1
|
Rifkin RA, Wu X, Pereira B, Gill BJ, Merricks EM, Michalak AJ, Goldberg AR, Humala N, Dovas A, Rai G, McKhann GM, Slesinger PA, Canoll P, Schevon C. A selective small-molecule agonist of G protein-gated inwardly-rectifying potassium channels reduces epileptiform activity in mouse models of tumor-associated and provoked seizures. Neuropharmacology 2025; 265:110259. [PMID: 39662702 PMCID: PMC11726401 DOI: 10.1016/j.neuropharm.2024.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Tumor associated epilepsy is a common and debilitating co-morbidity of brain tumors, for which inadequate treatments are available. Additionally, animal models suggest a potential link between seizures and tumor progression. Our group has previously described a mouse model of diffusely infiltrating glioma and associated chronic epilepsy. G protein-gated inwardly rectifying potassium (GIRK) channels are important regulators of neuronal excitability, but their development as a target of antiseizure medications has been hampered by cross-reactivity with GIRK channels in the heart. Recently GiGA1, a novel GIRK agonist that is highly selective for brain tissue, was developed and shown to have antiseizure properties in an acute chemoconvulsant model. Here, we test GiGA1 ex vivo in our established mouse model of tumor associated epilepsy, demonstrating that a highly selective, small-molecule GIRK agonist can reduce seizure-like activity in the peritumoral region, where neurons and glioma cells interact and from which focal seizures arise.
Collapse
Affiliation(s)
- Robert A Rifkin
- Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA.
| | - Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA.
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, Mailbox 23, New York, NY, 10032, USA.
| | - Brian Ja Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA.
| | - Edward M Merricks
- Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA.
| | - Andrew J Michalak
- Department of Neurology, New York University Grossman School of Medicine, 222 East 41st Street, 14th Floor New York, NY, 10017, USA.
| | - Alexander R Goldberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, Mailbox 23, New York, NY, 10032, USA.
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA.
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, Mailbox 23, New York, NY, 10032, USA.
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850-9793, USA.
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA.
| | - Paul A Slesinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029-5674, USA.
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, Mailbox 23, New York, NY, 10032, USA.
| | - Catherine Schevon
- Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA.
| |
Collapse
|
2
|
Barelli C, Kaluthantrige Don F, Iannuzzi RM, Faletti S, Bertani I, Osei I, Sorrentino S, Villa G, Sokolova V, Campione A, Minotti MR, Sicuri GM, Stefini R, Iorio F, Kalebic N. Morphoregulatory ADD3 underlies glioblastoma growth and formation of tumor-tumor connections. Life Sci Alliance 2025; 8:e202402823. [PMID: 39592188 PMCID: PMC11599137 DOI: 10.26508/lsa.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Glioblastoma is a major unmet clinical need characterized by striking inter- and intra-tumoral heterogeneity and a population of glioblastoma stem cells (GSCs), conferring aggressiveness and therapy resistance. GSCs communicate through a network of tumor-tumor connections (TTCs), including nanotubes and microtubes, promoting tumor progression. However, very little is known about the mechanisms underlying TTC formation and overall GSC morphology. As GSCs closely resemble neural progenitor cells during neurodevelopment, we hypothesized that GSCs' morphological features affect tumor progression. We identified GSC morphology as a new layer of tumoral heterogeneity with important consequences on GSC proliferation. Strikingly, we showed that the neurodevelopmental morphoregulator ADD3 is sufficient and necessary for maintaining proper GSC morphology, TTC abundance, cell cycle progression, and chemoresistance, as well as required for cell survival. Remarkably, both the effects on cell morphology and proliferation depend on the stability of actin cytoskeleton. Hence, cell morphology and its regulators play a key role in tumor progression by mediating cell-cell communication. We thus propose that GSC morphological heterogeneity holds the potential to identify new therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alberto Campione
- Human Technopole, Milan, Italy
- Ospedale Nuovo di Legnano, Legnano, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Jackson C, Cherry C, Bom S, Dykema AG, Wang R, Thompson E, Zhang M, Li R, Ji Z, Hou W, Zhan W, Zhang H, Choi J, Vaghasia A, Hansen L, Wang W, Bergsneider B, Jones KM, Rodriguez F, Weingart J, Lucas CH, Powell J, Elisseeff J, Yegnasubramanian S, Lim M, Bettegowda C, Ji H, Pardoll D. Distinct myeloid-derived suppressor cell populations in human glioblastoma. Science 2025; 387:eabm5214. [PMID: 39818911 DOI: 10.1126/science.abm5214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
The role of glioma-associated myeloid cells in tumor growth and immune evasion remains poorly understood. We performed single-cell RNA sequencing of immune and tumor cells from 33 gliomas, identifying two distinct myeloid-derived suppressor cell (MDSC) populations in isocitrate dehydrogenase-wild-type (IDT-WT) glioblastoma: an early progenitor MDSC (E-MDSC) population with up-regulation of metabolic and hypoxia pathways and a monocytic MDSC (M-MDSC) population. Spatial transcriptomics demonstrated that E-MDSCs geographically colocalize with metabolic stem-like tumor cells in the pseudopalisading region. Ligand-receptor analysis revealed cross-talk between these cells, where glioma stem-like cells produce chemokines attracting E-MDSCs, which in turn produce growth factors for the tumor cells. This interaction is absent in IDH-mutant gliomas, associated with hypermethylation and repressed gene expression of MDSC-attracting chemokines. Our study elucidates specific MDSCs that may facilitate glioblastoma progression and mediate tumor immunosuppression.
Collapse
Affiliation(s)
- Christina Jackson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sadhana Bom
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Arbor G Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Rulin Wang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Thompson
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Ming Zhang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Runzhe Li
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhicheng Ji
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wenpin Hou
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wentao Zhan
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Landon Hansen
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Brandon Bergsneider
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kate M Jones
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fausto Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chetan Bettegowda
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Drew Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
- Mark Center for Advanced Genomics and Imaging at the Johns Hopkins University, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Hwang WL, Perrault EN, Birbrair A, Mattson BJ, Gutmann DH, Mabbott DJ, Cukierman E, Repasky EA, Sloan EK, Zong H, Demir IE, Saloman JL, Borniger JC, Hu J, Dietrich J, Breunig JJ, Çifcibaşı K, Ahmad Kasm KA, Valiente M, Wintermark M, Acharya MM, Scheff NN, D'Silva NJ, Vermeer PD, Wong RJ, Talbot S, Hervey-Jumper SL, Wang TC, Ye Y, Pan Y, Bunimovich YL, Amit M. Integrating priorities at the intersection of cancer and neuroscience. Cancer Cell 2025; 43:1-5. [PMID: 39423816 PMCID: PMC11732710 DOI: 10.1016/j.ccell.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Cancer neuroscience is a rapidly growing multidisciplinary field that conceptualizes tumors as tissues fully integrated into the nervous system. Recognizing the complexity and challenges in this field is of fundamental importance to achieving the goal of translational impact for cancer patients. Our commentary highlights key scientific priorities, optimal training settings, and roadblocks to translating scientific findings to the clinic in this emerging field, aiming to formulate a transformative and cohesive path forward.
Collapse
Affiliation(s)
- William L Hwang
- Center for Systems Biology, Center for Cancer Research, and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Ella N Perrault
- Center for Systems Biology, Center for Cancer Research, and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexander Birbrair
- Department of Dermatology, Carbone Cancer Center, and Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brandi J Mattson
- The Belfer Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Edna Cukierman
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA; Tumor Microenvironment Working Group, American Association for Cancer Research, Philadelphia, PA, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, TUM University Hospital, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Else Kröner Clinician Scientist Professor, Munich, Germany
| | - Jami L Saloman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jian Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorg Dietrich
- Department of Neurology, Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kaan Çifcibaşı
- Department of Surgery, TUM University Hospital, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Khalil Ali Ahmad Kasm
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Max Wintermark
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - Nicole N Scheff
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Richard J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yi Ye
- Translational Research Center, Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moran Amit
- Department of Head and Neck Surgery and the Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
5
|
Duffau H. Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment. Curr Neurol Neurosci Rep 2025; 25:15. [PMID: 39786618 DOI: 10.1007/s11910-024-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis. RECENT FINDINGS Microscale and macroscale parameters helpful for extrapolating backward in time are considered, both for the glioma (kinetics, migration vs. proliferation profile, metabolism with possible intratumoral heterogeneity, relationships with surrounding cerebral pathways) and for patterns of reconfiguration within and across neural networks in reaction to the LGG leading to considerable interindividual cerebral variability. Modelling these continuous variations at the time of LGG diagnosis is a prerequisite to predict recovery from treatment(s). It is important to go beyond the biology of the LGG at a given moment of its history, and instead construct a more comprehensive picture of the past and present dynamics of glioma-brain interactions, and their ongoing evolution, as a necessary stage to optimize a personalized management plan by thinking several steps ahead.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.
