1
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
2
|
Sun Y, Wang C, Wen L, Ling Z, Xia J, Cheng B, Peng J. Quercetin ameliorates senescence and promotes osteogenesis of BMSCs by suppressing the repetitive element‑triggered RNA sensing pathway. Int J Mol Med 2025; 55:4. [PMID: 39450556 PMCID: PMC11537266 DOI: 10.3892/ijmm.2024.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Cell senescence impedes the self‑renewal and osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs), thus limiting their application in tissue regeneration. The present study aimed to elucidate the role and mechanism of repetitive element (RE) activation in BMSC senescence and osteogenesis, as well as the intervention effect of quercetin. In an H2O2‑induced BMSC senescence model, quercetin treatment alleviated senescence as shown by a decrease in senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive cell ratio, increased colony formation ability and decreased mRNA expression of p21 and senescence‑associated secretory phenotype genes. DNA damage response marker γ‑H2AX increased in senescent BMSCs, while expression of epigenetic markers methylation histone H3 Lys9, heterochromatin protein 1α and heterochromatin‑related nuclear membrane protein lamina‑associated polypeptide 2 decreased. Quercetin rescued these alterations, indicating its ability to ameliorate senescence by stabilizing heterochromatin structure where REs are primarily suppressed. Transcriptional activation of REs accompanied by accumulation of cytoplasmic double‑stranded (ds)RNA, as well as triggering of the RNA sensor retinoic acid‑inducible gene I (RIG‑I) receptor pathway in H2O2‑induced senescent BMSCs were shown. Similarly, quercetin treatment inhibited these responses. Additionally, RIG‑I knockdown led to a decreased number of SA‑β‑gal‑positive cells, confirming its functional impact on senescence. Induction of senescence or administration of dsRNA analogue significantly hindered the osteogenic capacity of BMSCs, while quercetin treatment or RIG‑I knockdown reversed the decline in osteogenic function. The findings of the current study demonstrated that quercetin inhibited the activation of REs and the RIG‑I RNA sensing pathway via epigenetic regulation, thereby alleviating the senescence of BMSCs and promoting osteogenesis.
Collapse
Affiliation(s)
- Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chunyang Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Liling Wen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510060, P.R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
3
|
Zhao Y, Li W, Xu J, Bao L, Wu K, Shan R, Hu X, Fu Y, Zhao C. Endogenous retroviruses modulate the susceptibility of mice to Staphylococcus aureus-induced mastitis by activating cGAS-STING signaling. Int Immunopharmacol 2024; 142:113171. [PMID: 39312862 DOI: 10.1016/j.intimp.2024.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Recently studies showed that cow mastitis seriously affected the economic benefit of dairy industry and pathogen infection including S. aureus is the main cause of mastitis. However, there is still a lack of safe and effective treatment for S. aureus-induced mastitis due to its complex pathogenesis. Endogenous retroviruses (ERVs) have long been symbiotic with mammals, and most ERVs still have the ability to produces complementary DNA (cDNA) by reverse transcription, whose induction by commensal or pathogens can regulate host immunity and inflammatory responses through the cGAS-STING pathway. However, whether and how ERVs participate in the pathogenesis of S. aureus-induced mastitis still unclear. In this study, we found that S. aureus treatment increased the levels of ERVs and IFN-β. Inhibition the transcription of ERVs by emtricitabine alleviated S. aureus-induced mammary injury, reduced mammary bacterial burden, and inhibited the production of mammary proinflammatory factors including TNF-α, IL-1β and MPO activity. Moreover, inhibition of ERVs restored the function of blood-milk barrier caused by S. aureus. Next, we showed that S. aureus infection activated mammary cGAS-STING signaling pathway, which was mediated by ERVs, as evidenced by emtricitabine inhibited S. aureus-induced activation of the cGAS-STING pathway. Interestingly, inhibition of cGAS-STING by Ru.521 and H151 respectively, significantly alleviated S. aureus-induced mammary injury and inflammatory responses, which was associated with the inhibition of NF-κB and NLRP3 signaling pathways. In conclusion, our study revealed that ERVs regulate the development of S. aureus-induced mastitis in mice through NF-κB- and NLRP3-mediated inflammatory responses via the activation of cGAS-STING pathway, suggesting that targeting ERVs-cGAS-STING axis may be a potential approach for the treatment of S. aureus-induced mastitis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China.
| |
Collapse
|
4
|
Al Meslamani AZ, Sobrino I, de la Fuente J. Machine learning in infectious diseases: potential applications and limitations. Ann Med 2024; 56:2362869. [PMID: 38853633 PMCID: PMC11168216 DOI: 10.1080/07853890.2024.2362869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Infectious diseases are a major threat for human and animal health worldwide. Artificial Intelligence (AI) combined algorithms including Machine Learning and Big Data analytics have emerged as a potential solution to analyse diverse datasets and face challenges posed by infectious diseases. In this commentary we explore the potential applications and limitations of ML to management of infectious disease. It explores challenges in key areas such as outbreak prediction, pathogen identification, drug discovery, and personalized medicine. We propose potential solutions to mitigate these hurdles and applications of ML to identify biomolecules for effective treatment and prevention of infectious diseases. In addition to use of ML for management of infectious diseases, potential applications are based on catastrophic evolution events for the identification of biomolecular targets to reduce risks for infectious diseases and vaccinomics for discovery and characterization of vaccine protective antigens using intelligent Big Data analytics techniques. These considerations set a foundation for developing effective strategies for managing infectious diseases in the future.
Collapse
Affiliation(s)
- Ahmad Z. Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Isidro Sobrino
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, OK State University, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Smith ME, Wahl D, Cavalier AN, McWilliams GT, Rossman MJ, Giordano GR, Bryan AD, Seals DR, LaRocca TJ. Repetitive element transcript accumulation is associated with inflammaging in humans. GeroScience 2024; 46:5663-5679. [PMID: 38641753 PMCID: PMC11493880 DOI: 10.1007/s11357-024-01126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this "inflammaging" by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults. We also: (1) use transcriptomics and whole-genome bisulfite (methylation) sequencing to show that many RE may be hypomethylated with aging, and that aerobic exercise, a healthspan-extending intervention, reduces RE transcript levels and increases RE methylation in older adults; and (2) extend our findings in a secondary dataset demonstrating age-related changes in RE chromatin accessibility. Collectively, our data support the idea that age-related RE transcript accumulation may play a role in inflammaging in humans, and that RE dysregulation with aging may be due in part to upstream epigenetic changes.
