1
|
García F, Torres MJ, Chacana-Véliz L, Espinosa N, El-Deredy W, Fuentealba P, Negrón-Oyarzo I. Prefrontal cortex synchronization with the hippocampus and parietal cortex is strategy-dependent during spatial learning. Commun Biol 2025; 8:79. [PMID: 39825081 DOI: 10.1038/s42003-025-07486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood. Here we show that during navigation trials, mice displayed two sequential behavioral stages: searching and exploration. Exclusively during searching, mice gradually increased their efficiency by transitioning from non-spatial to spatial strategies. When mice used spatial strategies specifically in searching stage, hippocampal and parietal oscillations synchronized gamma oscillations (60-100 Hz) and neuronal firing in the mPFC. This coincided with an increase in the incidence of gamma and task-stage-related changes in firing patterns in the mPFC. These findings relate the goal-directed organization of behavior during spatial learning to transient task-related prefrontal large-scale synchronization.
Collapse
Affiliation(s)
- Francisca García
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Maria-José Torres
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nelson Espinosa
- Centro Integrativo de Neurociencias y Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Wael El-Deredy
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Fuentealba
- Centro Integrativo de Neurociencias y Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Hirano K, Nomura H. [Deep brain imaging by using GRIN lens]. Nihon Yakurigaku Zasshi 2025; 160:53-57. [PMID: 39756907 DOI: 10.1254/fpj.24071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Elucidating the neural mechanisms governing changes in individual animal behavior is a key goal in neuroscience. Such research has important implications for behavioral pharmacology and could lead to the development of treatments for psychiatric and neurological disorders. Given that the brain likely represents vast amounts of information through the combined activity of multiple neurons, studying these mechanisms requires the simultaneous recording of many neurons. Recent years have seen significant advancements in techniques for multi-cellular activity recording. Calcium imaging utilizing fluorescent sensors has emerged as a powerful method, enabling the concurrent acquisition of spatial arrangements and temporal activity changes in neuronal populations. This article focuses on deep brain imaging using GRIN lenses, particularly deep brain calcium imaging in freely behaving animals with miniaturized head-mounted microscopes. We compare the strengths and limitations of this approach to other calcium imaging methods, electrophysiological techniques, and fiber photometry. Finally, we discuss future developments in this field, including two-photon microscopy for imaging beyond cell bodies, membrane potential imaging using voltage sensors, and single-cell resolution manipulation of neural activity by integrating spatial light modulators and electrically tunable lenses.
Collapse
Affiliation(s)
- Kyosuke Hirano
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University
| | - Hiroshi Nomura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
3
|
Li Y, Yin W, Wang X, Li J, Zhou S, Ma C, Yuan P, Li B. Stable sequential dynamics in prefrontal cortex represents subjective estimation of time. eLife 2024; 13:RP96603. [PMID: 39660591 PMCID: PMC11634065 DOI: 10.7554/elife.96603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified 'sequential firing' and 'activity ramps' as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats' timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.
Collapse
Affiliation(s)
- Yiting Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Wenqu Yin
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xin Wang
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jiawen Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- The Second Clinical Medicine School of Nanchang UniversityNanchangChina
| | - Shanglin Zhou
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOEFrontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Chaolin Ma
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Peng Yuan
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Baoming Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Brain Science and Department of Physiology, School of Basic Medical Science, Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
4
|
Basu J, Nagel K. Neural circuits for goal-directed navigation across species. Trends Neurosci 2024; 47:904-917. [PMID: 39393938 PMCID: PMC11563880 DOI: 10.1016/j.tins.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
Collapse
Affiliation(s)
- Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Katherine Nagel
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
5
|
Futia GL, Zohrabi M, McCullough C, Teel A, Simoes de Souza F, Oroke R, Miscles EJ, Ozbay BN, Kilborn K, Bright VM, Restrepo D, Gopinath JT, Gibson EA. Opto2P-FCM: A MEMS based miniature two-photon microscope with two-photon patterned optogenetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619528. [PMID: 39484501 PMCID: PMC11526896 DOI: 10.1101/2024.10.21.619528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiphoton microscopy combined with optogenetic photostimulation is a powerful technique in neuroscience enabling precise control of cellular activity to determine the neural basis of behavior in a live animal. Two-photon patterned photostimulation has taken this further by allowing interrogation at the individual neuron level. However, it remains a challenge to implement imaging of neural activity with spatially patterned two-photon photostimulation in a freely moving animal. We developed a miniature microscope for high resolution two-photon fluorescence imaging with patterned two-photon optogenetic stimulation. The design incorporates a MEMS scanner for two-photon imaging and a second beam path for patterned two-photon excitation in a compact and lightweight design that can be head-attached to a freely moving animal. We demonstrate cell-specific optogenetics and high resolution MEMS based two-photon imaging in a freely moving mouse. The new capabilities of this miniature microscope design can enable cell-specific studies of behavior that can only be done in freely moving animals.
Collapse
Affiliation(s)
- Gregory L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mo Zohrabi
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Connor McCullough
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alec Teel
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabio Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Oroke
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Eduardo J. Miscles
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Baris N. Ozbay
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Zheng ZS, Huszár R, Hainmueller T, Bartos M, Williams AH, Buzsáki G. Perpetual step-like restructuring of hippocampal circuit dynamics. Cell Rep 2024; 43:114702. [PMID: 39217613 PMCID: PMC11485410 DOI: 10.1016/j.celrep.2024.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Representation of the environment by hippocampal populations is known to drift even within a familiar environment, which could reflect gradual changes in single-cell activity or result from averaging across discrete switches of single neurons. Disambiguating these possibilities is crucial, as they each imply distinct mechanisms. Leveraging change point detection and model comparison, we find that CA1 population vectors decorrelate gradually within a session. In contrast, individual neurons exhibit predominantly step-like emergence and disappearance of place fields or sustained changes in within-field firing. The changes are not restricted to particular parts of the maze or trials and do not require apparent behavioral changes. The same place fields emerge, disappear, and reappear across days, suggesting that the hippocampus reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an internally driven perpetual step-like reorganization of the neuronal assemblies.
Collapse
Affiliation(s)
- Zheyang Sam Zheng
- Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Roman Huszár
- Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Hainmueller
- Department of Psychiatry, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg Medical Faculty, 79104 Freiburg, Germany
| | - Alex H Williams
- Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA; Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA.
| | - György Buzsáki
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA; Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Comrie AE, Monroe EJ, Kahn AE, Denovellis EL, Joshi A, Guidera JA, Krausz TA, Berke JD, Daw ND, Frank LM. Hippocampal representations of alternative possibilities are flexibly generated to meet cognitive demands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613567. [PMID: 39386651 PMCID: PMC11463554 DOI: 10.1101/2024.09.23.613567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The cognitive ability to go beyond the present to consider alternative possibilities, including potential futures and counterfactual pasts, can support adaptive decision making. Complex and changing real-world environments, however, have many possible alternatives. Whether and how the brain can select among them to represent alternatives that meet current cognitive needs remains unknown. We therefore examined neural representations of alternative spatial locations in the rat hippocampus during navigation in a complex patch foraging environment with changing reward probabilities. We found representations of multiple alternatives along paths ahead and behind the animal, including in distant alternative patches. Critically, these representations were modulated in distinct patterns across successive trials: alternative paths were represented proportionate to their evolving relative value and predicted subsequent decisions, whereas distant alternatives were prevalent during value updating. These results demonstrate that the brain modulates the generation of alternative possibilities in patterns that meet changing cognitive needs for adaptive behavior.