- Team "Plasticity of Central Nervous System, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Wang Y, Liu Z, Li Y, Wang K, Yuan C, Shi J, Ren J, Wang S, Wang J, Zhao M, Hu M. Peptide-based PET/CT imaging visualizes PD-L1-driven radioresistance in glioblastoma. Drug Resist Updat 2025; 79:101202. [PMID: 39817951 DOI: 10.1016/j.drup.2025.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance. Here, we developed a novel peptide tracer [18F]AlF-NOTA-PCP2 for PET/CT to visualize the changes of PD-L1 expression in response to radiotherapy, revealing PD-L1-driven radioresistance in GBM. The [18F]AlF-NOTA-PCP2 demonstrated high specificity and binding affinity to PD-L1 in vitro. The uptake of [18F]AlF-NOTA-PCP2 on PET/CT showed a strong positive correlation with PD-L1 expression by immunohistochemistry (IHC) (R² = 0.861, P < 0.001) in GBM xenograft tumors. The radiotracer uptake in PD-L1-positive tumors significantly increased post-radiotherapy (21.25 ± 0.91 % vs. 25.12 ± 0.82 %, P = 0.008), aligning with the radioresistance observed in these tumors. In vitro studies revealed that PD-L1-driven radioresistance by enhancing DNA damage repair through upregulation of RAD51 after activation of the PI3K-Akt pathway in cells. Preliminary clinical application in a radiotherapy-treated GBM patient demonstrated the ability to monitor PD-L1 dynamics, supporting its potential for clinical translation. Collectively, this peptide-based small molecule PET/CT radiotracers offer a noninvasive, real-time, and quantitative method to dynamically visualize PD-L1-driven radioresistance in GBM. It could serve as a potential radiotracer for facilitating patient stratification, adjusting radiotherapy regimens, and guiding personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhiguo Liu
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Kelin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Chunhui Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jian Shi
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiazhong Ren
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shijie Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jinping Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
7
|
Sojka C, Wang HLV, Bhatia TN, Li Y, Chopra P, Sing A, Voss A, King A, Wang F, Joseph K, Ravi VM, Olson J, Hoang K, Nduom E, Corces VG, Yao B, Sloan SA. Mapping the developmental trajectory of human astrocytes reveals divergence in glioblastoma. Nat Cell Biol 2025:10.1038/s41556-024-01583-9. [PMID: 39779941 DOI: 10.1038/s41556-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM. We generated a transcriptomic and epigenomic map of human astrocyte maturation using cortical organoids maintained in culture for nearly 2 years. Through this approach, we chronicled a multiphase developmental process. Our time course of human astrocyte maturation includes a molecularly distinct intermediate period that serves as a lineage commitment checkpoint upstream of mature quiescence. This intermediate stage acts as a site of developmental deviation separating IDH-wild-type neoplastic astrocyte-lineage cells from quiescent astrocyte populations. Interestingly, IDH1-mutant tumour astrocyte-lineage cells are the exception to this developmental perturbation, where immature properties are suppressed as a result of D-2-hydroxyglutarate oncometabolite exposure. We propose that this defiance is a consequence of IDH1-mutant-associated epigenetic dysregulation, and we identified biased DNA hydroxymethylation (5hmC) in maturation genes as a possible mechanism. Together, this study illustrates a distinct cellular state aberration in GBM astrocyte-lineage cells and presents developmental targets for experimental and therapeutic exploration.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Voss
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Edjah Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Whittle JR, Kriel J, Fatunla OE, Lu T, Moffet JJD, Spiteri M, Best SA, Freytag S. Spatial omics shed light on the tumour organisation of glioblastoma. Semin Cell Dev Biol 2025; 167:1-9. [PMID: 39787997 DOI: 10.1016/j.semcdb.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment. Understanding this organisation is crucial for the development of new therapeutics and novel diagnostic tools that guide patient care. This review explores spatial omics technologies and how they have contributed to the development of a model outlining the architecture of the glioblastoma tumour microenvironment.
Collapse
Affiliation(s)
- James R Whittle
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jurgen Kriel
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Oluwaseun E Fatunla
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Tianyao Lu
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Joel J D Moffet
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Montana Spiteri
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Sarah A Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
9
|
Nieland L, Vrijmoet AB, Jetten IW, Rufino-Ramos D, de Reus AJEM, Breyne K, Kleinstiver BP, Maguire CA, Broekman MLD, Breakefield XO, Abels ER. CRISPR targeting of mmu-miR-21a through a single adeno-associated virus vector prolongs survival of glioblastoma-bearing mice. Mol Ther 2025; 33:133-151. [PMID: 39563028 DOI: 10.1016/j.ymthe.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Glioblastoma (GB), the most aggressive tumor of the central nervous system (CNS), has poor patient outcomes with limited effective treatments available. MicroRNA-21 (miR-21(a)) is a known oncogene, abundantly expressed in many cancer types. miR-21(a) promotes GB progression, and lack of miR-21(a) reduces the tumorigenic potential. Here, we propose a single adeno-associated virus (AAV) vector strategy targeting mmu-miR-21a using the Staphylococcus aureus Cas9 ortholog (SaCas9) guided by a single-guide RNA (sgRNA). Our results demonstrate that AAV8 is a well-suited AAV serotype to express SaCas9-KKH/sgRNA at the tumor site in an orthotopic GB model. The SaCas9-KKH induced a genomic deletion, resulting in lowered mmu-miR-21a levels in the brain, leading to reduced tumor growth and improved overall survival. In this study, we demonstrated that disruption of genomic mmu-miR-21a with a single AAV vector influenced glioma development, resulting in beneficial anti-tumor outcomes in GB-bearing mice.
Collapse
Affiliation(s)
- Lisa Nieland
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Anne B Vrijmoet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Isabelle W Jetten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra J E M de Reus
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Koen Breyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02116, USA
| | - Marike L D Broekman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands; Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Erik R Abels
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
10
|
Westphal M, Drexler R, Maire C, Ricklefs F, Lamszus K. Cancer neuroscience and glioma: clinical implications. Acta Neurochir (Wien) 2025; 167:2. [PMID: 39752006 PMCID: PMC11698767 DOI: 10.1007/s00701-024-06406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components. In the brain, interactions between glioma cells as well as metastatic lesions with neural components have clinical implications for diagnostics, risk assessments, neurological sequelae, and the development of innovative therapeutics. Here, we review these neuro-tumoral dynamics, emphasizing aspects relevant to neurosurgical practice.
Collapse
Affiliation(s)
- Manfred Westphal
- Institute for Tumorbiology, University Hospital Hamburg Eppendorf, W29 - R34, Hamburg, 20246, Germany.
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Cecile Maire
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Cheng L, Liu Z, Shen C, Xiong Y, Shin SY, Hwang Y, Yang S, Chen Z, Zhang X. A Wonderful Journey: The Diverse Roles of Adenosine Deaminase Action on RNA 1 (ADAR1) in Central Nervous System Diseases. CNS Neurosci Ther 2025; 31:e70208. [PMID: 39753993 PMCID: PMC11702419 DOI: 10.1111/cns.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases. RESULTS In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed. It is worth noting that recent studies have shown ADAR1 has great potential in the treatment of neurodegenerative diseases, but the mechanisms are still unclear. Therefore, it is necessary to elaborate on the role of ADAR1 in CNS diseases. CONCLUSIONS Here, we focus on the effects and mechanisms of ADAR1 on CNS diseases such as Aicardi-AicardiGoutières syndrome, Alzheimer's disease, Parkinson's disease, glioblastoma, epilepsy, amyotrophic lateral sclerosis, and autism. We also evaluate the impact of ADAR1-based treatment strategies on these diseases, with a particular focus on the development and treatment strategies of new technologies such as microRNAs, nanotechnology, gene editing, and stem cell therapy. We hope to provide new directions and insights for the future development of ADAR1 gene editing technology in brain science and the treatment of CNS diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunxiao Shen
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Department of RehabilitationAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Sang Yol Shin
- Department of Emergency Medical TechnologyWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Yong Hwang
- Department of Emergency MedicineWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Seung‐Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanJeonbuk‐doRepublic of Korea
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| |
Collapse
|
12
|
Griessmair M, Schramm S, Ziegenfeuter J, Canisius J, Jung K, Delbridge C, Schmidt-Graf F, Mitsdoerffer M, Zimmer C, Meyer B, Metz MC, Wiestler B. Advanced imaging reveals enhanced malignancy in glioblastomas involving the subventricular zone: evidence of increased infiltrative growth and perfusion. J Neurooncol 2025; 171:343-350. [PMID: 39387957 PMCID: PMC11695386 DOI: 10.1007/s11060-024-04849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Glioblastoma's infiltrative growth and heterogeneity are influenced by neural, molecular, genetic, and immunological factors, with the precise origin of these tumors remaining elusive. Neurogenic zones might serve as the tumor stem cells' nest, with tumors in contact with these zones exhibiting worse outcomes and more aggressive growth patterns. This study aimed to determine if these characteristics are reflected in advanced imaging, specifically diffusion and perfusion data. METHODS In this monocentric retrospective study, 137 glioblastoma therapy-naive patients (IDH-wildtype, grade 4) with advanced preoperative MRI, including perfusion and diffusion imaging, were analyzed. Tumors and neurogenic zones were automatically segmented. Advanced imaging metrics, including cerebral blood volume (CBV) from perfusion imaging, tissue volume mask (TVM), and free water corrected fractional anisotropy (FA-FWE) from diffusion imaging, were extracted. RESULTS SVZ infiltration positively correlated with CBV, indicating higher perfusion in tumors. Significant CBV differences were noted between high and low SVZ infiltration cases at specific percentiles. Negative correlation was observed with TVM and positive correlation with FA-FWE, suggesting more infiltrative tumor growth. Significant differences in TVM and FA-FWE values were found between high and low SVZ infiltration cases. DISCUSSION Glioblastomas with SVZ infiltration exhibit distinct imaging characteristics, including higher perfusion and lower cell density per voxel, indicating a more infiltrative growth and higher vascularization. Stem cell-like characteristics in SVZ-infiltrating cells could explain the increased infiltration and aggressive behavior. Understanding these imaging and biological correlations could enhance the understanding of glioblastoma evolution.
Collapse
Affiliation(s)
- Michael Griessmair
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| | - Severin Schramm
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Julian Ziegenfeuter
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Julian Canisius
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Kirsten Jung
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | | | | | - Meike Mitsdoerffer
- Dept. of Neurology, Klinikum Rechts der Isar, TU Munich, 81675, Munich, Germany
| | - Claus Zimmer
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Dept. of Neurosurgery, Klinikum Rechts der Isar, TU Munich, 81675, Munich, Germany
| | - Marie-Christin Metz
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Benedikt Wiestler
- Dept. of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Ismaningerstr. 22, 81675, Munich, Germany
- TranslaTUM, TU Munich, 81675, Munich, Germany
| |
Collapse
|
13
|
Xiong Y, He C, Qi J, Xiong M, Liu S, Zhao J, Li Y, Liu G, Deng W. Black phosphorus nanosheets activate tumor immunity of glioblastoma by modulating the expression of the immunosuppressive molecule PD-L1. Biomaterials 2024; 317:123062. [PMID: 39736218 DOI: 10.1016/j.biomaterials.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The tumor microenvironment in glioblastoma (GBM) is characterized by a pronounced immunosuppressive state, which significantly hampers tumor treatment and contributes to treatment resistance. While our previous research established that black phosphorus nanosheets (BPNS) inhibited glioblastoma cell migration and invasion, the impact of BPNS on the anti-tumor-associated immune mechanism remains unexplored. This study firstly investigated whether BPNS could modulate the tumor microenvironment through immunotherapy and elucidated the underlying mechanisms. We used a subcutaneous mouse model of GBM, which evaded immune surveillance to evaluate BPNS effects on immune cells within the tumor microenvironment. Our results demonstrated that BPNS significantly enhanced the tumor-suppressive microenvironment, reactivating immune cells' cytotoxicity against tumor cells. Moreover, further analysis revealed that BPNS counteracted the immunosuppressive state by reducing the expression of the immunosuppressive molecule PD-L1 in tumor cells, leading to an anti-tumor effect. Mechanistically, BPNS reduced PD-L1 expression through two main pathways: by inducing autophagy via binding to the HSP90 protein, leading to PD-L1 degradation through the autophagy pathway, and by inhibiting the PI3K-AKT signaling pathway, which reduced PD-L1 mRNA levels. This study expands the understanding of BPNS biological activity and suggests new strategies for utilizing BPNS as an adjuvant in immunotherapy.
