1
|
Lyu X, Li P, Jin L, Yang F, Pucker B, Wang C, Liu L, Zhao M, Shi L, Zhang Y, Yang Q, Xu K, Li X, Hu Z, Yang J, Yu J, Zhang M. Tracing the evolutionary and genetic footprints of atmospheric tillandsioids transition from land to air. Nat Commun 2024; 15:9599. [PMID: 39505856 PMCID: PMC11541568 DOI: 10.1038/s41467-024-53756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Plant evolution is driven by key innovations of functional traits that enables their survivals in diverse ecological environments. However, plant adaptive evolution from land to atmospheric niches remains poorly understood. In this study, we use the epiphytic Tillandsioideae subfamily of Bromeliaceae as model plants to explore their origin, evolution and diversification. We provide a comprehensive phylogenetic tree based on nuclear transcriptomic sequences, indicating that core tillandsioids originated approximately 11.3 million years ago in the Andes. The geological uplift of the Andes drives the divergence of tillandsioids into tank-forming and atmospheric types. Our genomic and transcriptomic analyses reveal gene variations and losses associated with adaptive traits such as impounding tanks and absorptive trichomes. Furthermore, we uncover specific nitrogen-fixing bacterial communities in the phyllosphere of tillandsioids as potential source of nitrogen acquisition. Collectively, our study provides integrative multi-omics insights into the adaptive evolution of tillandsioids in response to elevated aerial habitats.
Collapse
Affiliation(s)
- Xiaolong Lyu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Li
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang Jin
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, China
| | - Feng Yang
- BGI Research, Sanya, 572025, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Mendelssohnstraße 4, Braunschweig, 38106, Germany
| | - Chenhao Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Linye Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qinrong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kuangtian Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhongyuan Hu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jinghua Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jingquan Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
| | - Mingfang Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
2
|
Huang Y, Zhu C, Hu Y, Yan S, Luo Z, Zou Y, Wu W, Zeng J. Integrated hormone and transcriptome profiles provide insight into the pericarp differential development mechanism between Mandarin 'Shatangju' and 'Chunhongtangju'. FRONTIERS IN PLANT SCIENCE 2024; 15:1461316. [PMID: 39450074 PMCID: PMC11499144 DOI: 10.3389/fpls.2024.1461316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Introduction Citrus reticulata cv. 'Chunhongtangju' was mutated from Mandarin 'Shatangju', which has been identified as a new citrus variety. Mandarin 'Chunhongtangju' fruits were late-ripening for about two months than Mandarin 'Shatangju'. Methods To understand the pericarp differential development mechanism in Mandarin 'Shatangju' (CK) and 'Chunhongtangju' (LM), hormones and transcriptome profiles of pericarps were performed in different development stages: Young fruit stage (CK1/LM1), Expansion and Turning color stage (CK2), Expansion stage (LM2), Turning color stage (LM3), and Maturity stage (CK3/LM4). Results In this study, the development of LM was significantly slower, and the maturity was significantly delayed. At the same stage, most hormones in Mandarin 'Chunhongtangju' pericarps were higher than that in 'Shatangju' such as gibberellin A24, cis(+)-12-oxophytodienoic acid, and L-phenylalanine. The deficiency of hormones in late-maturing pericarps was mainly manifested in ABA, 12-OHJA, MeSAG, and ABA-GE. Differences in transcriptome profiles between the two citrus varieties are primarily observed in energy metabolism, signal transduction such as MAPK signaling pathway and plant hormone signaling, and biosynthesis of secondary metabolites. After analyzing the hormones and transcriptome data, we found that the top genes and hormones, such as Cs_ont_5g020040 (transcription elongation factor, TFIIS), Cs_ont_7g021670 (BAG family molecular chaperone regulator 5, BAG5), Cs_ont_2g025760 (40S ribosomal protein S27, Rps27), 5-deoxystrigol, salicylic acid 2-O-β-glucosid, and gibberellin A24, contributed significantly to gene transcription and hormone synthesis. Discussion This study suggests that the variances of pericarp development between the two varieties are linked to variations in the transcription levels of genes associated with energy and secondary metabolism, signal transduction related genes. These findings expand our understanding of the complex transcriptional and hormonal regulatory hierarchy during pericarp development.
Collapse
Affiliation(s)
- Yongjing Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Yibo Hu
- Deqing County Agricultural Technology Promotion Center, Zhaoqing, China
| | - Sanjiao Yan
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Zhimin Luo
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Yanping Zou
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Wen Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| |
Collapse
|
3
|
Miao K, Wang Y, Hou L, Liu Y, Liu H, Ji Y. Haplotype-resolved genome assembly of the upas tree (Antiaris toxicaria). Sci Data 2024; 11:1011. [PMID: 39294147 PMCID: PMC11410980 DOI: 10.1038/s41597-024-03860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
The upas tree (Antiaris toxicaria Lesch.) is a medically important plant that contains various specialized metabolites with significant bioactivity. The lack of a reference genome hinders the in-depth study as well as rational exploitation and conservation of this plant. Here, we present the first holotype-resolved chromosome-scale genome of the upas tree. The assembled genome consisted of 26 chromosomes that contain 1.34 Gb of sequencing data with a contig N50 length of 60 Mb. Genome annotation identified 43,500 protein-coding genes in the upas tree genome, of which 98.75% were functionally annotated. This high-quality reference genome will lay the foundation for further studies on the evolution and functional genomics of the upas tree.
Collapse
Affiliation(s)
- Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Luxiao Hou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Natural Medicine, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- State Key Laboratory of Phytochemistry and Natural Medicine, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Liu B, Wu H, Cao Y, Zheng X, Zhu H, Sui S. Morphological and Transcriptomic Analyses Reveal the Involvement of Key Metabolic Pathways in Male Sterility in Chimonanthus praecox (L.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2571. [PMID: 39339546 PMCID: PMC11435207 DOI: 10.3390/plants13182571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Chimonanthus praecox (Calycanthaceae family) is a unique ornamental and economic flowering tree in China, and after thousands of years of cultivation, it has produced several varieties and varietal types. Notably, male sterility is common in flowering plants and is an important tool for the genetic improvement in plants and optimization using hybrid plant technology; however, there have been no reports on male-sterile material or related studies on C. praecox. To our knowledge, this is the first time that C. praecox male sterility is dissected unveiling the involvement of key metabolic pathways. Notably, male sterility in C. praecox was observed during the budding period and likely occurred during the premature stage of pollen cell maturation. Additionally, differentially expressed genes in the starch and sucrose metabolism pathway and the plant hormone signal transduction pathway showed regular expression trends. This study reports on significant genetic differences that contribute to male sterility in C. praecox and provides a basis for further research and breeding strategies.
Collapse
Affiliation(s)
- Bin Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Huafeng Wu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yinzhu Cao
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xiaowen Zheng
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Zhang K, Cao Y, Guo X, Kong F, Sun H, Jing T, Zhan Y, Qi F. Comparative transcriptome analysis of differentially expressed genes and pathways in male and female flowers of Fraxinus mandshurica. PLoS One 2024; 19:e0308013. [PMID: 39264914 PMCID: PMC11392328 DOI: 10.1371/journal.pone.0308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/16/2024] [Indexed: 09/14/2024] Open
Abstract
Fraxinus mandshurica Rupr. (F. mandshurica) is a dioecious tree species with important ecological and application values. To delve deeper into the regulatory pathways and genes responsible for male and female flowers in F. mandshurica, we conducted transcriptome sequencing on male and female flowers at four distinct stages. The analysis revealed that the female database generated 38,319,967 reads while the male database generated 43,320,907 reads, resulting in 2930 differentially expressed genes with 1441 were up-regulated and 1489 down-regulated in males compared to females. Following an analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), four distinct pathways (hormone signal transduction, energy metabolism, flavonoid biosynthesis, and photoperiod) linked to female and male flowers were identified. Subsequently, qRT-PCR verification revealed that FmAUX/IAA, FmEIN3, and FmA-ARR genes in hormone signal transduction pathway are related to female flower development. Meanwhile, FmABF genes in hormone signal transduction pathway, FmGS and FmGDH genes in energy metabolism pathway, FmFLS genes in flavonoid biosynthesis pathway, and FmCaM, FmCRY, and FmPKA genes in photoperiod pathway are related to male flower development. This study was the first to analyze the transcriptome of male and female flowers of F. mandshurica, providing a reference for the developmental pathways and gene expression levels of male and female plants.
Collapse
Affiliation(s)
- Kaifang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xinyue Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fanqiu Kong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongran Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tianzhong Jing
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fenghui Qi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Castro-Cárdenas N, Martén-Rodríguez S, Vázquez-Santana S, Cornejo-Tenorio G, Navarrete-Segueda A, Ibarra-Manríquez G. Putting the puzzle together: the relationship between floral characters and pollinator morphology determines pollination mode in the fig-fig wasp mutualism. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39225703 DOI: 10.1111/plb.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The diversification of angiosperms has largely been attributed to adaptive radiation of their pollination and mating systems, which are relevant drivers of the macroevolution processes. The fig (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) interaction is an example of obligate mutualism. Passive and active pollination modes have been associated with morphological traits in both partners. However, more information is required to assess the relationship between floral traits and pollination modes, particularly in Neotropical Ficus species. This study evaluates the morphological traits of figs and fig wasps regarding pollination modes in species belonging to Neotropical Ficus sections (three species each of Americanae and Pharmacosycea). Pollination mode was identified by floral morphology, anther/ovule ratio, and specialized structures fig wasps use for pollen transport (pollen pocket and coxal combs). Fig species in sect. Americanae are actively pollinated because pistillate flowers form a synstigma, present anther/ovule ratios <0.11, and their pollinator Pegoscapus fig wasps have pollen pockets and coxal combs. In contrast, species in sect. Pharmacosycea have free pistillate flowers, with anther/ovule ratios >0.27; they are pollinated by Tetrapus wasps, which lack specialized structures to carry pollen. Each species of Ficus was associated with a single morphospecies of fig wasp. The results support previous contributions that consider reciprocal morphological traits between fig species and their pollinating wasps as evidence of a close co-evolutionary history.