Collapse
Affiliation(s)
- Alison E Comrie
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Emily J Monroe
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
| | | | | | - Jennifer A Guidera
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy A Krausz
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Joshua D Berke
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Neurology and Department of Psychiatry and Behavioral Science, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Psychology, Princeton University; Princeton, NJ 08544, USA
| | - Loren M Frank
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
8
|
Rogalla MM, Quass GL, Yardley H, Martinez-Voigt C, Ford AN, Wallace G, Dileepkumar D, Corfas G, Apostolides PF. Population coding of auditory space in the dorsal inferior colliculus persists with altered binaural cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612867. [PMID: 39314270 PMCID: PMC11419156 DOI: 10.1101/2024.09.13.612867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear. Here we use 2-photon Ca2+ imaging in awake head-fixed mice to determine how the higher-order "shell" layers of the inferior colliculus (IC) encode sound source location in the frontal azimuth, under binaural conditions and after acute monaural hearing loss induced by an ear plug ipsilateral to the imaged hemisphere. Spatial receptive fields were typically broad and not exclusively contralateral: Neurons responded reliably to multiple positions in the contra- and ipsi-lateral hemifields, with preferred positions tiling the entire frontal azimuth. Ear plugging broadened receptive fields and reduced spatial selectivity in a subset of neurons, in agreement with an inhibitory influence of ipsilateral sounds. However ear plugging also enhanced spatial tuning and/or unmasked receptive fields in other neurons, shifting the distribution of preferred angles ipsilaterally with minimal impact on the neuronal population's overall spatial resolution; these effects occurred within 2 hours of ear plugging. Consequently, linear classifiers trained on fluorescence data from control and ear-plugged conditions had similar classification accuracy when tested on held out data from within, but not across hearing conditions. Spatially informative neuronal population codes therefore arise rapidly following monaural hearing loss, in absence of overt experience.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunnar L. Quass
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Harry Yardley
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Clara Martinez-Voigt
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Alexander N. Ford
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunseli Wallace
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
9
|
Lorca-Cámara A, Blot FGC, Accanto N. Recent advances in light patterned optogenetic photostimulation in freely moving mice. NEUROPHOTONICS 2024; 11:S11508. [PMID: 38404422 PMCID: PMC10885521 DOI: 10.1117/1.nph.11.s1.s11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Optogenetics opened the door to a new era of neuroscience. New optical developments are under way to enable high-resolution neuronal activity imaging and selective photostimulation of neuronal ensembles in freely moving animals. These advancements could allow researchers to interrogate, with cellular precision, functionally relevant neuronal circuits in the framework of naturalistic brain activity. We provide an overview of the current state-of-the-art of imaging and photostimulation in freely moving rodents and present a road map for future optical and engineering developments toward miniaturized microscopes that could reach beyond the currently existing systems.
Collapse
Affiliation(s)
| | | | - Nicolò Accanto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
10
|
Du Y, Dylda E, Stibůrek M, Gomes AD, Turtaev S, Pakan JMP, Čižmár T. Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy. NEUROPHOTONICS 2024; 11:S11506. [PMID: 38352728 PMCID: PMC10863504 DOI: 10.1117/1.nph.11.s1.s11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Significance Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations. Aim We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice. Approach We used our previously developed M 3 CF multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our M 3 CF exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The M 3 CF has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of M 3 CF with hexagonally arranged corelets. Results We successfully utilized the M 3 CF to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the M 3 CF with larger numerical aperture (NA) fibers in fixed whole-brain tissue. Conclusions This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the M 3 CF increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.
Collapse
Affiliation(s)
- Yang Du
- University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Evelyn Dylda
- Otto-von-Guericke-University Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | | | - André D Gomes
- Leibniz Institute of Photonic Technology, Jena, Germany
| | | | - Janelle M. P. Pakan
- Otto-von-Guericke-University Magdeburg, Institute of Cognitive Neurology and Dementia Research, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Centre for Neurodegenerative Diseases, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tomáš Čižmár
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Scientific Instruments of CAS, Brno, Czechia
- Friedrich Schiller University Jena, Institute of Applied Optics, Jena, Germany
| |
Collapse
|
11
|
Zhang B, Zhang J, Chen H, Qiao D, Guo F, Hu X, Qin C, Jin X, Zhang K, Wang C, Cui H, Li S. Role of FMRP in AKT/mTOR pathway-mediated hippocampal autophagy in fragile X syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111036. [PMID: 38823765 DOI: 10.1016/j.pnpbp.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Fragile X syndrome (FXS) is caused by epigenetic silencing of the Fmr1 gene, leading to the deletion of the coding protein FMRP. FXS induces abnormal hippocampal autophagy and mTOR overactivation. However, it remains unclear whether FMRP regulates hippocampal autophagy through the AKT/mTOR pathway, which influences the neural behavior of FXS. Our study revealed that FMRP deficiency increased the protein levels of p-ULK-1 and p62 and decreased LC3II/LC3I level in Fmr1 knockout (KO) mice. The mouse hippocampal neuronal cell line HT22 with knockdown of Fmr1 by lentivirus showed that the protein levels of p-ULK-1 and p62 were increased, whereas LC3II/LC3I was unchanged. Further observations revealed that FMRP deficiency obstructed autophagic flow in HT22 cells. Therefore, FMRP deficiency inhibited autophagy in the mouse hippocampus and HT22 cells. Moreover, FMRP deficiency increased reactive oxygen species (ROS) level, decreased the co-localization between the mitochondrial outer membrane proteins TOM20 and LC3 in HT22 cells, and caused a decrease in the mitochondrial autophagy protein PINK1 in HT22 cells and Fmr1 KO mice, indicating that FMRP deficiency caused mitochondrial autophagy disorder in HT22 cells and Fmr1 KO mice. To explore the mechanism by which FMRP deficiency inhibits autophagy, we examined the AKT/mTOR signaling pathway in the hippocampus of Fmr1 KO mice, found that FMRP deficiency caused overactivation of the AKT/mTOR pathway. Rapamycin-mediated mTOR inhibition activated and enhanced mitochondrial autophagy. Finally, we examined whether rapamycin affected the neurobehavior of Fmr1 KO mice. The Fmr1 KO mice exhibited stereotypical behavior, impaired social ability, and learning and memory impairment, while rapamycin treatment improved behavioral disorders in Fmr1 KO mice. Thus, our study revealed the molecular mechanism by which FMRP regulates autophagy function, clarifying the role of hippocampal neuron mitochondrial autophagy in the pathogenesis of FXS, and providing novel insights into potential therapeutic targets of FXS.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Jingbao Zhang
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Huan Chen
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Dan Qiao
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangzhen Guo
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangting Hu
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Chao Qin
- Grade 2021, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Xiaowen Jin
- Grade 2021, Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Kaixi Zhang
- Grade 2021, 5+3 Integrated pediatrics, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Chang Wang
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Huixian Cui
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China.