Collapse
Affiliation(s)
- Yue Xiong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518000, China
| | - Chao He
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Junyang Qi
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Meimei Xiong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuna Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingxin Zhao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518000, China
| | - Gan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
14
|
Liao S, Kang K, Yao Z, Lu Y. Nervous system contributions to small cell lung cancer: Lessons from diverse oncological studies. Biochim Biophys Acta Rev Cancer 2024; 1880:189252. [PMID: 39725176 DOI: 10.1016/j.bbcan.2024.189252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The nervous system plays a vital role throughout the entire lifecycle and it may regulate the formation, development and metastasis of tumors. Small cell lung cancer is a typical neuroendocrine tumor, and it is naturally equipped with neurotropism. In this review, we firstly summarize current preclinical and clinical evidence to demonstrate the reciprocal crosstalk among the nervous system, tumor, and tumor microenvironment in various ways, including neurotransmitter-receptor pathways, innervations of nerve fibers, different types of synapse formation by neurons, astrocytes, and cancer cells, neoneurogenesis. Futherly, we emphasize how the nervous system interacts with small cell lung cancer and discuss the limitations of current research methods for examining the interactions. We propose that integrating neuroscience, development biology, and tumor biology can be a promising direction to provide new insights into development and metastasis of small cell lung cancer and raise some novel treatment strategies.
Collapse
Affiliation(s)
- Shuangsi Liao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Ware TMB, Teixeira AF, Iaria J, Luwor RB, Zhu HJ. Systemic brain dissemination of glioblastoma requires transdifferentiation into endothelial-like cells via TGF-β-ALK1-Smad1/5 signaling. Neoplasia 2024; 60:101110. [PMID: 39724753 PMCID: PMC11732171 DOI: 10.1016/j.neo.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Glioblastoma is the most aggressive type of brain cancer, but treatment improvements for glioblastoma patients remain stagnated for over 20 years. This is despite the large number of clinical trials that have attempted to replicate the success of therapeutics developed for other cancer types. This discrepancy highlights the urgent need to decipher the unique biology of glioblastomas. Here, we show that glioblastoma tumour cells are highly plastic, integrating into blood vessel walls to disseminate throughout the brain. This relies on the transdifferentiation of glioblastoma tumor cells into endothelial-like cells in a process we termed endothelialisation. Mechanistically, in addition to TGF-β-ALK5-Smad2/3 signaling, glioblastoma tumour cells also activate TGF-β-ALK1-Smad1/5 signaling - a mechanism previously thought to be limited to endothelial cells. Consequently, therapeutic targeting of TGF-β-ALK1-Smad1/5 activity impaired endothelialisation-driven glioblastoma progression. This study identifies a previously unknown component of glioblastoma biology and establishes a therapeutic approach to reduce the progression of this disease.
Collapse
Affiliation(s)
- Thomas M B Ware
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China
| | - Josephine Iaria
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China; Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia; Federation University, Ballarat, Victoria 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China; Lead contact.
| |
Collapse
|
16
|
El Kheir W, Naasri S, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches. PLoS One 2024; 19:e0315038. [PMID: 39715221 DOI: 10.1371/journal.pone.0315038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy. It has been demonstrated in vitro under static conditions, that nanoparticles (NPs) encapsulating the chemoattractant CXCL12 can create a gradient to attract GBM cell. However, GBM cell invasion is also largely dependent on interstitial fluid flow (IFF). In the present study, a custom-made in vitro 3D model with indirect perfusion to mimic IFF at flow rates of 0.5 μL/min and 3 μL/min was used to examine the invasive behavior of F98-rodent-derived and U87-human-derived GBM cells. This model simulated IFF and CXCL12 gradient within an alginate:matrigel-based hydrogel mimicking brain parenchyma. Findings revealed that CXCL12 (1600 ng/mL) released from NPs significantly increased the migration of F98 GBM cells after 72 hours under IFF conditions at both 0.5 and 3 μL/min. In contrast, U87 GBM cells required a higher CXCL12 concentration (2400 ng/mL) and longer incubation time for migration (120 hours). Unlike the F98 cells, U87 GBM cells showed a CXCL12 dose-dependent proliferation. Semi-quantitative qPCR showed higher CXCR4 mRNA levels in F98 cells than in U87 cells. CXCL12 significantly increased intracellular calcium levels via CXCR4 activation, with a 2.3-fold rise in F98 cells compared to U87, consistent with observed cell behavior during perfusion. This highlights the combined influence of IFF and CXCL12 on cell migration, dependent on cell line. This 3D dynamic model is a valuable tool to analyze parameters like interstitial fluid flow (IFF) and chemokine gradients, influenced by GBM tumor diversity.
Collapse
Affiliation(s)
- Wiam El Kheir
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Laboratory of Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sahar Naasri
- Faculty of Medicine and Health Sciences, Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bernard Marcos
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Benoit Paquette
- Faculty of Medicine and Health Sciences, Department of Medical Imaging and Radiation Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Research Center of the Centre Hospitalier Universitaire de l'Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Faucheux
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, Laboratory of Cell-Biomaterial Biohybrid Systems, Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Research Center of the Centre Hospitalier Universitaire de l'Université de Sherbrooke, Sherbrooke, QC, Canada
- The Quebec Network for Research on Protein Function, Engineering and Applications, Montreal, QC, Canada
| | - Marc-Antoine Lauzon
- Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada
- The Quebec Network for Research on Protein Function, Engineering and Applications, Montreal, QC, Canada
- Research Center on Aging, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Li S, Li W, Miao Y, Gao M, Jia Y, Chen Z, Chen X, Pan T, Zhang S, Xing Z, Han S, Sun XL, Wei X, Liu Z, Zhou W, Wu W, Liu F, Han L, Zhu H, Ye H, Liu L, Li Y, Zhang P, Gong J, Tian Y, Ai Y, Cao P, Wu D, Qi X, Gui S, Wu QF. Modeling craniopharyngioma for drug screening reveals a neuronal mechanism for tumor growth. Sci Transl Med 2024; 16:eadn6763. [PMID: 39693408 DOI: 10.1126/scitranslmed.adn6763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/15/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Tumors occurring along the hypothalamus-pituitary axis receive axonal projection from neuroendocrine neurons, but it remains unclear whether neuroendocrine neuronal activity drives tumor expansion. Craniopharyngioma is a common suprasellar tumor with a propensity for invading the hypothalamus, leading to devastating endocrine and metabolic disorders. Here, we developed two autochthonous animal models that faithfully recapitulate the molecular pathology, clinical manifestations, and transcriptomic profiles of papillary craniopharyngioma. Using high-throughput drug screening, we identified 74 compounds with potent antitumor efficacy. The administration of (S)-amlodipine besylate achieved tumor regression in vivo, potentially by abrogating calcium transients and neuron-to-tumor chemical transmission. Chemogenetic manipulation of neuroendocrine neuronal activity bidirectionally regulated tumor cell growth in our mouse model, suggesting that craniopharyngioma hijacks hypothalamic neurons to promote tumor progression. These findings deepen our understanding of suprasellar tumor biology and offer promising avenues for clinical exploration of effective chemotherapies.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqi Miao
- Department of Endocrinology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | | | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Chen
- BGI Research, Beijing 102601, China
- BGI Research, Shenzhen 518083, China
| | | | - Shuangfeng Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhifang Xing
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shuping Han
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochan Wei
- BGI Research, Shenzhen 518083, China
- BGI Research, Hangzhou 310030, China
| | - Zhiming Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wentao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fangzheng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lei Han
- BGI Research, Hangzhou 310030, China
| | | | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | | | - Yinqing Li
- IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China
| | - Jian Gong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yongji Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Youwei Ai
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Di Wu
- Department of Endocrinology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Schmidt ENC, Evert BO, Pregler BEF, Melhem A, Hsieh MC, Raspe M, Strobel H, Roos J, Pietsch T, Schuss P, Fischer-Posovszky P, Westhoff MA, Hölzel M, Herrlinger U, Vatter H, Waha A, Schneider M, Potthoff AL. Tonabersat enhances temozolomide-mediated cytotoxicity in glioblastoma by disrupting intercellular connectivity through connexin 43 inhibition. Mol Oncol 2024. [PMID: 39680504 DOI: 10.1002/1878-0261.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma cells rely on connexin 43 (Cx43)-based gap junctions (GJs) for intercellular communication, enabling them to integrate into a widely branched malignant network. Although there are promising prospects for new targeted therapies, the lack of clinically feasible GJ inhibitors has impeded their adoption in clinical practice. In the present study, we investigated tonabersat (TO), a blood-brain-barrier-penetrating drug with GJ-inhibitory properties, in regard to its potential to disassemble intercellular connectivity in glioblastoma networks. Fluorescence-guided measurements of calcein cell-to-cell transfer were used to study functional intercellular connectivity. Specific DNA fragmentation rates of propidium iodide-stained nuclei were measured as a surrogate readout for cell death using flow cytometry. CRISPR/Cas9-mediated gene editing of Cx43 served as a validation tool of cellular effects related to Cx43 GJ inhibition. 3' mRNA sequencing was performed for molecular downstream analysis. We found that TO reduced intercellular GJ-mediated cytosolic traffic and yielded a significant reduction of tumor microtube (TM) length. TO-mediated inhibition of cellular tumor networks was accompanied by a synergistic effect for temozolomide-induced cell death. CRISPR/Cas9 Cx43-knockout revealed similar results, indicating that TO-mediated inhibitory effects rely on the inhibition of Cx43-based GJs. Gene set enrichment analyses found that GJ-mediated synergistic cytotoxic effects were linked to a significant upregulation of cell death signaling pathways. In conclusion, TO disrupts TM-based network connectivity via GJ inhibition and renders glioblastoma cells more susceptible to cytotoxic therapy. Given its previous use in clinical trials for migraine therapy, TO might harbor the potential of bridging the idea of a GJ-targeted therapeutic approach from bench to bedside.
