1
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Yamaguchi J, Ohka F, Seki M, Motomura K, Deguchi S, Shiba Y, Okumura Y, Kibe Y, Shimizu H, Maeda S, Takido Y, Yamamoto R, Nakamura A, Karube K, Saito R. Dual phenotypes in recurrent astrocytoma, IDH-mutant; coexistence of IDH-mutant and IDH-wildtype components: a case report with genetic and epigenetic analysis. Acta Neuropathol Commun 2024; 12:169. [PMID: 39456052 PMCID: PMC11515116 DOI: 10.1186/s40478-024-01879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Mutations in the isocitrate dehydrogenase (IDH) gene are recognized as the key drivers in the oncogenesis of astrocytoma and oligodendroglioma. However, the significance of IDH mutation in tumor maintenance and malignant transformation has not been elucidated. We encountered a unique case of IDH-mutant astrocytoma that, upon malignant transformation, presented two distinct intratumoral components: one IDH-wildtype and one IDH-mutant. The IDH-wild-type component exhibited histological findings similar to those of small cell-type glioblastoma with a higher Ki-67 index than the IDH-mutant component. Despite their genetic divergence, both components exhibited similar comprehensive methylation profiles within the CpG island and were classified into methylation class of "Astrocytoma, IDH-mutant; High Grade" by the German Cancer Center (DKFZ) classifier v11.4. Phylogenetic analysis demonstrated that the IDH-wildtype component emerged as a subclonal component of the primary tumor. Detailed molecular analyses revealed that the loss of the IDH mutation was induced by the hemizygous loss of the entire arm of chromosome 2, on which IDH1 gene is located. Notably, the IDH-wild-type subclones uniquely acquired CDKN2A/B homozygous deletion and PDGFRA amplification, which is a marker of the aggressive phenotype of astrocytoma, IDH-mutant. Because these genetic abnormalities can drive oncogenic pathways, such as the PI3K/AKT/mTOR and RB signaling pathway, IDH-mutant gliomas that acquired these mutations were no longer dependent on the initial driver mutation, the IDH mutation. Molecular analysis of this unique case provides insight that in a subset of astrocytoma, IDH-mutant that acquired these genetic abnormalities, IDH mutation may not play a pivotal role in tumor growth and acquisition of these genetic abnormalities may contribute to the acquisition of resistance to IDH inhibitors.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan.
| | - Masafumi Seki
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Shoichi Deguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Yoshiki Shiba
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Yuka Okumura
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Hiroki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Yuhei Takido
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Ryo Yamamoto
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Akihiro Nakamura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa- ku, Nagoya, 466-8550, Japan
| |
Collapse
|
3
|
Shekarian T, Ritz MF, Hogan S, Martins TA, Schmassmann P, Gerber A, Roux J, Kaymak D, Durano C, Burger B, Matter M, Hutter G. Multidimensional analysis of matched primary and recurrent glioblastoma identifies contributors to tumor recurrence influencing time to relapse. J Neuropathol Exp Neurol 2024:nlae108. [PMID: 39423857 DOI: 10.1093/jnen/nlae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
Glioblastoma (GBM) is a lethal brain tumor without effective treatment options. This study aimed to characterize longitudinal tumor changes in order to find potentially actionable targets to prevent GBM relapse. We extracted RNA and proteins from fresh frozen tumor samples from patient-matched IDHwt WHO grade 4 primary (pGBM) and recurrent (rGBM) tumors for transcriptomics and proteomics analysis. A tissue microarray containing paired tumor samples was processed for spatial transcriptomics analysis. Differentially expressed genes and proteins between pGBM and rGBM were involved in synapse development and myelination. By categorizing patients into short (STTR) and long (LTTR) time-to-lapse, we identified genes/proteins whose expression levels positively or negatively correlated with TTR. In rGBM, expressions of Fcγ receptors (FCGRs) and complement system genes were negatively correlated with TTR, whereas expression of genes involved in DNA methylation was positively correlated with TTR. Spatial transcriptomics of the tumor cells showed enrichment of oligodendrocytes in rGBM. Besides, we observed changes in the myeloid compartment such as a switch from quiescent to activated microglia and an enrichment in B and T cells in rGBM with STTR. Our results uncover a role for activated microglia/macrophages in GBM recurrence and suggest that interfering with these cells may hinder GBM relapse.
Collapse
Affiliation(s)
- Tala Shekarian
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Marie-Françoise Ritz
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Sabrina Hogan
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Tomás A Martins
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Philip Schmassmann
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Alexandra Gerber
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Deniz Kaymak
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Célia Durano
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Bettina Burger
- Dermatology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matthias Matter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gregor Hutter
- Brain Tumor Immunotherapy and Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
4
|
Skouras P, Markouli M, Papadatou I, Piperi C. Targeting epigenetic mechanisms of resistance to chemotherapy in gliomas. Crit Rev Oncol Hematol 2024; 204:104532. [PMID: 39406277 DOI: 10.1016/j.critrevonc.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma, an aggressive type of brain tumors of glial origin is highly heterogeneous, posing significant treatment challenges due to its intrinsic resistance to conventional therapeutic schemes. It is characterized by an interplay between epigenetic and genetic alterations in key signaling pathways which further endorse their resistance potential. Aberrant DNA methylation patterns, histone modifications and non-coding RNAs may alter the expression of genes associated with drug response and cell survival, induce gene silencing or deregulate key pathways contributing to glioma resistance. There is evidence that epigenetic plasticity enables glioma cells to adapt dynamically to therapeutic schemes and allow the formation of drug-resistant subpopulations. Furthermore, the tumor microenvironment adds an extra input on epigenetic regulation, increasing the complexity of resistance mechanisms. Herein, we discuss epigenetic changes conferring to drug resistance mechanisms in gliomas in order to delineate novel therapeutic targets and potential approaches that will enable personalized treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Greece.
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Ioanna Papadatou
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
5
|
Manoharan VT, Abdelkareem A, Gill G, Brown S, Gillmor A, Hall C, Seo H, Narta K, Grewal S, Dang NH, Ahn BY, Osz K, Lun X, Mah L, Zemp F, Mahoney D, Senger DL, Chan JA, Morrissy AS. Spatiotemporal modeling reveals high-resolution invasion states in glioblastoma. Genome Biol 2024; 25:264. [PMID: 39390467 PMCID: PMC11465563 DOI: 10.1186/s13059-024-03407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Diffuse invasion of glioblastoma cells through normal brain tissue is a key contributor to tumor aggressiveness, resistance to conventional therapies, and dismal prognosis in patients. A deeper understanding of how components of the tumor microenvironment (TME) contribute to overall tumor organization and to programs of invasion may reveal opportunities for improved therapeutic strategies. RESULTS Towards this goal, we apply a novel computational workflow to a spatiotemporally profiled GBM xenograft cohort, leveraging the ability to distinguish human tumor from mouse TME to overcome previous limitations in the analysis of diffuse invasion. Our analytic approach, based on unsupervised deconvolution, performs reference-free discovery of cell types and cell activities within the complete GBM ecosystem. We present a comprehensive catalogue of 15 tumor cell programs set within the spatiotemporal context of 90 mouse brain and TME cell types, cell activities, and anatomic structures. Distinct tumor programs related to invasion align with routes of perivascular, white matter, and parenchymal invasion. Furthermore, sub-modules of genes serving as program network hubs are highly prognostic in GBM patients. CONCLUSION The compendium of programs presented here provides a basis for rational targeting of tumor and/or TME components. We anticipate that our approach will facilitate an ecosystem-level understanding of the immediate and long-term consequences of such perturbations, including the identification of compensatory programs that will inform improved combinatorial therapies.
Collapse
Affiliation(s)
- Varsha Thoppey Manoharan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Aly Abdelkareem
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Gurveer Gill
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Samuel Brown
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Aaron Gillmor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Courtney Hall
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Heewon Seo
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Kiran Narta
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Sean Grewal
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Kata Osz
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Laura Mah
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Franz Zemp
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Douglas Mahoney
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Donna L Senger
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - A Sorana Morrissy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
6
|
Xu H, Chai H, Chen M, Zhu R, Jiang S, Liu X, Wang Y, Chen J, Wei J, Mao Y, Shi Z. Single-cell RNA sequencing identifies a subtype of FN1 + tumor-associated macrophages associated with glioma recurrence and as a biomarker for immunotherapy. Biomark Res 2024; 12:114. [PMID: 39375795 PMCID: PMC11457430 DOI: 10.1186/s40364-024-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Glioma is the most common primary malignant tumor in the brain, and even with standard treatments including surgical resection, radiotherapy, and chemotherapy, the long-term survival rate of patients remains unsatisfactory. Recurrence is one of the leading causes of death in glioma patients. The molecular mechanisms underlying glioma recurrence remain unclear. METHODS Our study utilized single-cell sequencing, spatial transcriptomics, and RNA-seq data to identify a subtype of FN1 + tumor-associated macrophages (FN1 + TAMs) associated with glioma recurrence. RESULTS This study revealed an increased abundance of FN1 + TAMs in recurrent gliomas, indicating their potential involvement as a critical factor in glioma recurrence. A negative correlation was observed between the abundance of FN1 + TAMs in primary gliomas and the interval time to recurrence, suggesting poor prognosis for glioma patients with high levels of FN1 + TAMs. Further investigation showed that FN1 + TAMs were enriched in hypoxic tumor regions, implying that metabolic changes in tumors drive the production and recruitment of FN1 + TAMs. Additionally, FN1 + TAMs were found to contribute to the regulation of an immunosuppressive microenvironment in gliomas, and their abundance might serve as an indicator of patients' sensitivity to immunotherapy. Finally, we developed a user-friendly website, PRIMEG ( http://www.szflab.site/PRIMEG/ ), for exploring the immune microenvironment of primary and recurrent gliomas. CONCLUSION Our findings highlight a subtype of FN1 + TAMs associated with glioma recurrence, providing new insights into potential therapeutic targets. Moreover, the abundance of FN1 + TAMs hold promise for predicting immune therapy response and aiding in more precise risk stratification of recurrent glioma patients.