| | - Sha Li
- Department of Human Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
12
|
Frechou MA, Martin SS, McDermott KD, Huaman EA, Gökhan Ş, Tomé WA, Coen-Cagli R, Gonçalves JT. Adult neurogenesis improves spatial information encoding in the mouse hippocampus. Nat Commun 2024; 15:6410. [PMID: 39080283 PMCID: PMC11289285 DOI: 10.1038/s41467-024-50699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Adult neurogenesis is a unique form of neuronal plasticity in which newly generated neurons are integrated into the adult dentate gyrus in a process that is modulated by environmental stimuli. Adult-born neurons can contribute to spatial memory, but it is unknown whether they alter neural representations of space in the hippocampus. Using in vivo two-photon calcium imaging, we find that male and female mice previously housed in an enriched environment, which triggers an increase in neurogenesis, have increased spatial information encoding in the dentate gyrus. Ablating adult neurogenesis blocks the effect of enrichment and lowers spatial information, as does the chemogenetic silencing of adult-born neurons. Both ablating neurogenesis and silencing adult-born neurons decreases the calcium activity of dentate gyrus neurons, resulting in a decreased amplitude of place-specific responses. These findings are in contrast with previous studies that suggested a predominantly inhibitory action for adult-born neurons. We propose that adult neurogenesis improves representations of space by increasing the gain of dentate gyrus neurons and thereby improving their ability to tune to spatial features. This mechanism may mediate the beneficial effects of environmental enrichment on spatial learning and memory.
Collapse
Affiliation(s)
- M Agustina Frechou
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Sunaina S Martin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Kelsey D McDermott
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evan A Huaman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wolfgang A Tomé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruben Coen-Cagli
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Tiago Gonçalves
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Gauld OM, Packer AM, Russell LE, Dalgleish HWP, Iuga M, Sacadura F, Roth A, Clark BA, Häusser M. A latent pool of neurons silenced by sensory-evoked inhibition can be recruited to enhance perception. Neuron 2024; 112:2386-2403.e6. [PMID: 38729150 PMCID: PMC7616379 DOI: 10.1016/j.neuron.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
To investigate which activity patterns in sensory cortex are relevant for perceptual decision-making, we combined two-photon calcium imaging and targeted two-photon optogenetics to interrogate barrel cortex activity during perceptual discrimination. We trained mice to discriminate bilateral whisker deflections and report decisions by licking left or right. Two-photon calcium imaging revealed sparse coding of contralateral and ipsilateral whisker input in layer 2/3, with most neurons remaining silent during the task. Activating pyramidal neurons using two-photon holographic photostimulation evoked a perceptual bias that scaled with the number of neurons photostimulated. This effect was dominated by optogenetic activation of non-coding neurons, which did not show sensory or motor-related activity during task performance. Photostimulation also revealed potent recruitment of cortical inhibition during sensory processing, which strongly and preferentially suppressed non-coding neurons. Our results suggest that a pool of non-coding neurons, selectively suppressed by network inhibition during sensory processing, can be recruited to enhance perception.
Collapse
Affiliation(s)
- Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK.
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Maya Iuga
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Francisco Sacadura
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Beverley A Clark
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Miranda M, Silva A, Morici JF, Coletti MA, Belluscio M, Bekinschtein P. Retrieval of contextual memory can be predicted by CA3 remapping and is differentially influenced by NMDAR activity in rat hippocampus subregions. PLoS Biol 2024; 22:e3002706. [PMID: 38950066 PMCID: PMC11244845 DOI: 10.1371/journal.pbio.3002706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/12/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Azul Silva
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marcos Antonio Coletti
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Belluscio
- Laboratorio Bases neuronales del comportamiento, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- CONICET—Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Hira R. Closed-loop experiments and brain machine interfaces with multiphoton microscopy. NEUROPHOTONICS 2024; 11:033405. [PMID: 38375331 PMCID: PMC10876015 DOI: 10.1117/1.nph.11.3.033405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. We provide an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy-the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution in vivo-works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using in vivo two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain.
Collapse
Affiliation(s)
- Riichiro Hira
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Physiology and Cell Biology, Tokyo, Japan
| |
Collapse
|
16
|
Mizuta K, Sato M. Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions. NEUROPHOTONICS 2024; 11:033406. [PMID: 38464393 PMCID: PMC10923542 DOI: 10.1117/1.nph.11.3.033406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Significance The function of the hippocampus in behavior and cognition has long been studied primarily through electrophysiological recordings from freely moving rodents. However, the application of optical recording methods, particularly multiphoton fluorescence microscopy, in the last decade or two has dramatically advanced our understanding of hippocampal function. This article provides a comprehensive overview of techniques and biological findings obtained from multiphoton imaging of hippocampal neural circuits. Aim This review aims to summarize and discuss the recent technical advances in multiphoton imaging of hippocampal neural circuits and the accumulated biological knowledge gained through this technology. Approach First, we provide a brief overview of various techniques of multiphoton imaging of the hippocampus and discuss its advantages, drawbacks, and associated key innovations and practices. Then, we review a large body of findings obtained through multiphoton imaging by region (CA1 and dentate gyrus), cell type (pyramidal neurons, inhibitory interneurons, and glial cells), and cellular compartment (dendrite and axon). Results Multiphoton imaging of the hippocampus is primarily performed under head-fixed conditions and can reveal detailed mechanisms of circuit operation owing to its high spatial resolution and specificity. As the hippocampus lies deep below the cortex, its imaging requires elaborate methods. These include imaging cannula implantation, microendoscopy, and the use of long-wavelength light sources. Although many studies have focused on the dorsal CA1 pyramidal cells, studies of other local and inter-areal circuitry elements have also helped provide a more comprehensive picture of the information processing performed by the hippocampal circuits. Imaging of circuit function in mouse models of Alzheimer's disease and other brain disorders such as autism spectrum disorder has also contributed greatly to our understanding of their pathophysiology. Conclusions Multiphoton imaging has revealed much regarding region-, cell-type-, and pathway-specific mechanisms in hippocampal function and dysfunction in health and disease. Future technological advances will allow further illustration of the operating principle of the hippocampal circuits via the large-scale, high-resolution, multimodal, and minimally invasive imaging.
Collapse
Affiliation(s)
- Kotaro Mizuta
- RIKEN BDR, Kobe, Japan
- New York University Abu Dhabi, Department of Biology, Abu Dhabi, United Arab Emirates
| | - Masaaki Sato
- Hokkaido University Graduate School of Medicine, Department of Neuropharmacology, Sapporo, Japan
| |
Collapse
|
17
|
Duval A. Is there only one innate modular system for spatial navigation? Behav Brain Sci 2024; 47:e125. [PMID: 38934446 DOI: 10.1017/s0140525x23003114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Spelke convincingly argues that we should posit six innate modular systems beyond the periphery (i.e., beyond low-level perception and motor control). I focus on the case of spatial navigation (Ch. 3) to claim that there remain powerful considerations in favor of positing additional innate, nonperipheral modules. This opens the door to stronger forms of nativism and nonperipheral modularism than Spelke's.
Collapse
Affiliation(s)
- Alexandre Duval
- School of Philosophy, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
18
|
Lee JY, Jung D, Royer S. Stochastic characterization of navigation strategies in an automated variant of the Barnes maze. eLife 2024; 12:RP88648. [PMID: 38899521 PMCID: PMC11189626 DOI: 10.7554/elife.88648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.