Collapse
Affiliation(s)
- Elena N C Schmidt
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Germany
| | - Barbara E F Pregler
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Ahmad Melhem
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Meng-Chun Hsieh
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Markus Raspe
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University Hospital Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Germany
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Germany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology and Center of Integrated Oncology ABCD, University Hospital Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Germany
| | - Andreas Waha
- Department of Neuropathology, University Hospital Bonn, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Anna-Laura Potthoff
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
- Department of Neuropathology, University Hospital Bonn, Germany
| |
Collapse
|
19
|
Hsieh AL, Ganesh S, Kula T, Irshad M, Ferenczi EA, Wang W, Chen YC, Hu SH, Li Z, Joshi S, Haigis MC, Sabatini BL. Widespread neuroanatomical integration and distinct electrophysiological properties of glioma-innervating neurons. Proc Natl Acad Sci U S A 2024; 121:e2417420121. [PMID: 39630872 DOI: 10.1073/pnas.2417420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Gliomas are the most common malignant primary brain tumor and are often associated with severe neurological deficits and mortality. Unlike many cancers, gliomas rarely metastasize outside the brain, indicating a possible dependency on unique features of brain microenvironment. Synapses between neurons and glioma cells exist, suggesting that glioma cells rely on neuronal inputs and synaptic signaling for proliferation. Yet, the locations and properties of neurons that innervate gliomas have remained elusive. In this study, we utilized transsynaptic tracing with an EnvA-pseudotyped, glycoprotein-deleted rabies virus to specifically infect TVA and glycoprotein-expressing human glioblastoma cells in an orthotopic xenograft mouse model, allowing us to identify the neurons that form synapses onto the gliomas. Comprehensive whole-brain mapping revealed that these glioma-innervating neurons (GINs) from brain regions, including diverse neuromodulatory centers and specific cortical layers, known to project to the glioma locations. Molecular profiling revealed that long-range cortical GINs are predominantly glutamatergic, and subsets express both glutamatergic and GABAergic markers, whereas local striatal GINs are largely GABAergic. Electrophysiological studies demonstrate that while GINs share passive intrinsic properties with cortex-innervating neurons, their action potential waveforms are altered. Our study introduces a method for identifying and mapping GINs and reveals their consistent integration into existing location-dependent neuronal networks involving diverse neurotransmitters and neuromodulators. The observed intrinsic electrophysiological differences in GINs lay the groundwork for future investigations into how these alterations relate to the postsynaptic characteristics of glioma cells.
Collapse
Affiliation(s)
- Annie L Hsieh
- HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sanika Ganesh
- HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Tomasz Kula
- HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Madiha Irshad
- HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Emily A Ferenczi
- HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Wengang Wang
- HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Yi-Ching Chen
- HHMI, Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Zongyu Li
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
20
|
Tetzlaff SK, Reyhan E, Layer N, Bengtson CP, Heuer A, Schroers J, Faymonville AJ, Langeroudi AP, Drewa N, Keifert E, Wagner J, Soyka SJ, Schubert MC, Sivapalan N, Pramatarov RL, Buchert V, Wageringel T, Grabis E, Wißmann N, Alhalabi OT, Botz M, Bojcevski J, Campos J, Boztepe B, Scheck JG, Conic SH, Puschhof MC, Villa G, Drexler R, Zghaibeh Y, Hausmann F, Hänzelmann S, Karreman MA, Kurz FT, Schröter M, Thier M, Suwala AK, Forsberg-Nilsson K, Acuna C, Saez-Rodriguez J, Abdollahi A, Sahm F, Breckwoldt MO, Suchorska B, Ricklefs FL, Heiland DH, Venkataramani V. Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing. Cell 2024:S0092-8674(24)01276-5. [PMID: 39644898 DOI: 10.1016/j.cell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Glioblastomas are invasive brain tumors with high therapeutic resistance. Neuron-to-glioma synapses have been shown to promote glioblastoma progression. However, a characterization of tumor-connected neurons has been hampered by a lack of technologies. Here, we adapted retrograde tracing using rabies viruses to investigate and manipulate neuron-tumor networks. Glioblastoma rapidly integrated into neural circuits across the brain, engaging in widespread functional communication, with cholinergic neurons driving glioblastoma invasion. We uncovered patient-specific and tumor-cell-state-dependent differences in synaptogenic gene expression associated with neuron-tumor connectivity and subsequent invasiveness. Importantly, radiotherapy enhanced neuron-tumor connectivity by increased neuronal activity. In turn, simultaneous neuronal activity inhibition and radiotherapy showed increased therapeutic effects, indicative of a role for neuron-to-glioma synapses in contributing to therapeutic resistance. Lastly, rabies-mediated genetic ablation of tumor-connected neurons halted glioblastoma progression, offering a viral strategy to tackle glioblastoma. Together, this study provides a framework to comprehensively characterize neuron-tumor networks and target glioblastoma.
Collapse
Affiliation(s)
- Svenja K Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas Layer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anton J Faymonville
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Nina Drewa
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elijah Keifert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Wagner
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella J Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Marc C Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nirosan Sivapalan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Rangel L Pramatarov
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Wageringel
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Grabis
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Botz
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jovana Bojcevski
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Berin Boztepe
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas G Scheck
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Sascha Henry Conic
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Maria C Puschhof
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Giulia Villa
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix T Kurz
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Neuroradiology, University Hospital Geneva, Geneva, Switzerland
| | - Manuel Schröter
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Marc Thier
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Henrik Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
21
|
Elguindy MM, Young JS, Ho WS, Lu RO. Co-evolution of glioma and immune microenvironment. J Immunother Cancer 2024; 12:e009175. [PMID: 39631850 PMCID: PMC11624716 DOI: 10.1136/jitc-2024-009175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
Glioma evolution is governed by a multitude of dynamic interactions between tumor cells and heterogenous neighboring, non-cancerous cells. This complex ecosystem, termed the tumor microenvironment (TME), includes diverse immune cell types that have gained increasing attention for their critical and paradoxical roles in tumor control and tumorigenesis. Recent work has revealed that the cellular composition and functional state of immune cells in the TME can evolve extensively depending on the tumor stage and intrinsic features of surrounding glioma cells. Concurrently, adaptations to the glioma cellular phenotype, including activation of various cellular states, occur in the context of these immune cell alterations. In this review, we summarize important features of the immune TME that play key roles during each stage of glioma progression, from initiation to immune escape, invasion and recurrence. Understanding the complex interplay between tumor and immune cells is critical for the development of effective immunotherapies for glioma treatment.
Collapse
Affiliation(s)
- Mahmoud M Elguindy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Winson S Ho
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Rongze O Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
22
|
Tobochnik S, Regan MS, Dorotan MKC, Reich D, Lapinskas E, Hossain MA, Stopka S, Meredith DM, Santagata S, Murphy MM, Arnaout O, Bi WL, Chiocca EA, Golby AJ, Mooney MA, Smith TR, Ligon KL, Wen PY, Agar NYR, Lee JW. Pilot Trial of Perampanel on Peritumoral Hyperexcitability in Newly Diagnosed High-grade Glioma. Clin Cancer Res 2024; 30:5365-5373. [PMID: 39499201 PMCID: PMC11611619 DOI: 10.1158/1078-0432.ccr-24-1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Glutamatergic neuron-glioma synaptogenesis and peritumoral hyperexcitability promote glioma growth in a positive feedback loop. The objective of this study was to evaluate the feasibility and estimated effect sizes of the targeted AMPA receptor antagonist perampanel on peritumoral hyperexcitability. EXPERIMENTAL DESIGN An open-label trial was performed comparing perampanel with standard of care (SOC) in patients undergoing resection of newly diagnosed radiologic high-grade glioma. Perampanel was administered as a preoperative loading dose followed by maintenance therapy until progressive disease or up to 12 months. SOC treatment involved levetiracetam for 7 days or as clinically indicated. The primary outcome of hyperexcitability was defined by intraoperative electrocorticography high-frequency oscillation (HFO) rates. Seizure freedom and overall survival were estimated by the Kaplan-Meier method. Tissue concentrations of perampanel, levetiracetam, and correlative biomarkers were measured by mass spectrometry. RESULTS HFO rates were similar between patients treated with perampanel and levetiracetam. The trial was terminated early after a planned interim analysis, and outcomes assessed in 11 patients (seven perampanel treated; four treated with SOC). Over a median 281 days of postenrollment follow-up, 27% of patients had seizures, including 14% maintained on perampanel and 50% treated with SOC. Overall survival in perampanel-treated patients was similar to that in a glioblastoma reference cohort. Glutamate concentrations in surface biopsies were positively correlated with HFO rates in adjacent electrode contacts and were not significantly associated with treatment assignment or drug concentrations. CONCLUSIONS Glioma peritumoral glutamate concentrations correlated with high-gamma oscillation rates. Targeting glutamatergic activity with perampanel achieved similar electrocorticographic hyperexcitability levels as in levetiracetam-treated patients.
Collapse
Affiliation(s)
- Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology, VA Boston Healthcare System, Boston, MA, USA
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | - Emily Lapinskas
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sylwia Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Meredith
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Melissa M. Murphy
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael A. Mooney
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Keith L. Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick Y. Wen
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
23
|
Weller J, Potthoff A, Zeyen T, Schaub C, Duffy C, Schneider M, Herrlinger U. Current status of precision oncology in adult glioblastoma. Mol Oncol 2024; 18:2927-2950. [PMID: 38899374 PMCID: PMC11619805 DOI: 10.1002/1878-0261.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The concept of precision oncology, the application of targeted drugs based on comprehensive molecular profiling, has revolutionized treatment strategies in oncology. This review summarizes the current status of precision oncology in glioblastoma (GBM), the most common and aggressive primary brain tumor in adults with a median survival below 2 years. Targeted treatments without prior target verification have consistently failed. Patients with BRAF V600E-mutated GBM benefit from BRAF/MEK-inhibition, whereas targeting EGFR alterations was unsuccessful due to poor tumor penetration, tumor cell heterogeneity, and pathway redundancies. Systematic screening for actionable molecular alterations resulted in low rates (< 10%) of targeted treatments. Efficacy was observed in one-third and currently appears to be limited to BRAF-, VEGFR-, and mTOR-directed treatments. Advancing precision oncology for GBM requires consideration of pathways instead of single alterations, new trial concepts enabling rapid and adaptive drug evaluation, a focus on drugs with sufficient bioavailability in the CNS, and the extension of target discovery and validation to the tumor microenvironment, tumor cell networks, and their interaction with immune cells and neurons.
Collapse
Affiliation(s)
- Johannes Weller
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Thomas Zeyen
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Christina Schaub
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Cathrina Duffy
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Ulrich Herrlinger
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| |
Collapse
|
24
|
Gonzales CN, Negussie MB, Krishna S, Ambati VS, Hervey-Jumper SL. Malignant glioma remodeling of neuronal circuits: therapeutic opportunities and repurposing of antiepileptic drugs. Trends Cancer 2024; 10:1106-1115. [PMID: 39327186 DOI: 10.1016/j.trecan.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Tumor-associated epilepsy is the most common presenting symptom in patients diagnosed with diffuse gliomas. Recent evidence illustrates the requirement of synaptic activity to drive glioma proliferation and invasion. Class 1, 2, and 3 evidence is limited regarding the use of antiepileptic drugs (AEDs) as antitumor therapy in combination with chemotherapy. Furthermore, no central mechanism has emerged as the most targetable. The optimal timing of AED regimen remains unknown. Targeting aberrant neuronal activity is a promising avenue for glioma treatment. Clinical biomarkers may aid in identifying patients most likely to benefit from AEDs. Quality evidence is needed to guide treatment decisions.