Collapse
Affiliation(s)
- Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huihui Chai
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Chen
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruize Zhu
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Jiang
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yue Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawen Chen
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Ying Mao
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhifeng Shi
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Lee SH, Kim TG, Ryu KH, Kim SH, Kim YZ. CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines 2024; 12:2256. [PMID: 39457569 PMCID: PMC11505494 DOI: 10.3390/biomedicines12102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: We primarily investigated the prognostic role of CDKN2A homozygous deletion in CNS WHO grade 4 gliomas. Additionally, we plan to examine traditional prognostic factors for grade 4 gliomas and validate the findings. Materials: We conducted a retrospective analysis of the glioma cohorts at our institute. We reviewed medical records spanning a 15-year period and examined pathological slides for an updated diagnosis according to the 2021 WHO classification of CNS tumors. We examined the IDH1/2 mutation and CDKN2A deletion using NGS analysis with ONCOaccuPanel®. Further, we examined traditional prognostic factors, including age, WHO performance status, extent of resection, and MGMT promoter methylation status. Results: The mean follow-up duration was 27.5 months (range: 4.1-43.5 months) and mean overall survival (OS) was 20.7 months (SD, ±1.759). After the exclusion of six patients with a poor status of pathologic samples, a total of 136 glioblastoma cases diagnosed by previous WHO classification criteria were newly classified into 29 (21.3%) astrocytoma, IDH-mutant, and CNS WHO grade 4 cases, and 107 (78.7%) glioblastoma, IDH-wildtype, and CNS WHO grade 4 cases. Among them, 61 (56.0%) had CDKN2A deletions. The high-risk group with CDKN2A deletion regardless of IDH1/2 mutation had a mean OS of 16.65 months (SD, ±1.554), the intermediate-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 21.85 months (SD, ±2.082), and the low-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 33.38 months (SD, ±2.946). Multifactor analysis showed that age (≥50 years vs. <50 years; HR 4.645), WHO performance (0, 1 vs. 2; HR 5.002), extent of resection (gross total resection vs. others; HR 5.528), MGMT promoter methylation, (methylated vs. unmethylated; HR 5.078), IDH1/2 mutation (mutant vs. wildtype; HR 6.352), and CDKN2A deletion (absence vs. presence; HR 13.454) were associated with OS independently. Conclusions: The present study suggests that CDKN2A deletion plays a powerful prognostic role in CNS WHO grade 4 gliomas. Even if CNS WHO grade 4 gliomas have mutant IDH1/2, they may have poor clinical outcomes because of CDKN2A deletion.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Kyeong Hwa Ryu
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Seok Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Young Zoon Kim
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| |
Collapse
|
8
|
Li W, Shi H, He J. Elevated SH3 and Multiple Ankyrin Repeat Domains 2 Expression Correlates With Improved Glioma Prognosis. Int J Genomics 2024; 2024:6565925. [PMID: 39397895 PMCID: PMC11469935 DOI: 10.1155/2024/6565925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
This study investigates the prognostic significance of SH3 and multiple ankyrin repeat domains 2 (SHANK2) gene expression in glioma patients, using data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and the Gene Expression Omnibus (GEO). Through comprehensive analysis, we found a significant association between higher SHANK2 expression and improved survival outcomes across various glioma subtypes. To further validate the clinical relevance of SHANK2, we conducted cellular experiments involving siRNA-mediated knockdown of SHANK2 in U87 and A172 glioma cell lines. Quantitative real-time PCR (qPCR) and Western blot analyses confirmed the successful knockdown of SHANK2, and subsequent MTT assays revealed that silencing SHANK2 significantly promoted glioma cell proliferation. These findings underscore the potential role of SHANK2 as a tumor suppressor in glioma. The study also introduces a multivariate prognostic model incorporating SHANK2, providing a novel perspective on glioma prognosis. While the retrospective nature of the study presents limitations, our results suggest that SHANK2 expression could serve as a valuable biomarker for glioma prognosis and inform future therapeutic strategies.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, China
| | - Haiping Shi
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, China
| | - Jimin He
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
9
|
Grabiec M, Sobstyl M, Skirecki T. Nod-like receptors: The relevant elements of glioblastoma`s prognostic puzzle. Pharmacol Res 2024; 208:107411. [PMID: 39270948 DOI: 10.1016/j.phrs.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Despite considerable improvements in understanding the biology of glioblastoma (GB), it still remains the most lethal type of brain tumor in adults. The role of innate immune cells in the development of GB was recently described. In particular, the tumor-immune cell interactions are thought to be critical in enabling tumor tolerance and even protection against therapeutics. Interestingly, the GB cells express proteins belonging to the family of intracellular pattern-recognition receptors, namely the NOD-like receptors (NLRs). Their activation may trigger the formation of the inflammasome complex leading to the secretion of mature IL-1β and IL-18 and thus resulting in cell death. Intrudingly, the expression of most NLRs was found to be correlated with tumor progression and poor prognosis. We speculate that recognizing the role of NOD-like receptors in GB has the potential to improve the effectiveness of diagnostic tools and prognosis, while also encouraging the development of novel precision medicine-based therapies.
Collapse
Affiliation(s)
- Marta Grabiec
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
10
|
Hotchkiss KM, Karschnia P, Schreck KC, Geurts M, Cloughesy TF, Huse J, Duke ES, Lathia J, Ashley DM, Nduom EK, Long G, Singh K, Chalmers A, Ahluwalia MS, Heimberger A, Bagley S, Todo T, Verhaak R, Kelly PD, Hervey-Jumper S, de Groot J, Patel A, Fecci P, Parney I, Wykes V, Watts C, Burns TC, Sanai N, Preusser M, Tonn JC, Drummond KJ, Platten M, Das S, Tanner K, Vogelbaum MA, Weller M, Whittle JR, Berger MS, Khasraw M. A brave new framework for glioma drug development. Lancet Oncol 2024; 25:e512-e519. [PMID: 39362262 DOI: 10.1016/s1470-2045(24)00190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 10/05/2024]
Abstract
Patients with brain tumours are motivated to participate in clinical trials involving repeat tissue sampling. Normalising the use of neoadjuvant and staged surgical trials necessitates collaboration among patients, regulatory agencies, and researchers. Initial and repetitive tissue sampling plays a crucial role in enhancing our understanding of resistance mechanisms and vulnerabilities in brain tumour therapy. Standardising biopsy techniques and ensuring technical uniformity across institutions are vital for effective interinstitutional collaboration. Although liquid biopsy technologies hold promise, they are not yet ready to replace tissue analysis. Clear communication about the risks and benefits of biopsies is essential, particularly regarding potential postoperative deficits. Changes in mindset and neurosurgical culture are imperative to achieve much needed breakthroughs in the development of new, effective therapies for brain tumours.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Philipp Karschnia
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany; Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Karisa C Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marjolein Geurts
- Department of Neurology, Erasmus MC Cancer Center, Rotterdam, Netherlands; Department of Medical Oncology, Erasmus MC Cancer Center, Rotterdam, Netherlands
| | | | - Jason Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth S Duke
- Division of Oncology 2, Office of Oncologic Diseases, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Justin Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Edjah K Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Mater and Royal North Shore Hospitals, Sydney, NSW, Australia
| | - Kirit Singh
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Amy Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Stephen Bagley
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tomoki Todo
- Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Roel Verhaak
- Department of Surgical Neuro-Oncology, Yale University, New Haven, CT, USA
| | - Patrick D Kelly
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, UCSF Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - John de Groot
- Department of Neurological Surgery, UCSF Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Anoop Patel
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Peter Fecci
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Ian Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Victoria Wykes
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK; Department of Neurosurgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK; Department of Neurosurgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Nader Sanai
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Joerg Christian Tonn
- Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Michael Platten
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; Clinical Cooperation Unit Brain Tumor Immunology (D170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sunit Das
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Kirk Tanner
- National Brain Tumor Society, Newton, MA, USA
| | | | - Michael Weller
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - James R Whittle
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Personalised Oncology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Mitchel S Berger
- Department of Neurological Surgery, UCSF Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA; Weill Institute for Neuroscience, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
12
|
Niu X, Zhang Y, Wang Y. Co-culture models for investigating cellular crosstalk in the glioma microenvironment. CANCER PATHOGENESIS AND THERAPY 2024; 2:219-230. [PMID: 39371093 PMCID: PMC11447344 DOI: 10.1016/j.cpt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Glioma is the most prevalent primary malignant tumor in the central nervous system (CNS). It represents a diverse group of brain malignancies characterized by the presence of various cancer cell types as well as an array of noncancerous cells, which together form the intricate glioma tumor microenvironment (TME). Understanding the interactions between glioma cells/glioma stem cells (GSCs) and these noncancerous cells is crucial for exploring the pathogenesis and development of glioma. To invesigate these interactions requires in vitro co-culture models that closely mirror the actual TME in vivo. In this review, we summarize the two- and three-dimensional in vitro co-culture model systems for glioma-TME interactions currently available. Furthermore, we explore common glioma-TME cell interactions based on these models, including interactions of glioma cells/GSCs with endothelial cells/pericytes, microglia/macrophages, T cells, astrocytes, neurons, or other multi-cellular interactions. Together, this review provides an update on the glioma-TME interactions, offering insights into glioma pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Lee S, Weiss T, Bühler M, Mena J, Lottenbach Z, Wegmann R, Sun M, Bihl M, Augustynek B, Baumann SP, Goetze S, van Drogen A, Pedrioli PGA, Penton D, Festl Y, Buck A, Kirschenbaum D, Zeitlberger AM, Neidert MC, Vasella F, Rushing EJ, Wollscheid B, Hediger MA, Weller M, Snijder B. High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity. Nat Med 2024:10.1038/s41591-024-03224-y. [PMID: 39304781 DOI: 10.1038/s41591-024-03224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Glioblastoma, the most aggressive primary brain cancer, has a dismal prognosis, yet systemic treatment is limited to DNA-alkylating chemotherapies. New therapeutic strategies may emerge from exploring neurodevelopmental and neurophysiological vulnerabilities of glioblastoma. To this end, we systematically screened repurposable neuroactive drugs in glioblastoma patient surgery material using a clinically concordant and single-cell resolved platform. Profiling more than 2,500 ex vivo drug responses across 27 patients and 132 drugs identified class-diverse neuroactive drugs with potent anti-glioblastoma efficacy that were validated across model systems. Interpretable molecular machine learning of drug-target networks revealed neuroactive convergence on AP-1/BTG-driven glioblastoma suppression, enabling expanded in silico screening of more than 1 million compounds with high patient validation accuracy. Deep multimodal profiling confirmed Ca2+-driven AP-1/BTG-pathway induction as a neuro-oncological glioblastoma vulnerability, epitomized by the anti-depressant vortioxetine synergizing with current standard-of-care chemotherapies in vivo. These findings establish an actionable framework for glioblastoma treatment rooted in its neural etiology.