Collapse
Affiliation(s)
- N Castro-Cárdenas
- Laboratorio de Ecología y Sistemática Vegetal, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - S Martén-Rodríguez
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - S Vázquez-Santana
- Laboratorio de Desarrollo en Plantas, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Cornejo-Tenorio
- Laboratorio de Ecología y Sistemática Vegetal, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - A Navarrete-Segueda
- Laboratorio de Ecología y Sistemática Vegetal, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | - G Ibarra-Manríquez
- Laboratorio de Ecología y Sistemática Vegetal, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| |
Collapse
|
7
|
Yuan S, Yin T, He H, Liu X, Long X, Dong P, Zhu Z. Phenotypic, Metabolic and Genetic Adaptations of the Ficus Species to Abiotic Stress Response: A Comprehensive Review. Int J Mol Sci 2024; 25:9520. [PMID: 39273466 PMCID: PMC11394708 DOI: 10.3390/ijms25179520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The Ficus genus, having radiated from the tropics and subtropics to the temperate zone worldwide, is the largest genus among woody plants, comprising over 800 species. Evolution of the Ficus species results in genetic diversity, global radiation and geographical differentiations, suggesting adaption to diverse environments and coping with stresses. Apart from familiar physiological changes, such as stomatal closure and alteration in plant hormone levels, the Ficus species exhibit a unique mechanism in response to abiotic stress, such as regulation of leaf temperature and retention of drought memory. The stress-resistance genes harbored by Ficus result in effective responses to abiotic stress. Understanding the stress-resistance mechanisms in Ficus provides insights into the genetic breeding toward stress-tolerant crop cultivars. Following upon these issues, we comprehensively reviewed recent progress concerning the Ficus genes and relevant mechanisms that play important roles in the abiotic stress responses. These highlight prospectively important application potentials of the stress-resistance genes in Ficus.
Collapse
Affiliation(s)
- Shengyun Yuan
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hourong He
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xinyi Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xueyan Long
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
8
|
Qiao H, Zhou X, Yi Y, Wei L, Xu X, Jin P, Su W, Weng Y, Yu D, He S, Fu M, Hou C, Pan X, Wang W, Zhang YY, Ming R, Ye C, Li QQ, Shen Y. Molecular mechanism of vivipary as revealed by the genomes of viviparous mangroves and non-viviparous relatives. Curr Biol 2024; 34:3707-3721.e7. [PMID: 39079534 DOI: 10.1016/j.cub.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.
Collapse
Affiliation(s)
- Hongmei Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuchong Yi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Liufeng Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengfei Jin
- Novogene Co. Ltd, Building 301, Zone A10 Jiuxianqiao North Road, Chaoyang District, Beijing 100006, China
| | - Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yulin Weng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Dingtian Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Meiping Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengcheng Hou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaobao Pan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
9
|
Xu Y, Tian W, Yin M, Cai Z, Zhang L, Yuan D, Yi H, Wu J. The miR159a-DUO1 module regulates pollen development by modulating auxin biosynthesis and starch metabolism in citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1351-1369. [PMID: 38578168 DOI: 10.1111/jipb.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding. Male sterility associated with abnormal pollen development is an important factor in seedlessness. However, our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited. Here, we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus, which further indirectly modulated seed development and fruit size. Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat (Fortunella hindsii) resulted in small and seedless fruit phenotypes. Moreover, pollen was severely aborted in both transgenic lines, with arrested pollen mitotic I and abnormal pollen starch metabolism. Through additional cross-pollination experiments, DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus. Based on DNA affinity purification sequencing (DAP-seq), RNA-seq, and verified interaction assays, YUC2/YUC6, SS4 and STP8 were identified as downstream target genes of DUO1, those were all positively regulated by DUO1. In transgenic F. hindsii lines, the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6, which decreased indoleacetic acid (IAA) levels and modulated auxin signaling to repress pollen mitotic I. The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen. Overall, this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
Collapse
Affiliation(s)
- Yanhui Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxiu Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minqiang Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenmei Cai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
11
|
Li W, Dong X, Zhang X, Cao J, Liu M, Zhou X, Long H, Cao H, Lin H, Zhang L. Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana. HORTICULTURE RESEARCH 2024; 11:uhae141. [PMID: 38988615 PMCID: PMC11233859 DOI: 10.1093/hr/uhae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Vernicia montana is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in V. montana. Here, we present a chromosome-level reference genome of a male V. montana with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of V. montana. This InDel is located in the second intron of VmBASS4, suggesting a possible role of VmBASS4 in sex determination in V. montana. This study sheds light on the genome evolution and sex identification of V. montana, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.
Collapse
Affiliation(s)
- Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
- College of Biology and Agricultural Resources, Huanggang Normal University, No.146 Xingang 2nd Road, Huangzhou District, Huanggang, Hubei 438000, China
| | - Xiang Dong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No.7 Pengfei Road, Dapeng New District, Shenzhen 518120, China
| | - Jie Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xu Zhou
- College of Landscape Architecture, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA 70124-4305, USA
| | - Hai Lin
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| |
Collapse
|
12
|
Huang W, Ding Y, Fan S, Liu W, Chen H, Segar S, Compton SG, Yu H. A high-quality chromosome-level genome assembly of Ficus hirta. Sci Data 2024; 11:526. [PMID: 38778063 PMCID: PMC11111794 DOI: 10.1038/s41597-024-03376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Ficus species (Moraceae) play pivotal roles in tropical and subtropical ecosystems. Thriving across diverse habitats, from rainforests to deserts, they harbor a multitude of mutualistic and antagonistic interactions with insects, nematodes, and pathogens. Despite their ecological significance, knowledge about the genomic background of Ficus remains limited. In this study, we report a chromosome-level reference genome of F. hirta, with a total size of 297.27 Mb, containing 28,625 protein-coding genes and 44.67% repeat sequences. These findings illuminate the genetic basis of Ficus responses to environmental challenges, offering valuable genomic resources for understanding genome size, adaptive evolution, and co-evolution with natural enemies and mutualists within the genus.
Collapse
Affiliation(s)
- Weicheng Huang
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yamei Ding
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songle Fan
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wanzhen Liu
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hongfeng Chen
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Simon Segar
- Department of Crop and Environment Sciences, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | | | - Hui Yu
- Plant Resources Conservation and Sustainable Utilization, the Chinese Academy of Sciences, Guangzhou, 510650, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China.
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
13
|
Prathapan P. Characterisation of the fig-fig wasp holobiont. Biosystems 2024; 237:105162. [PMID: 38395103 DOI: 10.1016/j.biosystems.2024.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Plants and animals have long been considered distinct kingdoms, yet here a 'plant-animal' is described. An extraordinary symbiosis in which neither organism can reproduce without the other, the fig tree (Ficus) provides the habitat for its exclusive pollinator: the fig wasp (Agaonidae). Characterising the 'fig-fig wasp holobiont' acknowledges, for the first time, 'plant-animal symbiogenesis'.
Collapse
Affiliation(s)
- Praveen Prathapan
- New Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
14
|
Yu H, Nong X, Huang W, Bhanumas C, Deng X, Ding Y, Liu W. Odorant-Binding and Chemosensory Proteins in Fig Wasps: Evolutionary Insights From Comparative Studies. J Mol Evol 2024; 92:42-60. [PMID: 38280051 DOI: 10.1007/s00239-023-10152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/22/2023] [Indexed: 01/29/2024]
Abstract
Fig wasps (Agaonidae; Hymenoptera) are the only pollinating insects of fig trees (Ficus; Moraceae), forming the most closely and highly specific mutualism with the host. We used transcriptome sequences of 25 fig wasps from six genera to explore the evolution of key molecular components of fig wasp chemosensory genes: odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). We identified a total 321 OBPs and 240 CSPs, with each species recording from 6 to 27 OBP genes and 6-19 CSP genes. 318 OBP genes are clustered into 17 orthologous groups and can be divided into two groups: PBP sensitive to pheromone and GOBP sensitive to general odor molecules, such as alcohols, esters, acids, ketones, and terpenoids. 240 CSP genes are clustered into 12 orthologous groups, which can be divided into three major groups and have functions, such as olfactory, tissue formation and/or regeneration, developmental, and some specific and unknown function. The gene sequences of most orthologous groups vary greatly among species and are consistent with the phylogenetic relationships between fig wasps. Strong purifying selection of both OBP and CSP genes was detected, as shown by low ω values. A positive selection was detected in one locus in CSP1. In conclusion, the evolution of chemosensory proteins OBPs and CSPs in fig wasps is relatively conservative, and they play an indispensable role in the life activities of fig wasps. Our results provide a starting point for understanding the molecular basis of the chemosensory systems of fig wasps.
Collapse
Affiliation(s)
- Hui Yu
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, The Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xiaojue Nong
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Weicheng Huang
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Xiaoxia Deng
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yamei Ding
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wanzhen Liu
- Plant Resources Conservation and Sustainable Utilization, The Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
15
|
Liao Z, Zhang T, Lei W, Wang Y, Yu J, Wang Y, Chai K, Wang G, Zhang H, Zhang X. A telomere-to-telomere reference genome of ficus ( Ficus hispida) provides new insights into sex determination. HORTICULTURE RESEARCH 2024; 11:uhad257. [PMID: 38269293 PMCID: PMC10807705 DOI: 10.1093/hr/uhad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
A high-quality reference genome is indispensable for resolving biologically essential traits. Ficus hispida is a dioecious plant. A complete Ficus reference genome will be crucial for understanding their sex evolution and important biological characteristics, such as aerial roots, mutualistic symbiosis with ficus-wasps, and fruiting from old stems. Here, we generated a telomere-to-telomere (T2T) genome for F. hispida using PacBio HiFi and Oxford Nanopore Ultra-long sequencing technologies. The genome contiguity and completeness has shown improvement compared with the previously released genome, with the annotation of six centromeres and 28 telomeres. We have refined our previously reported 2-Mb male-specific region into a 7.2-Mb genomic region containing 51 newly predicted genes and candidate sex-determination genes AG2 and AG3. Many of these genes showed extremely low expression, likely attributed to hypermethylation in the gene body and promoter regions. Gene regulatory networks (GRNs) revealed that AG2 and AG3 are related to the regulation of stamen development in male flowers, while the AG1 gene is responsible for regulating female flowers' defense responses and secondary metabolite processes. Comparative analysis of GRNs showed that the NAC, WRKY, and MYB transcription factor families dominate the female GRN, whereas the MADS and MYB transcription factor families are prevalent in the male GRN.