Collapse
Affiliation(s)
- Ju-Young Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST)SeoulRepublic of Korea
| | - Dahee Jung
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Sebastien Royer
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST)SeoulRepublic of Korea
| |
Collapse
|
19
|
Wang Z, Zhang L, Yang J, Zeng Y, Su C, Yao M, Zhang H, Hu W, Liu Y, Lai Y, Wang X, Zeng J, Liu R. Chronic stress induces Alzheimer's disease-like pathologies through DNA damage-Chk1-CIP2A signaling. Aging (Albany NY) 2024; 16:9168-9187. [PMID: 38819231 PMCID: PMC11164505 DOI: 10.18632/aging.205862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Stress is an important initiating factor in promoting Alzheimer's disease (AD) pathogenesis. However, the mechanism by which stress induces AD-like cognitive impairment remains to be clarified. Here, we demonstrate that DNA damage is increased in stress hormone Corticotropin-releasing factor (CRF)-treated cells and in brains of mice exposed to chronic restraint stress. Accumulation of DNA damage drives activation of cell cycle checkpoint protein kinase 1 (Chk1), upregulation of cancerous inhibitor of PP2A (CIP2A), tau hyperphosphorylation, and Aβ overproduction, eventually resulting in synaptic impairment and cognitive deficits. Pharmacological intervention targeting Chk1 by specific inhibitor and DNA damage by vitamin C, suppress DNA damage-Chk1-CIP2A signaling pathway in chronic stress animal model, which in turn attenuate AD-like pathologies, synaptic impairments and cognitive deficits. Our study uncovers a novel molecular mechanism of stress-induced AD-like pathologies and provides effective preventive and therapeutic strategies targeting this signaling pathway.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Jiayu Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zeng
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengke Su
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdong Yao
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yi Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Lai
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Ji Zeng
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education/Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Velazquez-Delgado C, Perez-Becerra J, Calderon V, Hernandez-Ortiz E, Bermudez-Rattoni F, Carrillo-Reid L. Paradoxical Boosting of Weak and Strong Spatial Memories by Hippocampal Dopamine Uncaging. eNeuro 2024; 11:ENEURO.0469-23.2024. [PMID: 38755011 PMCID: PMC11138129 DOI: 10.1523/eneuro.0469-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
The ability to remember changes in the surroundings is fundamental for daily life. It has been proposed that novel events producing dopamine release in the hippocampal CA1 region could modulate spatial memory formation. However, the role of hippocampal dopamine increase on weak or strong spatial memories remains unclear. We show that male mice exploring two objects located in a familiar environment for 5 min created a short-term memory (weak) that cannot be retrieved 1 d later, whereas 10 min exploration created a long-term memory (strong) that can be retrieved 1 d later. Remarkably, hippocampal dopamine elevation during the encoding of weak object location memories (OLMs) allowed their retrieval 1 d later but dopamine elevation during the encoding of strong OLMs promoted the preference for a familiar object location over a novel object location after 24 h. Moreover, dopamine uncaging after the encoding of OLMs did not have effect on weak memories whereas on strong memories diminished the exploration of the novel object location. Additionally, hippocampal dopamine elevation during the retrieval of OLMs did not allow the recovery of weak memories and did not affect the retrieval of strong memory traces. Finally, dopamine elevation increased hippocampal theta oscillations, indicating that dopamine promotes the recurrent activation of specific groups of neurons. Our experiments demonstrate that hippocampal dopaminergic modulation during the encoding of OLMs depends on memory strength indicating that hyperdopaminergic levels that enhance weak experiences could compromise the normal storage of strong memories.
Collapse
Affiliation(s)
| | - Job Perez-Becerra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, México
| | - Vladimir Calderon
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, México
| | - Eduardo Hernandez-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| | - Federico Bermudez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| | - Luis Carrillo-Reid
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, México
| |
Collapse
|
21
|
Zheng Z(S, Huszár R, Hainmueller T, Bartos M, Williams A, Buzsáki G. Perpetual step-like restructuring of hippocampal circuit dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590576. [PMID: 38712105 PMCID: PMC11071370 DOI: 10.1101/2024.04.22.590576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Representation of the environment by hippocampal populations is known to drift even within a familiar environment, which could reflect gradual changes in single cell activity or result from averaging across discrete switches of single neurons. Disambiguating these possibilities is crucial, as they each imply distinct mechanisms. Leveraging change point detection and model comparison, we found that CA1 population vectors decorrelated gradually within a session. In contrast, individual neurons exhibited predominantly step-like emergence and disappearance of place fields or sustained change in within-field firing. The changes were not restricted to particular parts of the maze or trials and did not require apparent behavioral changes. The same place fields emerged, disappeared, and reappeared across days, suggesting that the hippocampus reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an internally-driven perpetual step-like reorganization of the neuronal assemblies.
Collapse
Affiliation(s)
| | - Roman Huszár
- Center for Neural Science, New York University, New York, NY, USA
- Neuroscience Institute, New York University, New York, NY, USA
| | - Thomas Hainmueller
- Department of Psychiatry, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104 Freiburg, Germany
| | - Alex Williams
- Center for Neural Science, New York University, New York, NY, USA
- Neuroscience Institute, New York University, New York, NY, USA
- Center for Computational Neuroscience, Flatiron Institute
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, USA
- Department of Neurology, and New York University, New York, NY, USA
| |
Collapse
|
22
|
Barnstedt O, Mocellin P, Remy S. A hippocampus-accumbens code guides goal-directed appetitive behavior. Nat Commun 2024; 15:3196. [PMID: 38609363 PMCID: PMC11015045 DOI: 10.1038/s41467-024-47361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal hippocampus (dHPC) is a key brain region for the expression of spatial memories, such as navigating towards a learned reward location. The nucleus accumbens (NAc) is a prominent projection target of dHPC and implicated in value-based action selection. Yet, the contents of the dHPC→NAc information stream and their acute role in behavior remain largely unknown. Here, we found that optogenetic stimulation of the dHPC→NAc pathway while mice navigated towards a learned reward location was both necessary and sufficient for spatial memory-related appetitive behaviors. To understand the task-relevant coding properties of individual NAc-projecting hippocampal neurons (dHPC→NAc), we used in vivo dual-color two-photon imaging. In contrast to other dHPC neurons, the dHPC→NAc subpopulation contained more place cells, with enriched spatial tuning properties. This subpopulation also showed enhanced coding of non-spatial task-relevant behaviors such as deceleration and appetitive licking. A generalized linear model revealed enhanced conjunctive coding in dHPC→NAc neurons which improved the identification of the reward zone. We propose that dHPC routes specific reward-related spatial and behavioral state information to guide NAc action selection.
Collapse
Affiliation(s)
- Oliver Barnstedt
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Institute for Biology, Otto-von-Guericke University, 39120, Magdeburg, Germany.
| | - Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- International Max Planck Research, School for Brain & Behavior (IMPRS), 53175, Bonn, Germany
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720-3370, USA
| | - Stefan Remy
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany.
- German Center for Mental Health (DZGP), partner site Halle-Jena-Magdeburg, 39118, Magdeburg, Germany.
| |
Collapse
|
23
|
van der Plas M, Failla A, Robertson EM. Neuroscience: Memory modification without catastrophe. Curr Biol 2024; 34:R281-R284. [PMID: 38593772 DOI: 10.1016/j.cub.2024.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Adaptive behaviour is supported by changes in neuronal networks. Insight into maintaining these memories - preventing their catastrophic loss - despite further network changes occurring due to novel learning is provided in a new study.