Collapse
Affiliation(s)
- Sohyon Lee
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marcel Bühler
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Julien Mena
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Zuzanna Lottenbach
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Rebekka Wegmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Miaomiao Sun
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michel Bihl
- Institute of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sven P Baumann
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Patrick G A Pedrioli
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - David Penton
- Electrophysiology Facility, University of Zurich, Zurich, Switzerland
| | - Yasmin Festl
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Department of Neuropathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anna M Zeitlberger
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M, Sánchez-López E, Fontein B, Mertz M, Nieuwland M, Liu NQ, Forn-Cuni G, van der Wel NN, Grootemaat AE, Reinalda L, van Kasteren SI, de Wit E, Ruffell B, Snaar-Jagalska E, Petrecca K, Brandsma D, Kros A, Giera M, Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024; 187:5336-5356.e30. [PMID: 39137777 PMCID: PMC11429458 DOI: 10.1016/j.cell.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Daan J Kloosterman
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Martina Farber
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Shanna M Handgraaf
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Masami Ando-Kuri
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bauke Fontein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marjolijn Mertz
- Bioimaging Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gabriel Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Luuk Reinalda
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sander I van Kasteren
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Brian Ruffell
- Department of Immunology, Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University Health Centre and Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066CX Amsterdam, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Grewal EP, Richardson LGK, Sun J, Ramapriyan R, Martinez-Lage M, Miller JJ, Carter BS, Cahill DP, Curry WT, Choi BD. Mutant IDH Modulates Suppressive Myeloid Populations in Malignant Glioma. Clin Cancer Res 2024; 30:4068-4076. [PMID: 39042445 PMCID: PMC11426330 DOI: 10.1158/1078-0432.ccr-24-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Mutations in the isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 have critical diagnostic and prognostic significance in diffuse gliomas. Neomorphic mutant IDH activity has been previously implicated in T-cell suppression; however, the effects of IDH mutations on intratumoral myeloid populations remain underexplored. In this study, we investigate the influence of IDH status on the myeloid compartment using human glioma specimens and preclinical models. EXPERIMENTAL DESIGN We performed RNA sequencing and quantitative immunofluorescence on newly diagnosed, treatment-naive IDH-mutant grade 4 astrocytoma and IDH-wild-type (IDH-WT) glioblastoma (GBM) specimens. We also generated a syngeneic murine model, comparing transcriptomic and cell-level changes in paired isogenic glioma lines that differ only in IDH mutational status. RESULTS Among patient samples, IDH-mutant tumors displayed an underrepresentation of suppressive myeloid transcriptional signatures, which was confirmed at the cellular level with decreased numbers of intratumoral M2-like macrophages and myeloid-derived suppressor cells. Introduction of the mutant IDH enzyme into murine glioma was sufficient to recapitulate the transcriptomic and cellular shifts observed in patient samples. CONCLUSIONS We provide transcriptomic and cellular evidence that mutant IDH is associated with a quantitative reduction of suppressive myeloid cells in gliomas and that introduction of the mutant enzyme is sufficient to result in corresponding cellular changes using an in vivo preclinical model. These data advance our understanding of high-grade gliomas by identifying key myeloid cell populations that are reprogrammed by mutant IDH and may be targetable through therapeutic approaches.
Collapse
Affiliation(s)
- Eric P Grewal
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Julie J Miller
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Nuechterlein N, Cimino S, Shelbourn A, Ha V, Arora S, Rajan S, Shapiro LG, Holland EC, Aldape K, McGranahan T, Gilbert MR, Cimino PJ. HOXD12 defines an age-related aggressive subtype of oligodendroglioma. Acta Neuropathol 2024; 148:41. [PMID: 39259414 PMCID: PMC11390787 DOI: 10.1007/s00401-024-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted has highly variable outcomes that are strongly influenced by patient age. The distribution of oligodendroglioma age is non-Gaussian and reportedly bimodal, which motivated our investigation of age-associated molecular alterations that may drive poorer outcomes. We found that elevated HOXD12 expression was associated with both older patient age and shorter survival in the TCGA (FDR < 0.01, FDR = 1e-5) and the CGGA (p = 0.03, p < 1e-3). HOXD12 gene body hypermethylation was associated with older age, higher WHO grade, and shorter survival in the TCGA (p < 1e-6, p < 0.001, p < 1e-3) and with older age and higher WHO grade in Capper et al. (p < 0.002, p = 0.014). In the TCGA, HOXD12 gene body hypermethylation and elevated expression were independently prognostic of NOTCH1 and PIK3CA mutations, loss of 15q, MYC activation, and standard histopathological features. Single-nucleus RNA and ATAC sequencing data showed that HOXD12 activity was elevated in neoplastic tissue, particularly within cycling and OPC-like cells, and was associated with a stem-like phenotype. A pan-HOX DNA methylation analysis revealed an age and survival-associated HOX-high signature that was tightly associated with HOXD12 gene body methylation. Overall, HOXD12 expression and gene body hypermethylation were associated with an older, atypically aggressive subtype of oligodendroglioma.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sadie Cimino
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Vinny Ha
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linda G Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tresa McGranahan
- Division of Hematology and Oncology, Scripps Cancer Center, La Jolla, CA, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Harwood DSL, Pedersen V, Bager NS, Schmidt AY, Stannius TO, Areškevičiūtė A, Josefsen K, Nørøxe DS, Scheie D, Rostalski H, Lü MJS, Locallo A, Lassen U, Bagger FO, Weischenfeldt J, Heiland DH, Vitting-Seerup K, Michaelsen SR, Kristensen BW. Glioblastoma cells increase expression of notch signaling and synaptic genes within infiltrated brain tissue. Nat Commun 2024; 15:7857. [PMID: 39251578 PMCID: PMC11385527 DOI: 10.1038/s41467-024-52167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Glioblastoma remains one of the deadliest brain malignancies. First-line therapy consists of maximal surgical tumor resection, accompanied by chemotherapy and radiotherapy. Malignant cells escape surgical resection by migrating into the surrounding healthy brain tissue, where they give rise to the recurrent tumor. Based on gene expression, tumor cores can be subtyped into mesenchymal, proneural, and classical tumors, each being associated with differences in genetic alterations and cellular composition. In contrast, the adjacent brain parenchyma where infiltrating malignant cells escape surgical resection is less characterized in patients. Using spatial transcriptomics (n = 11), we show that malignant cells within proneural or mesenchymal tumor cores display spatially organized differences in gene expression, although such differences decrease within the infiltrated brain tissue. Malignant cells residing in infiltrated brain tissue have increased expression of genes related to neurodevelopmental pathways and glial cell differentiation. Our findings provide an updated view of the spatial landscape of glioblastomas and further our understanding of the malignant cells that infiltrate the healthy brain, providing new avenues for the targeted therapy of these cells after surgical resection.
