4bm00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Saporin is a 28 621 Da protein and plant toxin possessing rRNA N-glycosidase activity. Due to its potent ribosome-inactivating ability, saporin is commonly studied as an anticancer agent. However, its enzymatic activity is greatly hindered by its poor plasma membrane permeability. To overcome this barrier, we used a bioinspired intracellular delivery platform based on the pH-responsive pseudopeptide, poly(L-lysine isophthalamide) grafted with L-phenylalanine at a stoichiometric molar percentage of 50% (PP50). PP50 was co-incubated with saporin (PP50/saporin) in a mildly acidic pH environment to aid intracellular delivery and increase saporin's therapeutic potential. We demonstrated that PP50 greatly enhanced the cytotoxicity of saporin in the 2D monolayer of A549 cells and 3D A549 multicellular spheroids whilst remaining non-toxic when administered alone. To elucidate the mechanism of cell death, we assessed the activation of caspases, the inhibition of protein synthesis, the onset of apoptosis and the mechanism of PP50/saporin entry. Inhibition of protein synthesis and activation of caspases 3/7, 8 and 9 were found to occur before the onset of apoptosis and cell death. PP50/saporin was also shown to rely on micropinocytosis and caveolae-mediated endocytosis for cell entry. In addition, fluorescein isothiocyanate-labelled saporin (FITC-saporin) was localized within the cytoplasm and nuclei when delivered with Cyanine5-labelled PP50 (Cy5-PP50). Taken together, this suggests that multiple pathways are triggered to initiate apoptosis and cell death in cells treated with PP50/saporin. Therefore, these results make PP50 a potential intracellular delivery platform for the internalization of protein therapeutics.
Collapse
Affiliation(s)
- Gabriella Morrison
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Nicole Henry
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Michal Kopytynski
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
22
|
Liu F, Li X, Li Y, Xu S, Guo C, Wang L. Visualization of drug release in a chemo-immunotherapy nanoplatform via ratiometric 19F magnetic resonance imaging. Chem Sci 2024:d4sc03643c. [PMID: 39364076 PMCID: PMC11446317 DOI: 10.1039/d4sc03643c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Visualization of drug release in vivo is crucial for improving therapeutic efficacy and preventing inappropriate medication dosing, yet, challenging. Herein, we report a pH-activated chemo-immunotherapy nanoplatform with visualization of drug release in vivo by ratiometric 19F magnetic resonance imaging (19F MRI). This nanoplatform consists of ultra-small histamine-modified perfluoro-15-crown-5-ether (PFCE) nanodroplets loaded with doxorubicin (Dox), which are packaged in trifluoromethyl-containing metal-organic assemblies via coordination-driven self-assembly. The chemical shifts of two types of 19F atoms in the nanoplatform are significantly different in 19F nuclear magnetic resonance (NMR) spectra, which facilitates the implementation of ratiometric 19F MRI without any signal crosstalk. In an acidic tumor microenvironment, this nanoplatform gradually degrades, which results in a sustained drug release with a real-time change in the ratiometric 19F MRI signal. Therefore, a linear correlation between the Dox release profile and ratiometric 19F MRI signal is established to visualize Dox release. Moreover, the pH-triggered disassembly of the nanoplatform leads to cell pyroptosis, which evokes immunogenic cell death (ICD), resulting in the regression of the primary tumor and inhibition of distal tumor growth. This study provides the proof-of-concept application of ratiometric 19F MRI to visualize drug release in vivo.