Collapse
Affiliation(s)
- Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gabriella T McWilliams
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gregory R Giordano
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
de la Fuente J. Catastrophic selection: the other side of the coin. Ann Med 2024; 56:2391014. [PMID: 39140291 PMCID: PMC11328594 DOI: 10.1080/07853890.2024.2391014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Recently, a machine learning molecular de-extinction paleoproteomic approach was used to recover inactivated antimicrobial peptides to overcome the challenges posed by antibiotic-resistant pathogens. The authors showed the possibility of identifying lost molecules with antibacterial capacity, but the other side of the coin associated with catastrophic selection should be considered for the development of new pharmaceuticals.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, OK State University, Stillwater, OK, USA
| |
Collapse
|
7
|
Mao J, Zhang Q, Zhuang Y, Zhang Y, Li L, Pan J, Xu L, Ding Y, Wang M, Cong YS. Reactivation of senescence-associated endogenous retroviruses by ATF3 drives interferon signaling in aging. NATURE AGING 2024:10.1038/s43587-024-00745-6. [PMID: 39543280 DOI: 10.1038/s43587-024-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Reactivation of endogenous retroviruses (ERVs) has been proposed to be involved in aging. However, the mechanism of reactivation and contribution to aging and age-associated diseases is largely unexplored. In this study, we identified a subclass of ERVs reactivated in senescent cells (termed senescence-associated ERVs (SA-ERVs)). These SA-ERVs can be bidirectional transcriptionally activated by activating transcription factor 3 (ATF3) to generate double-stranded RNAs (dsRNAs), which activate the RIG-I/MDA5-MAVS signaling pathway and trigger a type I interferon (IFN-I) response in senescent fibroblasts. Consistently, we found a concerted increased expression of ATF3 and SA-ERVs and enhanced IFN-I response in several tissues of healthy aged individuals and patients with Hutchinson-Gilford progeria syndrome. Moreover, we observed an accumulation of dsRNAs derived from SA-ERVs and higher levels of IFNβ in blood of aged individuals. Together, these results reveal a previously unknown mechanism for reactivation of SA-ERVs by ATF3 and illustrate SA-ERVs as an important component and hallmark of aging.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yang Zhuang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yinyu Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Linmeng Li
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Juan Pan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Yuxuan Ding
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Bao Y, Bai X, Bu C, Chen H, Chen H, Chen K, Chen M, Chen M, Chen M, Chen P, Chen Q, Chen Q, Chen R, Chen T, Chen T, Chen X, Cheng W, Cui Y, Ding M, Dong L, Duan G, Fan Z, Fang L, Feng Z, Fu S, Gao F, Gao G, Gao H, Gao S, Gao X, Gong J, Gou Y, Guo A, Guo G, Han C, Han F, Han Z, He S, Huang D, Huang J, Huang X, Jiang H, Jiang J, Jiang S, Jiang S, Jiang T, Jin E, Jin W, Kan H, Kang Z, Kong D, Lei M, Li C, Li C, Li H, Li J, Li J, Li L, Li L, Li Q, Li R, Li X, Li X, Li Y, Li Y, Li Z, Liang C, Ling Y, Liu B, Liu C, Liu D, Liu F, Liu G, Liu H, Liu L, Liu L, Liu M, Liu W, Liu W, Liu Y, Liu Y, Lu X, Luo H, Luo M, Luo X, Luo Z, Ma J, Ma L, Ma S, Ma Y, Mai J, Meng J, Meng X, Meng Y, Miao Y, Miao Z, Nie Z, Niu X, Pei B, Peng D, Peng J, Qi J, Qi Y, Qian Q, Qiao Q, Qu J, Ren J, Sang Z, Shang Y, Shen W, Shen Y, Shi H, Shi M, Shi W, Song B, Song S, Sun J, Sun Y, Sun Y, Tang B, Tang D, Tang Q, Tian D, Tian Z, Wang A, Wang F, Wang F, Wang G, Wang J, Wang L, Wang M, Wang S, Wang S, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wei Y, Wei Z, Wu D, Wu S, Wu W, Wu X, Wu Z, Xiao J, Xiao L, Xiao Y, Xie GY, Xie G, Xie Y, Xiong Z, Xu C, Xu L, Xu P, Xu T, Xue R, Xue Y, Yang C, Yang D, Yang F, Yang J, Yang J, Yang K, Yang L, Yang X, Yang Y, Ye H, Yu C, Yuan C, Yuan H, Yuan L, Yuan Y, Yue J, Zhai S, Zhang C, Zhang D, Zhang G, Zhang J, Zhang M, Zhang Q, Zhang S, Zhang S, Zhang S, Zhang W, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang YE, Zhang Y, Zhang Y, Zhang Z, Zhao F, Zhao G, Zhao J, Zhao M, Zhao W, Zhao W, Zhao X, Zhao Y, Zhao Z, Zheng X, Zheng X, Zhou B, Zhou C, Zhou H, Zhou X, Zhou Y, Zhu J, Zhu R, Zhu T, Zhu Y, Zhuang X, Zong W, Zou D, Zuo C, Zuo Z. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. Nucleic Acids Res 2024:gkae978. [PMID: 39530327 DOI: 10.1093/nar/gkae978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The National Genomics Data Center (NGDC), which is a part of the China National Center for Bioinformation (CNCB), offers a comprehensive suite of database resources to support the global scientific community. Amidst the unprecedented accumulation of multi-omics data, CNCB-NGDC is committed to continually evolving and updating its core database resources through big data archiving, integrative analysis and value-added curation. Over the past year, CNCB-NGDC has expanded its collaborations with international databases and established new subcenters focusing on biodiversity, traditional Chinese medicine and tumor genetics. Substantial efforts have been made toward encompassing a broad spectrum of multi-omics data, developing innovative resources and enhancing existing resources. Notably, new resources have been developed for single-cell omics (scTWAS Atlas), genome and variation (VDGE), health and disease (CVD Atlas, CPMKG, Immunosenescence Inventory, HemAtlas, Cyclicpepedia, IDeAS), biodiversity and biosynthesis (RefMetaPlant, MASH-Ocean) and research tools (CCLHunter). All resources and services are publicly accessible at https://ngdc.cncb.ac.cn.