Collapse
Affiliation(s)
- Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Tianwen Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenlong Lei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yinghao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Kun Chai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Huahao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
16
|
Bao Y, He M, Zhang C, Jiang S, Zhao L, Ye Z, Sun Q, Xia Z, Zou M. Advancing understanding of Ficus carica: a comprehensive genomic analysis reveals evolutionary patterns and metabolic pathway insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1298417. [PMID: 38155853 PMCID: PMC10754049 DOI: 10.3389/fpls.2023.1298417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Ficus carica L. (dioecious), the most significant commercial species in the genus Ficus, which has been cultivated for more than 11,000 years and was one of the first species to be domesticated. Herein, we reported the most comprehensive F. carica genome currently. The contig N50 of the Orphan fig was 9.78 Mb, and genome size was 366.34 Mb with 13 chromosomes. Based on the high-quality genome, we discovered that F. carica diverged from Ficus microcarpa ~34 MYA, and a WGD event took place about 2─3 MYA. Throughout the evolutionary history of F. carica, chromosomes 2, 8, and 10 had experienced chromosome recombination, while chromosome 3 saw a fusion and fission. It is worth proposing that the chromosome 9 experienced both inversion and translocation, which facilitated the emergence of the F. carica as a new species. And the selections of F. carica for the genes of recombination chromosomal fragment are compatible with their goal of domestication. In addition, we found that the F. carica has the FhAG2 gene, but there are structural deletions and positional jumps. This gene is thought to replace the one needed for female common type F. carica to be pollinated. Subsequently, we conducted genomic, transcriptomic, and metabolomic analysis to demonstrate significant differences in the expression of CHS among different varieties of F. carica. The CHS playing an important role in the anthocyanin metabolism pathway of F. carica. Moreover, the CHS gene of F. carica has a different evolutionary trend compared to other Ficus species. These high-quality genome assembly, transcriptomic, and metabolomic resources further enrich F. carica genomics and provide insights for studying the chromosomes evolution, sexual system, and color characteristics of Ficus.
Collapse
Affiliation(s)
- Yuting Bao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Miaohua He
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Chenji Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Agriculture, China Agricultural University, Beijing, China
| | - Sirong Jiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Long Zhao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qian Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Meiling Zou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
17
|
Feng LY, Lin PF, Xu RJ, Kang HQ, Gao LZ. Comparative Genomic Analysis of Asian Cultivated Rice and Its Wild Progenitor ( Oryza rufipogon) Has Revealed Evolutionary Innovation of the Pentatricopeptide Repeat Gene Family through Gene Duplication. Int J Mol Sci 2023; 24:16313. [PMID: 38003501 PMCID: PMC10671101 DOI: 10.3390/ijms242216313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in land plants. However, current knowledge about the evolution of the PPR gene family remains largely limited. In this study, we performed a comparative genomic analysis of the PPR gene family in O. sativa and its wild progenitor, O. rufipogon, and outlined a comprehensive landscape of gene duplications. Our findings suggest that the majority of PPR genes originated from dispersed duplications. Although segmental duplications have only expanded approximately 11.30% and 13.57% of the PPR gene families in the O. sativa and O. rufipogon genomes, we interestingly obtained evidence that segmental duplication promotes the structural diversity of PPR genes through incomplete gene duplications. In the O. sativa and O. rufipogon genomes, 10 (~33.33%) and 22 pairs of gene duplications (~45.83%) had non-PPR paralogous genes through incomplete gene duplication. Segmental duplications leading to incomplete gene duplications might result in the acquisition of domains, thus promoting functional innovation and structural diversification of PPR genes. This study offers a unique perspective on the evolution of PPR gene structures and underscores the potential role of segmental duplications in PPR gene structural diversity.
Collapse
Affiliation(s)
- Li-Ying Feng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
| | - Pei-Fan Lin
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
| | - Rong-Jing Xu
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| | - Hai-Qi Kang
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; (L.-Y.F.); (P.-F.L.)
- Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China; (R.-J.X.); (H.-Q.K.)
| |
Collapse
|
18
|
Deng X, Liao Y, Wong D, Yu H. The genetic structuring in pollinating wasps of Ficus hispida in continental Asia. Ecol Evol 2023; 13:e10518. [PMID: 37745788 PMCID: PMC10511832 DOI: 10.1002/ece3.10518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
The interaction between figs and fig wasps provides a striking example of obligate brood site pollination mutualism. Monoecious figs, constituting independent radiations in each tropical biome, are present in significant proportions worldwide, but in continental Asia, dioecious figs have diverged into various niches, making the region's assemblage remarkably diverse. However, the reproductive success of figs and fig wasps largely depends on the fig wasp dispersal process. Monoecious fig pollinators in continental Asian tropical rain forests exhibit high gene flow of the plant, while many dioecious fig pollinators have a more restricted gene flow. However, there are limited studies on the genetic structure of dioecious Ficus pollinators that pollinate figs with intermediate gene flow. Here, we used molecular methods to investigate the genetic structure of pollinating wasps of the widely distributed dioecious Ficus hispida in China and Southeast Asia. Sequence data from two gene regions were used: the mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S genes. Both molecular and morphological results support two fig wasp species at our sampling sites. Our findings suggest that for widely sympatric Ficus species in continental Asia, monoecious figs presenting long gene glow have the fewest fig wasp species, followed by dioecious figs presenting intermediate gene flow, and dioecious figs presenting local gene flow have the most fig wasp species.
Collapse
Affiliation(s)
- Xiaoxia Deng
- Key Laboratory of Plant Resource Conservation and Sustainable UtilizationSouth China Botanical Garden, CASGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- CEFECNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| | - Yaolin Liao
- Key Laboratory of Plant Resource Conservation and Sustainable UtilizationSouth China Botanical Garden, CASGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Da‐Mien Wong
- Key Laboratory of Plant Resource Conservation and Sustainable UtilizationSouth China Botanical Garden, CASGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable UtilizationSouth China Botanical Garden, CASGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| |
Collapse
|
19
|
Chen F, Huang P, Wang J, Wu W, Lin YW, Hu JF, Liu XG. Specific volatiles of tea plants determine the host preference behavior of Empoasca onukii. FRONTIERS IN PLANT SCIENCE 2023; 14:1239237. [PMID: 37719207 PMCID: PMC10501839 DOI: 10.3389/fpls.2023.1239237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
Empoasca onukii is a major pest that attacks tea plants. To seek effective and sustainable methods to control the pest, it is necessary to assess its host preference among different species of tea and understand the critical factors behind this behavior. In this study, the behavioral preference of E. onukii for volatile organic compounds (VOCs) of three potted tea species was evaluated. The VOCs released by the three tea species were analyzed using gas chromatography-mass spectrometry, and the major components were used to test the pest's preference. Transcriptome analysis was used to infer the key genes that affect the biosyntheses of the VOCs. The results showed that the tendency of E. onukii toward the VOCs of the three tea species was the strongest in green tea, followed by white tea, and the weakest in red tea. This behavioral preference was significantly and positively correlated with the relative levels of hexanol, linalool, and geraniol in tea volatiles. Relative hexanol was significantly and positively correlated with the expression of genes TEA009423 (LOX2.1), TEA009596 (LOX1.5), TEA008699 (HPL), TEA018669 (CYPADH), and TEA015686 (ADHIII). Relative linalool was significantly and positively correlated with the expression of genes TEA001435 (CAD) and Camellia_sinensis_newGene_22126 (TPS). Relative geraniol was significantly and positively correlated with the expression of genes TEA001435 (CAD), TEA002658 (CYP76B6), TEA025455 (CYP76T24), and Camellia_sinensis_newGene_22126 (TPS). The above findings suggested that three volatiles (hexanol, linalool, and geraniol) determined the behavioral preference of E. onukii toward tea plants, and their biosynthesis was mainly affected by nine genes (TEA009423, TEA009596, TEA008699, TEA018669, TEA015686, TEA001435, TEA002658, TEA025455, and Camellia_sinensis_newGene_22126).
Collapse
Affiliation(s)
- Feng Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/ Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Peng Huang
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/ Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Jun Wang
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/ Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Wei Wu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/ Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Yong-Wen Lin
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou Institute of Technology, Zhangzhou, China
| | - Jin-Feng Hu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/ Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Xin-Gang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Ning SF, Huo LX, Lv L, Wang Y, Zhang LS, Che WN, Dong H, Zhou JC. The identification and expression pattern of the sex determination genes and their sex-specific variants in the egg parasitoid Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae). Front Physiol 2023; 14:1243753. [PMID: 37693004 PMCID: PMC10485257 DOI: 10.3389/fphys.2023.1243753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Trichogramma wasps are egg parasitoids of agricultural lepidopteran pests. The sex of Trichogramma is determined by its ploidy as well as certain sex ratio distorters, such as the endosymbiotic bacteria Wolbachia spp. and the paternal sex ratio (PSR) chromosome. The sex determination systems of hymenopterans, such as Trichogramma spp., involve cascades of the genes transformer (tra), transformer-2 (tra2), and doublesex (dsx) and are associated with sex-specific tra and dsx splicing. First, these genes and their sex-specific variants must be identified to elucidate the interactions between the sex ratio disorders and the sex determination mechanism of Trichogramma. Methods: Here, we characterized the sex determination genes tra, tra2, and dsx in Trichogramma dendrolimi. Sex-specific tra and dsx variants were detected in cDNA samples obtained from both male and female Trichogramma wasps. They were observed in the early embryos (1-10 h), late embryos (12-20 h), larvae (32 h and 48 h), pre-pupae (96 h), and pupae (144 h, 168 h, 192 h, and 216 h) of both male and female T. dendrolimi offspring. Results: We detected female-specific tra variants throughout the entire early female offspring stage. The male-specific variant began to express at 9-10 h as the egg was not fertilized. However, we did not find any maternally derived, female-specific tra variant in the early male embryo. This observation suggests that the female-specific tra variant expressed in the female embryo at 1-9 h may not have originated from the maternal female wasp. Discussion: The present study might be the first to identify the sex determination genes and sex-specific gene splicing in Trichogramma wasps. The findings of this study lay the foundation for investigating the sex determination mechanisms of Trichogramma and other wasps. They also facilitate sex identification in immature T. dendrolimi and the application of this important egg parasitoid in biological insect pest control programs.