Collapse
Affiliation(s)
- Fanqi Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xindi Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yumin Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
23
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
24
|
Bae JH, Kim HS. A pH-Responsive Protein Assembly through Clustering of a Charge-Tunable Single Amino Acid Repeat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47100-47109. [PMID: 39216082 DOI: 10.1021/acsami.4c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Specific targeting of tumor cells is a key to achieving high therapeutic efficacy while minimizing off-target side effects. As a general approach to targeting diverse tumor cells, considerable attention has been paid to the tumor microenvironment, particularly its slightly acidic pH (6.5-6.8). However, existing pH-sensitive nanomaterials, based on organic polymers and proteins, often lack sufficient pH sensitivity and specificity. Here, we demonstrate a strategy to construct a pH-responsive protein assembly through clustering of a single amino acid repeat as a charge-tunable moiety. As a proof of concept, a histidine peptide with varying lengths was displayed on the surface of a ferritin assembly composed of 24 subunits by genetic fusion to a subunit. The resulting self-assembled ferritin particles, termed "pHerricle (pH-responsive ferritin particle)", were shown to exhibit a specific binding to tumor cells in response to pH changes through cooperative effects of histidine peptides. Increasing the histidine peptide length from 0 to 12 residues increased the pHerricle's cell-binding capacity by 21-fold and allowed modulation of the targetable pH range. General applicability as a tumor cell-targeting platform was shown by specific delivery of a cytotoxic cargo by the pHerricle into tumor cells of various origins in a pH-dependent manner.
Collapse
Affiliation(s)
- Jin-Ho Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
25
|
Zhao Z, Yang Y, Sheng T, Bao Y, Yu R, Yu X, Jia S, Wu Q, Zhu C, Shen X, Zhang W, Lu Z, Ji K, Chen X, Jiang X, Zhang Y, Gu Z, Yu J. Platelet-Drug Conjugates Engineered via One-step Fusion Approach for Metastatic and Postoperative Cancer Treatment. Angew Chem Int Ed Engl 2024; 63:e202403541. [PMID: 38885002 DOI: 10.1002/anie.202403541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.
Collapse
Affiliation(s)
- Zhengjie Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinxian Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhang Bao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruixi Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinmin Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuangxu Jia
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaojie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xinyuan Shen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Chen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyun Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| |
Collapse
|
26
|
Liao H, Liao J, Zeng L, Cao X, Fan H, Chen J. Strategies for Organ-Targeted mRNA Delivery by Lipid Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2004. [PMID: 39400518 DOI: 10.1002/wnan.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Messenger RNA (mRNA) technology has rapidly evolved, significantly impacting various therapeutic applications, including vaccines, protein replacement, and gene editing. Lipid nanoparticles (LNPs) have emerged as a pivotal nonviral vector for mRNA delivery, crucial for organ-targeted therapies. Despite their success, most LNP formulations predominantly target the liver, limiting their use in nonliver diseases. This review explores strategies to achieve organ-specific mRNA delivery using LNPs, including the discovery of new lipid structures, modification of targeting ligands, incorporation of additional components, and optimization of LNP formulations. These advancements aim to enhance the precision and efficacy of mRNA therapeutics across a broader range of diseases.
Collapse
Affiliation(s)
- Hangping Liao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
28
|
Wang H, Zhao R, Peng L, Yu A, Wang Y. A Dual-Function CD47-Targeting Nano-Drug Delivery System Used to Regulate Immune and Anti-Inflammatory Activities in the Treatment of Atherosclerosis. Adv Healthc Mater 2024; 13:e2400752. [PMID: 38794825 DOI: 10.1002/adhm.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Atherosclerosis is a primary contributor to cardiovascular disease. Current studies have highlighted the association between the immune system, particularly immune cells, and atherosclerosis, although treatment options and clinical trials remain scarce. Immunotherapy for cardiovascular disease is still in its infancy. Bruton's tyrosine kinase (BTK), widely expressed in various immune cells, represents a promising therapeutic target for atherosclerosis by modulating the anti-inflammatory function of immune cells. This study introduces a polydopamine-based nanocarrier system to deliver the BTK inhibitor, ibrutinib, to atherosclerotic plaques with an active targeting property via an anti-CD47 antibody. Leveraging polydopamine's pH-sensitive reversible disassembly, the system offers responsive, controlled release within the pathologic microenvironment. This allows precise and efficient ibrutinib delivery, concurrently inhibiting the activation of the NF-κB pathway in B cells and the NLRP3 inflammasome in macrophages within the plaques. This treatment also modulates both the immune cell microenvironment and inflammatory conditions in atherosclerotic lesions, thereby conveying promising therapeutic effects for atherosclerosis in vivo. This strategy also provides a novel option for atherosclerosis treatment.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Peng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ao Yu