Collapse
|
9
|
Filippi M, Preziosa P, Barkhof F, Ciccarelli O, Cossarizza A, De Stefano N, Gasperini C, Geraldes R, Granziera C, Haider L, Lassmann H, Margoni M, Pontillo G, Ropele S, Rovira À, Sastre-Garriga J, Yousry TA, Rocca MA. The ageing central nervous system in multiple sclerosis: the imaging perspective. Brain 2024; 147:3665-3680. [PMID: 39045667 PMCID: PMC11531849 DOI: 10.1093/brain/awae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation. When combined with multiple sclerosis pathology, these age-related alterations may worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to therapies and/or their side effects, highlighting the importance of adjusted treatment considerations. MRI is highly sensitive to age- and multiple sclerosis-related processes. Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, enabling a better understanding of their pathophysiological interplay and informing treatment selection. This review summarizes current knowledge on the immunopathological and MRI aspects of ageing in the CNS in the context of multiple sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms and specific features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics and myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients, are also discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, UCL, London WC1N 3BG, UK
- NIHR (National Institute for Health and Care Research) UCLH (University College London Hospitals) BRC (Biomedical Research Centre), London WC1N 3BG, UK
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Claudio Gasperini
- Department of Neurosciences, S Camillo Forlanini Hospital Rome, 00152 Rome, Italy
| | - Ruth Geraldes
- Clinical Neurology, John Radcliffe Hospital, Oxford University Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lukas Haider
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Pontillo
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London WC1N 3BG, UK
- Department of Advanced Biomedical Sciences, University “Federico II”, 80138 Naples, Italy
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8010 Graz, Austria
| | - Àlex Rovira
- Neuroradiology Section, Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Jaume Sastre-Garriga
- Neurology Department and Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Tarek A Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
10
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Dua I, Pearson AC, Lowman RL, Peshkin L, Yampolsky LY. Post-senescence reproductive rebound in Daphnia associated with reversal of age-related transcriptional changes. GeroScience 2024:10.1007/s11357-024-01401-y. [PMID: 39460850 DOI: 10.1007/s11357-024-01401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
A long-lived species of zooplankton microcrustaceans, Daphnia magna, sometimes exhibits late-life rebound of reproduction, briefly reversing reproductive senescence. Such events are often interpreted as terminal investments in anticipation of imminent mortality. We demonstrate that such post-senescence reproductive events (PSREs) neither cause nor anticipate increased mortality. We analyze an RNAseq experiment comparing young, old reproductively senescent, and old PSRE Daphnia females. We first show that overall age-related transcriptional changes are dominated by the increased transcription of guanidine monophosphate synthases and guanylate cyclases, as well as two groups of presumed transposon-encoded proteins, and by a drop in transcription of protein synthesis-related genes. We then focus on gene families and functional groups in which full or partial reversal of age-related transcriptional changes occur. This analysis reveals a reversal, in the PSRE individuals, of age-related up-regulation of apolipoproteins D, lysosomal lipases, and peptidases as well as several proteins related to mitochondrial and muscle functions. While it is not certain which of these changes enable reproductive rejuvenation, and which are by-products of processes that lead to it, we present some evidence that post-senescence reproductive events are associated with the reversal of age-related protein and lipid aggregates removal and apoptosis.
Collapse
Affiliation(s)
- Ishaan Dua
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - A Catherine Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Rachael L Lowman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Leonid Peshkin
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
12
|
Dayama G, Gupta S, Connizzo BK, Labadorf AT, Myers RH, Lau NC. Transposable element small and long RNAs in aging brains and implications in Huntington's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619758. [PMID: 39484439 PMCID: PMC11526979 DOI: 10.1101/2024.10.22.619758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transposable Elements (TEs) are implicated in aging and neurodegenerative disorders, but the impact of brain TE RNA dynamics on these phenomena is not fully understood. Therefore, we quantified TE RNA changes in aging post-mortem human and mouse brains and in the neurodegenerative disorders Huntington's Disease (HD) and Parkinson's Disease (PD). We tracked TE small RNAs (smRNAs) expression landscape to assess the relationship to the active processing from TE long RNAs (lnRNAs). Human brain transcriptomes from the BrainSpan Atlas displayed a significant shift of TE smRNA patterns at age 20 years, whereas aging mouse brains lacked any such marked change, despite clear shift in aging-associated mRNA levels. Human frontal cortex displayed pronounced sense TE smRNAs during aging with a negative relationship between the TE smRNAs and lnRNAs indicative of age associated regulatory effects. Our analysis revealed TE smRNAs dysregulation in HD, while PD showed a stronger impact on TE lnRNAs, potentially correlating with the early average age of death for HD relative to PD. Furthermore, TE-silencing factor TRIM28 was down-regulated only in aging human brains, possibly explaining the lack of substantial TE RNA changes in aging mouse brains. Our study suggests brain TE RNAs may serve as novel biomarkers of human brain aging and neurodegenerative disorders.
Collapse
|
13
|
Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ AGING 2024; 10:48. [PMID: 39448585 PMCID: PMC11502686 DOI: 10.1038/s41514-024-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rouven Arnold
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anais Equey
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
14
|
Yang Y, Dong S, You B, Zhou C. Dual roles of human endogenous retroviruses in cancer progression and antitumor immune response. Biochim Biophys Acta Rev Cancer 2024; 1879:189201. [PMID: 39427821 DOI: 10.1016/j.bbcan.2024.189201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Human endogenous retroviruses (HERVs) are a class of transposable elements formed by the integration of ancient retroviruses into the germline genome. They are inherited in a Mendelian manner and approximately constitute 8 % of the human genome. HERVs were considered as "junk DNA" for decades, but increasing evidence suggests that they play significant roles in pathological inflammation, neural differentiation, and oncogenesis. Specifically, HERVs expression has been implicated in several oncogenic processes and the formation of the tumor microenvironment. Indeed, the dual roles of HERVs in cancer, serving as both promoters of oncogenesis and forerunners of the innate antitumor immune response, remain a subject of debate. In this review, we will discuss how HERVs participate in cancer progression and how they are regulated. Our aim is to provide a comprehensive understanding of the fundamental properties and potential function of HERVs in propagating oncogenesis and activating the antitumor immune response. We hope that updated knowledge will reshape our understanding of the critical roles played by HERVs in human evolution and cancer progression.