Collapse
Affiliation(s)
- Su-Fang Ning
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Liang-Xiao Huo
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lin Lv
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Ying Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Li-Sheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wu-Nan Che
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin-Cheng Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Dai F, Zhuo X, Luo G, Wang Z, Xu Y, Wang D, Zhong J, Lin S, Chen L, Li Z, Wang Y, Zhang D, Li Y, Zheng Q, Zheng T, Liu Z, Wang L, Zhang Z, Tang C. Genomic Resequencing Unravels the Genetic Basis of Domestication, Expansion, and Trait Improvement in Morus Atropurpurea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300039. [PMID: 37339798 PMCID: PMC10460887 DOI: 10.1002/advs.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/28/2023] [Indexed: 06/22/2023]
Abstract
Mulberry is an economically important plant in the sericulture industry and traditional medicine. However, the genetic and evolutionary history of mulberry remains largely unknown. Here, this work presents the chromosome-level genome assembly of Morus atropurpurea (M. atropurpurea), originating from south China. Population genomic analysis using 425 mulberry accessions reveal that cultivated mulberry is classified into two species, M. atropurpurea and M. alba, which may have originated from two different mulberry progenitors and have independent and parallel domestication in north and south China, respectively. Extensive gene flow is revealed between different mulberry populations, contributing to genetic diversity in modern hybrid cultivars. This work also identifies the genetic architecture of the flowering time and leaf size. In addition, the genomic structure and evolution of sex-determining regions are identified. This study significantly advances the understanding of the genetic basis and domestication history of mulberry in the north and south, and provides valuable molecular markers of desirable traits for mulberry breeding.
Collapse
Affiliation(s)
- Fanwei Dai
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| | - Xiaokang Zhuo
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
- National Engineering Research Center for FloricultureBeijing Forestry UniversityBeijing100083P. R. China
| | - Guoqing Luo
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| | - Zhenjiang Wang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| | - Yujuan Xu
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Dan Wang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Jianwu Zhong
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Sen Lin
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Lian Chen
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Zhiyi Li
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Yuan Wang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Tangchun Zheng
- National Engineering Research Center for FloricultureBeijing Forestry UniversityBeijing100083P. R. China
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Li Wang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120P. R. China
- Kunpeng Institute of Modern Agriculture at FoshanChinese Academy of Agricultural SciencesFoshan528225P. R. China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206P. R. China
| | - Cuiming Tang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| |
Collapse
|
22
|
Gardner EM, Bruun-Lund S, Niissalo M, Chantarasuwan B, Clement WL, Geri C, Harrison RD, Hipp AL, Holvoet M, Khew G, Kjellberg F, Liao S, Pederneiras LC, Peng YQ, Pereira JT, Phillipps Q, Ahmad Puad AS, Rasplus JY, Sang J, Schou SJ, Velautham E, Weiblen GD, Zerega NJC, Zhang Q, Zhang Z, Baraloto C, Rønsted N. Echoes of ancient introgression punctuate stable genomic lineages in the evolution of figs. Proc Natl Acad Sci U S A 2023; 120:e2222035120. [PMID: 37399402 PMCID: PMC10334730 DOI: 10.1073/pnas.2222035120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023] Open
Abstract
Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.
Collapse
Affiliation(s)
- Elliot M. Gardner
- International Center for Tropical Botany at the Kampong, Institute of Environment, Florida International University, Miami, FL33133
- National Tropical Botanical Garden, Kalāheo, HI96741
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - Sam Bruun-Lund
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| | - Matti Niissalo
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - Bhanumas Chantarasuwan
- Thailand National History Museum, National Science Museum, Klong Luang, Pathum Thani12120, Thailand
| | - Wendy L. Clement
- Department of Biology, The College of New Jersey, Ewing, NJ08618
| | - Connie Geri
- Sarawak Forestry Corporation, 93250Kuching, Sarawak, Malaysia
| | | | | | - Maxime Holvoet
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| | - Gillian Khew
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - Finn Kjellberg
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, 34090Montpellier, France
| | - Shuai Liao
- The Morton Arboretum, Lisle, IL60532
- South China Botanical Garden, Chinese Academy of Sciences, 510650Guangzhou, China
- School of Life Sciences, East China Normal University, 200241Shanghai, China
| | - Leandro Cardoso Pederneiras
- Instituto de Pesquisa do Jardim Botânico do Rio de Janeiro, Diretoria de Pesquisa Científica, 22460-030Rio de Janeiro–RJ, Brazil
| | - Yan-Qiong Peng
- Chinese Academy of Sciences, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303Mengla, China
| | - Joan T. Pereira
- Sabah Forest Research Centre, Sabah Forestry Department, 90175Sandakan, Sabah, Malaysia
| | | | - Aida Shafreena Ahmad Puad
- Faculty of Agriculture & Applied Sciences, i-CATS University College, 93350Kuching, Sarawak, Malaysia
| | - Jean-Yves Rasplus
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, 34988Montpellier, France
| | - Julia Sang
- Sarawak Forest Department, 34988Kuching, Sarawak, Malaysia
| | - Sverre Juul Schou
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| | - Elango Velautham
- Singapore Botanic Gardens, National Parks Board, 259569, Singapore
| | - George D. Weiblen
- Bell Museum, University of Minnesota, St. Paul, MN55113
- Department of Plant Biology, University of Minnesota, St. Paul, MN55108
| | - Nyree J. C. Zerega
- Plant Biology and Conservation, Northwestern University, Evanston, IL60208
- Negaunee Institute for Plant Conservation and Action, Chicago Botanic Garden, Glencoe, IL60022
| | - Qian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093Beijing, China
| | - Zhen Zhang
- School of Life Sciences, East China Normal University, 200241Shanghai, China
| | - Christopher Baraloto
- International Center for Tropical Botany at the Kampong, Institute of Environment, Florida International University, Miami, FL33133
| | - Nina Rønsted
- National Tropical Botanical Garden, Kalāheo, HI96741
- Natural History Museum of Denmark, University of Copenhagen, 1123Copenhagen, Denmark
| |
Collapse
|
23
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
24
|
Qu Y, Shang X, Zeng Z, Yu Y, Bian G, Wang W, Liu L, Tian L, Zhang S, Wang Q, Xie D, Chen X, Liao Z, Wang Y, Qin J, Yang W, Sun C, Fu X, Zhang X, Fang S. Whole-genome Duplication Reshaped Adaptive Evolution in A Relict Plant Species, Cyclocarya paliurus. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:455-469. [PMID: 36775057 PMCID: PMC10787019 DOI: 10.1016/j.gpb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Cyclocarya paliurus is a relict plant species that survived the last glacial period and shows a population expansion recently. Its leaves have been traditionally used to treat obesity and diabetes with the well-known active ingredient cyclocaric acid B. Here, we presented three C. paliurus genomes from two diploids with different flower morphs and one haplotype-resolved tetraploid assembly. Comparative genomic analysis revealed two rounds of recent whole-genome duplication events and identified 691 genes with dosage effects that likely contribute to adaptive evolution through enhanced photosynthesis and increased accumulation of triterpenoids. Resequencing analysis of 45 C. paliurus individuals uncovered two bottlenecks, consistent with the known events of environmental changes, and many selectively swept genes involved in critical biological functions, including plant defense and secondary metabolite biosynthesis. We also proposed the biosynthesis pathway of cyclocaric acid B based on multi-omics data and identified key genes, in particular gibberellin-related genes, associated with the heterodichogamy in C. paliurus species. Our study sheds light on evolutionary history of C. paliurus and provides genomic resources to study the medicinal herbs.
Collapse
Affiliation(s)
- Yinquan Qu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xulan Shang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Ziyan Zeng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanhao Yu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Guoliang Bian
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Wenling Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Liu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Li Tian
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Wang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Dejin Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuequn Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jian Qin
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Wanxia Yang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Caowen Sun
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Xiangxiang Fu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China.
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Shengzuo Fang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China.
| |
Collapse
|
25
|
Chou PA, Bain A, Chantarasuwan B, Tzeng HY. Parasitism Features of a Fig Wasp of Genus Apocrypta (Pteromalidae: Pteromalinae) Associated with a Host Belonging to Ficus Subgenus Ficus. INSECTS 2023; 14:insects14050437. [PMID: 37233065 DOI: 10.3390/insects14050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Non-pollinating fig wasps (NPFWs), particularly long-ovipositored Sycoryctina wasps, exhibit a high species specificity and exert complex ecological effects on the obligate mutualism between the plant genus Ficus and pollinating fig wasps. Apocrypta is a genus of NPFWs that mostly interacts with the Ficus species under the subgenus Sycomorus, and the symbiosis case between Apocrypta and F. pedunculosa var. mearnsii, a Ficus species under subgenus Ficus, is unique. As fig's internal environments and the wasp communities are distinct between the two subgenera, we addressed the following two questions: (1) Are the parasitism features of the Apocrypta wasp associated with F. pedunculosa var. mearnsii different from those of other congeneric species? (2) Is this Apocrypta species an efficient wasp that lives in its unique host? Our observation revealed that this wasp is an endoparasitic idiobiont parasitoid, as most congeneric species are, but developed a relatively long ovipositor. Furthermore, the relationships of the parasitism rate versus the pollinator number, the fig wall, and the sex ratio of the pollinator, respectively, showed that it possessed a higher parasitism ability than that of other congeners. However, its parasitism rate was low, and thus it was not an efficient wasp in its habitat. This difference between parasitism ability and parasitism rate might be a consequence of its oviposition strategy and the severe habitat conditions. These findings may also provide insights into the mechanism to maintain the interaction between the fig tree and the fig wasp community.