Collapse
Affiliation(s)
- Cesar Nava Gonzales
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mikias B Negussie
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA; Weill Institute of Neurosciences, University of California, San Francisco, CA, USA
| | - Vardhaan S Ambati
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA; Weill Institute of Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
Suh HN, Choi GE. Wnt signaling in the tumor microenvironment: A driver of brain tumor dynamics. Life Sci 2024; 358:123174. [PMID: 39471897 DOI: 10.1016/j.lfs.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The Wnt signaling pathway is important for cell growth and development in the central nervous system and its associated vasculature. Thus, it is an interesting factor for establishing anti-brain cancer therapy. However, simply inhibiting the Wnt signaling pathway in patients with brain tumors is not an effective anti-cancer therapy. Due to their complex microenvironment, which comprises various cell types and signaling molecules, brain tumors pose significant challenges. It is important to understand the interplay between tumor cells and the microenvironment for developing effective therapeutic strategies for both benign and malignant brain tumors. Thus, this research focused on the role of the tumor microenvironment (TME) in brain tumor progression, particularly the involvement of Wnt-dependent signaling pathways. The brain parenchyma comprises neurons, glia, endothelial cells, and other extracellular matrix elements that can contribute to the TME. The TME components can secrete Wnt ligands or associated molecules, resulting in the aberrant activation of the Wnt signaling pathway, followed by tumor progression and therapeutic resistance. Therefore, it is essential to understand the intricate crosstalk between the Wnt signaling pathway and the TME in developing targeted therapies. This review aimed to elucidate the complexities of the brain TME and its interactions with the Wnt signaling pathways to improve treatment outcomes and our understanding of brain tumor biology.
Collapse
Affiliation(s)
- Han Na Suh
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeonbukdo 56212, Republic of Korea.
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
26
|
Carvalho EM, Ding EA, Saha A, Garcia DC, Weldy A, Zushin PJH, Stahl A, Aghi MK, Kumar S. Viscoelastic High-Molecular-Weight Hyaluronic Acid Hydrogels Support Rapid Glioblastoma Cell Invasion with Leader-Follower Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404885. [PMID: 39508297 PMCID: PMC11637900 DOI: 10.1002/adma.202404885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Hyaluronic acid (HA), the primary component of brain extracellular matrix, is increasingly used to model neuropathological processes, including glioblastoma (GBM) tumor invasion. While elastic hydrogels based on crosslinked low-molecular-weight (LMW) HA are widely exploited for this purpose and have proven valuable for discovery and screening, brain tissue is both viscoelastic and rich in high-MW (HMW) HA, and it remains unclear how these differences influence invasion. To address this question, hydrogels comprised of either HMW (1.5 MDa) or LMW (60 kDa) HA are introduced, characterized, and applied in GBM invasion studies. Unlike LMW HA hydrogels, HMW HA hydrogels relax stresses quickly, to a similar extent as brain tissue, and to a greater extent than many conventional HA-based scaffolds. GBM cells implanted within HMW HA hydrogels invade much more rapidly than in their LMW HA counterparts and exhibit distinct leader-follower dynamics. Leader cells adopt dendritic morphologies similar to invasive GBM cells observed in vivo. Transcriptomic, pharmacologic, and imaging studies suggest that leader cells exploit hyaluronidase, an enzyme strongly enriched in human GBMs, to prime a path for followers. This study offers new insight into how HA viscoelastic properties drive invasion and argues for the use of highly stress-relaxing materials to model GBM.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Atul Saha
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Diana Cruz Garcia
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Anna Weldy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
27
|
Schneider M, Potthoff A, Karpel‐Massler G, Schuss P, Siegelin MD, Debatin K, Duffau H, Vatter H, Herrlinger U, Westhoff M. The Alcatraz-Strategy: a roadmap to break the connectivity barrier in malignant brain tumours. Mol Oncol 2024; 18:2890-2905. [PMID: 38567664 PMCID: PMC11619800 DOI: 10.1002/1878-0261.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, the discovery of functional and communicative cellular tumour networks has led to a new understanding of malignant primary brain tumours. In this review, the authors shed light on the diverse nature of cell-to-cell connections in brain tumours and propose an innovative treatment approach to address the detrimental connectivity of these networks. The proposed therapeutic outlook revolves around three main strategies: (a) supramarginal resection removing a substantial portion of the communicating tumour cell front far beyond the gadolinium-enhancing tumour mass, (b) morphological isolation at the single cell level disrupting structural cell-to-cell contacts facilitated by elongated cellular membrane protrusions known as tumour microtubes (TMs), and (c) functional isolation at the single cell level blocking TM-mediated intercellular cytosolic exchange and inhibiting neuronal excitatory input into the malignant network. We draw an analogy between the proposed therapeutic outlook and the Alcatraz Federal Penitentiary, where inmates faced an impassable sea barrier and experienced both spatial and functional isolation within individual cells. Based on current translational efforts and ongoing clinical trials, we propose the Alcatraz-Strategy as a promising framework to tackle the harmful effects of cellular brain tumour networks.
Collapse
Affiliation(s)
- Matthias Schneider
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumour Translational Research GroupUniversity Hospital BonnGermany
| | - Anna‐Laura Potthoff
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumour Translational Research GroupUniversity Hospital BonnGermany
| | | | - Patrick Schuss
- Department of NeurosurgeryBG Klinikum Unfallkrankenhaus Berlin gGmbHGermany
| | - Markus D. Siegelin
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Klaus‐Michael Debatin
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmGermany
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterFrance
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors,” National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional GenomicsUniversity of MontpellierFrance
| | - Hartmut Vatter
- Department of NeurosurgeryUniversity Hospital BonnGermany
- Brain Tumour Translational Research GroupUniversity Hospital BonnGermany
| | - Ulrich Herrlinger
- Brain Tumour Translational Research GroupUniversity Hospital BonnGermany
- Division of Clinical Neuro‐Oncology, Department of NeurologyUniversity Hospital BonnGermany
| | - Mike‐Andrew Westhoff
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmGermany
| |
Collapse
|
28
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
29
|
Wang X, Sun Q, Liu T, Lu H, Lin X, Wang W, Liu Y, Huang Y, Huang G, Sun H, Chen Q, Wang J, Tian D, Yuan F, Liu L, Wang B, Gu Y, Liu B, Chen L. Single-cell multi-omics sequencing uncovers region-specific plasticity of glioblastoma for complementary therapeutic targeting. SCIENCE ADVANCES 2024; 10:eadn4306. [PMID: 39576855 PMCID: PMC11584018 DOI: 10.1126/sciadv.adn4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma (GBM) cells are highly heterogeneous and invasive, leading to treatment resistance and relapse. However, the molecular regulation in and distal to tumors remains elusive. Here, we collected paired tissues from the tumor core (TC) and peritumoral brain (PTB) for integrated snRNA-seq and snATAC-seq analyses. Tumor cells infiltrating PTB from TC behave more like oligodendrocyte progenitor cells than astrocytes at the transcriptome level. Dual-omics analyses further suggest that the distal regulatory regions in the tumor genome and specific transcription factors are potential determinants of regional heterogeneity. Notably, while activator protein 1 (AP-1) is active in all GBM states, its activity declines from TC to PTB, with another transcription factor, BACH1, showing the opposite trend. Combined inhibition of AP-1 and BACH1 more efficiently attenuates the tumor progression in mice and prolongs survival than either single-target treatment. Together, our work reveals marked molecular alterations of infiltrated GBM cells and a synergy of combination therapy targeting intratumor heterogeneity in and distal to GBM.
Collapse
Affiliation(s)
- Xin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| | - Qian Sun
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Haoran Lu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuyi Lin
- BGI Research, Hangzhou 310030, China
| | - Weiwen Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yang Liu
- BGI Research, Hangzhou 310030, China
| | - Yunting Huang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Haixi Sun
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianxue Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Junmin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Daofeng Tian
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fan'en Yuan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
- BGI Research, Shenzhen 518083, China
| | - Ying Gu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baohui Liu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| |
Collapse
|
30
|
Guo Y, Li Y, Su P, Yan M, Wang M, Li S, Xiang W, Chen L, Dong W, Zhou Z, Zhou J. Tumor microtubes: A new potential therapeutic target for high-grade gliomas. J Neuropathol Exp Neurol 2024:nlae119. [PMID: 39560360 DOI: 10.1093/jnen/nlae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.
Collapse
Affiliation(s)
- Yunzhu Guo
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yangxin Li
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Peng Su
- Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Min Yan
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Wei Dong
- Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
31
|
Larsson I, Held F, Popova G, Koc A, Kundu S, Jörnsten R, Nelander S. Reconstructing the regulatory programs underlying the phenotypic plasticity of neural cancers. Nat Commun 2024; 15:9699. [PMID: 39516198 PMCID: PMC11549355 DOI: 10.1038/s41467-024-53954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Nervous system cancers exhibit diverse transcriptional cell states influenced by normal development, injury response, and growth. However, the understanding of these states' regulation and pharmacological relevance remains limited. Here we present "single-cell regulatory-driven clustering" (scregclust), a method that reconstructs cellular regulatory programs from extensive collections of single-cell RNA sequencing (scRNA-seq) data from both tumors and developing tissues. The algorithm efficiently divides target genes into modules, predicting key transcription factors and kinases with minimal computational time. Applying this method to adult and childhood brain cancers, we identify critical regulators and suggest interventions that could improve temozolomide treatment in glioblastoma. Additionally, our integrative analysis reveals a meta-module regulated by SPI1 and IRF8 linked to an immune-mediated mesenchymal-like state. Finally, scregclust's flexibility is demonstrated across 15 tumor types, uncovering both pan-cancer and specific regulators. The algorithm is provided as an easy-to-use R package that facilitates the exploration of regulatory programs underlying cell plasticity.