Collapse
Affiliation(s)
- Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| | - Surong Dong
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Benshuai You
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
15
|
Du P, Li J, Hua M, Zhu L, Chen C, Zeng H. Potential Contributions of Human Endogenous Retroviruses in Innate Immune Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1225-1233. [PMID: 39230265 DOI: 10.4049/jimmunol.2300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The phenomenon wherein innate immune cells adopt long-term inflammatory phenotypes following the first stimuli is named trained immunity and can improve host defense against infections. Transcriptional and epigenetic reprogramming are critical mechanisms of trained immunity; however, the regulatory networks are not entirely clear at present. The human endogenous retroviruses (HERVs) provide large amounts of transcriptional regulators in the regulatory pathways. In this study, we analyzed published large omics data to explore the roles of such "dark matter" of the human genome in trained and tolerant macrophages. We collected 80 RNA sequencing data and 62 sequencing data to detect histone modifications and active regulatory regions from nine published studies on trained and tolerant macrophages. By analyzing the characteristics of transcription and epigenetic modification of HERVs, as well as their association with gene expression, we found that 15.3% of HERVs were transcribed nonrandomly from noncoding regions and enriched in specific HERV families and specific chromosomes, such as chromosomes 11, 15, 17, and 19, and they were highly related with the expression of adjacent genes. We found that 295 differentially expressed HERVs are located in 50-kbp flanking regions of 142 differentially expressed genes. We found epigenetic changes of these HERVs and that overlap with predicted enhancers and identified 35 enhancer-like HERVs. The related genes were highly involved in the activation and inflammatory responses, such as the TLR pathway. Other pathways including phosphoinositide signaling and transport of folate and K+ might be also related with trained immunity, which require further study. These results demonstrated that HERVs might play important roles in trained immunity.
Collapse
Affiliation(s)
- Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Jiarui Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Qi H, Wu Y, Zhang W, Yu N, Lu X, Liu J. The syntaxin-binding protein STXBP5 regulates progerin expression. Sci Rep 2024; 14:23376. [PMID: 39379476 PMCID: PMC11461833 DOI: 10.1038/s41598-024-74621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hutchinson-Gilfor progeria syndrome (HGPS) is caused by a mutation in Lamin A resulting in the production of a protein called progerin. The accumulation of progerin induces inflammation, cellular senescence and activation of the P53 pathway. In this study, through public dataset analysis, we identified Syntaxin Binding Protein 5 (STXBP5) as an influencing factor of progerin expression. STXBP5 overexpression accelerated the onset of senescence, while STXBP5 deletion suppressed progerin expression, delayed senility, and decreased the expression of senescence-related factors. STXBP5 and progerin have synergistic effects and a protein-protein interaction. Through bioinformatics analysis, we found that STXBP5 affects ageing-related signalling pathways such as the mitogen-activated protein kinase (MAPK) pathway, the hippo pathway and the interleukin 17 (IL17) signalling pathway in progerin-expressing cells. In addition, STXBP5 overexpression induced changes in transposable elements (TEs), such as the human endogenous retrovirus H internal coding sequence (HERVH-int) changes. Our protein coimmunoprecipitation (Co-IP) results indicated that STXBP5 bound directly to progerin. Therefore, decreasing STXBP5 expression is a potential new therapeutic strategy for treating ageing-related phenotypes in patients with HGPS.
Collapse
Affiliation(s)
- Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yingying Wu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Weiyu Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853-2703, USA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Jinchao Liu
- College of Artificial Intelligence, Nankai University, Tianjin, 300350, China.
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
17
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00775-3. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
19
|
Maxwell PH, Mahmood M, Villanueva M, Devine K, Avery N. Lifespan Extension by Retrotransposons under Conditions of Mild Stress Requires Genes Involved in tRNA Modifications and Nucleotide Metabolism. Int J Mol Sci 2024; 25:10593. [PMID: 39408922 PMCID: PMC11477299 DOI: 10.3390/ijms251910593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Retrotransposons are mobile DNA elements that are more active with increasing age and exacerbate aging phenotypes in multiple species. We previously reported an unexpected extension of chronological lifespan in the yeast, Saccharomyces paradoxus, due to the presence of Ty1 retrotransposons when cells were aged under conditions of mild stress. In this study, we tested a subset of genes identified by RNA-seq to be differentially expressed in S. paradoxus strains with a high-copy number of Ty1 retrotransposons compared with a strain with no retrotransposons and additional candidate genes for their contribution to lifespan extension when cells were exposed to a moderate dose of hydroxyurea (HU). Deletion of ADE8, NCS2, or TRM9 prevented lifespan extension, while deletion of CDD1, HAC1, or IRE1 partially prevented lifespan extension. Genes overexpressed in high-copy Ty1 strains did not typically have Ty1 insertions in their promoter regions. We found that silencing genomic copies of Ty1 prevented lifespan extension, while expression of Ty1 from a high-copy plasmid extended lifespan in medium with HU or synthetic medium. These results indicate that cells adapt to expression of retrotransposons by changing gene expression in a manner that can better prepare them to remain healthy under mild stress.
Collapse
|
20
|
Ndhlovu LC, Bendall ML, Dwaraka V, Pang APS, Dopkins N, Carreras N, Smith R, Nixon DF, Corley MJ. Retro-age: A unique epigenetic biomarker of aging captured by DNA methylation states of retroelements. Aging Cell 2024; 23:e14288. [PMID: 39092674 PMCID: PMC11464121 DOI: 10.1111/acel.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Reactivation of retroelements in the human genome has been linked to aging. However, whether the epigenetic state of specific retroelements can predict chronological age remains unknown. We provide evidence that locus-specific retroelement DNA methylation can be used to create retroelement-based epigenetic clocks that accurately measure chronological age in the immune system, across human tissues, and pan-mammalian species. We also developed a highly accurate retroelement epigenetic clock compatible with EPICv.2.0 data that was constructed from CpGs that did not overlap with existing first- and second-generation epigenetic clocks, suggesting a unique signal for epigenetic clocks not previously captured. We found retroelement-based epigenetic clocks were reversed during transient epigenetic reprogramming, accelerated in people living with HIV-1, and responsive to antiretroviral therapy. Our findings highlight the utility of retroelement-based biomarkers of aging and support a renewed emphasis on the role of retroelements in geroscience.