Collapse
Affiliation(s)
- Dylan Scott Lykke Harwood
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Vilde Pedersen
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Schou Bager
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ane Yde Schmidt
- Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Aušrinė Areškevičiūtė
- Danish Reference Center for Prion Diseases, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Knud Josefsen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorte Schou Nørøxe
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Rostalski
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maya Jeje Schuang Lü
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Alessio Locallo
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Kristoffer Vitting-Seerup
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Signe Regner Michaelsen
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
18
|
Li L, Zhang T, Xiao M, Lu Y, Gao L. Brain macrophage senescence in glioma. Semin Cancer Biol 2024; 104-105:46-60. [PMID: 39098625 DOI: 10.1016/j.semcancer.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Gliomas are a diverse group of primary central nervous system neoplasms with no curative therapies available. Brain macrophages comprise microglia in the brain parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space and monocyte-derived macrophages infiltrating the brain. With the great improvement of our recognition of brain macrophages, diverse macrophage populations have been found in the context of glioma, which exhibit functional and phenotypic heterogeneity. We have long thought that brain macrophage senescence is detrimental, manifested by specialized forms of persistent cell cycle arrest and chronic low-grade inflammation. Persistent senescence of macrophages may result in immune dysfunction, potentially contributing to glioma initiation and development. Given the crucial roles played by brain macrophages in glioma, we unravel how brain macrophages undergo reprogramming and their contribution to glioma. We outline general molecular alterations and specific biomarkers in senescent brain macrophages, as well as functional changes (such as metabolism, autophagy, phagocytosis, antigen presentation, and infiltration and recruitment). In addition, recent advances in genetic regulation and mechanisms linked to senescent brain macrophages are discussed. In particular, this review emphasizes the contribution of senescent brain macrophages to glioma, which may drive translational efforts to utilize brain macrophages as a prognostic marker or/and treatment target in glioma. An in-depth comprehending of how brain macrophage senescence functionally influences the tumor microenvironment will be key to our development of innovative therapeutics for glioma.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Tianhe Zhang
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Meiling Xiao
- Department of Rehabilitation, The Central Hospital of Shenyang Medical College, Shenyang, Liaoning 110024, China
| | - Yu Lu
- Rehabilitation Medicine Department, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China.
| | - Lin Gao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
19
|
Motevasseli M, Darvishi M, Khoshnevisan A, Zeinalizadeh M, Saffar H, Bayat S, Najafi A, Abbaspour MJ, Mamivand A, Olson SB, Tabrizi M. Distinct tumor-TAM interactions in IDH-stratified glioma microenvironments unveiled by single-cell and spatial transcriptomics. Acta Neuropathol Commun 2024; 12:133. [PMID: 39148129 PMCID: PMC11328419 DOI: 10.1186/s40478-024-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Tumor-associated macrophages (TAMs) residing in the tumor microenvironment (TME) are characterized by their pivotal roles in tumor progression, antitumor immunity, and TME remodeling. However, a thorough comparative characterization of tumor-TAM crosstalk across IDH-defined categories of glioma remains elusive, likely contributing to mixed outcomes in clinical trials. We delineated the phenotypic heterogeneity of TAMs across IDH-stratified gliomas. Notably, two TAM subsets with a mesenchymal phenotype were enriched in IDH-WT glioblastoma (GBM) and correlated with poorer patient survival and reduced response to anti-PD-1 immune checkpoint inhibitor (ICI). We proposed SLAMF9 receptor as a potential therapeutic target. Inference of gene regulatory networks identified PPARG, ELK1, and MXI1 as master transcription factors of mesenchymal BMD-TAMs. Our analyses of reciprocal tumor-TAM interactions revealed distinct crosstalk in IDH-WT tumors, including ANXA1-FPR1/3, FN1-ITGAVB1, VEGFA-NRP1, and TNFSF12-TNFRSF12A with known contribution to immunosuppression, tumor proliferation, invasion and TAM recruitment. Spatially resolved transcriptomics further elucidated the architectural organization of highlighted communications. Furthermore, we demonstrated significant upregulation of ANXA1, FN1, NRP1, and TNFRSF12A genes in IDH-WT tumors using bulk RNA-seq and RT-qPCR. Longitudinal expression analysis of candidate genes revealed no difference between primary and recurrent tumors indicating that the interactive network of malignant states with TAMs does not drastically change upon recurrence. Collectively, our study offers insights into the unique cellular composition and communication of TAMs in glioma TME, revealing novel vulnerabilities for therapeutic interventions in IDH-WT GBM.
Collapse
Affiliation(s)
- Meysam Motevasseli
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Darvishi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshnevisan
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Bayat
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Abbaspour
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mamivand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan B Olson
- Molecular and Medical Genetics, Knight Diagnostics Laboratories, Oregon Health and Science University, Portland, OR, USA
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Molecular and Medical Genetics, Knight Diagnostics Laboratories, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
20
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024. [PMID: 39148319 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
- Barts Brain Tumour Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
21
|
Norton ES, Whaley LA, Jones VK, Brooks MM, Russo MN, Morderer D, Jessen E, Schiapparelli P, Ramos-Fresnedo A, Zarco N, Carrano A, Rossoll W, Asmann YW, Lam TT, Chaichana KL, Anastasiadis PZ, Quiñones-Hinojosa A, Guerrero-Cázares H. Cell-specific cross-talk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. SCIENCE ADVANCES 2024; 10:eadn1607. [PMID: 39110807 PMCID: PMC11305394 DOI: 10.1126/sciadv.adn1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially because of subventricular zone contact. Despite this, cross-talk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. In addition, GBM brain tumor-initiating cells (BTICs) increase expression of cathepsin B (CTSB) upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal that both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Last, we show LV-proximal CTSB up-regulation in patients, showing the relevance of this cross-talk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM.
Collapse
Affiliation(s)
- Emily S. Norton
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
- Regenerative Sciences Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lauren A. Whaley
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Vanessa K. Jones
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Mieu M. Brooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marissa N. Russo
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Erik Jessen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - TuKiet T. Lam
- Keck MS and Proteomics Resource, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
22
|
Hendriksen JD, Locallo A, Maarup S, Debnath O, Ishaque N, Hasselbach B, Skjøth-Rasmussen J, Yde CW, Poulsen HS, Lassen U, Weischenfeldt J. Immunotherapy drives mesenchymal tumor cell state shift and TME immune response in glioblastoma patients. Neuro Oncol 2024; 26:1453-1466. [PMID: 38695342 PMCID: PMC11300009 DOI: 10.1093/neuonc/noae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive type of brain tumor for which there is no curative treatment available. Immunotherapies have shown limited responses in unselected patients, and there is an urgent need to identify mechanisms of treatment resistance to design novel therapy strategies. METHODS Here we investigated the phenotypic and transcriptional dynamics at single-cell resolution during nivolumab immune checkpoint treatment of glioblastoma patients. RESULTS We present the integrative paired single-cell RNA-seq analysis of 76 tumor samples from patients in a clinical trial of the PD-1 inhibitor nivolumab and untreated patients. We identify a distinct aggressive phenotypic signature in both tumor cells and the tumor microenvironment in response to nivolumab. Moreover, nivolumab-treatment was associated with an increased transition to mesenchymal stem-like tumor cells, and an increase in TAMs and exhausted and proliferative T cells. We verify and extend our findings in large external glioblastoma dataset (n = 298), develop a latent immune signature and find 18% of primary glioblastoma samples to be latent immune, associated with mesenchymal tumor cell state and TME immune response. Finally, we show that latent immune glioblastoma patients are associated with shorter overall survival following immune checkpoint treatment (P = .0041). CONCLUSIONS We find a resistance mechanism signature in one fifth of glioblastoma patients associated with a tumor-cell transition to a more aggressive mesenchymal-like state, increase in TAMs and proliferative and exhausted T cells in response to immunotherapy. These patients may instead benefit from neuro-oncology therapies targeting mesenchymal tumor cells.
Collapse
Affiliation(s)
- Josephine D Hendriksen
- The Finsen Laboratory, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
| | - Alessio Locallo
- The Finsen Laboratory, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
| | - Simone Maarup
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Radiation Biology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Olivia Debnath
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Benedikte Hasselbach
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Oncology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Neurosurgery, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Christina Westmose Yde
- Department of Genomic Medicine, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Hans S Poulsen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Radiation Biology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Oncology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- The Finsen Laboratory, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
| |
Collapse
|
23
|
Ishahak M, Han RH, Annamalai D, Woodiwiss T, McCornack C, Cleary RT, DeSouza PA, Qu X, Dahiya S, Kim AH, Millman JR. Modeling glioblastoma tumor progression via CRISPR-engineered brain organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606387. [PMID: 39211284 PMCID: PMC11361109 DOI: 10.1101/2024.08.02.606387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, we develop engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression. Single-cell and spatial transcriptomic analyses revealed that these mutations disrupt normal neurodevelopment gene regulatory networks resulting in changes in cellular composition and spatial organization. Upon xenotransplantation into immunodeficient mice, eGBOs form tumors that recapitulate the transcriptional and spatial landscape of human GBM samples. Integrative single-cell trajectory analysis of both eGBO-derived tumor cells and patient GBM samples revealed the dynamic gene expression changes in developmental cell states underlying tumor progression. This analysis of eGBOs provides an important validation of engineered cancer organoid models and demonstrates their utility as a model of GBM tumorigenesis for future preclinical development of therapeutics.