Collapse
Affiliation(s)
- Po-An Chou
- Department of Forestry, National Chung Hsing University, No. 145 Xingda Rd., Taichung City 40227, Taiwan
| | - Anthony Bain
- Department of Biological Science, National Sun Yat-sen University, No. 70 Lien-Hai Rd., Kaohsiung City 80424, Taiwan
| | | | - Hsy-Yu Tzeng
- Department of Forestry, National Chung Hsing University, No. 145 Xingda Rd., Taichung City 40227, Taiwan
| |
Collapse
|
26
|
Ashalatha KL, Arunkumar KP, Gowda M. Genomic and transcriptomic analysis of sacred fig (Ficus religiosa). BMC Genomics 2023; 24:197. [PMID: 37046210 PMCID: PMC10100241 DOI: 10.1186/s12864-023-09270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Peepal/Bodhi tree (Ficus religiosa L.) is an important, long-lived keystone ecological species. Communities on the Indian subcontinent have extensively employed the plant in Ayurveda, traditional medicine, and spiritual practices. The Peepal tree is often thought to produce oxygen both during the day and at night by Indian folks. The goal of our research was to produce molecular resources using whole-genome and transcriptome sequencing techniques. RESULTS The complete genome of the Peepal tree was sequenced using two next-generation sequencers Illumina HiSeq1000 and MGISEQ-2000. We assembled the draft genome of 406 Mb, using a hybrid assembly workflow. The genome annotation resulted in 35,093 protein-coding genes; 53% of its genome consists of repetitive sequences. To understand the physiological pathways in leaf tissues, we analyzed photosynthetically distinct conditions: bright sunny days and nights. The RNA-seq analysis supported the expression of 26,479 unigenes. The leaf transcriptomic analysis of the diurnal and nocturnal periods revealed the expression of the significant number of genes involved in the carbon-fixation pathway. CONCLUSIONS This study presents a draft hybrid genome assembly for F. religiosa and its functional annotated genes. The genomic and transcriptomic data-derived pathways have been analyzed for future studies on the Peepal tree.
Collapse
Affiliation(s)
- K L Ashalatha
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Yelahanka, Bengaluru, 560064, India
| | - Kallare P Arunkumar
- Central Silk Board, Central Muga Eri Research and Training Institute (CMER&TI), Ministry of Textiles Lahdoigarh, Jorhat, Assam, 785700, India
| | - Malali Gowda
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Yelahanka, Bengaluru, 560064, India.
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), DNA Life Organization, Yelahanka, Bengaluru, 560064, India.
| |
Collapse
|
27
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
28
|
Olfactory and gustatory receptor genes in fig wasps: Evolutionary insights from comparative studies. Gene 2023; 850:146953. [PMID: 36243214 DOI: 10.1016/j.gene.2022.146953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
The mechanisms of chemoreception in fig wasps (Hymenoptera, Agaonidae) are of primary importance in their co-evolutionary relationship with the fig trees they pollinate. We used transcriptome sequences of 25 fig wasps in six genera that allowed a comparative approach to the evolution of key molecular components of fig wasp chemoreception: their odorant (OR) and gustatory (GR) receptor genes. In total, we identified 311 ORs and 47 GRs, with each species recording from 5 to 30 OR genes and 1-4 GR genes. 304 OR genes clustered into 18 orthologous groups known to be sensitive to cuticular hydrocarbons (CHC), pheromones, acids, alcohols and a variety of floral scents such as cineole, Linalool, and Heptanone. 45 GR genes clustered into 4 orthologous groups that contain sweet, bitter, CO2 and undocumented receptors. Gene sequences in most orthologous groups varied greatly among species, except for ORco (60.0% conserved) and sweet receptors (30.7% conserved). Strong purifying selection of both odorant and gustatory genes was detected, as shown by low ω values. Signatures of positive selection were detected in loci from both OR and GR orthologous groups. Fig wasps have relatively few olfactory and especially gustatory receptors, reflecting the natural history of the system. Amino acid sequences nonetheless vary significantly between species and are consistent with the phylogenetic relationships among fig wasps. The differences in ORs within some orthologous groups from the same species, but different hosts and from closely related species from one host can reach as low as 49.3% and 9.8% respectively, implying the ORs of fig wasps can evolve rapidly to novel ecological environments. Our results provide a starting point for understanding the molecular basis of the chemosensory systems of fig wasps.
Collapse
|
29
|
Song M, Zhang Y, Jia Q, Huang S, An R, Chen N, Zhu Y, Mu J, Hu S. Systematic analysis of MADS-box gene family in the U's triangle species and targeted mutagenesis of BnaAG homologs to explore its role in floral organ identity in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 13:1115513. [PMID: 36714735 PMCID: PMC9878456 DOI: 10.3389/fpls.2022.1115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
MADS-box transcription factors play an important role in regulating floral organ development and participate in environmental responses. To date, the MADS-box gene family has been widely identified in Brassica rapa (B. rapa), Brassica oleracea (B. oleracea), and Brassica napus (B. napus); however, there are no analogous reports in Brassica nigra (B. nigra), Brassica juncea (B. juncea), and Brassica carinata (B. carinata). In this study, a whole-genome survey of the MADS-box gene family was performed for the first time in the triangle of U species, and a total of 1430 MADS-box genes were identified. Based on the phylogenetic relationship and classification of MADS-box genes in Arabidopsis thaliana (A. thaliana), 1430 MADS-box genes were categorized as M-type subfamily (627 genes), further divided into Mα, Mβ, Mγ, and Mδ subclades, and MIKC-type subfamily (803 genes), further classified into 35 subclades. Gene structure and conserved protein motifs of MIKC-type MADS-box exhibit diversity and specificity among different subclades. Comparative analysis of gene duplication events and syngenic gene pairs among different species indicated that polyploidy is beneficial for MIKC-type gene expansion. Analysis of transcriptome data within diverse tissues and stresses in B. napus showed tissue-specific expression of MIKC-type genes and a broad response to various abiotic stresses, particularly dehydration stress. In addition, four representative floral organ mutants (wtl, feml, aglf-2, and aglf-1) in the T0 generation were generated by editing four AGAMOUS (BnaAG) homoeologs in B. napus that enriched the floral organ variant phenotype. In brief, this study provides useful information for investigating the function of MADS-box genes and contributes to revealing the regulatory mechanisms of floral organ development in the genetic improvement of new varieties.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Nana Chen
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Wan Q, Zhai N, Xie D, Liu W, Xu L. WOX11: the founder of plant organ regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:1. [PMID: 36596978 PMCID: PMC9810776 DOI: 10.1186/s13619-022-00140-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
De novo organ regeneration is the process in which adventitious roots or shoots regenerate from detached or wounded organs. De novo organ regeneration can occur either in natural conditions, e.g. adventitious root regeneration from the wounded sites of detached leaves or stems, or in in-vitro tissue culture, e.g. organ regeneration from callus. In this review, we summarize recent advances in research on the molecular mechanism of de novo organ regeneration, focusing on the role of the WUSCHEL-RELATED HOMEOBOX11 (WOX11) gene in the model plant Arabidopsis thaliana. WOX11 is a direct target of the auxin signaling pathway, and it is expressed in, and regulates the establishment of, the founder cell during de novo root regeneration and callus formation. WOX11 activates the expression of its target genes to initiate root and callus primordia. Therefore, WOX11 links upstream auxin signaling to downstream cell fate transition during regeneration. We also discuss the role of WOX11 in diverse species and its evolution in plants.
Collapse
Affiliation(s)
- Qihui Wan
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Ning Zhai
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Dixiang Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Wu Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Lin Xu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
31
|
Zhang X, Wang X, Pan L, Guo W, Li Y, Wang W. Genome-wide identification and expression analysis of MADS-box transcription factors reveal their involvement in sex determination of hardy rubber tree ( Eucommia ulmoides oliv.). Front Genet 2023; 14:1138703. [PMID: 36896236 PMCID: PMC9988917 DOI: 10.3389/fgene.2023.1138703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Eucommia ulmoides is a famous rubber-producing and medicinal tree species that produces unisexual flowers on separate individuals from the earliest stage of stamen/pistil primordium formation. To explore the genetic regulation pathway of sex in E. ulmoides, comprehensive genome-wide analyses and tissue-/sex-specific transcriptome comparisons of MADS-box transcription factors were performed for the first time in this work. Quantitative real-time PCR technique was employed to further validate the expression of genes that are assigned to floral organ ABCDE model. A total of 66 non-redundant E. ulmoides MADS-box (EuMADS) genes were identified, they were classified into Type I (M-type, 17 genes) and Type II (MIKC, 49 genes). Complex protein-motif composition, exon-intron structure and phytohormone-response cis-elements were detected in MIKC-EuMADS genes. Furthermore, 24 differentially-expressed EuMADS genes (DEGs) between male and female flowers, and two DEGs between male and female leaves were revealed. Amongst the 14 floral organ ABCDE model-related genes, there were 6 (A/B/C/E-class) and 5 (A/D/E-class) genes displayed male- and female-biased expression respectively. In particular, one B-class gene EuMADS39 and one A-class gene EuMADS65 were almost exclusively expressed in male trees, no matter in flower or leaf tissues. Collectively, these results suggested a critical role of MADS-box transcription factors in sex determination of E. ulmoides, which is conducive to decoding the molecular regulation mechanism of sex in E. ulmoides.