Collapse
Affiliation(s)
- Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious DiseasesWeill Cornell MedicineNew YorkNew York CityUSA
| | - Matthew L. Bendall
- Department of Medicine, Division of Infectious DiseasesWeill Cornell MedicineNew YorkNew York CityUSA
| | | | - Alina P. S. Pang
- Department of Medicine, Division of Infectious DiseasesWeill Cornell MedicineNew YorkNew York CityUSA
| | - Nicholas Dopkins
- Department of Medicine, Division of Infectious DiseasesWeill Cornell MedicineNew YorkNew York CityUSA
| | | | | | - Douglas F. Nixon
- Department of Medicine, Division of Infectious DiseasesWeill Cornell MedicineNew YorkNew York CityUSA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious DiseasesWeill Cornell MedicineNew YorkNew York CityUSA
| |
Collapse
|
21
|
Peng Y, Ding L, Xiao Z, Song M, Lv J, Liu GH. Ethical concerns in aging research: perspectives of global frontline researchers. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2149-2156. [PMID: 39034350 DOI: 10.1007/s11427-024-2650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/15/2024] [Indexed: 07/23/2024]
Abstract
This study investigated the ethical landscape of aging research amid the increasing global focus on extending the human lifespan and health span. Our global survey of 180 researchers across 38 jurisdictions revealed divergent perceptions of aging, a consensus regarding the feasibility of delaying aging, and multiple perspectives regarding lifespan extension. The present findings underscore a paradigm shift toward inclusive and ethically sound research, emphasizing the need for an approach that strikes a balance between basic and clinical research. In addition, this study highlighted key ethical concerns in aging research, including the effects of misleading advertising, potential inequality in access to aging interventions, and risks pertaining to the extrapolation of research findings from lower-model organisms to humans. The insights presented in this paper call for an integrated approach for overcoming the complex ethical and societal challenges in aging research to ensure responsible and equitable advancements in this burgeoning field.
Collapse
Affiliation(s)
- Yaojin Peng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Aging Biomarker Consortium (ABC), Beijing, 100101, China.
| | - Lulu Ding
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Xiao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Aging Biomarker Consortium (ABC), Beijing, 100101, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Aging Biomarker Consortium (ABC), Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
22
|
Coppes RP, van Dijk LV. Future of Team-based Basic and Translational Science in Radiation Oncology. Semin Radiat Oncol 2024; 34:370-378. [PMID: 39271272 DOI: 10.1016/j.semradonc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
To further optimize radiotherapy, a more personalized treatment towards individual patient's risk profiles, dissecting both patient-specific tumor and normal tissue response to multimodality treatments is needed. Novel developments in radiobiology, using in vitro patient-specific complex tissue resembling 3D models and multiomics approaches at a spatial single-cell level, may provide unprecedented insight into the radiation responses of tumors and normal tissue. Here, we describe the necessary team effort, including all disciplines in radiation oncology, to integrate such data into clinical prediction models and link the relatively "big data" from the clinical practice, allowing accurate patient stratification for personalized treatment approaches.
Collapse
Affiliation(s)
- R P Coppes
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands..
| | - L V van Dijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
24
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
25
|
Lei X, Mao S, Li Y, Huang S, Li J, Du W, Kuang C, Yuan K. ERVcancer: a web resource designed for querying activation of human endogenous retroviruses across major cancer types. J Genet Genomics 2024:S1673-8527(24)00241-8. [PMID: 39265822 DOI: 10.1016/j.jgg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, co-opted into the dynamic regulatory network of cellular potency in early embryonic development. In recent studies, resurgent HERVs' transcriptional activity has been frequently observed in many types of human cancers, suggesting their potential functions in the occurrence and progression of malignancy. However, a dedicated web resource for querying the relationship between activation of HERVs and cancer development is lacking. Here, we have constructed a database to explore the sequence information, expression profiles, survival prognosis, and genetic interactions of HERVs in diverse cancer types. Our database currently contains RNA sequencing data of 580 HERVs across 16246 samples, including that of 6478 tumoral and 634 normal tissues, 932 cancer cell lines, as well as 151 early embryonic and 8051 human adult tissues. The primary goal is to provide an easily accessible and user-friendly database for professionals in the fields of bioinformatics, pathology, pharmacology, and related areas, enabling them to efficiently screen the activity of HERVs of interest in normal and cancerous tissues and evaluate the clinical relevance. The ERVcancer database is available at http://kyuanlab.com/ervcancer/.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shi Huang
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Jinchen Li
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan 415000, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
26
|
Zhang R, Wu M, Xiang D, Zhu J, Zhang Q, Zhong H, Peng Y, Wang Z, Ma G, Li G, Liu F, Ye W, Shi R, Zhou X, Babarinde IA, Su H, Chen J, Zhang X, Qin D, Hutchins AP, Pei D, Li D. A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development. Cell Stem Cell 2024; 31:1298-1314.e8. [PMID: 39146934 DOI: 10.1016/j.stem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/β-catenin signaling and cell type commitment in somatic development.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Hui Zhong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Fengping Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Weipeng Ye
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemeng Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
27
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
28
|
Mangiavacchi A, Morelli G, Reppe S, Saera-Vila A, Liu P, Eggerschwiler B, Zhang H, Bensaddek D, Casanova EA, Medina Gomez C, Prijatelj V, Della Valle F, Atinbayeva N, Izpisua Belmonte JC, Rivadeneira F, Cinelli P, Gautvik KM, Orlando V. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J 2024; 43:3587-3603. [PMID: 38951609 PMCID: PMC11377738 DOI: 10.1038/s44318-024-00143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| | - Gabriele Morelli
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
- Oslo University Hospital, Department of Plastic and Reconstructive Surgery, Oslo, Norway
| | | | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Benjamin Eggerschwiler
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Elisa A Casanova
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Vid Prijatelj
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
- Altos Labs, San Diego, CA, USA
| | - Nazerke Atinbayeva
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
29
|
Alvarez-Kuglen M, Ninomiya K, Qin H, Rodriguez D, Fiengo L, Farhy C, Hsu WM, Kirk B, Havas A, Feng GS, Roberts AJ, Anderson RM, Serrano M, Adams PD, Sharpee TO, Terskikh AV. ImAge quantitates aging and rejuvenation. NATURE AGING 2024; 4:1308-1327. [PMID: 39210148 DOI: 10.1038/s43587-024-00685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
For efficient, cost-effective and personalized healthcare, biomarkers that capture aspects of functional, biological aging, thus predicting disease risk and lifespan more accurately and reliably than chronological age, are essential. We developed an imaging-based chromatin and epigenetic age (ImAge) that captures intrinsic age-related trajectories of the spatial organization of chromatin and epigenetic marks in single nuclei, in mice. We show that such trajectories readily emerge as principal changes in each individual dataset without regression on chronological age, and that ImAge can be computed using several epigenetic marks and DNA labeling. We find that interventions known to affect biological aging induce corresponding effects on ImAge, including increased ImAge upon chemotherapy treatment and decreased ImAge upon caloric restriction and partial reprogramming by transient OSKM expression in liver and skeletal muscle. Further, ImAge readouts from chronologically identical mice inversely correlated with their locomotor activity, suggesting that ImAge may capture elements of biological and functional age. In sum, we developed ImAge, an imaging-based biomarker of aging with single-cell resolution rooted in the analysis of spatial organization of epigenetic marks.