Collapse
|
24
|
Yang X, Niu W, Wu K, Li X, Hou H, Tan Y, Wang X, Yang G, Wang L, Zhang H. Diffusion kurtosis imaging-based habitat analysis identifies high-risk molecular subtypes and heterogeneity matching in diffuse gliomas. Ann Clin Transl Neurol 2024; 11:2073-2087. [PMID: 38887966 PMCID: PMC11330218 DOI: 10.1002/acn3.52128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE High-risk types of diffuse gliomas in adults include isocitrate dehydrogenase (IDH) wild-type glioblastomas and grade 4 astrocytomas. Achieving noninvasive prediction of high-risk molecular subtypes of gliomas is important for personalized and precise diagnosis and treatment. METHODS We retrospectively collected data from 116 patients diagnosed with adult diffuse gliomas. Multiple high-risk molecular markers were tested, and various habitat models and whole-tumor models were constructed based on preoperative routine and diffusion kurtosis imaging (DKI) sequences to predict high-risk molecular subtypes of gliomas. Feature selection and model construction utilized Least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM). Finally, the Wilcoxon rank-sum test was employed to explore the correlation between habitat quantitative features (intra-tumor heterogeneity score,ITH score) and heterogeneity, as well as high-risk molecular subtypes. RESULTS The results showed that the habitat analysis model based on DKI performed remarkably well (with AUC values reaching 0.977 and 0.902 in the training and test sets, respectively). The model's performance was further enhanced when combined with clinical variables. (The AUC values were 0.994 and 0.920, respectively.) Additionally, we found a close correlation between ITH score and heterogeneity, with statistically significant differences observed between high-risk and non-high-risk molecular subtypes. INTERPRETATION The habitat model based on DKI is an ideal means for preoperatively predicting high-risk molecular subtypes of gliomas, holding significant value for noninvasively alerting malignant gliomas and those with malignant transformation potential.
Collapse
Affiliation(s)
- Xiangli Yang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuan030032China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Wenju Niu
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Kai Wu
- Department of Information ManagementFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiang Li
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
| | - Heng Hou
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Yan Tan
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiaochun Wang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Guoqiang Yang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
- Shanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Lei Wang
- Beijing Tiantan HospitalCapital Medical UniversityBeijing100050China
| | - Hui Zhang
- Department of RadiologyFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- College of Medical Imaging, Shanxi Medical UniversityTaiyuan030001China
- Shanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
- Intelligent Imaging Big Data and Functional Nano‐imaging Engineering Research Center of Shanxi ProvinceFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
25
|
Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater 2024; 13:e2400514. [PMID: 38652681 DOI: 10.1002/adhm.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Haifeng Yang
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
26
|
Lin MD, Tsai ACY, Abdullah KG, McBrayer SK, Shi DD. Treatment of IDH-mutant glioma in the INDIGO era. NPJ Precis Oncol 2024; 8:149. [PMID: 39025958 PMCID: PMC11258219 DOI: 10.1038/s41698-024-00646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Gliomas are the most common primary brain tumor and are uniformly lethal. Despite significant advancements in understanding the genetic landscape of gliomas, standard-of-care has remained largely unchanged. Subsets of gliomas are defined by gain-of-function mutations in the metabolic genes encoding isocitrate dehydrogenase (IDH). Efforts to exploit mutant IDH activity and/or directly inhibit it with mutant IDH inhibitors have been the focus of over a decade of research. The recently published INDIGO trial, demonstrating the benefit of the mutant IDH inhibitor vorasidenib in patients with low-grade IDH-mutant gliomas, introduces a new era of precision medicine in brain tumors that is poised to change standard-of-care. In this review, we highlight and contextualize the results of the INDIGO trial and introduce key questions whose answers will guide how mutant IDH inhibitors may be used in the clinic. We discuss possible combination therapies with mutant IDH inhibition and future directions for clinical and translational research.
Collapse
Affiliation(s)
- Mathew D Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alexander C-Y Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diana D Shi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.
| |
Collapse
|
27
|
Verhey TB, Seo H, Gillmor A, Thoppey-Manoharan V, Schriemer D, Morrissy S. mosaicMPI: a framework for modular data integration across cohorts and -omics modalities. Nucleic Acids Res 2024; 52:e53. [PMID: 38813827 PMCID: PMC11229337 DOI: 10.1093/nar/gkae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Advances in molecular profiling have facilitated generation of large multi-modal datasets that can potentially reveal critical axes of biological variation underlying complex diseases. Distilling biological meaning, however, requires computational strategies that can perform mosaic integration across diverse cohorts and datatypes. Here, we present mosaicMPI, a framework for discovery of low to high-resolution molecular programs representing both cell types and states, and integration within and across datasets into a network representing biological themes. Using existing datasets in glioblastoma, we demonstrate that this approach robustly integrates single cell and bulk programs across multiple platforms. Clinical and molecular annotations from cohorts are statistically propagated onto this network of programs, yielding a richly characterized landscape of biological themes. This enables deep understanding of individual tumor samples, systematic exploration of relationships between modalities, and generation of a reference map onto which new datasets can rapidly be mapped. mosaicMPI is available at https://github.com/MorrissyLab/mosaicMPI.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Heewon Seo
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - Aaron Gillmor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - Varsha Thoppey-Manoharan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - David Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - Sorana Morrissy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Liu J, Cao S, Imbach KJ, Gritsenko MA, Lih TSM, Kyle JE, Yaron-Barir TM, Binder ZA, Li Y, Strunilin I, Wang YT, Tsai CF, Ma W, Chen L, Clark NM, Shinkle A, Naser Al Deen N, Caravan W, Houston A, Simin FA, Wyczalkowski MA, Wang LB, Storrs E, Chen S, Illindala R, Li YD, Jayasinghe RG, Rykunov D, Cottingham SL, Chu RK, Weitz KK, Moore RJ, Sagendorf T, Petyuk VA, Nestor M, Bramer LM, Stratton KG, Schepmoes AA, Couvillion SP, Eder J, Kim YM, Gao Y, Fillmore TL, Zhao R, Monroe ME, Southard-Smith AN, Li YE, Jui-Hsien Lu R, Johnson JL, Wiznerowicz M, Hostetter G, Newton CJ, Ketchum KA, Thangudu RR, Barnholtz-Sloan JS, Wang P, Fenyö D, An E, Thiagarajan M, Robles AI, Mani DR, Smith RD, Porta-Pardo E, Cantley LC, Iavarone A, Chen F, Mesri M, Nasrallah MP, Zhang H, Resnick AC, Chheda MG, Rodland KD, Liu T, Ding L. Multi-scale signaling and tumor evolution in high-grade gliomas. Cancer Cell 2024; 42:1217-1238.e19. [PMID: 38981438 PMCID: PMC11337243 DOI: 10.1016/j.ccell.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.
Collapse
Affiliation(s)
- Jingxian Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Kathleen J Imbach
- Josep Carreras Leukaemia Research Institute, Badalona, Spain; Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ilya Strunilin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Natalie M Clark
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Faria Anjum Simin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ritvik Illindala
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuping D Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tyler Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael Nestor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Josie Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Thomas L Fillmore
- Department of Pathology, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yang E Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, Poznań, Poland; Poznan University of Medical Sciences, Poznań, Poland
| | | | | | | | | | - Jill S Barnholtz-Sloan
- Center for Biomedical Informatics and Information Technology & Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Iavarone
- Department of Neurological Surgery and Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - MacLean P Nasrallah
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Karin D Rodland
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Wang M, Xie Y, Liu J, Li A, Chen L, Stromberg A, Arnold SM, Liu C, Wang C. A Probabilistic Approach to Estimate the Temporal Order of Pathway Mutations Accounting for Intra-Tumor Heterogeneity. Cancers (Basel) 2024; 16:2488. [PMID: 39001551 PMCID: PMC11240401 DOI: 10.3390/cancers16132488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The development of cancer involves the accumulation of somatic mutations in several essential biological pathways. Delineating the temporal order of pathway mutations during tumorigenesis is crucial for comprehending the biological mechanisms underlying cancer development and identifying potential targets for therapeutic intervention. Several computational and statistical methods have been introduced for estimating the order of somatic mutations based on mutation profile data from a cohort of patients. However, one major issue of current methods is that they do not take into account intra-tumor heterogeneity (ITH), which limits their ability to accurately discern the order of pathway mutations. To address this problem, we propose PATOPAI, a probabilistic approach to estimate the temporal order of mutations at the pathway level by incorporating ITH information as well as pathway and functional annotation information of mutations. PATOPAI uses a maximum likelihood approach to estimate the probability of pathway mutational events occurring in a specific sequence, wherein it focuses on the orders that are consistent with the phylogenetic structure of the tumors. Applications to whole exome sequencing data from The Cancer Genome Atlas (TCGA) illustrate our method's ability to recover the temporal order of pathway mutations in several cancer types.
Collapse
Affiliation(s)
- Menghan Wang
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA; (M.W.); (A.S.)
| | - Yanqi Xie
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA; (Y.X.); (C.L.)