Collapse
Affiliation(s)
- Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinyi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Linsi Pan
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Guo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
32
|
Zhang Z, Zhang DS, Zou L, Yao CY. Comparison of chloroplast genomes and phylogenomics in the Ficus sarmentosa complex (Moraceae). PLoS One 2022; 17:e0279849. [PMID: 36584179 PMCID: PMC9803296 DOI: 10.1371/journal.pone.0279849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
Due to maternal inheritance and minimal rearrangement, the chloroplast genome is an important genetic resource for evolutionary studies. However, the evolutionary dynamics and phylogenetic performance of chloroplast genomes in closely related species are poorly characterized, particularly in taxonomically complex and species-rich groups. The taxonomically unresolved Ficus sarmentosa species complex (Moraceae) comprises approximately 20 taxa with unclear genetic background. In this study, we explored the evolutionary dynamics, hotspot loci, and phylogenetic performance of thirteen chloroplast genomes (including eleven newly obtained and two downloaded from NCBI) representing the F. sarmentosa complex. Their sequence lengths, IR boundaries, repeat sequences, and codon usage were compared. Both sequence length and IR boundaries were found to be highly conserved. All four categories of long repeat sequences were found across all 13 chloroplast genomes, with palindromic and forward sequences being the most common. The number of simple sequence repeat (SSR) loci varied from 175 (F. dinganensis and F. howii) to 190 (F. polynervis), with the dinucleotide motif appearing the most frequently. Relative synonymous codon usage (RSCU) analysis indicated that codons ending with A/T were prior to those ending with C/T. The majority of coding sequence regions were found to have undergone negative selection with the exception of ten genes (accD, clpP, ndhK, rbcL, rpl20, rpl22, rpl23, rpoC1, rps15, and rps4) which exhibited potential positive selective signatures. Five hypervariable genic regions (rps15, ycf1, rpoA, ndhF, and rpl22) and five hypervariable intergenic regions (trnH-GUG-psbA, rpl32-trnL-UAG, psbZ-trnG-GCC, trnK-UUU-rps16 and ndhF-rpl32) were identified. Overall, phylogenomic analysis based on 123 Ficus chloroplast genomes showed promise for studying the evolutionary relationships in Ficus, despite cyto-nuclear discordance. Furthermore, based on the phylogenetic performance of the F. sarmentosa complex and F. auriculata complex, the chloroplast genome also exhibited a promising phylogenetic resolution in closely related species.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - De-Shun Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - Lu Zou
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chi-Yuan Yao
- College of Architecture and Urban Planning, Tongji University, Shanghai, China,* E-mail:
| |
Collapse
|
33
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
34
|
Patil AB, Vajja SS, Raghavendra S, Satish BN, Kushalappa CG, Vijay N. Jack of all trades: Genome assembly of Wild Jack and comparative genomics of Artocarpus. FRONTIERS IN PLANT SCIENCE 2022; 13:1029540. [PMID: 36578332 PMCID: PMC9791056 DOI: 10.3389/fpls.2022.1029540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Artocarpus (Moraceae), known as breadfruits for their diverse nutritious fruits, is prized for its high-quality timber, medicinal value, and economic importance. Breadfruits are native to Southeast Asia but have been introduced to other continents. The most commonly cultivated species are Artocarpus heterophyllus (Jackfruit) and Artocarpus altilis (Breadfruit). With numerous smaller but nutritionally comparable fruits on a larger tree, Artocarpus hirsutus, also called "Wild Jack" or "Ayani", is an elusive forest species endemic to Indian Western Ghats. In this study, we sequenced and assembled the whole genome of Artocarpus hirsutus sampled from the sacred groves of Coorg, India. To decipher demographic and evolutionary history, we compared our Wild Jack genome with previously published Jackfruit and Breadfruit genomes. Demographic history reconstruction indicates a stronger effect of habitat rather than phylogeny on the population histories of these plants. Repetitive genomic regions, especially LTR Copia, strongly affected the demographic trajectory of A. heterophyllus. Upon further investigation, we found a recent lineage-specific accumulation of LTR Copia in A. heterophyllus, which had a major contribution to its larger genome size. Several genes from starch, sucrose metabolism, and plant hormone signal transduction pathways, in Artocarpus species had signatures of selection and gene family evolution. Our comparative genomic framework provides important insights by incorporating endemic species such as the Wild Jack.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Sai Samhitha Vajja
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - S. Raghavendra
- College of Agriculture Hassan, University of Agricultural Sciences (UAS), Bangalore, Karnataka, India
| | - B. N. Satish
- College of Forestry, Ponnampet, Karnataka, India
| | | | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| |
Collapse
|
35
|
Dong Y, Zhang ZR, Mishra S, Wong ACN, Huang JF, Wang B, Peng YQ, Gao J. Diversity and metabolic potentials of microbial communities associated with pollinator and cheater fig wasps in fig-fig wasp mutualism system. Front Microbiol 2022; 13:1009919. [DOI: 10.3389/fmicb.2022.1009919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Microbial symbionts can influence a myriad of insect behavioral and physiological traits. However, how microbial communities may shape or be shaped by insect interactions with plants and neighboring species remains underexplored. The fig-fig wasp mutualism system offers a unique model to study the roles of microbiome in the interactions between the plants and co-habiting insects because a confined fig environment is shared by two fig wasp species, the pollinator wasp (Eupristina altissima and Eupristina verticillata) and the cheater wasp (Eupristina sp1 and Eupristina sp2). Here, we performed whole genome resequencing (WGS) on 48 individual fig wasps (Eupristina spp.) from Yunnan, China, to reveal the phylogenetic relationship and genetic divergence between pollinator and congeneric cheater wasps associated with the Ficus trees. We then extracted metagenomic sequences to explore the compositions, network structures, and functional capabilities of microbial communities associated with these wasps. We found that the cheaters and pollinators from the same fig species are sister species, which are highly genetically divergent. Fig wasps harbor diverse but stable microbial communities. Fig species dominate over the fig wasp genotype in shaping the bacterial and fungal communities. Variation in microbial communities may be partially explained by the filtering effect from fig and phylogeny of fig wasps. It is worth noting that cheaters have similar microbial communities to their sister pollinators, which may allow cheaters to coexist and gain resources from the same fig species. In terms of metabolic capabilities, some bacteria such as Desulfovibrio and Lachnospiraceae are candidates involved in the nutritional uptake of fig wasps. Our results provide novel insights into how microbiome community and metabolic functions may couple with the fig-wasp mutualistic systems.
Collapse
|
36
|
Fan S, Jia Y, Wang R, Chen X, Liu W, Yu H. Multi-omics analysis the differences of VOCs terpenoid synthesis pathway in maintaining obligate mutualism between Ficus hirta Vahl and its pollinators. FRONTIERS IN PLANT SCIENCE 2022; 13:1006291. [PMID: 36457527 PMCID: PMC9707799 DOI: 10.3389/fpls.2022.1006291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
INRODUCTION Volatile organic compounds (VOCs) emitted by the receptive syconia of Ficus species is a key trait to attract their obligate pollinating fig wasps. Ficus hirta Vahl is a dioecious shrub, which is pollinated by a highly specialized symbiotic pollinator in southern China. Terpenoids are the main components of VOCs in F. hirta and play ecological roles in pollinator attraction, allelopathy, and plant defense. However, it remains unclear that what molecular mechanism difference in terpenoid synthesis pathways between pre-receptive stage (A-phase) and receptive stage (B-phase) of F. hirta syconia. METHODS Transcriptome, proteome and Gas Chromatography-Mass Spectrometer (GC-MS) were applied here to analyze these difference. RESULTS AND DISCUSSION Compared to A-phase syconia, the genes (ACAT2, HMGR3, GGPS2, HDR, GPS2, TPS2, TPS4, TPS10-4, TPS14) related to the terpenoid synthesis pathway had higher expression level in receptive syconia (B-phase) according to transcriptome sequencing. Seven differentially expressed transcription factors were screened, namely bHLH7, MYB1R1, PRE6, AIL1, RF2b, ANT, VRN1. Specifically, bHLH7 was only specifically expressed in B-phase. 235 differentially expressed proteins (DEPs) were mainly located in the cytoplasm and chloroplasts. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEPs were mainly enriched in the metabolic process. A total of 9 terpenoid synthesis proteins were identified in the proteome. Among them, 4 proteins in methylerythritol phosphate (MEP) pathway were all down-regulated. Results suggested the synthesis of terpenoids precursors in B-phase bracts were mainly accomplished through the mevalonic acid (MVA) pathway in cytoplasm. Correlation analysis between the transcriptome and proteome, we detected a total of 1082 transcripts/proteins, three of which are related to stress. From the VOCs analysis, the average percent of monoterpenoids emitted by A-phase and B-phase syconia were 8.29% and 37.08%, while those of sesquiterpenes were 88.43% and 55.02% respectively. Monoterpenes (camphene, myrcene, camphor, menthol) were only detected in VOCs of B-phase syconia. To attract pollinators, B-phase syconia of F. hirta need more monoterpenoids and less sesquiterpenes. We speculate that transcription factor bHLH7 may regulate the terpenoid synthesis pathway between A- and B-phase syconia. Our research provided the first global analysis of mechanism differences of terpenoid synthesis pathways between A and B phases in F. hirta syconia.