Collapse
Affiliation(s)
| | - Kenta Ninomiya
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Haodong Qin
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Chen Farhy
- Sanford Burnham Prebys, La Jolla, CA, USA
| | - Wei-Mien Hsu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian Kirk
- Sanford Burnham Prebys, La Jolla, CA, USA
| | | | - Gen-Sheng Feng
- School of Medicine, Univerity of California San Diego, La Jolla, CA, USA
| | | | - Rozalyn M Anderson
- University of Wisconsin, Madison, WI, USA
- GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Granta Park, UK
| | | | | | - Alexey V Terskikh
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
- The Scintillon Research Institute, San Diego, CA, USA.
| |
Collapse
|
30
|
Li X, Yu H, Li D, Liu N. LINE-1 transposable element renaissance in aging and age-related diseases. Ageing Res Rev 2024; 100:102440. [PMID: 39059477 DOI: 10.1016/j.arr.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Transposable elements (TEs) are essential components of eukaryotic genomes and subject to stringent regulatory mechanisms to avoid their potentially deleterious effects. However, numerous studies have verified the resurrection of TEs, particularly long interspersed nuclear element-1 (LINE-1), during preimplantation development, aging, cancer, and other age-related diseases. The LINE-1 family has also been implicated in several aging-related processes, including genomic instability, loss of heterochromatin, DNA methylation, and the senescence-associated secretory phenotype (SASP). Additionally, the role of the LINE-1 family in cancer development has also been substantiated. Research in this field has offered valuable insights into the functional mechanisms underlying LINE-1 activity, enhancing our understanding of aging regulation. This review provides a comprehensive summary of current findings on LINE-1 and their roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Xiang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
32
|
López-Polo V, Maus M, Zacharioudakis E, Lafarga M, Attolini CSO, Marques FDM, Kovatcheva M, Gavathiotis E, Serrano M. Release of mitochondrial dsRNA into the cytosol is a key driver of the inflammatory phenotype of senescent cells. Nat Commun 2024; 15:7378. [PMID: 39191740 DOI: 10.1038/s41467-024-51363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence. Moreover, senescent cells are hypersensitized to mt-dsRNA-driven inflammation due to their reduced levels of PNPT1 and ADAR1, two proteins critical for mitigating the accumulation of mt-dsRNA and the inflammatory potency of dsRNA, respectively. We find that mitofusin MFN1, but not MFN2, is important for the activation of the mt-dsRNA/MAVS/SASP axis and, accordingly, genetic or pharmacologic MFN1 inhibition attenuates the SASP. Finally, we report that senescent cells within fibrotic and aged tissues present dsRNA foci, and inhibition of mitochondrial RNA polymerase reduces systemic inflammation associated to senescence. In conclusion, we uncover the mt-dsRNA/MAVS/MFN1 axis as a key driver of the SASP and we identify novel therapeutic strategies for senescence-associated diseases.
Collapse
Affiliation(s)
- Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mate Maus
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francisco D M Marques
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Altos Labs, Cambridge Institute of Science, Granta Park, UK.
| |
Collapse
|
33
|
Chisca M, Larouche JD, Xing Q, Kassiotis G. Antibodies against endogenous retroviruses. Immunol Rev 2024. [PMID: 39152687 DOI: 10.1111/imr.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The human genome harbors hundreds of thousands of integrations of ancient retroviruses, amassed over millions of years of evolution. To reduce further amplification in the genome, the host prevents transcription of these now endogenous retroviruses (ERVs) through epigenetic repression and, with evolutionary time, ERVs are incapacitated by accumulating mutations and deletions. However, several members of recently endogenized ERV groups still retain the capacity to produce viral RNA, retroviral proteins, and higher order structures, including virions. The retention of viral characteristics, combined with the reversible nature of epigenetic repression, particularly as seen in cancer, allow for immunologically unanticipated ERV expression, perceived by the adaptive immune system as a genuine retroviral infection, to which it has to respond. Accordingly, antibodies reactive with ERV antigens have been detected in diverse disorders and, occasionally, in healthy individuals. Although they are part of self, the retroviral legacy of ERV antigens, and association with and, possibly, causation of disease states may set them apart from typical self-antigens. Consequently, the pathogenic or, indeed, host-protective capacity of antibodies targeting ERV antigens is likely to be context-dependent. Here, we review the immunogenicity of typical ERV proteins, with emphasis on the antibody response and its potential disease implications.
Collapse
Affiliation(s)
- Mihaela Chisca
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | | | - Qi Xing
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
34
|
Liu Y, Molchanov V, Zhao Y, Lu D, Liu H, Jang HJ, Yang T. H3K9me3 loss and ERVs activation as hallmarks for osteoarthritis progression and knee joint aging. Osteoarthritis Cartilage 2024:S1063-4584(24)01353-0. [PMID: 39153567 DOI: 10.1016/j.joca.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/23/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE This study aims to link aberrant endogenous retroviruses (ERVs) activation and osteoarthritis (OA) progression by comparing the chromatin accessibility and transcriptomic landscapes of diseased or intact joint tissues of OA patients. METHOD We performed ERVs-centric analysis on published ATAC-seq and RNA-seq data from OA patients' cartilage tissues. Here, we compared the outer region of the lateral tibial plateau, representing intact cartilage, to the inner region of the medial tibial plateau, representing damaged cartilage. In addition, cartilage tissue sections from OA patients and post-traumatic OA mouse models were assayed for global H3K9me3 abundance through immunohistochemistry staining. RESULTS Chromatin accessibility and transcription of ERVs, particularly from evolutionarily "intermediate age" ERVs families (ERV1 and ERVL), were enriched and elevated in OA cartilage. This integrative analysis suggests that H3K9me3-related heterochromatin loss might be mechanistically connected to ERV activation in OA tissue. We further verified that global H3K9me3 levels were reduced in diseased cartilage relative to intact tissue in OA patients and injury-induced OA mice. CONCLUSION The findings suggest a compelling hypothesis that the loss of H3K9me3, either due to aging or cellular stressors, may lead to ERVs reactivation that contributes to tissue inflammation and OA progression. This study unveils the intricate relationship between epigenetic alterations, ERVs activation, and OA, paving the way for potential therapeutic interventions targeting these pathogenic mechanisms.