Collapse
Affiliation(s)
- Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix Held
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Gergana Popova
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Alper Koc
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Soumi Kundu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
32
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
33
|
Zhang Y, Duan W, Chen L, Chen J, Xu W, Fan Q, Li S, Liu Y, Wang S, He Q, Li X, Huang Y, Peng H, Zhao J, Zhang Q, Qiu Z, Shao Z, Zhang B, Wang Y, Tian Y, Shu Y, Qin Z, Chi Y. Potassium ion channel modulation at cancer-neural interface enhances neuronal excitability in epileptogenic glioblastoma multiforme. Neuron 2024:S0896-6273(24)00737-2. [PMID: 39532103 DOI: 10.1016/j.neuron.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) is increasingly recognized as a critical modulator in the oncogenesis of glioblastoma multiforme (GBM), with interactions between cancer and local neuronal circuits frequently leading to epilepsy; however, the relative contributions of these factors remain unclear. Here, we report a coordinated intratumor shift among distinct cancer subtypes within progenitor-like families of epileptic GBM patients, revealing an accumulation of oligodendrocyte progenitor (OPC)-like subpopulations at the cancer-neuron interface along with heightened electrical signaling activity in the surrounding neuronal networks. The OPC-like cells associated with epilepsy express KCND2, which encodes the voltage-gated K+ channel KV4.2, enhancing neuronal excitability via accumulation of extracellular K+, as demonstrated in patient-derived ex vivo slices, xenografting models, and engineering organoids. Together, we uncovered the essential local circuitry, cellular components, and molecular mechanisms facilitating cancer-neuron interaction at peritumor borders. KCND2 plays a crucial role in mediating nervous system-cancer electrical communication, suggesting potential targets for intervention.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Wei Duan
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Junrui Chen
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Qi Fan
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Shuwei Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yuandong Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shidi Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Quansheng He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Xiaohui Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yang Huang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Qiangqiang Zhang
- Advanced Model Animal Research Center, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute, Tsinghua University, Zhejiang 314006, China; Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute, Tsinghua University, Zhejiang 314006, China
| | - Zhixin Qiu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhicheng Shao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Novel Bioinformatics Co., Ltd., Shanghai, China
| | - Yihua Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Yousheng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
Pan J, Yan D, Liang Y, Yang L, Hu C, Chen M. Bioinformatic analysis constructs an optimal prognostic index for survival-related variables (OPISV) based on whole-genome expression data in Glioblastoma. Int J Biol Macromol 2024; 282:137184. [PMID: 39505178 DOI: 10.1016/j.ijbiomac.2024.137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Using clinical information and transcriptomic sequencing data from glioblastoma (GBM) patients in the TCGA database to perform gene-by-gene analysis that is aligned with individual patient characteristics and develop an optimal prognostic index of survival-related variables (OPISV) through iterative machine learning techniques to predict the prognosis of GBM patients. STUDY DESIGN The TCGA dataset was utilized as the training dataset, while two GEO datasets served as independent validation cohorts. Initially, survival analysis (p < 0.001***), differential gene expression analysis (p < 0.05*), and univariate Cox regression analysis (p < 0.05*) were employed to identify genes that are highly correlated with patient prognosis and exhibit significant differences in survival status. Subsequently, incorporating the non-excludable variable of age, a multivariate Cox regression analysis was performed in a stepwise manner to construct the OPISV. Finally, logistic and LASSO regressions were used to validate the association between the identified genes and patient survival. The OPISV performance is evaluated and its potential mechanisms are explored. RESULTS Age, CTSD, PTPRN, PTPRN2, NSUN5, DNAJC30 and SOX21 emerged as the optimal variables through multivariate Cox regression iterations. Further analysis characterized Age, PTPRN and DNAJC30 as independent prognostic risk factors for constructing OPISV, which is validated with external GEO datasets and GEPIA database. In OPISV_high populations, significantly upregulated GABAergic synapse function was exposed. Differential genes identified from gene clustering of the GABAergic synapse pathway and gene module highly correlated with GABAergic synapse in the WGCNA analysis are pointing unequivocally to the glioma progress. CONCLUSION OPISV is feasible for predicting patient survival, as it may serve as a potential mechanism underlying the involvement of GABAergic synapses in the progression of GBM.
Collapse
Affiliation(s)
- Junjia Pan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Department of Anesthesiology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dejun Yan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yaoe Liang
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lin Yang
- Department of Anesthesiology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Rehabilitation Medicine Institute of Panyu District, Guangzhou, Guangdong, China
| | - Chun Hu
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
35
|
Wang L, Liang J, Ji S, Wang C, Huang Q. Potential Mechanism and Involvement of p120-Catenin in the Malignant Biology of Glioma. J Korean Neurosurg Soc 2024; 67:609-621. [PMID: 38956806 PMCID: PMC11540527 DOI: 10.3340/jkns.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE This study analyzed the influence of p120-catenin (catenin [cadherin-associated protein], delta 1 [CTNND1]) on the malignant characteristics of glioma and elucidated the potential underlying mechanism. METHODS The p120 expression level was assessed in the brain tissues of 42 glioma patients and 10 patients with epilepsy by using the immunohistochemical method. Meanwhile, quantitative polymerase chain reaction (QT-PCR) technology was employed to assess the expression of p120 in the brain tissues of 71 glioma patients and 13 epilepsy patients. LN229, U251, and U87 glioma cells were used for in vitro analysis and categorized into four treatment groups : siRNA-blank control (BC) group (no RNA sequence was transfected), siRNA-negative control (NC) group (transfected control RNA sequences with no effect), and siRNA-1 and siRNA-2 groups (two p120-specific interfering RNA transfection). p120 expression in these treatment groups was quantified by western blotting assay. The migratory and invasive capabilities of glioma cells were studied by wound healing assay and Transwell invasion assay, respectively, under different treatment conditions. MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide) assay and cell cycle and apoptosis assay were used to determine glioma cell proliferation and apoptosis, respectively. Enzymelabeled assay was performed to measure intracellular calcium ion concentration. Immunofluorescence assay was performed for determining microtubule formation and glioma cell distribution. RESULTS Brain tissues of the glioma group exhibited a remarkable increase in the p120 expression level as compared to brain tissues of the nontumor group (p<0.05). Furthermore, a strong positive correlation was noted between the malignancy degree in glioma brain tissues and p120 expression in Western blotting (r=0.906, p<0.0001) and QT-PCR (F=830.6, p<0.01). Compared to the BC and NC groups, the siRNA transfection groups showed a significant suppression in p120 expression in glioma cells (p<0.05), with a marked attenuation in the invasive, migratory, and proliferative capabilities of glioma cells as well as an increase in apoptotic potential (p<0.05). Enzyme-labeled assay showed a remarkable increase in calcium concentration in glioma cells after siRNA treatment. Immunofluorescence assay revealed that the microtubule formation ability of glioma cells reduced after siRNA treatment. CONCLUSION p120 has a pivotal involvement in facilitating glioma cell invasion and proliferation by potentially modulating these processes through its involvement in microtubule formation and regulation of intracellular calcium ion levels.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, China
| | - Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Suzhen Ji
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Chunlou Wang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Karschnia P, Tonn JC, Cahill DP. The Infiltrative Margins in Glioblastoma: Important Is What Has Been Left behind. Clin Cancer Res 2024; 30:4811-4812. [PMID: 39163091 DOI: 10.1158/1078-0432.ccr-24-1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Supramaximal resection beyond the contrast-enhancing tumor borders represents an emerging surgical strategy for patients with newly diagnosed glioblastoma. A recent study provides evidence detailing the interactive effects of more aggressive surgery on other clinical predictors of outcome, supporting guidance for surgical decision-making and informing clinical trialists about the need to stratify for extent of resection. See related article by Park et al., p. 4866.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, FAU University Hospital, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
- Department of Neurosurgery, LMU University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Lee S, Weiss T, Bühler M, Mena J, Lottenbach Z, Wegmann R, Sun M, Bihl M, Augustynek B, Baumann SP, Goetze S, van Drogen A, Pedrioli PGA, Penton D, Festl Y, Buck A, Kirschenbaum D, Zeitlberger AM, Neidert MC, Vasella F, Rushing EJ, Wollscheid B, Hediger MA, Weller M, Snijder B. High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity. Nat Med 2024; 30:3196-3208. [PMID: 39304781 PMCID: PMC11564103 DOI: 10.1038/s41591-024-03224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Glioblastoma, the most aggressive primary brain cancer, has a dismal prognosis, yet systemic treatment is limited to DNA-alkylating chemotherapies. New therapeutic strategies may emerge from exploring neurodevelopmental and neurophysiological vulnerabilities of glioblastoma. To this end, we systematically screened repurposable neuroactive drugs in glioblastoma patient surgery material using a clinically concordant and single-cell resolved platform. Profiling more than 2,500 ex vivo drug responses across 27 patients and 132 drugs identified class-diverse neuroactive drugs with potent anti-glioblastoma efficacy that were validated across model systems. Interpretable molecular machine learning of drug-target networks revealed neuroactive convergence on AP-1/BTG-driven glioblastoma suppression, enabling expanded in silico screening of more than 1 million compounds with high patient validation accuracy. Deep multimodal profiling confirmed Ca2+-driven AP-1/BTG-pathway induction as a neuro-oncological glioblastoma vulnerability, epitomized by the anti-depressant vortioxetine synergizing with current standard-of-care chemotherapies in vivo. These findings establish an actionable framework for glioblastoma treatment rooted in its neural etiology.
Collapse
Affiliation(s)
- Sohyon Lee
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marcel Bühler
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Julien Mena
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Zuzanna Lottenbach
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Rebekka Wegmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Miaomiao Sun
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michel Bihl
- Institute of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sven P Baumann
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Patrick G A Pedrioli
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - David Penton
- Electrophysiology Facility, University of Zurich, Zurich, Switzerland
| | - Yasmin Festl
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Department of Neuropathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anna M Zeitlberger
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Alpen K, Maclnnis RJ, Vajdic CM, Lai J, Dowty JG, Koh ES, Hovey E, Harrup R, Nguyen TL, Li S, Joseph D, Benke G, Dugué PA, Southey MC, Giles GG, Nowak AK, Drummond KJ, Schmidt DF, Hopper JL, Kapuscinski MK, Makalic E. Region-Based Analyses of Existing Genome-Wide Association Studies Identifies Novel Potential Genetic Susceptibility Regions for Glioma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2933-2946. [PMID: 39387520 PMCID: PMC11555644 DOI: 10.1158/2767-9764.crc-24-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
SIGNIFICANCE Further investigation of the potential susceptibility regions identified in our study may lead to a better understanding of glioma genetic risk and the underlying biological etiology of glioma. Our study suggests sex may play a role in genetic susceptibility and highlights the importance of sex-specific analysis in future glioma research.