Collapse
Affiliation(s)
- Songle Fan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxia Jia
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rong Wang
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University, Shanghai, China
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University, Shanghai, China
| | - Wanzhen Liu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
37
|
Cui Y, Zhai Y, He J, Song M, Flaishman MA, Ma H. AP2/ERF genes associated with superfast fig ( Ficus carica L.) fruit ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1040796. [PMID: 36388580 PMCID: PMC9659990 DOI: 10.3389/fpls.2022.1040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Fig fruits have significant health value and are culturally important. Under suitable climatic conditions, fig fruits undergo a superfast ripening process, nearly doubling in size, weight, and sugar content over three days in parallel with a sharp decrease in firmness. In this study, 119 FcAP2/ERF genes were identified in the fig genome, namely 95 ERFs, 20 AP2s, three RAVs, and one soloist. Most of the ERF subfamily members (76) contained no introns, whereas the majority of the AP2 subfamily members had at least two introns each. Three previously published transcriptome datasets were mined to discover expression patterns, encompassing the fruit peel and flesh of the 'Purple Peel' cultivar at six developmental stages; the fruit receptacle and flesh of the 'Brown Turkey' cultivar after ethephon treatment; and the receptacle and flesh of parthenocarpic and pollinated fruits of the 'Brown Turkey' cultivar. Eighty-three FcAP2/ERFs (68 ERFs, 13 AP2s, one RAV, and one soloist) were expressed in the combined transcriptome dataset. Most FcAP2/ERFs were significantly downregulated (|log2(fold change) | ≥ 1 and p-adjust < 0.05) during both normal fruit development and ethephon-induced accelerated ripening, suggesting a repressive role of these genes in fruit ripening. Five significantly downregulated ERFs also had repression domains in the C-terminal. Seven FcAP2/ERFs were identified as differentially expressed during ripening in all three transcriptome datasets. These genes were strong candidates for future functional genetic studies to elucidate the major FcAP2/ERF regulators of the superfast fig fruit ripening process.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
- Peking University Institute of Advanced Agricultural Science, Shandong Laboratory for Advanced Agricultural Sciences, Weifang, China
| | - Yanlei Zhai
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Jiajun He
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Miaoyu Song
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Moshe A. Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Chakraborty A, Mahajan S, Bisht MS, Sharma VK. Genome sequencing and comparative analysis of Ficus benghalensis and Ficus religiosa species reveal evolutionary mechanisms of longevity. iScience 2022; 25:105100. [PMID: 36164650 PMCID: PMC9508489 DOI: 10.1016/j.isci.2022.105100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Ficus benghalensis and Ficus religiosa are large woody trees well known for their long lifespan, ecological and traditional significance, and medicinal properties. To understand the genomic and evolutionary aspects of these characteristics, the whole genomes of these Ficus species were sequenced using 10x Genomics linked reads and Oxford Nanopore long reads. The draft genomes of F. benghalensis and F. religiosa comprised of 392.89 Mbp and 332.97 Mbp, respectively. We established the genome-wide phylogenetic positions of the two Ficus species with respect to 50 other Angiosperm species. Comparative evolutionary analyses with other phylogenetically closer Eudicot species revealed adaptive evolution in genes involved in key cellular mechanisms associated with prolonged survival including phytohormones signaling, senescence, disease resistance, and abiotic stress tolerance, which provide genomic insights into the mechanisms conferring longevity and suggest that longevity is a multifaceted phenomenon. This study also provides clues on the existence of CAM pathway in these Ficus species.
Collapse
Affiliation(s)
- Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| | - Manohar S. Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| |
Collapse
|
39
|
Mo YX, Corlett RT, Wang G, Song L, Lu HZ, Wu Y, Hao GY, Ma RY, Men SZ, Li Y, Liu WY. Hemiepiphytic figs kill their host trees: acquiring phosphorus is a driving factor. THE NEW PHYTOLOGIST 2022; 236:714-728. [PMID: 35811425 DOI: 10.1111/nph.18367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.
Collapse
Affiliation(s)
- Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Liang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Hua-Zheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yi Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110010, China
| | - Ren-Yi Ma
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountains, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Shi-Zheng Men
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yuan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wen-Yao Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
40
|
Zhang ZR, Yang X, Li WY, Peng YQ, Gao J. Comparative chloroplast genome analysis of Ficus (Moraceae): Insight into adaptive evolution and mutational hotspot regions. FRONTIERS IN PLANT SCIENCE 2022; 13:965335. [PMID: 36186045 PMCID: PMC9521400 DOI: 10.3389/fpls.2022.965335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As the largest genus in Moraceae, Ficus is widely distributed across tropical and subtropical regions and exhibits a high degree of adaptability to different environments. At present, however, the phylogenetic relationships of this genus are not well resolved, and chloroplast evolution in Ficus remains poorly understood. Here, we sequenced, assembled, and annotated the chloroplast genomes of 10 species of Ficus, downloaded and assembled 13 additional species based on next-generation sequencing data, and compared them to 46 previously published chloroplast genomes. We found a highly conserved genomic structure across the genus, with plastid genome sizes ranging from 159,929 bp (Ficus langkokensis) to 160,657 bp (Ficus religiosa). Most chloroplasts encoded 113 unique genes, including a set of 78 protein-coding genes, 30 transfer RNA (tRNA) genes, four ribosomal RNA (rRNA) genes, and one pseudogene (infA). The number of simple sequence repeats (SSRs) ranged from 67 (Ficus sagittata) to 89 (Ficus microdictya) and generally increased linearly with plastid size. Among the plastomes, comparative analysis revealed eight intergenic spacers that were hotspot regions for divergence. Additionally, the clpP, rbcL, and ccsA genes showed evidence of positive selection. Phylogenetic analysis indicated that none of the six traditionally recognized subgenera of Ficus were monophyletic. Divergence time analysis based on the complete chloroplast genome sequences showed that Ficus species diverged rapidly during the early to middle Miocene. This research provides basic resources for further evolutionary studies of Ficus.
Collapse
Affiliation(s)
- Zheng-Ren Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Wei-Ying Li
- Southwest Research Center for Landscape Architecture Engineering Technology, State Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
41
|
Genomic insights into rapid speciation within the world's largest tree genus Syzygium. Nat Commun 2022; 13:5031. [PMID: 36097018 PMCID: PMC9468008 DOI: 10.1038/s41467-022-32637-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.
Collapse
|
42
|
Yu Y, Meng N, Chen S, Zhang H, Liu Z, Wang Y, Jing Y, Wang Y, Chen S. Transcriptomic profiles of poplar (Populus simonii × P. nigra) cuttings during adventitious root formation. Front Genet 2022; 13:968544. [PMID: 36160010 PMCID: PMC9493132 DOI: 10.3389/fgene.2022.968544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The formation of adventitious roots (ARs) is vital for the vegetative propagation of poplars. However, the relevant mechanisms remain unclear. To reveal the underlying molecular mechanism, we used RNA-seq to investigate the transcriptional alterations of poplar cuttings soaked in water for 0, 2, 4, 6, 8, and 10 d; 3,798 genes were differentially expressed at all the time points, including 2,448 upregulated and 1,350 downregulated genes. Biological processes including “cell cycle,” “photosynthesis,” “regulation of hormone levels,” and “auxin transport” were enriched in the differentially expressed genes (DEGs). KEGG results showed that the common DEGs were most enriched in the pathway of “Carbon fixation in photosynthetic organisms” and “Starch and sucrose metabolism.” We further dissected 38 DEGs related to root and auxin, including two lateral root primordium 1 (LRP1), one root meristem growth factor (RGF9), one auxin-induced in the root (AIR12), three rooting-associated genes (AUR1 and AUR3), eight auxin transcription factors (ARFs and LBDs), 10 auxin respective genes (SAURs and GH3s), nine auxin transporters (PINs, ABCs, LAX2, and AUXs), and four auxin signal genes (IAAs and TIR1). We found that the rooting abilities of poplar cuttings with and without leaves are different. By applying different concentrations of IBA and sucrose to the top of cuttings without leaves, we found that 0.2 mg/ml IBA and 2 mg/ml sucrose had the best effect on promoting AR formation. The transcriptome results indicated photosynthesis may influence AR formation in poplar cuttings with leaves and revealed a potential regulatory mechanism of leafy cuttage from poplar cuttings. In addition, we provided a new perspective to resolve rooting difficulties in recalcitrant species.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Nan Meng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hongjiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhijie Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yiran Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yanan Jing
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuting Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Su Chen,
| |
Collapse
|
43
|
Zhang X, Pan L, Guo W, Li Y, Wang W. A convergent mechanism of sex determination in dioecious plants: Distinct sex-determining genes display converged regulation on floral B-class genes. FRONTIERS IN PLANT SCIENCE 2022; 13:953445. [PMID: 36092432 PMCID: PMC9459113 DOI: 10.3389/fpls.2022.953445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/12/2023]
Abstract
Sex determination in dioecious plants has been broadly and progressively studied with the blooming of genome sequencing and editing techniques. This provides us with a great opportunity to explore the evolution and genetic mechanisms underlining the sex-determining system in dioecious plants. In this study, comprehensively reviewing advances in sex-chromosomes, sex-determining genes, and floral MADS-box genes in dioecious plants, we proposed a convergent model that governs plant dioecy across divergent species using a cascade regulation pathway connecting sex-determining genes and MADS-box genes e.g., B-class genes. We believe that this convergent mechanism of sex determination in dioecious plants will shed light on our understanding of gene regulation and evolution of plant dioecy. Perspectives concerning the evolutionary pathway of plant dioecy are also suggested.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Linsi Pan
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Guo
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wencai Wang
- Department of Molecular of Biology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Wang H, Huang H, Shang Y, Song M, Ma H. Identification and characterization of auxin response factor (ARF) family members involved in fig ( Ficus carica L.) fruit development. PeerJ 2022; 10:e13798. [PMID: 35898939 PMCID: PMC9310797 DOI: 10.7717/peerj.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
The auxin response factor (ARF) combines with AuxREs cis-acting elements in response to auxin to regulate plant development. To date, no comprehensive analysis of ARF genes expressed during fruit development has been conducted for common fig (Ficus carica L.). In this study, members of the FcARF gene family were screened, identified in the fig genome database and their features characterized using bioinformatics. Twenty FcARF genes were clustered into three classes, with almost similar highly conserved DBD (B3-like DNA binding domain), AUX/IAA (auxin/indole-3-acetic acid gene family) and MR domain structure among class members. Analysis of amino acid species in MR domain revealed 10 potential transcription activators and 10 transcription inhibitors, and 17 FcARF members were predicted to be located in the nucleus. DNA sequence analysis showed that the ARF gene family consisted of 4-25 exons, and the promoter region contained 16 cis-acting elements involved in stress response, hormone response and flavonoid biosynthesis. ARF genes were expressed in most tissues of fig, especially flower and peel. Transcriptomics analysis results showed that FcARF2, FcARF11 and FcARF12, belonging to class-Ia, were stably and highly expressed in the early development stage of flower and peel of 'Purple peel' fig. However, their expression levels decreased after maturity. Expression of class-Ic member FcARF3 conformed to the regularity of fig fruit development. These four potential transcription inhibitors may regulate fruit growth and development of 'Purple Peel' fig. This study provides comprehensive information on the fig ARF gene family, including gene structure, chromosome position, phylogenetic relationship and expression pattern. Our work provides a foundation for further research on auxin-mediated fig fruit development.