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Austin Li
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA;
| | - Li Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA; (M.W.); (A.S.)
| | - Susanne M. Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chunming Liu
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA; (Y.X.); (C.L.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
| | - Chi Wang
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA; (M.W.); (A.S.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (J.L.); (L.C.); (S.M.A.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
30
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
31
|
Cheng HS, Chong YK, Lim EKY, Lee XY, Pang QY, Novera W, Marvalim C, Lee JXT, Ang BT, Tang C, Tan NS. Dual p38MAPK and MEK inhibition disrupts adaptive chemoresistance in mesenchymal glioblastoma to temozolomide. Neuro Oncol 2024; 26:1247-1261. [PMID: 38366847 PMCID: PMC11226874 DOI: 10.1093/neuonc/noae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Precision treatment of glioblastoma is increasingly focused on molecular subtyping, with the mesenchymal subtype particularly resistant to temozolomide. Here, we aim to develop a targeted therapy for temozolomide resensitization in the mesenchymal subtype. METHODS We integrated kinomic profiles and kinase inhibitor screens from patient-derived proneural and mesenchymal glioma-propagating cells and public clinical datasets to identify key protein kinases implicated in temozolomide resistance. RNAseq, apoptosis assays, and comet assays were used to examine the role of p38MAPK signaling and adaptive chemoresistance in mesenchymal cells. The efficacy of dual p38MAPK and MEK/ERK inhibition using ralimetinib (selective orally active p38MAPK inhibitor; phase I/II for glioblastoma) and binimetinib (approved MEK1/2 inhibitor for melanoma; phase II for high-grade glioma) in primary and recurrent mesenchymal tumors was evaluated using an intracranial patient-derived tumor xenograft model, focusing on survival analysis. RESULTS Our transcriptomic-kinomic integrative analysis revealed p38MAPK as the prime target whose gene signature enables patient stratification based on their molecular subtypes and provides prognostic value. Repurposed p38MAPK inhibitors synergize favorably with temozolomide to promote intracellular retention of temozolomide and exacerbate DNA damage. Mesenchymal cells exhibit adaptive chemoresistance to p38MAPK inhibition through a pH-/calcium-mediated MEK/ERK pathway. Dual p38MAPK and MEK inhibition effectively maintain temozolomide sensitivity in primary and recurrent intracranial mesenchymal glioblastoma xenografts. CONCLUSIONS Temozolomide resistance in mesenchymal glioblastoma is associated with p38MAPK activation. Adaptive chemoresistance in p38MAPK-resistant cells is mediated by MEK/ERK signaling. Adjuvant therapy with dual p38MAPK and MEK inhibition prolongs temozolomide sensitivity, which can be developed into a precision therapy for the mesenchymal subtype.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yuk Kien Chong
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Eldeen Kai Yi Lim
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Xin Yi Lee
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Wisna Novera
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Beng Ti Ang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Wu Z, Yang Y, Chen M, Zha Y. Matrix metalloproteinase 9 expression and glioblastoma survival prediction using machine learning on digital pathological images. Sci Rep 2024; 14:15065. [PMID: 38956384 PMCID: PMC11220146 DOI: 10.1038/s41598-024-66105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were randomly allocated to the training and test cohorts for pathomics modeling. The prognostic significance of MMP9 was assessed using Kaplan-Meier and Cox regression analyses. PyRadiomics was used to extract the features of H&E-stained whole slide images. Feature selection was performed using the maximum relevance and minimum redundancy (mRMR) and recursive feature elimination (RFE) algorithms. Prediction models were created using support vector machines (SVM) and logistic regression (LR). The performance was assessed using ROC analysis, calibration curve assessment, and decision curve analysis. MMP9 expression was elevated in patients with GBM. This was an independent prognostic factor for GBM. Six features were selected for the pathomics model. The area under the curves (AUCs) of the training and test subsets were 0.828 and 0.808, respectively, for the SVM model and 0.778 and 0.754, respectively, for the LR model. The C-index and calibration plots exhibited effective estimation abilities. The pathomics score calculated using the SVM model was highly correlated with overall survival time. These findings indicate that MMP9 plays a crucial role in GBM development and prognosis. Our pathomics model demonstrated high efficacy for predicting MMP9 expression levels and prognosis of patients with GBM.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Maojuan Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
33
|
Yang Y, Jin X, Xie Y, Ning C, Ai Y, Wei H, Xu X, Ge X, Yi T, Huang Q, Yang X, Jiang T, Wang X, Piao Y, Jin X. The CEBPB + glioblastoma subcluster specifically drives the formation of M2 tumor-associated macrophages to promote malignancy growth. Theranostics 2024; 14:4107-4126. [PMID: 38994023 PMCID: PMC11234274 DOI: 10.7150/thno.93473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: The heterogeneity of tumor cells within the glioblastoma (GBM) microenvironment presents a complex challenge in curbing GBM progression. Understanding the specific mechanisms of interaction between different GBM cell subclusters and non-tumor cells is crucial. Methods: In this study, we utilized a comprehensive approach integrating glioma single-cell and spatial transcriptomics. This allowed us to examine the molecular interactions and spatial localization within GBM, focusing on a specific tumor cell subcluster, GBM subcluster 6, and M2-type tumor-associated macrophages (M2 TAMs). Results: Our analysis revealed a significant correlation between a specific tumor cell subcluster, GBM cluster 6, and M2-type TAMs. Further in vitro and in vivo experiments demonstrated the specific regulatory role of the CEBPB transcriptional network in GBM subcluster 6, which governs its tumorigenicity, recruitment of M2 TAMs, and polarization. This regulation involves molecules such as MCP1 for macrophage recruitment and the SPP1-Integrin αvβ1-Akt signaling pathway for M2 polarization. Conclusion: Our findings not only deepen our understanding of the formation of M2 TAMs, particularly highlighting the differential roles played by heterogeneous cells within GBM in this process, but also provided new insights for effectively controlling the malignant progression of GBM.
Collapse
Affiliation(s)
- Yongchang Yang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin Medical University, Tianjin 300060, China
| | - Xingyu Jin
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin Medical University, Tianjin 300060, China
| | - Yang Xie
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin Medical University, Tianjin 300060, China
| | - Chunlan Ning
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin Medical University, Tianjin 300060, China
| | - Yiding Ai
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Tianjin Medical University, Tianjin 300060, China
| | - Haotian Wei
- Tianjin Medical University, Tianjin 300060, China
| | - Xing Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xianglian Ge
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tailong Yi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, People's Republic of China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoguang Wang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin China
| | - Yingzhe Piao
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin China
| | - Xun Jin
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
34
|
Hu X, Zhu X, Chen Y, Zhang W, Li L, Liang H, Usmanov BB, Donadon M, Yusupbekov AA, Zheng Y. Senescence-related signatures predict prognosis and response to immunotherapy in colon cancer. J Gastrointest Oncol 2024; 15:1020-1034. [PMID: 38989417 PMCID: PMC11231866 DOI: 10.21037/jgo-24-339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers. Cellular senescence plays a vital role in carcinogenesis by activating many pathways. In this study, we aimed to identify biomarkers for predicting the survival and recurrence of CRC through cellular senescence-related genes. Methods Utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, RNA-sequencing data and clinical information for CRC were collected. A risk model for predicting overall survival was established based on five differentially expressed genes using least absolute shrinkage and selection operator-Cox regression (LASSO-Cox regression), receiver operating characteristic (ROC), and Kaplan-Meier analyses. The study also delved into both the tumor microenvironment and the response to immunotherapy. Moreover, we gathered clinical sample data from our center in order to confirm the findings of public database analysis. Results Through ROC and Kaplan-Meier analyses, a risk model was developed using five cellular senescence-related genes [i.e., CDKN2A, SERPINE1, SNAI1, CXCL1, and ETS2] to categorize patients into high- and low-risk groups. In the TCGA-colon adenocarcinoma (COAD) and GEO-COAD cohorts, the high-risk group was associated with a bleaker forecast (P<0.05), immune cell inactivation, and insensitivity to immunotherapy in IMvigor210 database (http://research-pub.gene.com/IMvigor210CoreBiologies/). Clinical samples were then used to confirm that ETS2 and CDKN2A could serve as independent prognostic biomarkers in CRC. Conclusions Gene signatures related to cellular senescence, specifically involving CDKN2A and ETS2, are emerging as promising biomarkers for predicting CRC prognosis and guiding immunotherapy.
Collapse
Affiliation(s)
- Xiaoshan Hu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiongjie Zhu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yifan Chen
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenkai Zhang
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Laiqing Li
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Huankun Liang
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Bekzod B Usmanov
- Department of Oncology and Hematology, Tashkent State Pediatric Institute, Tashkent, Uzbekistan
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Abrorjon A Yusupbekov
- Republican Specialized Scientific and Practical Medical Center of Oncology and Radiology (National Cancer Center of Uzbekistan), Tashkent, Uzbekistan
| | - Yanfang Zheng
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Gu X, Mu C, Zheng R, Zhang Z, Zhang Q, Liang T. The Cancer Antioxidant Regulation System in Therapeutic Resistance. Antioxidants (Basel) 2024; 13:778. [PMID: 39061847 PMCID: PMC11274344 DOI: 10.3390/antiox13070778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Antioxidants play a pivotal role in neutralizing reactive oxygen species (ROS), which are known to induce oxidative stress. In the context of cancer development, cancer cells adeptly maintain elevated levels of both ROS and antioxidants through a process termed "redox reprogramming". This balance optimizes the proliferative influence of ROS while simultaneously reducing the potential for ROS to cause damage to the cell. In some cases, the adapted antioxidant machinery can hamper the efficacy of treatments for neoplastic diseases, representing a significant facet of the resistance mechanisms observed in cancer therapy. In this review, we outline the contribution of antioxidant systems to therapeutic resistance. We detail the fundamental constituents of these systems, encompassing the central regulatory mechanisms involving transcription factors (of particular importance is the KEAP1/NRF2 signaling axis), the molecular effectors of antioxidants, and the auxiliary systems responsible for NADPH generation. Furthermore, we present recent clinical trials based on targeted antioxidant systems for the treatment of cancer, assessing the potential as well as challenges of this strategy in cancer therapy. Additionally, we summarize the pressing issues in the field, with the aim of illuminating a path toward the emergence of novel anticancer therapeutic approaches by orchestrating redox signaling.