Collapse
Affiliation(s)
- Mircea van der Plas
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Alberto Failla
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
24
|
Tlaie A, Shapcott K, van der Plas TL, Rowland J, Lees R, Keeling J, Packer A, Tiesinga P, Schölvinck ML, Havenith MN. What does the mean mean? A simple test for neuroscience. PLoS Comput Biol 2024; 20:e1012000. [PMID: 38640119 PMCID: PMC11062559 DOI: 10.1371/journal.pcbi.1012000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/01/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024] Open
Abstract
Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous way of characterizing neuronal activity. But how relevant are such trial-averaged responses to neuronal computation itself? Here we present a simple test to estimate whether average responses reflect aspects of neuronal activity that contribute to neuronal processing. The test probes two assumptions implicitly made whenever average metrics are treated as meaningful representations of neuronal activity: Reliability: Neuronal responses repeat consistently enough across trials that they convey a recognizable reflection of the average response to downstream regions.Behavioural relevance: If a single-trial response is more similar to the average template, it is more likely to evoke correct behavioural responses. We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory cortices (S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2) Electrophysiological recordings from 71 brain areas in mice performing a contrast discrimination task. Under the highly controlled settings of Data set 1, both assumptions were largely fulfilled. In contrast, the less restrictive paradigm of Data set 2 met neither assumption. Simulations predict that the larger diversity of neuronal response preferences, rather than higher cross-trial reliability, drives the better performance of Data set 1. We conclude that when behaviour is less tightly restricted, average responses do not seem particularly relevant to neuronal computation, potentially because information is encoded more dynamically. Most importantly, we encourage researchers to apply this simple test of computational relevance whenever using trial-averaged neuronal metrics, in order to gauge how representative cross-trial averages are in a given context.
Collapse
Affiliation(s)
- Alejandro Tlaie
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Technical University of Madrid, Madrid, Spain
| | | | - Thijs L. van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - James Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adam Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | | | - Martha N. Havenith
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Sun Y, Nitz DA, Xu X, Giocomo LM. Subicular neurons encode concave and convex geometries. Nature 2024; 627:821-829. [PMID: 38448584 PMCID: PMC10972755 DOI: 10.1038/s41586-024-07139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Animals in the natural world constantly encounter geometrically complex landscapes. Successful navigation requires that they understand geometric features of these landscapes, including boundaries, landmarks, corners and curved areas, all of which collectively define the geometry of the environment1-12. Crucial to the reconstruction of the geometric layout of natural environments are concave and convex features, such as corners and protrusions. However, the neural substrates that could underlie the perception of concavity and convexity in the environment remain elusive. Here we show that the dorsal subiculum contains neurons that encode corners across environmental geometries in an allocentric reference frame. Using longitudinal calcium imaging in freely behaving mice, we find that corner cells tune their activity to reflect the geometric properties of corners, including corner angles, wall height and the degree of wall intersection. A separate population of subicular neurons encode convex corners of both larger environments and discrete objects. Both corner cells are non-overlapping with the population of subicular neurons that encode environmental boundaries. Furthermore, corner cells that encode concave or convex corners generalize their activity such that they respond, respectively, to concave or convex curvatures within an environment. Together, our findings suggest that the subiculum contains the geometric information needed to reconstruct the shape and layout of naturalistic spatial environments.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, Irvine, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Piantadosi SC, Zhou ZC, Pizzano C, Pedersen CE, Nguyen TK, Thai S, Stuber GD, Bruchas MR. Holographic stimulation of opposing amygdala ensembles bidirectionally modulates valence-specific behavior via mutual inhibition. Neuron 2024; 112:593-610.e5. [PMID: 38086375 PMCID: PMC10984369 DOI: 10.1016/j.neuron.2023.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
The basolateral amygdala (BLA) is an evolutionarily conserved brain region, well known for valence processing. Despite this central role, the relationship between activity of BLA neuronal ensembles in response to appetitive and aversive stimuli and the subsequent expression of valence-specific behavior has remained elusive. Here, we leverage two-photon calcium imaging combined with single-cell holographic photostimulation through an endoscopic lens to demonstrate a direct causal role for opposing ensembles of BLA neurons in the control of oppositely valenced behavior in mice. We report that targeted photostimulation of either appetitive or aversive BLA ensembles results in mutual inhibition and shifts behavioral responses to promote consumption of an aversive tastant or reduce consumption of an appetitive tastant, respectively. Here, we identify that neuronal encoding of valence in the BLA is graded and relies on the relative proportion of individual BLA neurons recruited in a stable appetitive or quinine ensemble.
Collapse
Affiliation(s)
- Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Carina Pizzano
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Christian E Pedersen
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Tammy K Nguyen
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Sarah Thai
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Gonzalez A, Giocomo LM. Parahippocampal neurons encode task-relevant information for goal-directed navigation. eLife 2024; 12:RP85646. [PMID: 38363198 PMCID: PMC10942598 DOI: 10.7554/elife.85646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
A behavioral strategy crucial to survival is directed navigation to a goal, such as a food or home location. One potential neural substrate for supporting goal-directed navigation is the parahippocampus, which contains neurons that represent an animal's position, orientation, and movement through the world, and that change their firing activity to encode behaviorally relevant variables such as reward. However, little prior work on the parahippocampus has considered how neurons encode variables during goal-directed navigation in environments that dynamically change. Here, we recorded single units from rat parahippocampal cortex while subjects performed a goal-directed task. The maze dynamically changed goal-locations via a visual cue on a trial-to-trial basis, requiring subjects to use cue-location associations to receive reward. We observed a mismatch-like signal, with elevated neural activity on incorrect trials, leading to rate-remapping. The strength of this remapping correlated with task performance. Recordings during open-field foraging allowed us to functionally define navigational coding for a subset of the neurons recorded in the maze. This approach revealed that head-direction coding units remapped more than other functional-defined units. Taken together, this work thus raises the possibility that during goal-directed navigation, parahippocampal neurons encode error information reflective of an animal's behavioral performance.
Collapse
Affiliation(s)
- Alexander Gonzalez
- Department of Neurobiology, Stanford University School of MedicineStanfordUnited States
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
28
|
Sloin HE, Spivak L, Levi A, Gattegno R, Someck S, Stark E. Local activation of CA1 pyramidal cells induces theta-phase precession. Science 2024; 383:551-558. [PMID: 38301006 DOI: 10.1126/science.adk2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Hippocampal theta-phase precession is involved in spatiotemporal coding and in generating multineural spike sequences, but how precession originates remains unresolved. To determine whether precession can be generated directly in hippocampal area CA1 and disambiguate multiple competing mechanisms, we used closed-loop optogenetics to impose artificial place fields in pyramidal cells of mice running on a linear track. More than one-third of the CA1 artificial fields exhibited synthetic precession that persisted for a full theta cycle. By contrast, artificial fields in the parietal cortex did not exhibit synthetic precession. These findings are incompatible with precession models based on inheritance, dual-input, spreading activation, inhibition-excitation summation, or somato-dendritic competition. Thus, a precession generator resides locally within CA1.