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
29
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
30
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
31
|
Zahednezhad F, Allahyari S, Sarfraz M, Zakeri-Milani P, Feyzizadeh M, Valizadeh H. Liposomal drug delivery systems for organ-specific cancer targeting: early promises, subsequent problems, and recent breakthroughs. Expert Opin Drug Deliv 2024; 21:1363-1384. [PMID: 39282895 DOI: 10.1080/17425247.2024.2394611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Targeted liposomal systems for cancer intention have been recognized as a specific and robust approach compared to conventional liposomal delivery systems. Cancer cells have a unique microenvironment with special over-expressed receptors on their surface, providing opportunities for discovering novel and effective drug delivery systems using active targeting. AREAS COVERED Smartly targeted liposomes, responsive to internal or external stimulations, enhance the delivery efficiency by increasing accumulation of the encapsulated anti-cancer agent in the tumor site. The application of antibodies and aptamers against the prevalent cell surface receptors is a potent and ever-growing field. Moreover, immuno-liposomes and cancer vaccines as adjuvant chemotherapy are also amenable to favorable immune modulation. Combinational and multi-functional systems are also attractive in this regard. However, potentially active targeted liposomal drug delivery systems have a long path to clinical acceptance, chiefly due to cross-interference and biocompatibility affairs of the functionalized moieties. EXPERT OPINION Engineered liposomal formulations have to be designed based on tissue properties, including surface chemistry, charge, and microvasculature. In this paper, we aimed to investigate the updated targeted liposomal systems for common cancer therapy worldwide.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeideh Allahyari
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
32
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Sun Y, Lu Y, Li X, He Y, Yong TK, Keng CS, Yahaya B, Liu Y, Lin J. Intelligent drugs based on notch protein remodeling: a defensive targeting strategy for tumor therapy. Cell Death Dis 2024; 15:632. [PMID: 39198434 PMCID: PMC11358381 DOI: 10.1038/s41419-024-07008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
In the process of tumor treatment, systemic drug administration is hindered by biological barriers, leading to the retention of a large number of drug molecules in healthy tissues and causing unavoidable side effects. The precise deployment of drugs at the tumor site is expected to alleviate this phenomenon. Here, we take endostatin and Her2 (+) tumors as examples and develop an intelligent drug with simple "wisdom" by endowing mesenchymal stem cells (MSCs) with an intelligent response program (iMSCEndostatin). It can autonomously perceive and distinguish tumor cells from non-tumor cells, establishing a logical connection between tumor signals and drug release. Enable it to selectively deploy drugs at the tumor site, thereby locking the toxicity of drugs at the tumor site. Unlike traditional aggressive targeting strategies that aim to increase drug concentration at the lesion, intelligent drugs are more inclined to be defensive strategies that prevent the presence of drugs in healthy tissues.
Collapse
Affiliation(s)
- Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinze Li
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Then Kong Yong
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Cheong Soon Keng
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Badrul Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia.
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
34
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
35
|
Heydari S, Masoumi N, Esmaeeli E, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F, Ahmadi M. Artificial intelligence in nanotechnology for treatment of diseases. J Drug Target 2024:1-20. [PMID: 39155708 DOI: 10.1080/1061186x.2024.2393417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Nano-based drug delivery systems (DDSs) have demonstrated the ability to address challenges posed by therapeutic agents, enhancing drug efficiency and reducing side effects. Various nanoparticles (NPs) are utilised as DDSs with unique characteristics, leading to diverse applications across different diseases. However, the complexity, cost and time-consuming nature of laboratory processes, the large volume of data, and the challenges in data analysis have prompted the integration of artificial intelligence (AI) tools. AI has been employed in designing, characterising and manufacturing drug delivery nanosystems, as well as in predicting treatment efficiency. AI's potential to personalise drug delivery based on individual patient factors, optimise formulation design and predict drug properties has been highlighted. By leveraging AI and large datasets, developing safe and effective DDSs can be accelerated, ultimately improving patient outcomes and advancing pharmaceutical sciences. This review article investigates the role of AI in the development of nano-DDSs, with a focus on their therapeutic applications. The use of AI in DDSs has the potential to revolutionise treatment optimisation and improve patient care.