Collapse
Affiliation(s)
- Karen Alpen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Robert J. Maclnnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | | | - John Lai
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Australian Genome Research Facility, St Lucia, Australia
| | - James G. Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Eng-Siew Koh
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool Hospital, Liverpool, Australia
- Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Elizabeth Hovey
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, Australia
- Faculty of Medicine, Prince of Wales Clinical School UNSW Sydney, Sydney, Australia
| | - Rosemary Harrup
- Royal Hobart Hospital, Hobart, Australia
- University of Tasmania, Hobart, Australia
| | - Tuong L. Nguyen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia
| | - David Joseph
- Department of Medicine and Surgery, The University of Western Australia, Perth, Australia
| | - Geza Benke
- School of Public Health and Preventative Medicine, Monash University, Clayton, Australia
| | - Pierre-Antoine Dugué
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Anna K. Nowak
- Medical School, University of Western Australia, Crawley, Australia
| | - Katharine J. Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia
- Department of Surgery, University of Melbourne, Parkville, Australia
| | - Daniel F. Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Faculty of Information Technology, Monash University, Clayton, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Miroslaw K. Kapuscinski
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Faculty of Information Technology, Monash University, Clayton, Australia
| |
Collapse
|
39
|
Yuan F, Wang Y, Yuan L, Ye L, Hu Y, Cheng H, Li Y. Machine learning-based new classification for immune infiltration of gliomas. PLoS One 2024; 19:e0312071. [PMID: 39453922 PMCID: PMC11508054 DOI: 10.1371/journal.pone.0312071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND Glioma is a highly heterogeneous and poorly immunogenic malignant tumor, with limited efficacy of immunotherapy. The characteristics of the immunosuppressive tumor microenvironment (TME) are one of the important factors hindering the effectiveness of immunotherapy. Therefore, this study aims to reveal the immune microenvironment (IME) characteristics of glioma and predict different immune subtypes using machine learning methods, providing guidance for immune therapy in glioma. METHODS We first performed unsupervised cluster analysis on the genes and arrays of 693 gliomas in CGGA database and 702 gliomas in TCGA database. Then establish and verify the classification model through Machine Learning (ML). Then, use DAVID to perform functional enrichment analysis for different immune subtypes. Next step, analyze the immune cell distribution, stemness maintenance, mesenchymal phenotype, neuronal phenotype, tumorigenic cytokines, molecular and clinical characteristics of different immune subtypes of gliomas. RESULTS Firstly, we divide the IME of gliomas in the CGGA database into four different subtypes, namely IM1, IM2, IM3, and IM4; similarly, the IME of gliomas in the TCGA database can also be divided into four different subtypes (IMA, IMB, IMC, and IMD). Next, based on ML, we developed a highly reliable model for predicting different immune subtypes of glioma. Then, we found that Monocytic lineage, Myeloid dendritic cells, NK cells and CD8 T cells had the highest enrichment in the IM1/IMD subtypes. Cytotoxic lymphocytes were highest expressed in the IM4/IMA subtypes. Next step, Enrichment analysis revealed that the IM1-IMD subtypes were mainly closely related to the production and secretion of IL-8 and TNF signaling pathway. The IM2-IMB subtypes were strongly associated with leukocyte activation and NK cell mediated cytotoxicity. The IM3-IMC subtypes were closely related to mitotic nuclear division and mitotic cell cycle process. The IM4-IMA subtypes were strongly associated with Central Nervous System (CNS) development and striated muscle tissue development. Afterwards, Single sample gene set enrichment analysis (ssGSEA) showed that stemness maintenance phenotypes were mainly enriched in the IM4/IMA subtypes; Neuronal phenotypes were closely associated with the IM2/IMB subtypes; and mesenchymal phenotypes and tumorigenic cytokines were highly correlated with the IM2 /IMB subtypes. Finally, we found that compared with patients in the IM2/IMB and IM4/IMA subtypes, the IM1/IMD and IM3/IMC subtypes have the highest proportion of GBM patients, the shortest average overall survival of patients and the lowest proportion of patients with IDH mutation and 1p36/19q13 co-deletion. CONCLUSIONS We developed a highly reliable model for predicting different immune subtypes of glioma by ML. Then, we comprehensively analyzed the immune infiltration, molecular and clinical features of different immune subtypes of gliomas and defined gliomas into four subtypes: immunogenic subtype, adaptive immune resistance subtype, mesenchymal subtype, and immune tolerance subtype, which represent different TMEs and different stages of tumor development.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians- University Munich, Munich, Germany
| | - Lei Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yangchun Hu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Li
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
40
|
Zhang L, Wang Y, Cai X, Mao X, Sun H. Deciphering the CNS-glioma dialogue: Advanced insights into CNS-glioma communication pathways and their therapeutic potential. J Cent Nerv Syst Dis 2024; 16:11795735241292188. [PMID: 39493257 PMCID: PMC11528668 DOI: 10.1177/11795735241292188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
The field of cancer neuroscience has rapidly evolved, shedding light on the complex interplay between the nervous system and cancer, with a particular focus on the relationship between the central nervous system (CNS) and gliomas. Recent advancements have underscored the critical influence of CNS activity on glioma progression, emphasizing the roles of neurons and neuroglial cells in both the onset and evolution of gliomas. This review meticulously explores the primary communication pathways between the CNS and gliomas, encompassing neuro-glioma synapses, paracrine mechanisms, extracellular vesicles, tunneling nanotubes, and the integrative CNS-immune-glioma axis. It also evaluates current and emerging therapeutic interventions aimed at these pathways and proposes forward-looking perspectives for research in this domain.
Collapse
Affiliation(s)
- Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Stevens NA, Drewa N, Venkataramani V. Spark in the darkness: Discovering action potentials in brain tumors. Cancer Cell 2024; 42:1645-1647. [PMID: 39366373 DOI: 10.1016/j.ccell.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Gliomas exhibit significant molecular diversity and poor prognosis. In this issue of Cancer Cell, Curry et al. apply Patch-seq on human glioma samples uncovering hybrid cells with glial and neuronal features, capable of firing action potentials in isocitrate dehydrogenase mutant gliomas. These findings highlight the importance of neural features in tumor biology and progression.
Collapse
Affiliation(s)
- Nikolas Andreas Stevens
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nina Drewa
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
42
|
Curry RN, Ma Q, McDonald MF, Ko Y, Srivastava S, Chin PS, He P, Lozzi B, Athukuri P, Jing J, Wang S, Harmanci AO, Arenkiel B, Jiang X, Deneen B, Rao G, Serin Harmanci A. Integrated electrophysiological and genomic profiles of single cells reveal spiking tumor cells in human glioma. Cancer Cell 2024; 42:1713-1728.e6. [PMID: 39241781 PMCID: PMC11479845 DOI: 10.1016/j.ccell.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
Prior studies have described the complex interplay that exists between glioma cells and neurons; however, the electrophysiological properties endogenous to glioma cells remain obscure. To address this, we employed Patch-sequencing (Patch-seq) on human glioma specimens and found that one-third of patched cells in IDH mutant (IDHmut) tumors demonstrate properties of both neurons and glia. To define these hybrid cells (HCs), which fire single, short action potentials, and discern if they are of tumoral origin, we developed the single cell rule association mining (SCRAM) computational tool to annotate each cell individually. SCRAM revealed that HCs possess select features of GABAergic neurons and oligodendrocyte precursor cells, and include both tumor and non-tumor cells. These studies characterize the combined electrophysiological and molecular properties of human glioma cells and describe a cell type in human glioma with unique electrophysiological and transcriptomic properties that may also exist in the non-tumor brain.
Collapse
Affiliation(s)
- Rachel N Curry
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm F McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Snigdha Srivastava
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pey-Shyuan Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Peihao He
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA; Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Brittney Lozzi
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Prazwal Athukuri
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Su Wang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Arif O Harmanci
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Benjamin Arenkiel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Benjamin Deneen
- The Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
Manoharan VT, Abdelkareem A, Gill G, Brown S, Gillmor A, Hall C, Seo H, Narta K, Grewal S, Dang NH, Ahn BY, Osz K, Lun X, Mah L, Zemp F, Mahoney D, Senger DL, Chan JA, Morrissy AS. Spatiotemporal modeling reveals high-resolution invasion states in glioblastoma. Genome Biol 2024; 25:264. [PMID: 39390467 PMCID: PMC11465563 DOI: 10.1186/s13059-024-03407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Diffuse invasion of glioblastoma cells through normal brain tissue is a key contributor to tumor aggressiveness, resistance to conventional therapies, and dismal prognosis in patients. A deeper understanding of how components of the tumor microenvironment (TME) contribute to overall tumor organization and to programs of invasion may reveal opportunities for improved therapeutic strategies. RESULTS Towards this goal, we apply a novel computational workflow to a spatiotemporally profiled GBM xenograft cohort, leveraging the ability to distinguish human tumor from mouse TME to overcome previous limitations in the analysis of diffuse invasion. Our analytic approach, based on unsupervised deconvolution, performs reference-free discovery of cell types and cell activities within the complete GBM ecosystem. We present a comprehensive catalogue of 15 tumor cell programs set within the spatiotemporal context of 90 mouse brain and TME cell types, cell activities, and anatomic structures. Distinct tumor programs related to invasion align with routes of perivascular, white matter, and parenchymal invasion. Furthermore, sub-modules of genes serving as program network hubs are highly prognostic in GBM patients. CONCLUSION The compendium of programs presented here provides a basis for rational targeting of tumor and/or TME components. We anticipate that our approach will facilitate an ecosystem-level understanding of the immediate and long-term consequences of such perturbations, including the identification of compensatory programs that will inform improved combinatorial therapies.