Collapse
Affiliation(s)
- Hadas E Sloin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidor Spivak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roni Gattegno
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Department of Neurobiology, Haifa University, Haifa 3103301, Israel
| |
Collapse
|
29
|
Ibrahim KM, Massaly N, Yoon HJ, Sandoval R, Widman AJ, Heuermann RJ, Williams S, Post W, Pathiranage S, Lintz T, Zec A, Park A, Yu W, Kash TL, Gereau RW, Morón JA. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat Commun 2024; 15:750. [PMID: 38286800 PMCID: PMC10825206 DOI: 10.1038/s41467-024-44836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Hye-Jean Yoon
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Rossana Sandoval
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Allie J Widman
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Heuermann
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University Pain Center, St. Louis, MO, 63110, USA
| | - Sidney Williams
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - William Post
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sulan Pathiranage
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tania Lintz
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley Park
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Waylin Yu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA.
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Andreoli L, Tanaka KZ. What Can Hippocampal Engrams Tell Us About Encoding Spatial Navigation? ADVANCES IN NEUROBIOLOGY 2024; 38:195-214. [PMID: 39008017 DOI: 10.1007/978-3-031-62983-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The hippocampus is indispensable for episodic memories, but its particular role in the process is still unclear. This chapter briefly overviews past studies focusing on place cells and memory engrams, highlighting their potential roles in spatial navigation. Future work reconciling these two lines of studies would provide a comprehensive view of the specific contribution of the hippocampus and a better understanding of how memory engrams support memory.
Collapse
Affiliation(s)
- Lorena Andreoli
- Okinawa Institute of Science and Technology Graduate University (OIST), Memory Research Unit, Okinawa, Japan
| | - Kazumasa Z Tanaka
- Okinawa Institute of Science and Technology Graduate University (OIST), Memory Research Unit, Okinawa, Japan.
| |
Collapse
|
31
|
Tuncdemir SN, Grosmark AD, Chung H, Luna VM, Lacefield CO, Losonczy A, Hen R. Adult-born granule cells facilitate remapping of spatial and non-spatial representations in the dentate gyrus. Neuron 2023; 111:4024-4039.e7. [PMID: 37820723 PMCID: PMC10841867 DOI: 10.1016/j.neuron.2023.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/10/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Adult-born granule cells (abGCs) have been implicated in memory discrimination through a neural computation known as pattern separation. Here, using in vivo Ca2+ imaging, we examined how chronic ablation or acute chemogenetic silencing of abGCs affects the activity of mature granule cells (mGCs). In both cases, we observed altered remapping of mGCs. Rather than broadly modulating the activity of all mGCs, abGCs promote the remapping of place cells' firing fields while increasing rate remapping of mGCs that represent sensory cues. In turn, these remapping deficits are associated with behavioral impairments in animals' ability to correctly identify new goal locations. Thus, abGCs facilitate pattern separation through the formation of non-overlapping representations for identical sensory cues encountered in different locations. In the absence of abGCs, the dentate gyrus shifts to a state that is dominated by cue information, a situation that is consistent with the overgeneralization often observed in anxiety or age-related disorders.
Collapse
Affiliation(s)
- Sebnem N Tuncdemir
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Andres D Grosmark
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hannah Chung
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Victor M Luna
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Clay O Lacefield
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Attila Losonczy
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
32
|
Kinsky NR, Vöröslakos M, Lopez Ruiz JR, Watkins de Jong L, Slager N, McKenzie S, Yoon E, Diba K. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes. STAR Protoc 2023; 4:102570. [PMID: 37729059 PMCID: PMC10510336 DOI: 10.1016/j.xpro.2023.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Micro-light-emitting-diode (μLED) silicon probes feature independently controllable miniature light-emitting-diodes (LEDs) embedded at several positions in each shank of a multi-shank probe, enabling temporally and spatially precise optogenetic neural circuit interrogation. Here, we present a protocol for performing causal and reproducible neural circuit manipulations in chronically implanted, freely moving animals. We describe steps for introducing optogenetic constructs, preparing and implanting a μLED probe, performing simultaneous in vivo electrophysiology with focal optogenetic perturbation, and recovering a probe following termination of an experiment. For complete details on the use and execution of this protocol, please refer to Watkins de Jong et al. (2023).1.
Collapse
Affiliation(s)
- Nathaniel R Kinsky
- Department of Anesthesiology and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Mihály Vöröslakos
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Jose Roberto Lopez Ruiz
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurel Watkins de Jong
- Department of Anesthesiology and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nathan Slager
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sam McKenzie
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Kamran Diba
- Department of Anesthesiology and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Plitt MH, Kaganovsky K, Südhof TC, Giocomo LM. Hippocampal place code plasticity in CA1 requires postsynaptic membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567978. [PMID: 38045362 PMCID: PMC10690209 DOI: 10.1101/2023.11.20.567978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population in vivo calcium imaging. This approach revealed that Stx3 is necessary for forming the neural dynamics that support novelty processing, spatial reward memory and offline memory consolidation. In contrast, CA1 Stx3 was dispensable for maintaining aspects of the neural code that exist presynaptic to CA1 such as representations of context and space. Thus, manipulating postsynaptic membrane fusion identified computations that specifically require synaptic restructuring via membrane trafficking in CA1 and distinguished them from neural representation that could be inherited from upstream brain regions or learned through other mechanisms.
Collapse
Affiliation(s)
- Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Thomas C. Südhof
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
34
|
Wei Q, Kumar V, Moore S, Li F, Murphy GG, Watson SJ, Akil H. High emotional reactivity is associated with activation of a molecularly distinct hippocampal-amygdala circuit modulated by the glucocorticoid receptor. Neurobiol Stress 2023; 27:100581. [PMID: 37928820 PMCID: PMC10623371 DOI: 10.1016/j.ynstr.2023.100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Emotions are characterized not only by their valence but also by whether they are stable or labile. Yet, we do not understand the molecular or circuit mechanisms that control the dynamic nature of emotional responses. We have shown that glucocorticoid receptor overexpression in the forebrain (GRov) leads to a highly reactive mouse with increased anxiety behavior coupled with greater swings in emotional responses. This phenotype is established early in development and persists into adulthood. However, the neural circuitry mediating this lifelong emotional lability remains unknown. In the present study, optogenetic stimulation in ventral dentate gyrus (vDG) of GRov mice led to a greater range and a prolonged duration of anxiety behavior. cFos expression analysis showed that the amplified behavioral response to vDG activation in GRov mice is coupled to increased neuronal activity in specific brain regions. Relative to wild type mice, GRov mice displayed glutamatergic/GABAergic activation imbalance in ventral CA1 (vCA1) and selectively increased glutamatergic activation in the basal posterior amygdaloid complex. Moreover, forebrain GR overexpression led to increased activation of molecularly distinct subpopulations of neurons within the hippocampus and the posterior basolateral amygdala (pBLA) as evident from the increased cFos co-labeling in the calbindin1+ glutamatergic neurons in vCA1 and in the DARPP-32/Ppp1r1b+ glutamatergic neurons in pBLA. We propose that a molecularly distinct hippocampal-amygdala circuit is shaped by stress early in life and tunes the dynamics of emotional responses.