Collapse
Affiliation(s)
- Soroush Heydari
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Masoumi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Esmaeeli
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Walter M, Weißbach H, Gembardt F, Halder S, Schorr K, Fleischmann D, Todorov V, Hugo C, Goepferich A. Long-term residence and efficacy of adenovirus-mimetic nanoparticles in renal target tissue. J Drug Target 2024:1-13. [PMID: 39171543 DOI: 10.1080/1061186x.2024.2390628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
A major shortcoming in the treatment of mesangial cell-associated diseases such as IgA nephropathy, diabetic nephropathy, or lupus nephritis, which frequently progress to end-stage renal disease, is poor drug availability in the glomerular mesangium. Drug delivery via active targeting of nanoparticles, using ligands attached to the particle surface for target cell recognition to increase the biodistribution to the mesangium, is a promising strategy to overcome this hurdle. However, although several glomerular tissue targeting approaches have been described, so far no study has demonstrated the particles' ability to deliver sufficient drug amounts combined with an appropriate nanoparticle target retention time to trigger relevant biological effects in the mesangium. In our study, we encapsulated erastin, a ferroptosis-inducing model compound, into adenovirus-mimetic, mesangial cell-targeting nanoparticles, enabling the direct visualisation of biological effects through ferroptosis-dependent histological changes. By intravital microscopy and analysis of histological sections, we were not only able to localise the injected particles over 10 days within the target cells but also to demonstrate biological activity in the renal glomeruli. In conclusion, we have characterised adenovirus-mimetic nanoparticles as a highly suitable drug delivery platform for the treatment of mesangial cell-associated diseases and additionally provided the basis for a potential renal disease model.
Collapse
Affiliation(s)
- Melanie Walter
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Hannah Weißbach
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Florian Gembardt
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Sagor Halder
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Vladimir Todorov
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health - School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Christian Hugo
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
37
|
Soni SS, Kim KM, Sarkar B, Rodell CB. Uptake of Cyclodextrin Nanoparticles by Macrophages is Dependent on Particle Size and Receptor-Mediated Interactions. ACS APPLIED BIO MATERIALS 2024; 7:4856-4866. [PMID: 38231485 PMCID: PMC11252246 DOI: 10.1021/acsabm.3c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Physiochemical properties of nanoparticles, such as their size and chemical composition, dictate their interaction with professional phagocytes of the innate immune system. Macrophages, in particular, are key regulators of the immune microenvironment that heavily influence particle biodistribution as a result of their uptake. This attribute enables macrophage-targeted delivery, including for phenotypic modulation. Saccharide-based materials, including polyglucose polymers and nanoparticles, are efficient vehicles for macrophage-targeted delivery. Here, we investigate the influence of particle size on cyclodextrin nanoparticle (CDNP) uptake by macrophages and further examine the receptor-mediated interactions that drive macrophage-targeted delivery. We designed and synthesized CDNPs ranging in size from 25 nm to >100 nm in diameter. Increasing particle size was correlated with greater uptake by macrophages in vitro. Both scavenger receptor A1 and mannose receptor were critical mediators of macrophage-targeted delivery, inhibition of which reduced the extent of uptake. Finally, we investigated the cellular bioavailability of drug-loaded CDNPs using a model anti-inflammatory drug, celastrol, which demonstrated that drug bioactivity is improved by CDNP loading relative to free drug alone. This study thus elucidates the interactions between the polyglucose nanoparticles and macrophages, thereby facilitating their application in macrophage-targeted drug delivery that has applications in the context of tissue injury and repair.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth M Kim
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Microbiology and Immunology, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Biplab Sarkar
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Littrell CA, Takacs GP, Sankara CS, Sherman A, Rubach KA, Garcia JS, Bell CA, Lnu T, Harrison JK, Zhang F. Systemically targeting monocytic myloid-derrived suppressor cells using dendrimers and their cell-level biodistribution kinetics. J Control Release 2024; 374:181-193. [PMID: 39103055 DOI: 10.1016/j.jconrel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The focus of nanoparticles in vivo trafficking has been mostly on their tissue-level biodistribution and clearance. Recent progress in the nanomedicine field suggests that the targeting of nanoparticles to immune cells can be used to modulate the immune response and enhance therapeutic delivery to the diseased tissue. In the presence of tumor lesions, monocytic-myeloid-derived suppressor cells (M-MDSCs) expand significantly in the bone marrow, egress into peripheral blood, and traffic to the solid tumor, where they help maintain an immuno-suppressive tumor microenvironment. In this study, we investigated the interaction between PAMAM dendrimers and M-MDSCs in two murine models of glioblastoma, by examining the cell-level biodistribution kinetics of the systemically injected dendrimers. We found that M-MDSCs in the tumor and lymphoid organs can efficiently endocytose hydroxyl dendrimers. Interestingly, the trafficking of M-MDSCs from the bone marrow to the tumor contributed to the deposition of hydroxyl dendrimers in the tumor. M-MDSCs showed different capacities of endocytosing dendrimers of different functionalities in vivo. This differential uptake was mediated by the unique serum proteins associated with each dendrimer surface functionality. The results of this study set up the framework for developing dendrimer-based immunotherapy to target M-MDSCs for cancer treatment.