Collapse
Affiliation(s)
- Xuanhao Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Chunyang Mu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Rujia Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Zhe Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.G.); (C.M.); (Z.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310003, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
36
|
Constantinou M, Nicholson J, Zhang X, Maniati E, Lucchini S, Rosser G, Vinel C, Wang J, Lim YM, Brandner S, Nelander S, Badodi S, Marino S. Lineage specification in glioblastoma is regulated by METTL7B. Cell Rep 2024; 43:114309. [PMID: 38848215 PMCID: PMC11220825 DOI: 10.1016/j.celrep.2024.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Glioblastomas are the most common malignant brain tumors in adults; they are highly aggressive and heterogeneous and show a high degree of plasticity. Here, we show that methyltransferase-like 7B (METTL7B) is an essential regulator of lineage specification in glioblastoma, with an impact on both tumor size and invasiveness. Single-cell transcriptomic analysis of these tumors and of cerebral organoids derived from expanded potential stem cells overexpressing METTL7B reveal a regulatory role for the gene in the neural stem cell-to-astrocyte differentiation trajectory. Mechanistically, METTL7B downregulates the expression of key neuronal differentiation players, including SALL2, via post-translational modifications of histone marks.
Collapse
Affiliation(s)
- Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - James Nicholson
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Xinyu Zhang
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS, UK
| | - Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Gabriel Rosser
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Claire Vinel
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS, UK
| | - Yau Mun Lim
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College London, Queen Square, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College London, Queen Square, London, UK
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Badodi
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK.
| |
Collapse
|
37
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
38
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
39
|
Vishnoi M, Dereli Z, Yin Z, Kong EK, Kinali M, Thapa K, Babur O, Yun K, Abdelfattah N, Li X, Bozorgui B, Farach-Carson MC, Rostomily RC, Korkut A. A prognostic matrix gene expression signature defines functional glioblastoma phenotypes and niches. RESEARCH SQUARE 2024:rs.3.rs-4541464. [PMID: 38947019 PMCID: PMC11213219 DOI: 10.21203/rs.3.rs-4541464/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Interactions among tumor, immune, and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Methods Here, through computational genomics and proteomics approaches, we analyzed the functional and clinical relevance of CMP expression in GBM at bulk, single cell, and spatial anatomical resolution. Results We identified genes encoding CMPs whose expression levels categorize GBM tumors into CMP expression-high (M-H) and CMP expression-low (M-L) groups. CMP enrichment is associated with worse patient survival, specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells, and immune checkpoint gene expression. Anatomical and single-cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative niches that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene CMP expression signature, termed Matrisome 17 (M17) signature that further refines the prognostic value of CMP genes. The M17 signature is a significantly stronger prognostic factor compared to MGMT promoter methylation status as well as canonical subtypes, and importantly, potentially predicts responses to PD1 blockade. Conclusion The matrisome gene expression signature provides a robust stratification of GBM patients by survival and potential biomarkers of functionally relevant GBM niches that can mediate mesenchymal-immune cross talk. Patient stratification based on matrisome profiles can contribute to selection and optimization of treatment strategies.
Collapse
Affiliation(s)
- Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, Weill Cornell Medical School, New York NY, 10065
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, TX, 77030 USA
| | - Elisabeth K. Kong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX, 77030, USA
| | - Meric Kinali
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kisan Thapa
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Ozgun Babur
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Robert C. Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
- Department of Neurosurgery, Weill Cornell Medical School, New York NY, 10065
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
40
|
Liang T, Gu L, Kang X, Li J, Song Y, Wang Y, Ma W. Programmed cell death disrupts inflammatory tumor microenvironment (TME) and promotes glioblastoma evolution. Cell Commun Signal 2024; 22:333. [PMID: 38890642 PMCID: PMC11184850 DOI: 10.1186/s12964-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 06/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lingui Gu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yixuan Song
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
41
|
Si J, Guo J, Zhang X, Li W, Zhang S, Shang S, Zhang Q. Hypoxia-induced activation of HIF-1alpha/IL-1beta axis in microglia promotes glioma progression via NF-κB-mediated upregulation of heparanase expression. Biol Direct 2024; 19:45. [PMID: 38863009 PMCID: PMC11165725 DOI: 10.1186/s13062-024-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Glioma is a common tumor that occurs in the brain and spinal cord. Hypoxia is a crucial feature of the tumor microenvironment. Tumor-associated macrophages/microglia play a crucial role in the advancement of glioma. This study aims to illuminate the detailed mechanisms by which hypoxia regulates microglia and, consequently, influences the progression of glioma. METHODS The glioma cell viability and proliferation were analyzed by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay. Wound healing assay and transwell assay were implemented to detect glioma cell migration and invasion, respectively. Enzyme-linked immunosorbent assay was conducted to detect protein levels in cell culture medium. The protein levels in glioma cells and tumor tissues were evaluated using western blot analysis. The histological morphology of tumor tissue was determined by hematoxylin-eosin staining. The protein expression in tumor tissues was determined using immunohistochemistry. Human glioma xenograft in nude mice was employed to test the influence of hypoxic microglia-derived interleukin-1beta (IL-1β) and heparanase (HPSE) on glioma growth in vivo. RESULTS Hypoxic HMC3 cells promoted proliferation, migration, and invasion abilities of U251 and U87 cells by secreting IL-1β, which was upregulated by hypoxia-induced activation of hypoxia inducible factor-1alpha (HIF-1α). Besides, IL-1β from HMC3 cells promoted glioma progression and caused activation of nuclear factor-κB (NF-κB) and upregulation of HPSE in vivo. We also confirmed that IL-1β facilitated HPSE expression in U251 and U87 cells by activating NF-κB. Hypoxic HMC3 cells-secreted IL-1β facilitated the proliferation, migration, and invasion of U251 and U87 cells via NF-κB-mediated upregulation of HPSE expression. Finally, we revealed that silencing HPSE curbed the proliferation and metastasis of glioma in mice. CONCLUSION Hypoxia-induced activation of HIF-1α/IL-1β axis in microglia promoted glioma progression via NF-κB-mediated upregulation of HPSE expression.
Collapse
Affiliation(s)
- Jinchao Si
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Jingya Guo
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Xu Zhang
- Department of General Practice, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Wei Li
- Department of Physiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, 450066, China
| | - Shen Zhang
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Shuyu Shang
- Department of Physiology, Medical College, HuangHe Science and Technology University, Zhengzhou, 450064, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan Province, 450007, China.
| |
Collapse
|
42
|
Johnson KC, Tien AC, Jiang J, McNamara J, Chang YW, Montgomery C, DeSantis A, Elena-Sanchez L, Fujita Y, Kim S, Spitzer A, Gabriel P, Flynn WF, Courtois ET, Hong A, Harmon J, Umemura Y, Tovmasyan A, Li J, Mehta S, Verhaak R, Sanai N. Single nucleus transcriptomics, pharmacokinetics, and pharmacodynamics of combined CDK4/6 and mTOR inhibition in a phase 0/1 trial of recurrent high-grade glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.07.24308439. [PMID: 38883740 PMCID: PMC11178017 DOI: 10.1101/2024.06.07.24308439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Outcomes for adult patients with a high-grade glioma continue to be dismal and new treatment paradigms are urgently needed. To optimize the opportunity for discovery, we performed a phase 0/1 dose-escalation clinical trial that investigated tumor pharmacokinetics, pharmacodynamics, and single nucleus transcriptomics following combined ribociclib (CDK4/6 inhibitor) and everolimus (mTOR inhibitor) treatment in recurrent high-grade glioma. Patients with a recurrent high-grade glioma (n = 24) harboring 1) CDKN2A / B deletion or CDK4 / 6 amplification, 2) PTEN loss or PIK3CA mutations, and 3) wild-type retinoblastoma protein (Rb) were enrolled. Patients received neoadjuvant ribociclib and everolimus treatment and no dose-limiting toxicities were observed. The median unbound ribociclib concentrations in Gadolinium non-enhancing tumor regions were 170 nM (range, 65 - 1770 nM) and 634 nM (range, 68 - 2345 nM) in patients receiving 5 days treatment at the daily dose of 400 and 600 mg, respectively. Unbound everolimus concentrations were below the limit of detection (< 0.1 nM) in both enhancing and non-enhancing tumor regions at all dose levels. We identified a significant decrease in MIB1 positive cells suggesting ribociclib-associated cell cycle inhibition. Single nuclei RNAseq (snRNA) based comparisons of 17 IDH-wild-type on-trial recurrences to 31 IDH-wild-type standard of care treated recurrences data demonstrated a significantly lower fraction of cycling and neural progenitor-like (NPC-like) malignant cell populations. We validated the CDK4/6 inhibitor-directed malignant cell state shifts using three patient-derived cell lines. The presented clinical trial highlights the value of integrating pharmacokinetics, pharmacodynamics, and single nucleus transcriptomics to assess treatment effects in phase 0/1 surgical tissues, including malignant cell state shifts. ClinicalTrials.gov identifier: NCT03834740 .