Collapse
Affiliation(s)
- Qiang Wei
- Corresponding author. Michigan Neuroscience Institute University of Michigan 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| | - Vivek Kumar
- Corresponding author. Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| | - Shannon Moore
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fei Li
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
35
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
36
|
Basu R, Ito HT. A goal pointer for a cognitive map in the orbitofrontal cortex. Curr Opin Neurobiol 2023; 83:102803. [PMID: 39491901 PMCID: PMC10711504 DOI: 10.1016/j.conb.2023.102803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/03/2023] [Indexed: 07/31/2024]
Abstract
Knowing where you are and where you go is a prerequisite for planning a goal-directed journey. The discovery of spatially tuned neurons in the hippocampus and parahippocampal cortices provides a mechanism by which the brain pinpoints an animal's own position in an environment. By contrast, how the brain encodes a remote navigational goal remained largely obscure until recently. In this review, we discuss algorithmic challenges and requirements for the brain to form a representation of a remote navigational goal at which an animal is not present. We then highlight a line of evidence that neurons in the orbitofrontal cortex (OFC) represent a goal location persistently while an animal navigates to this destination. Finally, we propose a new perspective of navigation research opened by this recently reported brain's goal map.
Collapse
Affiliation(s)
- Raunak Basu
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany.
| |
Collapse
|
37
|
Grieco SF, Holmes TC, Xu X. Probing neural circuit mechanisms in Alzheimer's disease using novel technologies. Mol Psychiatry 2023; 28:4407-4420. [PMID: 36959497 PMCID: PMC10827671 DOI: 10.1038/s41380-023-02018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
The study of Alzheimer's Disease (AD) has traditionally focused on neuropathological mechanisms that has guided therapies that attenuate neuropathological features. A new direction is emerging in AD research that focuses on the progressive loss of cognitive function due to disrupted neural circuit mechanisms. Evidence from humans and animal models of AD show that dysregulated circuits initiate a cascade of pathological events that culminate in functional loss of learning, memory, and other aspects of cognition. Recent progress in single-cell, spatial, and circuit omics informs this circuit-focused approach by determining the identities, locations, and circuitry of the specific cells affected by AD. Recently developed neuroscience tools allow for precise access to cell type-specific circuitry so that their functional roles in AD-related cognitive deficits and disease progression can be tested. An integrated systems-level understanding of AD-associated neural circuit mechanisms requires new multimodal and multi-scale interrogations that longitudinally measure and/or manipulate the ensemble properties of specific molecularly-defined neuron populations first susceptible to AD. These newly developed technological and conceptual advances present new opportunities for studying and treating circuits vulnerable in AD and represent the beginning of a new era for circuit-based AD research.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
38
|
Gianatti M, Garvert AC, Lenkey N, Ebbesen NC, Hennestad E, Vervaeke K. Multiple long-range projections convey position information to the agranular retrosplenial cortex. Cell Rep 2023; 42:113109. [PMID: 37682706 DOI: 10.1016/j.celrep.2023.113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Neuronal signals encoding the animal's position widely modulate neocortical processing. While these signals are assumed to depend on hippocampal output, their origin has not been investigated directly. Here, we asked which brain region sends position information to the retrosplenial cortex (RSC), a key circuit for memory and navigation. We comprehensively characterized the long-range inputs to agranular RSC using two-photon axonal imaging in head-fixed mice performing a spatial task in darkness. Surprisingly, most long-range pathways convey position information, but with notable differences. Axons from the secondary motor and posterior parietal cortex transmit the most position information. By contrast, axons from the anterior cingulate and orbitofrontal cortex and thalamus convey substantially less position information. Axons from the primary and secondary visual cortex contribute negligibly. This demonstrates that the hippocampus is not the only source of position information. Instead, the RSC is a hub in a distributed brain network that shares position information.
Collapse
Affiliation(s)
- Michele Gianatti
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Anna Christina Garvert
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Nora Lenkey
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Nora Cecilie Ebbesen
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Eivind Hennestad
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Oslo, Norway.
| |
Collapse
|
39
|
Cai C, Dong C, Friedrich J, Rozsa M, Pnevmatikakis EA, Giovannucci A. FIOLA: an accelerated pipeline for fluorescence imaging online analysis. Nat Methods 2023; 20:1417-1425. [PMID: 37679524 DOI: 10.1038/s41592-023-01964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/19/2023] [Indexed: 09/09/2023]
Abstract
Optical microscopy methods such as calcium and voltage imaging enable fast activity readout of large neuronal populations using light. However, the lack of corresponding advances in online algorithms has slowed progress in retrieving information about neural activity during or shortly after an experiment. This gap not only prevents the execution of real-time closed-loop experiments, but also hampers fast experiment-analysis-theory turnover for high-throughput imaging modalities. Reliable extraction of neural activity from fluorescence imaging frames at speeds compatible with indicator dynamics and imaging modalities poses a challenge. We therefore developed FIOLA, a framework for fluorescence imaging online analysis that extracts neuronal activity from calcium and voltage imaging movies at speeds one order of magnitude faster than state-of-the-art methods. FIOLA exploits algorithms optimized for parallel processing on GPUs and CPUs. We demonstrate reliable and scalable performance of FIOLA on both simulated and real calcium and voltage imaging datasets. Finally, we present an online experimental scenario to provide guidance in setting FIOLA parameters and to highlight the trade-offs of our approach.
Collapse
Affiliation(s)
- Changjia Cai
- Joint Department of Biomedical Engineering UNC/NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia Dong
- Joint Department of Biomedical Engineering UNC/NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Marton Rozsa
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Andrea Giovannucci
- Joint Department of Biomedical Engineering UNC/NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Closed-Loop Engineering for Advanced Rehabilitation (CLEAR), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
40
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
Quigley LD, Pendry R, Mendoza ML, Pfeiffer BE, Volk LJ. Experience alters hippocampal and cortical network communication via a KIBRA-dependent mechanism. Cell Rep 2023; 42:112662. [PMID: 37347662 PMCID: PMC10592482 DOI: 10.1016/j.celrep.2023.112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Synaptic plasticity is hypothesized to underlie "replay" of salient experience during hippocampal sharp-wave/ripple (SWR)-based ensemble activity and to facilitate systems-level memory consolidation coordinated by SWRs and cortical sleep spindles. It remains unclear how molecular changes at synapses contribute to experience-induced modification of network function. The synaptic protein KIBRA regulates plasticity and memory. To determine the impact of KIBRA-regulated plasticity on circuit dynamics, we recorded in vivo neural activity from wild-type (WT) mice and littermates lacking KIBRA and examined circuit function before, during, and after novel experience. In WT mice, experience altered population activity and oscillatory dynamics in a manner consistent with incorporation of new information content in replay and enhanced hippocampal-cortical communication. While baseline SWR features were normal in KIBRA conditional knockout (cKO) mice, experience-dependent alterations in SWRs were absent. Furthermore, intra-hippocampal and hippocampal-cortical communication during SWRs was disrupted following KIBRA deletion. These results indicate molecular mechanisms that underlie network-level adaptations to experience.
Collapse
Affiliation(s)
- Lilyana D Quigley
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert Pendry
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew L Mendoza
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lenora J Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O' Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Miller AMP, Jacob AD, Ramsaran AI, De Snoo ML, Josselyn SA, Frankland PW. Emergence of a predictive model in the hippocampus. Neuron 2023; 111:1952-1965.e5. [PMID: 37015224 PMCID: PMC10293047 DOI: 10.1016/j.neuron.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
The brain organizes experiences into memories that guide future behavior. Hippocampal CA1 population activity is hypothesized to reflect predictive models that contain information about future events, but little is known about how they develop. We trained mice on a series of problems with or without a common statistical structure to observe how memories are formed and updated. Mice that learned structured problems integrated their experiences into a predictive model that contained the solutions to upcoming novel problems. Retrieving the model during learning improved discrimination accuracy and facilitated learning. Using calcium imaging to track CA1 activity during learning, we found that hippocampal ensemble activity became more stable as mice formed a predictive model. The hippocampal ensemble was reactivated during training and incorporated new activity patterns from each training problem. These results show how hippocampal activity supports building predictive models by organizing new information with respect to existing memories.