Collapse
Affiliation(s)
- Chad A Littrell
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Gregory P Takacs
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Chenikkayala Siva Sankara
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Alexandra Sherman
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Kai A Rubach
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Julia S Garcia
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Coral A Bell
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Tejashwini Lnu
- Department of Chemical Engineering, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Jeffrey K Harrison
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL, United States; Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, United States; Department of Chemical Engineering, University of Florida College of Pharmacy, Gainesville, FL, United States.
| |
Collapse
|
39
|
Narayan C, Lin LH, Barros MN, Gilbert TC, Brown CR, Reddin D, London B, Chen Y, Wilson ME, Streeter J, Thiel WH. Identification of In Vivo Internalizing Cardiac-Specific RNA Aptamers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607054. [PMID: 39185150 PMCID: PMC11343129 DOI: 10.1101/2024.08.13.607054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background The pursuit of selective therapeutic delivery to target tissue types represents a key goal in the treatment of a range of adverse health issues, including diseases afflicting the heart. The development of new cardiac-specific ligands is a crucial step towards effectively targeting therapeutics to the heart. Methods Utilizing an ex vivo and in vivo SELEX approaches, we enriched a library of 2'-fluoro modified aptamers for ventricular cardiomyocyte specificity. Lead candidates were identified from this library, and their binding and internalization into cardiomyocytes was evaluated in both ex vivo and in vivo mouse studies. Results The ex vivo and in vivo SELEX processes generated an aptamer library with significant cardiac specificity over non-cardiac tissues such as liver and skeletal muscle. Our lead candidate aptamer from this library, CA1, demonstrates selective in vivo targeting and delivery of a fluorophore cargo to ventricular cardiomyocytes within the murine heart, while minimizing off-target localization to non-cardiac tissues, including the liver. By employing a novel RNase-based assay to evaluate aptamer interactions with cardiomyocytes, we discovered that CA1 predominantly internalizes into ventricular cardiomyocytes; conversely, another candidate CA41 primarily binds to the cardiomyocyte cell surface. Conclusions These findings suggest that CA1 and CA41 have the potential to be promising candidates for targeted drug delivery and imaging applications in cardiac diseases.
Collapse
Affiliation(s)
- Chandan Narayan
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Li-Hsien Lin
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Maya N. Barros
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Trent C. Gilbert
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Dominic Reddin
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Barry London
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Yani Chen
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Iowa City Veterans’ Affairs Medical Center, Iowa City, IA, USA
| | - Mary E. Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Iowa City Veterans’ Affairs Medical Center, Iowa City, IA, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Jennifer Streeter
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - William H. Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
40
|
Zhang Q, Yaoita N, Tabuchi A, Liu S, Chen SH, Li Q, Hegemann N, Li C, Rodor J, Timm S, Laban H, Finkel T, Stevens T, Alvarez DF, Erfinanda L, de Perrot M, Kucherenko MM, Knosalla C, Ochs M, Dimmeler S, Korff T, Verma S, Baker AH, Kuebler WM. Endothelial Heterogeneity in the Response to Autophagy Drives Small Vessel Muscularization in Pulmonary Hypertension. Circulation 2024; 150:466-487. [PMID: 38873770 DOI: 10.1161/circulationaha.124.068726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy-related gene 7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Q.Z.)
| | - Nobuhiro Yaoita
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Arata Tabuchi
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Shaofei Liu
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
| | - Shiau-Haln Chen
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
| | - Qiuhua Li
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Niklas Hegemann
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Caihong Li
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Julie Rodor
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
| | - Sara Timm
- Core Facility Electron Microscopy (S.T., M.O.), Charité-Universitätsmedizin, Berlin, Germany
| | - Hebatullah Laban
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology (H.L.), Heidelberg University, Germany
- German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg (H.L.)
| | - Toren Finkel
- Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (T.F.)