Collapse
Affiliation(s)
- Ye Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Vladimir Molchanov
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Yaguang Zhao
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Di Lu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Huadie Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - H Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Tao Yang
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
35
|
Liu H, Ma L, Cao Z. DNA methylation and its potential roles in common oral diseases. Life Sci 2024; 351:122795. [PMID: 38852793 DOI: 10.1016/j.lfs.2024.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Oral diseases are among the most common diseases worldwide and are associated with systemic illnesses, and the rising occurrence of oral diseases significantly impacts the quality of life for many individuals. It is crucial to detect and treat these conditions early to prevent them from advancing. DNA methylation is a fundamental epigenetic process that contributes to a variety of diseases including various oral diseases. Taking advantage of its reversibility, DNA methylation becomes a viable therapeutic target by regulating various cellular processes. Understanding the potential role of this DNA alteration in oral diseases can provide significant advances and more opportunities for diagnosis and therapy. This article will review the biology of DNA methylation, and then mainly discuss the key findings on DNA methylation in oral cancer, periodontitis, endodontic disease, oral mucosal disease, and clefts of the lip and/or palate in the background of studies on global DNA methylation and gene-specific DNA methylation.
Collapse
Affiliation(s)
- Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
37
|
Mizuno H, Kawamoto S, Uemura K, Park JH, Hori N, Okumura Y, Konishi Y, Hara E. B cell senescence promotes age-related changes in oral microbiota. Aging Cell 2024:e14304. [PMID: 39123277 DOI: 10.1111/acel.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, there has been increasing attention towards understanding the relationship between age-related alterations in the oral microbiota and age-associated diseases, with reports emphasizing the significance of maintaining a balanced oral microbiota for host health. However, the precise mechanisms underlying age-related changes in the oral microbiota remain elusive. We recently reported that cellular senescence of ileal germinal center (GC) B cells, triggered by the persistent presence of commensal bacteria, results in diminished IgA production with aging and subsequent alterations in the gut microbiota. Consequently, we hypothesize that a similar phenomenon may occur in the oral cavity, potentially contributing to age-related changes in the oral microbiota. Examination of p16-luc mice, wherein the expression of the senescent cell marker p16INK4a can be visualized, raised under specific pathogen-free (SPF) or germ-free (GF) conditions, indicated that, unlike ileal GC B cells, the accumulation of senescent cells in GC B cells of cervical lymph nodes increases with age regardless of the presence of commensal bacteria. Furthermore, longitudinal studies utilizing the same individual mice throughout their lifespan revealed concurrent age-related alterations in the composition of the oral microbiota and a decline in salivary IgA secretion. Further investigation involving Rag1-/- mice transplanted with B cells from wild-type or p16INK4a and p21Waf1/Cip1 -double knockout mice unveiled that B cell senescence leads to reduced IgA secretion and alteration of the oral microbiota. These findings advance our understanding of the mechanism of age-associated changes in the oral microbiota and open up possibilities of their control.
Collapse
Affiliation(s)
- Hiroya Mizuno
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shimpei Kawamoto
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ken Uemura
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Jeong Hoon Park
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Nozomi Hori
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yumiko Okumura
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yusuke Konishi
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Eiji Hara
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Aging Biology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
38
|
Talks BJ, Mather MW, Chahal M, Coates M, Clatworthy MR, Haniffa M. Mapping Human Immunity and the Education of Waldeyer's Ring. Annu Rev Genomics Hum Genet 2024; 25:161-182. [PMID: 38594932 DOI: 10.1146/annurev-genom-120522-012938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The development and deployment of single-cell genomic technologies have driven a resolution revolution in our understanding of the immune system, providing unprecedented insight into the diversity of immune cells present throughout the body and their function in health and disease. Waldeyer's ring is the collective name for the lymphoid tissue aggregations of the upper aerodigestive tract, comprising the palatine, pharyngeal (adenoids), lingual, and tubal tonsils. These tonsils are the first immune sentinels encountered by ingested and inhaled antigens and are responsible for mounting the first wave of adaptive immune response. An effective mucosal immune response is critical to neutralizing infection in the upper airway and preventing systemic spread, and dysfunctional immune responses can result in ear, nose, and throat pathologies. This review uses Waldeyer's ring to demonstrate how single-cell technologies are being applied to advance our understanding of the immune system and highlight directions for future research.
Collapse
Affiliation(s)
- Benjamin J Talks
- Department of Otolaryngology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Michael W Mather
- Department of Otolaryngology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Manisha Chahal
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Matthew Coates
- Department of Medicine, University of Cambridge, Cambridge, UK; ,
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Hinxton, UK;
- Department of Medicine, University of Cambridge, Cambridge, UK; ,
| | - Muzlifah Haniffa
- Department of Dermatology and National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Hinxton, UK;
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| |
Collapse
|
39
|
Tang H, Yang J, Xu J, Zhang W, Geng A, Jiang Y, Mao Z. The transcription factor PAX5 activates human LINE1 retrotransposons to induce cellular senescence. EMBO Rep 2024; 25:3263-3275. [PMID: 38866979 PMCID: PMC11315925 DOI: 10.1038/s44319-024-00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.
Collapse
Affiliation(s)
- Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiaqing Yang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Junhao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ying Jiang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
40
|
Kawakami S, Johmura Y, Nakanishi M. Intracellular acidification and glycolysis modulate inflammatory pathway in senescent cells. J Biochem 2024; 176:97-108. [PMID: 38564227 PMCID: PMC11289320 DOI: 10.1093/jb/mvae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Senescent cells accumulate in various organs with ageing, and its accumulation induces chronic inflammation and age-related physiological dysfunctions. Several remodelling of intracellular environments have been identified in senescent cells, including enlargement of cell/nuclear size and intracellular acidification. Although these alterations of intracellular environments were reported to be involved in the unique characteristics of senescent cells, the contribution of intracellular acidification to senescence-associated cellular phenotypes is poorly understood. Here, we identified that the upregulation of TXNIP and its paralog ARRDC4 as a hallmark of intracellular acidification in addition to KGA-type GLS1. These genes were also upregulated in response to senescence-associated intracellular acidification. Neutralization of the intracellular acidic environment ameliorated not only senescence-related upregulation of TXNIP, ARRDC4 and KGA but also inflammation-related genes, possibly through suppression of PDK-dependent anaerobic glycolysis. Furthermore, we found that expression of the intracellular acidification-induced genes, TXNIP and ARRDC4, correlated with inflammatory gene expression in heterogeneous senescent cell population in vitro and even in vivo, implying that the contribution of intracellular pH to senescence-associated cellular features, such as SASP.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
41
|
Mrabti C, Yang N, Desdín-Micó G, Alonso-Calleja A, Vílchez-Acosta A, Pico S, Parras A, Piao Y, Schoenfeldt L, Luo S, Haghani A, Brooke R, del Carmen Maza M, Branchina C, Maroun CY, von Meyenn F, Naveiras O, Horvath S, Sen P, Ocampo A. Loss of H3K9 trimethylation leads to premature aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604929. [PMID: 39091811 PMCID: PMC11291141 DOI: 10.1101/2024.07.24.604929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Modifications in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of repressive histone modification, Histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, (TKOc), carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.