Collapse
|
43
|
Wang S, Qi Y, Zhao R, Pan Z, Li B, Qiu W, Zhao S, Guo X, Ni S, Li G, Xue H. Copy number gain of FAM131B-AS2 promotes the progression of glioblastoma by mitigating replication stress. Neuro Oncol 2024; 26:1027-1041. [PMID: 38285005 PMCID: PMC11145449 DOI: 10.1093/neuonc/noae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| |
Collapse
|
44
|
McCord M, Jamshidi P. Targeting the cell cycle to enhance chemotherapy efficacy in glioblastoma. Neuro Oncol 2024; 26:1097-1098. [PMID: 38517031 PMCID: PMC11145455 DOI: 10.1093/neuonc/noae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 03/23/2024] Open
Affiliation(s)
- Matthew McCord
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
45
|
Yamamura T, Tamura K, Kobayashi D, Inaji M, Toyama Y, Wakimoto H, Kiyokawa J, Hara S, Tanaka Y, Nariai T, Shimizu K, Ishii K, Maehara T. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma. J Neurooncol 2024; 168:355-365. [PMID: 38557927 DOI: 10.1007/s11060-024-04661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Toshihiro Yamamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Daisuke Kobayashi
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Toyama
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, Boston, MA, 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
46
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann JE, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Göller PC, Sahm F, Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. A prognostic neural epigenetic signature in high-grade glioma. Nat Med 2024; 30:1622-1635. [PMID: 38760585 PMCID: PMC11186787 DOI: 10.1038/s41591-024-02969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Pauline C Göller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joelle Aline Menstel
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - David Niklas Zimmer
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | | | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Dana Silverbush
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Volker Hovestadt
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Translational Neurosurgery, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
47
|
Turner MC, Radzikowska U, Ferastraoaru DE, Pascal M, Wesseling P, McCraw A, Backes C, Bax HJ, Bergmann C, Bianchini R, Cari L, de Las Vecillas L, Izquierdo E, Lind-Holm Mogensen F, Michelucci A, Nazarov PV, Niclou SP, Nocentini G, Ollert M, Preusser M, Rohr-Udilova N, Scafidi A, Toth R, Van Hemelrijck M, Weller M, Jappe U, Escribese MM, Jensen-Jarolim E, Karagiannis SN, Poli A. AllergoOncology: Biomarkers and refined classification for research in the allergy and glioma nexus-A joint EAACI-EANO position paper. Allergy 2024; 79:1419-1439. [PMID: 38263898 DOI: 10.1111/all.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Denisa E Ferastraoaru
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mariona Pascal
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alexandra McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Claudine Backes
- National Cancer Registry (Registre National du Cancer (RNC)), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Public Health Expertise Unit, Department of Precision Health, Cancer Epidemiology and Prevention (EPI CAN), Luxembourg Institute of Health, Strassen, Luxembourg
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - Luigi Cari
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Elena Izquierdo
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Simone P Niclou
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reka Toth
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Pneumology, Interdisciplinary Allergy Outpatient Clinic, University of Luebeck, Luebeck, Germany
| | - Maria M Escribese
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Innovation Hub, Guy's Cancer Centre, London, UK
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
48
|
Onubogu U, Gatenbee CD, Prabhakaran S, Wolfe KL, Oakes B, Salatino R, Vaubel R, Szentirmai O, Anderson AR, Janiszewska M. Spatial analysis of recurrent glioblastoma reveals perivascular niche organization. JCI Insight 2024; 9:e179853. [PMID: 38805346 PMCID: PMC11383164 DOI: 10.1172/jci.insight.179853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Tumor evolution is driven by genetic variation; however, it is the tumor microenvironment (TME) that provides the selective pressure contributing to evolution in cancer. Despite high histopathological heterogeneity within glioblastoma (GBM), the most aggressive brain tumor, the interactions between the genetically distinct GBM cells and the surrounding TME are not fully understood. To address this, we analyzed matched primary and recurrent GBM archival tumor tissues with imaging-based techniques aimed to simultaneously evaluate tumor tissues for the presence of hypoxic, angiogenic, and inflammatory niches, extracellular matrix (ECM) organization, TERT promoter mutational status, and several oncogenic amplifications on the same slide and location. We found that the relationships between genetic and TME diversity are different in primary and matched recurrent tumors. Interestingly, the texture of the ECM, identified by label-free reflectance imaging, was predictive of single-cell genetic traits present in the tissue. Moreover, reflectance of ECM revealed structured organization of the perivascular niche in recurrent GBM, enriched in immunosuppressive macrophages. Single-cell spatial transcriptomics further confirmed the presence of the niche-specific macrophage populations and identified interactions between endothelial cells, perivascular fibroblasts, and immunosuppressive macrophages. Our results underscore the importance of GBM tissue organization in tumor evolution and highlight genetic and spatial dependencies.
Collapse
Affiliation(s)
- Ugoma Onubogu
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Chandler D Gatenbee
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sandhya Prabhakaran
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kelsey L Wolfe
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Benjamin Oakes
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Roberto Salatino
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Rachael Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Oszkar Szentirmai
- Center for Neurological Surgery and Neuroscience, Cleveland Clinic Martin Health, Port St. Lucie, Florida, USA
| | - Alexander Ra Anderson
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michalina Janiszewska
- The Skaggs Graduate School of Chemical and Biological Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
49
|
Ho WM, Chen CY, Chiang TW, Chuang TJ. A longer time to relapse is associated with a larger increase in differences between paired primary and recurrent IDH wild-type glioblastomas at both the transcriptomic and genomic levels. Acta Neuropathol Commun 2024; 12:77. [PMID: 38762464 PMCID: PMC11102269 DOI: 10.1186/s40478-024-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, which remains incurable and often recurs rapidly after initial therapy. While large efforts have been dedicated to uncover genomic/transcriptomic alternations associated with the recurrence of GBMs, the evolutionary trajectories of matched pairs of primary and recurrent (P-R) GBMs remain largely elusive. It remains challenging to identify genes associated with time to relapse (TTR) and construct a stable and effective prognostic model for predicting TTR of primary GBM patients. By integrating RNA-sequencing and genomic data from multiple datasets of patient-matched longitudinal GBMs of isocitrate dehydrogenase wild-type (IDH-wt), here we examined the associations of TTR with heterogeneities between paired P-R GBMs in gene expression profiles, tumor mutation burden (TMB), and microenvironment. Our results revealed a positive correlation between TTR and transcriptomic/genomic differences between paired P-R GBMs, higher percentages of non-mesenchymal-to-mesenchymal transition and mesenchymal subtype for patients with a short TTR than for those with a long TTR, a high correlation between paired P-R GBMs in gene expression profiles and TMB, and a negative correlation between the fitting level of such a paired P-R GBM correlation and TTR. According to these observations, we identified 55 TTR-associated genes and thereby constructed a seven-gene (ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, CDKL1, and CD101) prognostic model for predicting TTR of primary IDH-wt GBM patients using univariate/multivariate Cox regression analyses. The risk scores estimated by the model were significantly negatively correlated with TTR in the training set and two independent testing sets. The model also segregated IDH-wt GBM patients into two groups with significantly divergent progression-free survival outcomes and showed promising performance for predicting 1-, 2-, and 3-year progression-free survival rates in all training and testing sets. Our findings provide new insights into the molecular understanding of GBM progression at recurrence and potential targets for therapeutic treatments.
Collapse
Affiliation(s)
- Wei-Min Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
50
|
Chen H, Deng J, Hou TW, Shan YQ. Villosol reverses 5-FU resistance in colorectal cancer by inhibiting the CDKN2A gene regulated TP53-PI3K/Akt signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117907. [PMID: 38342156 DOI: 10.1016/j.jep.2024.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Patrinia villosa (Juss.) (PV) is the drug of choice in traditional Chinese medicine for the treatment of colorectal cancer (CRC) and has achieved reliable efficacy in clinic. Villosol is the active ingredient in PV. However, the molecular mechanism by which Villosol reverses chemoresistance in CRC remains unclear. AIM OF THE STUDY Analysis of the molecular mechanism by which Villosol, the active ingredient of PV, reverses CRC/5-FU resistance through modulation of the CDKN2A gene was validated by network pharmacology techniques and experiments. MATERIALS AND METHODS We identified CDKN2A as a gene associated with 5-FU resistance through gene chip analysis. Next, we conducted a series of functional analyses in cell lines, animal samples, and xenograft models to investigate the role, clinical significance, and abnormal regulatory mechanisms of CDKN2A in 5-FU resistance in CRC. In addition, we screened and obtained a raw ingredient called Villosol, which targets CDKN2A, and investigated its pharmacological effects. RESULTS Analysis of CRC cells and animal samples showed that the upregulation of CDKN2A expression was strongly associated with 5-FU resistance. CRC cells overexpressing CDKN2A showed reduced sensitivity to 5-FU and enhanced tumor biology in vitro. Inhibition of aberrant activation of CDKN2A enhances the expression of TP53. Mechanistically, overexpression of CDKN2A activates the PI3K/Akt pathway and induces resistance to 5-FU. Villosol inhibited CDKN2A, and CRC/5-FU cells regained sensitivity to 5-FU. Villosol effectively reverses 5-FU resistance through the CDKN2A-TP53-PI3K/Akt axis. CONCLUSION Changes in CDKN2A gene expression can be used to predict the response of CRC patients to 5-FU therapy. Additionally, inhibiting CDKN2A activation with Villosol may present a new approach to overcoming 5-FU resistance in clinical settings.
Collapse
Affiliation(s)
- Han Chen
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Jiao Deng
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Tie-Wei Hou
- Department of General Surgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Yong-Qi Shan
- Department of General Surgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| |
Collapse
|