Collapse
Affiliation(s)
- Varsha Thoppey Manoharan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Aly Abdelkareem
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Gurveer Gill
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Samuel Brown
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Aaron Gillmor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Courtney Hall
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Heewon Seo
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Kiran Narta
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Sean Grewal
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Kata Osz
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Laura Mah
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Franz Zemp
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Douglas Mahoney
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Donna L Senger
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - A Sorana Morrissy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
44
|
Zhang L, Wu C, Liu T, Tian Y, Wang D, Wang B, Yin Y. Propofol Protects the Blood-Brain Barrier After Traumatic Brain Injury by Stabilizing the Extracellular Matrix via Prrx1: From Neuroglioma to Neurotrauma. Neurochem Res 2024; 49:2743-2762. [PMID: 38951281 DOI: 10.1007/s11064-024-04202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The purpose of this study is to explore the shared molecular pathogenesis of traumatic brain injury (TBI) and high-grade glioma and investigate the mechanism of propofol (PF) as a potential protective agent. By analyzing the Chinese glioma genome atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, we compared the transcriptomic data of high-grade glioma and TBI patients to identify common pathological mechanisms. Through bioinformatics analysis, in vitro experiments and in vivo TBI model, we investigated the regulatory effect of PF on extracellular matrix (ECM)-related genes through Prrx1 under oxidative stress. The impact of PF on BBB integrity under oxidative stress was investigated using a dual-layer BBB model, and we explored the protective effect of PF on tight junction proteins and ECM-related genes in mice after TBI. The study found that high-grade glioma and TBI share ECM instability as an important molecular pathological mechanism. PF stabilizes the ECM and protects the BBB by directly binding to Prrx1 or indirectly regulating Prrx1 through miRNAs. In addition, PF reduces intracellular calcium ions and ROS levels under oxidative stress, thereby preserving BBB integrity. In a TBI mouse model, PF protected BBB integrity through up-regulated tight junction proteins and stabilized the expression of ECM-related genes. Our study reveals the shared molecular pathogenesis between TBI and glioblastoma and demonstrate the potential of PF as a protective agent of BBB. This provides new targets and approaches for the development of novel neurotrauma therapeutic drugs.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
45
|
Schlieper-Scherf S, Hebach N, Hausmann D, Azorín DD, Hoffmann DC, Horschitz S, Maier E, Koch P, Karreman MA, Etminan N, Ratliff M. Disrupting glioblastoma networks with tumor treating fields (TTFields) in in vitro models. J Neurooncol 2024; 170:139-151. [PMID: 39088157 PMCID: PMC11457690 DOI: 10.1007/s11060-024-04786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE This study investigates the biological effect of Tumor Treating Fields (TTFields) on key drivers of glioblastoma's malignancy-tumor microtube (TM) formation-and on the function and overall integrity of the tumor cell network. METHOD Using a two-dimensional monoculture GB cell network model (2DTM) of primary glioblastoma cell (GBC) cultures (S24, BG5 or T269), we evaluated the effects of TTFields on cell density, interconnectivity and structural integrity of the tumor network. We also analyzed calcium (Ca2+) transient dynamics and network morphology, validating findings in patient-derived tumoroids and brain tumor organoids. RESULTS In the 2DTM assay, TTFields reduced cell density by 85-88% and disrupted network interconnectivity, particularly in cells with multiple TMs. A "crooked TM" phenotype emerged in 5-6% of treated cells, rarely seen in controls. Ca2+ transients were significantly compromised, with global Ca2+ activity reduced by 51-83%, active and periodic cells by over 50%, and intercellular co-activity by 52% in S24, and almost completely in BG5 GBCs. The effects were more pronounced at 200 kHz compared to a 50 kHz TTFields. Similar reductions in Ca2+ activity were observed in patient-derived tumoroids. In brain tumor organoids, TTFields significantly reduced tumor cell proliferation and infiltration. CONCLUSION Our comprehensive study provides new insights into the multiple effects of Inovitro-modeled TTFields on glioma progression, morphology and network dynamics in vitro. Future in vivo studies to verify our in vitro findings may provide the basis for a deeper understanding and optimization of TTFields as a therapeutic modality in the treatment of GB.
Collapse
Affiliation(s)
- Steffen Schlieper-Scherf
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nils Hebach
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - David Hausmann
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel D Azorín
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Horschitz
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany
| | - Elena Maier
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Phillip Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
46
|
Caverzan MD, Ibarra LE. Advancing glioblastoma treatment through iron metabolism: A focus on TfR1 and Ferroptosis innovations. Int J Biol Macromol 2024; 278:134777. [PMID: 39153669 DOI: 10.1016/j.ijbiomac.2024.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.
Collapse
Affiliation(s)
- Matías D Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina; Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina.
| |
Collapse
|
47
|
Niu X, Zhang Y, Wang Y. Co-culture models for investigating cellular crosstalk in the glioma microenvironment. CANCER PATHOGENESIS AND THERAPY 2024; 2:219-230. [PMID: 39371093 PMCID: PMC11447344 DOI: 10.1016/j.cpt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Glioma is the most prevalent primary malignant tumor in the central nervous system (CNS). It represents a diverse group of brain malignancies characterized by the presence of various cancer cell types as well as an array of noncancerous cells, which together form the intricate glioma tumor microenvironment (TME). Understanding the interactions between glioma cells/glioma stem cells (GSCs) and these noncancerous cells is crucial for exploring the pathogenesis and development of glioma. To invesigate these interactions requires in vitro co-culture models that closely mirror the actual TME in vivo. In this review, we summarize the two- and three-dimensional in vitro co-culture model systems for glioma-TME interactions currently available. Furthermore, we explore common glioma-TME cell interactions based on these models, including interactions of glioma cells/GSCs with endothelial cells/pericytes, microglia/macrophages, T cells, astrocytes, neurons, or other multi-cellular interactions. Together, this review provides an update on the glioma-TME interactions, offering insights into glioma pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
48
|
Drexler R, Drinnenberg A, Gavish A, Yalcin B, Shamardani K, Rogers A, Mancusi R, Taylor KR, Kim YS, Woo PJ, Ravel A, Tatlock E, Ramakrishnan C, Ayala-Sarmiento AE, Pacheco DRF, Siverts L, Daigle TL, Tasic B, Zeng H, Breunig JJ, Deisseroth K, Monje M. Cholinergic Neuronal Activity Promotes Diffuse Midline Glioma Growth through Muscarinic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614235. [PMID: 39386427 PMCID: PMC11463519 DOI: 10.1101/2024.09.21.614235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses. However, the putative roles of other neuronal subpopulations - especially neuromodulatory neurons located in the brainstem that project to long-range target sites in midline anatomical locations where DMGs arise - remain largely unexplored. Here, we demonstrate that the activity of cholinergic midbrain neurons modulates both healthy OPC and malignant DMG proliferation in a circuit-specific manner at sites of long-range cholinergic projections. Optogenetic stimulation of the cholinergic pedunculopontine nucleus (PPN) promotes glioma growth in pons, while stimulation of the laterodorsal tegmentum nucleus (LDT) facilitates proliferation in thalamus, consistent with the predominant projection patterns of each cholinergic midbrain nucleus. Reciprocal signaling was evident, as increased activity of cholinergic neurons in the PPN and LDT was observed in pontine DMG-bearing mice. In co-culture, hiPSC-derived cholinergic neurons form neuron-to-glioma networks with DMG cells and robustly promote proliferation. Single-cell RNA sequencing analyses revealed prominent expression of the muscarinic receptor genes CHRM1 and CHRM3 in primary patient DMG samples, particularly enriched in the OPC-like tumor subpopulation. Acetylcholine, the neurotransmitter cholinergic neurons release, exerts a direct effect on DMG tumor cells, promoting increased proliferation and invasion through muscarinic receptors. Pharmacological blockade of M1 and M3 acetylcholine receptors abolished the activity-regulated increase in DMG proliferation in cholinergic neuron-glioma co-culture and in vivo. Taken together, these findings demonstrate that midbrain cholinergic neuron long-range projections to midline structures promote activity-dependent DMG growth through M1 and M3 cholinergic receptors, mirroring a parallel proliferative effect on healthy OPCs.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- These authors contributed equally
| | - Antonia Drinnenberg
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Avishai Gavish
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Belgin Yalcin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Abigail Rogers
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Alexandre Ravel
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eva Tatlock
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Alberto E Ayala-Sarmiento
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Zhao C, Wu Z, Yao Z, Zhang F, Zhao R, Cao X, Ling S, Jiang X. The tumorigenic effect of the high expression of ABRACL in glioma and its potential as a therapeutic target. Heliyon 2024; 10:e36597. [PMID: 39286126 PMCID: PMC11402703 DOI: 10.1016/j.heliyon.2024.e36597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Gliomas are the most common malignant intracranial tumors, with no effective treatments. Better understanding and identification of novel targets are urgently warranted. Actin-binding Rho activating C-terminal like (ABRACL) has been reported as an oncogene in several cancer types. However, the potential roles of ABRACL in the tumorigenesis of malignant glioma remain unknown. We discovered that ABRACL is highly expressed in different sub-types of gliomas in both CGGA and TCGA databases, which was further validated in glioblastoma cell lines and normal human astrocyte lines. RT-qPCR, Western blotting and immunohistochemistry demonstrated that ABRACL expression in glioma tissues was upregulated along with the increasing WHO grades. Further survival analysis of glioma patients also revealed that the overall survival of patients in the ABRACL high expression level group were significantly shorter than those in the low expression level group. Knockdown of ABRACL inhibited the proliferation, cell migration, invasion and cytodynamics behaviors in glioma cell lines via activating STAT3 signaling, which also induced apoptosis and cell cycle arrest. Conversely, overexpressing ABRACL promoted cell renewing and migration, enabled more flexible cell deformation, supporting ABRACL being a bona fide oncogene. Intracranial orthotopic xenograft experiment further confirmed that ABRACL downregulation significantly suppressed glioma growth. These results have demonstrated that the tumorigenic effect of ABRACL is partly mediated by STAT3, whose expression also correlates with clinical prognosis. ABRACL facilitates glioma malignancy phenotype through regulating the cytoskeleton by activating STAT3 pathway, suggesting that it may represent a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Chenhui Zhao
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Zeyu Wu
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Zhipeng Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Rui Zhao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaoxiang Cao
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Shizhang Ling
- Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wannan Medical College, Wuhu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| |
Collapse
|
50
|
Schubert MC, Soyka SJ, Tamimi A, Maus E, Schroers J, Wißmann N, Reyhan E, Tetzlaff SK, Yang Y, Denninger R, Peretzke R, Beretta C, Drumm M, Heuer A, Buchert V, Steffens A, Walshon J, McCortney K, Heiland S, Bendszus M, Neher P, Golebiewska A, Wick W, Winkler F, Breckwoldt MO, Kreshuk A, Kuner T, Horbinski C, Kurz FT, Prevedel R, Venkataramani V. Deep intravital brain tumor imaging enabled by tailored three-photon microscopy and analysis. Nat Commun 2024; 15:7383. [PMID: 39256378 PMCID: PMC11387418 DOI: 10.1038/s41467-024-51432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Intravital 2P-microscopy enables the longitudinal study of brain tumor biology in superficial mouse cortex layers. Intravital microscopy of the white matter, an important route of glioblastoma invasion and recurrence, has not been feasible, due to low signal-to-noise ratios and insufficient spatiotemporal resolution. Here, we present an intravital microscopy and artificial intelligence-based analysis workflow (Deep3P) that enables longitudinal deep imaging of glioblastoma up to a depth of 1.2 mm. We find that perivascular invasion is the preferred invasion route into the corpus callosum and uncover two vascular mechanisms of glioblastoma migration in the white matter. Furthermore, we observe morphological changes after white matter infiltration, a potential basis of an imaging biomarker during early glioblastoma colonization. Taken together, Deep3P allows for a non-invasive intravital investigation of brain tumor biology and its tumor microenvironment at subcortical depths explored, opening up opportunities for studying the neuroscience of brain tumors and other model systems.
Collapse
Affiliation(s)
- Marc Cicero Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella Judith Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amr Tamimi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Svenja Kristin Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Yang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Denninger
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Robin Peretzke
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlo Beretta
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Michael Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Alicia Steffens
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Jordain Walshon
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Neher
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Felix Tobias Kurz
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany.
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|