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile (T.S.)
| | - Diego F Alvarez
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX (D.F.A.)
| | - Lasti Erfinanda
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Canada (M.d.P.)
- Department of Surgery (M.d.P., W.M.K.), University of Toronto, Canada
| | - Mariya M Kucherenko
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Christoph Knosalla
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany (N.H., M.M.K., C.K.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (N.H., M.M.K., C.K.)
| | - Matthias Ochs
- Core Facility Electron Microscopy (S.T., M.O.), Charité-Universitätsmedizin, Berlin, Germany
- Institute of Functional Anatomy (M.O.), Charité-Universitätsmedizin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany (S.D.)
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology (T.K.), Heidelberg University, Germany
- European Center for Angioscience, Medical Faculty Mannheim (T.K.), Heidelberg University, Germany
| | - Subodh Verma
- Division of Cardiac Surgery (S.V.), University of Toronto, Canada
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (S.-H.C., J.R., A.H.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht University, The Netherlands (A.H.B.)
| | - Wolfgang M Kuebler
- Institute of Physiology (Q.Z., N.Y., A.T., S.L., Q.L., N.H., C.L., L.E., M.M.K., W.M.K.), Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Partner Site Berlin (S.L., N.H., M.M.K., C.K., W.M.K.)
- Department of Surgery (M.d.P., W.M.K.), University of Toronto, Canada
- Department of Physiology (W.M.K.), University of Toronto, Canada
- Keenan Research Centre, St Michael's Hospital, Canada (W.M.K.)
| |
Collapse
|
41
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024:e2400833. [PMID: 39101627 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
| | - Remya Radha
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
| | - Shabana Anjum
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
| | - Vinod Paul
- Materials Science and Engineering PhD program, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD program, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, MI, 48824, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - Ghaleb A Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
- Materials Science and Engineering PhD program, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
42
|
Dokuz S, Tasdurmazli S, Acar T, Duran GN, Ozdemir C, Ozbey U, Ozbil M, Karadayi S, Bayrak OF, Derman S, Chen JYS, Ozbek T. Evaluation of bacteriophage ϕ11 host recognition protein and its host-binding peptides for diagnosing/targeting Staphylococcus aureus infections. Int J Antimicrob Agents 2024; 64:107230. [PMID: 38824973 DOI: 10.1016/j.ijantimicag.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Evaluating the potential of using both synthetic and biological products as targeting agents for the diagnosis, imaging, and treatment of infections due to particularly antibiotic-resistant pathogens is important for controlling infections. This study examined the interaction between Gp45, a receptor-binding protein of the ϕ11 lysogenic phage, and its host Staphylococcus aureus (S. aureus), a common cause of nosocomial infections. METHODS Using molecular dynamics and docking simulations, this study identified the peptides that bind to S. aureus wall teichoic acids via Gp45. It compared the binding affinity of Gp45 and the two highest-scoring peptide sequences (P1 and P3) and their scrambled forms using microscopy, spectroscopy, and ELISA. RESULTS It was found that rGp45 (recombinant Gp45) and chemically synthesised P1 had a higher binding affinity for S. aureus compared with all other peptides, except for Escherichia coli. Furthermore, rGp45 had a capture efficiency of > 86%; P1 had a capture efficiency of > 64%. CONCLUSION These findings suggest that receptor-binding proteins such as rGp45, which provide a critical initiation of the phage life cycle for host adsorption, might play an important role in the diagnosis, imaging, and targeting of bacterial infections. Studying such proteins could accordingly enable the development of effective strategies for controlling infections.