Collapse
Affiliation(s)
- Adam M P Miller
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alex D Jacob
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mitchell L De Snoo
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Brain, Mind, & Consciousness Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
43
|
Fişek M, Herrmann D, Egea-Weiss A, Cloves M, Bauer L, Lee TY, Russell LE, Häusser M. Cortico-cortical feedback engages active dendrites in visual cortex. Nature 2023; 617:769-776. [PMID: 37138089 DOI: 10.1038/s41586-023-06007-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.
Collapse
Affiliation(s)
- Mehmet Fişek
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Alexander Egea-Weiss
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matilda Cloves
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lisa Bauer
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tai-Ying Lee
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
44
|
Guo C, Blair GJ, Sehgal M, Sangiuliano Jimka FN, Bellafard A, Silva AJ, Golshani P, Basso MA, Blair HT, Aharoni D. Miniscope-LFOV: A large-field-of-view, single-cell-resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals. SCIENCE ADVANCES 2023; 9:eadg3918. [PMID: 37083539 PMCID: PMC10121160 DOI: 10.1126/sciadv.adg3918] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Imaging large-population, single-cell fluorescent dynamics in freely behaving animals larger than mice remains a key endeavor of neuroscience. We present a large-field-of-view open-source miniature microscope (MiniLFOV) designed for large-scale (3.6 mm × 2.7 mm), cellular resolution neural imaging in freely behaving rats. It has an electrically adjustable working distance of up to 3.5 mm ± 100 μm, incorporates an absolute head orientation sensor, and weighs only 13.9 g. The MiniLFOV is capable of both deep brain and cortical imaging and has been validated in freely behaving rats by simultaneously imaging >1000 GCaMP7s-expressing neurons in the hippocampal CA1 layer and in head-fixed mice by simultaneously imaging ~2000 neurons in the dorsal cortex through a cranial window. The MiniLFOV also supports optional wire-free operation using a novel, wire-free data acquisition expansion board. We expect that this new open-source implementation of the UCLA Miniscope platform will enable researchers to address novel hypotheses concerning brain function in freely behaving animals.
Collapse
Affiliation(s)
- Changliang Guo
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Garrett J. Blair
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095-1563, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Megha Sehgal
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095-1563, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Federico N. Sangiuliano Jimka
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arash Bellafard
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alcino J. Silva
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095-1563, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
- West LA Veterans Affairs Medical Center, Los Angeles, CA 90073, USA
- Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michele A. Basso
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hugh Tad Blair
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Daniel Aharoni
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author.
| |
Collapse
|
45
|
Faini G, Tanese D, Molinier C, Telliez C, Hamdani M, Blot F, Tourain C, de Sars V, Del Bene F, Forget BC, Ronzitti E, Emiliani V. Ultrafast light targeting for high-throughput precise control of neuronal networks. Nat Commun 2023; 14:1888. [PMID: 37019891 PMCID: PMC10074378 DOI: 10.1038/s41467-023-37416-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables the generation of precise spatiotemporal neuronal activity patterns and thus a broad range of experimental applications, such as high throughput connectivity mapping and probing neural codes for perception. Yet, current holographic approaches limit the resolution for tuning the relative spiking time of distinct cells to a few milliseconds, and the achievable number of targets to 100-200, depending on the working depth. To overcome these limitations and expand the capabilities of single-cell optogenetics, we introduce an ultra-fast sequential light targeting (FLiT) optical configuration based on the rapid switching of a temporally focused beam between holograms at kHz rates. We used FLiT to demonstrate two illumination protocols, termed hybrid- and cyclic-illumination, and achieve sub-millisecond control of sequential neuronal activation and high throughput multicell illumination in vitro (mouse organotypic and acute brain slices) and in vivo (zebrafish larvae and mice), while minimizing light-induced thermal rise. These approaches will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.
Collapse
Affiliation(s)
- Giulia Faini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Clément Molinier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Cécile Telliez
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Massilia Hamdani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Francois Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Vincent de Sars
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Benoît C Forget
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
46
|
Geiller T, Priestley JB, Losonczy A. A local circuit-basis for spatial navigation and memory processes in hippocampal area CA1. Curr Opin Neurobiol 2023; 79:102701. [PMID: 36878147 PMCID: PMC10020891 DOI: 10.1016/j.conb.2023.102701] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
The hippocampus is a multi-stage neural circuit that is critical for memory formation. Its distinct anatomy has long inspired theories that rely on local interactions between neurons within each subregion in order to perform serial operations important for memory encoding and storage. These local computations have received less attention in CA1 area, the primary output node of the hippocampus, where excitatory neurons are thought to be only very sparsely interconnected. However, recent findings have demonstrated the power of local circuitry in CA1, with evidence for strong functional interactions among excitatory neurons, regulation by diverse inhibitory microcircuits, and novel plasticity rules that can profoundly reshape the hippocampal ensemble code. Here we review how these properties expand the dynamical repertoire of CA1 beyond the confines of feedforward processing, and what implications they have for hippocampo-cortical functions in memory formation.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA. https://twitter.com/tgeiller
| | - James B Priestley
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, 10027, USA. https://twitter.com/jamespriestley4
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
47
|
Carrillo-Reid L, Agetsuma M, Kropff E. Editorial: Reconfiguration of neuronal ensembles throughout learning. Front Syst Neurosci 2023; 17:1161967. [PMID: 36998389 PMCID: PMC10043398 DOI: 10.3389/fnsys.2023.1161967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Luis Carrillo-Reid
- Neurobiology Institute, National Autonomous University of Mexico, Juriquilla, Queretaro, Mexico
- *Correspondence: Luis Carrillo-Reid
| | - Masakazu Agetsuma
- Institute for Quantum Life Science, Quantum Regenerative and Biomedical Engineering Team, Chiba, Japan
| | - Emilio Kropff
- Leloir Institute-IIBBA/CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Aery Jones EA, Giocomo LM. Neural ensembles in navigation: From single cells to population codes. Curr Opin Neurobiol 2023; 78:102665. [PMID: 36542882 PMCID: PMC9845194 DOI: 10.1016/j.conb.2022.102665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
The brain can represent behaviorally relevant information through the firing of individual neurons as well as the coordinated firing of ensembles of neurons. Neurons in the hippocampus and associated cortical regions participate in a variety of types of ensembles to support navigation. These ensemble types include single cell codes, population codes, time-compressed sequences, behavioral sequences, and engrams. We present the physiological basis and behavioral relevance of ensemble firing. We discuss how these traditional definitions of ensembles can constrain or expand potential analyses due to the underlying assumptions and abstractions made. We highlight how coding can change at the ensemble level while underlying single cell codes remain intact. Finally, we present how ensemble definitions could be broadened to better understand the full complexity of the brain.
Collapse
Affiliation(s)
- Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
50
|
Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Rep 2023; 42:111962. [PMID: 36640337 DOI: 10.1016/j.celrep.2022.111962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
Collapse
Affiliation(s)
- Olesia M Bilash
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Cara D Johnson
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece.
| | - Jayeeta Basu
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychiatry, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|