Collapse
Affiliation(s)
- Haomiao Wang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Yongkai Shang
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, Beijing, China
| |
Collapse
|
45
|
Fan Z, Zhai Y, Wang Y, Zhang L, Song M, Flaishman MA, Ma H. Genome-Wide Analysis of Anthocyanin Biosynthesis Regulatory WD40 Gene FcTTG1 and Related Family in Ficus carica L. FRONTIERS IN PLANT SCIENCE 2022; 13:948084. [PMID: 35909733 PMCID: PMC9334019 DOI: 10.3389/fpls.2022.948084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
WD40 proteins serve as crucial regulators in a broad spectrum of plant developmental and physiological processes, including anthocyanin biosynthesis. However, in fig (Ficus carica L.), neither the WD40 family nor any member involved in anthocyanin biosynthesis has been elucidated. In the present study, 204 WD40 genes were identified from the fig genome and phylogenetically classified into 5 clusters and 12 subfamilies. Bioinformatics analysis prediction localized 109, 69, and 26 FcWD40 proteins to the cytoplasm, nucleus and other cellular compartments, respectively. RNA-seq data mining revealed 127 FcWD40s expressed at FPKM > 10 in fig fruit. Most of these genes demonstrated higher expression in the early stages of fruit development. FcWD40-97 was recruited according to three criteria: high expression in fig fruit, predicted nuclear localization, and closest clustering with TTG1s identified in other plants. FcWD40-97, encoding 339 amino acids including 5 WD-repeat motifs, showed 88.01 and 87.94% amino acid sequence similarity to apple and peach TTG1, respectively. The gene is located on fig chromosome 4, and is composed of 1 intron and 2 exons. Promoter analysis revealed multiple light-responsive elements, one salicylic acid-responsive element, three methyl jasmonate-responsive elements, and one MYB-binding site involved in flavonoid biosynthesis gene regulation. FcWD40-97 was in the FPKM > 100 expression level group in fig fruit, and higher expression was consistently found in the peel compared to the flesh at the same development stages. Expression level did not change significantly under light deprivation, whereas in leaves and roots, its expression was relatively low. Transient expression verified FcWD40-97's localization to the nucleus. Yeast two-hybrid (Y2H) and biomolecular fluorescence complementation (BiFC) assays revealed that FcWD40-97 interacts with FcMYB114, FcMYB123, and FcbHLH42 proteins in vitro and in vivo, showing that FcWD40-97 functions as a member of the MYB-bHLH-WD40 (MBW) complex in anthocyanin-biosynthesis regulation in fig. We therefore renamed FcWD40-97 as FcTTG1. Our results provide the first systematic analysis of the FcWD40 family and identification of FcTTG1 in fig pigmentation.
Collapse
Affiliation(s)
- Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yuan Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Long Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, China
| | - Moshe A. Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Kuang L, Chen S, Guo Y, Scheuring D, Flaishman MA, Ma H. Proteome Analysis of Vacuoles Isolated from Fig (Ficus carica L.) Flesh during Fruit Development. PLANT & CELL PHYSIOLOGY 2022; 63:785-801. [PMID: 35348748 DOI: 10.1093/pcp/pcac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biology Sciences, China Agricultural University, Beijing 100193, China
| | - David Scheuring
- Department of Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Moshe A Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
He J, Bao S, Deng J, Li Q, Ma S, Liu Y, Cui Y, Zhu Y, Wei X, Ding X, Ke K, Chen C. A chromosome-level genome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree. Gigascience 2022; 11:giac042. [PMID: 35701376 PMCID: PMC9197682 DOI: 10.1093/gigascience/giac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/31/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022] Open
Abstract
Artocarpus nanchuanensis (Moraceae), which is naturally distributed in China, is a representative and extremely endangered tree species. In this study, we obtained a high-quality chromosome-scale genome assembly and annotation information for A. nanchuanensis using integrated approaches, including Illumina, Nanopore sequencing platform, and Hi-C. A total of 128.71 Gb of raw Nanopore reads were generated from 20-kb libraries, and 123.38 Gb of clean reads were obtained after filtration with 160.34× coverage depth and a 17.48-kb average read length. The final assembled A. nanchuanensis genome was 769.44 Mb with a 2.09 Mb contig N50, and 99.62% (766.50 Mb) of the assembled data was assigned to 28 pseudochromosomes. In total, 39,596 genes (95.10%, 39,596/41,636) were successfully annotated, and 129 metabolic pathways were detected. Plants disease resistance/insect resistance genes, plant-pathogen interaction metabolic pathways, and abundant biosynthesis pathways of vitamins, flavonoid, and gingerol were detected. Unigene reveals the basis of species-specific functions, and gene family in contraction and expansion generally implies strong functional differences in the evolution. Compared with other related species, a total of 512 unigenes, 309 gene families in contraction, and 559 gene families in expansion were detected in A. nanchuanensis. This A. nanchuanensis genome information provides an important resource to expand our understanding of the unique biological processes, nutritional and medicinal benefits, and evolutionary relationship of this species. The study of gene function and metabolic pathway in A. nanchuanensis may reveal the theoretical basis of a special trait in A. nanchuanensis and promote the study and utilization of its rare medicinal value.
Collapse
Affiliation(s)
- Jiaoyu He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Shanfei Bao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Junhang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Qiufu Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Shiyu Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Yiran Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Yanru Cui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Yuqi Zhu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
- Wood Comprehensive Factory of Chengdu, Sichuan 610081, P.R. China
| | - Xia Wei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Xianping Ding
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
- Chongqing Jinfo Shan Advanced Research Institute, Chongqing 408400, P.R. China
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing 408400, P.R. China
| | - Kehui Ke
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Chaojie Chen
- Biomarker Technologies Corporation, Beijing 101300, China
| |
Collapse
|
48
|
Amandine C, Ebert D, Stukenbrock E, Rodríguez de la Vega RC, Tiffin P, Croll D, Tellier A. Unraveling coevolutionary dynamics using ecological genomics. Trends Genet 2022; 38:1003-1012. [PMID: 35715278 DOI: 10.1016/j.tig.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Coevolutionary interactions, from the delicate co-dependency in mutualistic interactions to the antagonistic relationship of hosts and parasites, are a ubiquitous driver of adaptation. Surprisingly, little is known about the genomic processes underlying coevolution in an ecological context. However, species comprise genetically differentiated populations that interact with temporally variable abiotic and biotic environments. We discuss the recent advances in coevolutionary theory and genomics as well as shortcomings, to identify coevolving genes that take into account this spatial and temporal variability of coevolution, and propose a practical guide to understand the dynamic of coevolution using an ecological genomics lens.
Collapse
Affiliation(s)
- Cornille Amandine
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France.
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eva Stukenbrock
- Max Planck Institute for Terrestrial Microbiology, Max Planck Research Group, Fungal Biodiversity, Marburg, Germany
| | | | - Peter Tiffin
- Department of Plant and Microbial Biology, 250 Biological Sciences, 1445 Gortner Ave., University of Minnesota, Saint Paul, MN 55108, USA
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, Technical University of Munich, Liesel-Beckman-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
49
|
Zhan X, Qian Y, Mao B. Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in Dendrobium catenatum. Int J Mol Sci 2022; 23:ijms23126398. [PMID: 35742843 PMCID: PMC9223610 DOI: 10.3390/ijms23126398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/07/2022] Open
Abstract
Dendrobium catenatum is a widely cultivated Chinese orchid herb rich in abundant secondary metabolites, such as terpenes. However, terpene distribution and characterization of terpene biosynthesis-related genes remain unknown in D. catenatum. In this study, metabolic profiling was performed to analyze terpene distribution in the root, stem, leaf, and flower of D. catenatum. A total of 74 terpene compounds were identified and classified. Clustering analysis revealed that terpene compounds exhibited a tissue-specific accumulation, including monoterpenes in the flowers, sesquiterpenes in the stems, and triterpenes in the roots. Transcriptome analysis revealed that the ‘terpenoid backbone biosynthesis’ pathway was only significantly enriched in root vs. flower. The expression of terpene biosynthesis-related genes was spatiotemporal in the flowers. Prenylsynthase-terpene synthases (PS-TPSs) are the largest and core enzymes for generating terpene diversity. By systematic sequence analysis of six species, 318 PS-TPSs were classified into 10 groups and 51 DcaPS-TPSs were found in eight of them. Eighteen DcaPS-TPSs were regulated by circadian rhythm under drought stress. Most of the DcaPS-TPSs were influenced by cold stress and fungi infection. The cis-element of the majority of the DcaPS-TPS promoters was related to abiotic stress and plant development. Methyl jasmonate levels were significantly associated with DcaTPSs expression and terpene biosynthesis. These results provide insight into further functional investigation of DcaPS-TPSs and the regulation of terpene biosynthesis in Dendrobium.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Correspondence: (X.Z.); (B.M.)
| | - Yichun Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310000, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310000, China
- Correspondence: (X.Z.); (B.M.)
| |
Collapse
|
50
|
Chen L, Feng C, Wang R, Nong X, Deng X, Chen X, Yu H. A chromosome-level genome assembly of the pollinating fig wasp Valisia javana. DNA Res 2022; 29:6589890. [PMID: 35595238 PMCID: PMC9160881 DOI: 10.1093/dnares/dsac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Fig wasp has always been thought the species-specific pollinator for their host fig (Moraceae, Ficus) and constitute a model system with its host to study co-evolution and co-speciation. The availability of a high-quality genome will help to further reveal the mechanisms underlying these characteristics. Here, we present a high-quality chromosome-level genome for Valisa javana developed by a combination of PacBio long-read and Illumina short-read. The assembled genome size is 296.34 Mb from 13 contigs with a contig N50 length of 26.76 kb. Comparative genomic analysis revealed expanded and positively selected genes related to biological features that aid fig wasps living in syconium of its highly specific host. Protein-coding genes associated with chemosensory, detoxification and venom genes were identified. Several differentially expressed genes in transcriptome data of V. javana between odor-stimulated samples and the controls have been identified in some olfactory signal transduction pathways, e.g. olfactory transduction, cAMP, cGMP-PKG, Calcim, Ras and Rap1. This study provides a valuable genomic resource for a fig wasp, and sheds insight into further revealing the mechanisms underlying their adaptive traits to their hosts in different places and co-speciation with their host.
Collapse
Affiliation(s)
- Lianfu Chen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Chao Feng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Rong Wang
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University , Shanghai 200241, China
| | - Xiaojue Nong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Xiaoxia Deng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University , Shanghai 200241, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| |
Collapse
|