Collapse
Affiliation(s)
- Senanur Dokuz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Semra Tasdurmazli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gizem Nur Duran
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Cilem Ozdemir
- Department of Medical Biology, Health Sciences Institution, Mugla Sitki Kocman University, Mugla, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mehmet Ozbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Sukriye Karadayi
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Altınbas University, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - John Yu-Shen Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
43
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
44
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
45
|
Bi D, Van Hal A, Aschmann D, Shen M, Zhang H, Su L, Arias-Alpizar G, Kros A, Barz M, Bussmann J. Deconvolving Passive and Active Targeting of Liposomes Bearing LDL Receptor Binding Peptides Using the Zebrafish Embryo Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310781. [PMID: 38488770 DOI: 10.1002/smll.202310781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Indexed: 08/09/2024]
Abstract
Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Anneke Van Hal
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Mengjie Shen
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Gabriela Arias-Alpizar
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333, The Netherlands
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
46
|
Ma X, Chen J, Chen S, Lan X, Wei Z, Gao H, Hou E. Immunotherapy for renal cell carcinoma: New therapeutic combinations and adverse event management strategies: A review. Medicine (Baltimore) 2024; 103:e38991. [PMID: 39058879 PMCID: PMC11272340 DOI: 10.1097/md.0000000000038991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) combinations, as well as ICIs combined with tyrosine kinase inhibitors, have considerable potential for renal cell carcinoma (RCC) treatment. Newer targeted medications, gut microbiome, nanomedicines, and cyclin-dependent kinase (CDK) inhibitors demonstrate significant potential in preventing side effects and resistance associated with RCC treatment. Most patients, including those demonstrating long-term treatment effects, eventually demonstrate cancer progression. Nevertheless, recent studies have further revealed RCC pathogenesis and many acquired drug resistance mechanisms, which together have led to the identification of promising therapeutic targets. In addition to having roles in metabolism, immunogenicity, and the immune response to tumors, CDK4 and CDK6 regulate the cell cycle. Targeting CDK4 and CDK6, either separately or in combination with already approved treatments, may improve therapeutic outcomes in patients with kidney cancer. Other novel drugs, including pegylated interleukin 10, colony-stimulating factor 1 receptor inhibitors, CD40 agonists, and C-X-C receptor 4 inhibitors affect the tumor microenvironment and cancer cell metabolism. Moreover, a triple ICI combination has been noted to be efficacious. In general, compared with sunitinib as a single-drug treatment, newer ICI combinations improve overall survival in patients with RCC. Future research on the prevention of adverse events and medication resistance related to newer therapies may aid in ensuring effective treatment outcomes among patients with RCC. This article aims to summarize innovative immunotherapy drug combinations for RCC treatment and the mechanisms of action, drug resistance, and treatment of adverse events associated with these combinations.
Collapse
Affiliation(s)
- Xiaohan Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sheng Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Lan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zengzhao Wei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Encun Hou
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
47
|
Yin YW, Ma YQ, Ding HM. Effect of Nanoparticle Curvature on Its Interaction with Serum Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15205-15213. [PMID: 38990344 DOI: 10.1021/acs.langmuir.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The size or the curvature of nanoparticles (NPs) plays an important role in regulating the composition of the protein corona. However, the molecular mechanisms of how curvature affects the interaction of NPs with serum proteins still remain elusive. In this study, we employ all-atom molecular dynamics simulations to investigate the interactions between two typical serum proteins and PEGylated Au NPs with three different surface curvatures (0, 0.1, and 0.5 nm-1, respectively). The results show that for proteins with a regular shape, the binding strength between the serum protein and Au NPs decreases with increasing curvature. For irregularly shaped proteins with noticeable grooves, the binding strength between the protein and Au NPs does not change obviously with increasing curvature in the cases of smaller curvature. However, as the curvature continues to increase, Au NPs may act as ligands firmly adsorbed in the protein grooves, significantly enhancing the binding strength. Overall, our findings suggest that the impact of NP curvature on protein adsorption may be nonmonotonic, which may provide useful guidelines for better design of functionalized NPs in biomedical applications.
Collapse
Affiliation(s)
- Yue-Wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
48
|
Zhang B, Swanson WB, Durdan M, Livingston HN, Dodd M, Vidanapathirana SM, Desai A, Douglas L, Mishina Y, Weivoda M, Greineder CF. Affinity targeting of therapeutic proteins to the bone surface-local delivery of sclerostin-neutralizing antibody enhances efficacy. J Bone Miner Res 2024; 39:717-728. [PMID: 38526976 PMCID: PMC11472147 DOI: 10.1093/jbmr/zjae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/02/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
Currently available biotherapeutics for the treatment of osteoporosis lack explicit mechanisms for bone localization, potentially limiting efficacy and inducing off-target toxicities. While various strategies have been explored for targeting the bone surface, critical aspects remain poorly understood, including the optimal affinity ligand, the role of binding avidity and circulation time, and, most importantly, whether or not this strategy can enhance the functional activity of clinically relevant protein therapeutics. To investigate, we generated fluorescent proteins (eg, mCherry) with site-specifically attached small molecule (bisphosphonate) or peptide (deca-aspartate, D10) affinity ligands. While both affinity ligands successfully anchored fluorescent protein to the bone surface, quantitative radiotracing revealed only modest femoral and vertebral accumulation and suggested a need for enhanced circulation time. To achieve this, we fused mCherry to the Fc fragment of human IgG1 and attached D10 peptides to each C-terminus. The mCherry-Fc-D10 demonstrated an ~80-fold increase in plasma exposure and marked increases in femoral and vertebral accumulation (13.6% ± 1.4% and 11.4% ± 1.3% of the injected dose/g [%ID/g] at 24 h, respectively). To determine if bone surface targeting could enhance the efficacy of a clinically relevant therapeutic, we generated a bone-targeted sclerostin-neutralizing antibody, anti-sclerostin-D10. The targeted antibody demonstrated marked increases in bone accumulation and retention (20.9 ± 2.5% and 19.5 ± 2.5% ID/g in femur and vertebrae at 7 days) and enhanced effects in a murine model of ovariectomy-induced bone loss (bone volume/total volume, connectivity density, and structure model index all increased [P < .001] vs untargeted anti-sclerostin). Collectively, our results indicate the importance of both bone affinity and circulation time in achieving robust targeting of therapeutic proteins to the bone surface and suggest that this approach may enable lower doses and/or longer dosing intervals without reduction in biotherapeutic efficacy. Future studies will be needed to determine the translational potential of this strategy and its potential impact on off-site toxicities.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Benton Swanson
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret Durdan
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather N Livingston
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michaela Dodd
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sachith M Vidanapathirana
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec Desai
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey Douglas
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan Weivoda
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Hematology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colin F Greineder
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Ji X, Yin H, Gu T, Xu H, Fang D, Wang K, Sun H, Tian S, Wu T, Nie Y, Zhang P, Bi Y. Excessive free fatty acid sensing in pituitary lactotrophs elicits steatotic liver disease by decreasing prolactin levels. Cell Rep 2024; 43:114465. [PMID: 38985678 DOI: 10.1016/j.celrep.2024.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The pituitary is the central endocrine gland with effects on metabolic dysfunction-associated steatotic liver disease (MASLD). However, it is not clear whether the pituitary responds to free fatty acid (FFA) toxicity, thus dysregulating hepatic lipid metabolism. Here, we demonstrate that decreased prolactin (PRL) levels are involved in the association between FFA and MASLD based on a liver biospecimen-based cohort. Moreover, overloaded FFAs decrease serum PRL levels, thus promoting liver steatosis in mice with both dynamic diet intervention and stereotactic pituitary FFA injection. Mechanistic studies show that excessive FFA sensing in pituitary lactotrophs inhibits the synthesis and secretion of PRL in a cell-autonomous manner. Notably, inhibiting excessive lipid uptake using pituitary stereotaxic virus injection or a specific drug delivery system effectively ameliorates hepatic lipid accumulation by improving PRL levels. Targeted inhibition of pituitary FFA sensing may be a potential therapeutic target for liver steatosis.
Collapse
Affiliation(s)
- Xinlu Ji
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hongli Yin
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Hao Xu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Da Fang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Kai Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yuanyuan Nie
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
50
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2024:10.1007/s13346-024-01673-z. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|