Collapse
Affiliation(s)
- Calida Mrabti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Gabriela Desdín-Micó
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Alejandro Alonso-Calleja
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alba Vílchez-Acosta
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Sara Pico
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lucas Schoenfeldt
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| | - Siyuan Luo
- Departement of Health Sciences and Technology, ETH Zurich, Zurich
| | | | - Robert Brooke
- Epigenetic Clock Development, Foundation, Torrance, California, USA
| | - María del Carmen Maza
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Clémence Branchina
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Céline Yacoub Maroun
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | | | - Olaia Naveiras
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Laboratory of Regenerative Hematopoiesis, Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Steve Horvath
- Altos Labs, San Diego, CA, USA
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
- EPITERNA SA, Epalinges, Switzerland
| |
Collapse
|
42
|
Hu Q, Zhang B, Jing Y, Ma S, Hu L, Li J, Zheng Y, Xin Z, Peng J, Wang S, Cheng B, Qu J, Zhang W, Liu GH, Wang S. Single-nucleus transcriptomics uncovers a geroprotective role of YAP in primate gingival aging. Protein Cell 2024; 15:612-632. [PMID: 38577810 PMCID: PMC11259548 DOI: 10.1093/procel/pwae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024] Open
Abstract
Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis, a worldwide prevalent inflammatory disease. However, a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking. Here, we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging, by which a panel of cell type-specific signatures were elucidated. Epithelial cells were identified as the most affected cell types by aging in the gingiva. Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis, which declined during aging in epithelial cells, especially in basal cells. The decline of YAP activity during aging was confirmed in the human gingival tissues, and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects. Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases, with the ultimate goal of advancing periodontal health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Bin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Lei Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijuan Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jianmin Peng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
43
|
Wang TW, Nakanishi M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol 2024:S0962-8924(24)00121-1. [PMID: 39025762 DOI: 10.1016/j.tcb.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Several lines of evidence suggest that the age-dependent accumulation of senescent cells leads to chronic tissue microinflammation, which in turn contributes to age-related pathologies. In general, senescent cells can be eliminated by the host's innate and adaptive immune surveillance system, including macrophages, NK cells, and T cells. Impaired immune surveillance leads to the accumulation of senescent cells and accelerates the aging process. Recently, senescent cells, like cancer cells, have been shown to express certain types of immune checkpoint proteins as well as non-classical immune-tolerant MHC variants, leading to immune escape from surveillance systems. Thus, immune checkpoint blockade (ICB) may be a promising strategy to enhance immune surveillance of senescence, leading to the amelioration of some age-related diseases and tissue dysfunction.
Collapse
Affiliation(s)
- Teh-Wei Wang
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
44
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
45
|
Zhang Y, Wang G, Zhu Y, Cao X, Liu F, Li H, Liu S. Exploring the role of endogenous retroviruses in seasonal reproductive cycles: a case study of the ERV-V envelope gene in mink. Front Cell Infect Microbiol 2024; 14:1404431. [PMID: 39081866 PMCID: PMC11287128 DOI: 10.3389/fcimb.2024.1404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Endogenous retroviruses (ERVs), which originated from exogenous retroviral infections of germline cells millions of years ago and were inherited by subsequent generations as per Mendelian inheritance patterns, predominantly comprise non-protein-coding sequences due to the accumulation of mutations, insertions, deletions, and truncations. Nevertheless, recent studies have revealed that ERVs play a crucial role in diverse biological processes by encoding various proteins. Methods In this study, we successfully identified an ERV envelope (env) gene in a mink species. A phylogenetic tree of mink ERV-V env and reference sequences was constructed using Bayesian methods and maximum-likelihood inference. Results Phylogenetic analyses indicated a significant degree of sequence conservation and positive selection within the env-surface open reading frame. Additionally, qRT-PCR revealed diverse patterns of mink ERV-V env expression in various tissues. The expression of mink ERV-V env gene in testicular tissue strongly correlated with the seasonal reproductive cycles of minks. Discussion Our study suggests that the ERV-V env gene in mink may have been repurposed for host functions.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Gaofeng Wang
- Ulanqab Center for Animal Disease Control and Prevention, Ulanqab, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaodong Cao
- School of pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fang Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiping Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, China
| |
Collapse
|
46
|
Talley MJ, Longworth MS. Retrotransposons in embryogenesis and neurodevelopment. Biochem Soc Trans 2024; 52:1159-1171. [PMID: 38716891 PMCID: PMC11346457 DOI: 10.1042/bst20230757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.
Collapse
Affiliation(s)
- Mary Jo Talley
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
| | - Michelle S. Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, U.S.A
| |
Collapse
|
47
|
Patra M, Klochendler A, Condiotti R, Kaffe B, Elgavish S, Drawshy Z, Avrahami D, Narita M, Hofree M, Drier Y, Meshorer E, Dor Y, Ben-Porath I. Senescence of human pancreatic beta cells enhances functional maturation through chromatin reorganization and promotes interferon responsiveness. Nucleic Acids Res 2024; 52:6298-6316. [PMID: 38682582 PMCID: PMC11194086 DOI: 10.1093/nar/gkae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Senescent cells can influence the function of tissues in which they reside, and their propensity for disease. A portion of adult human pancreatic beta cells express the senescence marker p16, yet it is unclear whether they are in a senescent state, and how this affects insulin secretion. We analyzed single-cell transcriptome datasets of adult human beta cells, and found that p16-positive cells express senescence gene signatures, as well as elevated levels of beta-cell maturation genes, consistent with enhanced functionality. Senescent human beta-like cells in culture undergo chromatin reorganization that leads to activation of enhancers regulating functional maturation genes and acquisition of glucose-stimulated insulin secretion capacity. Strikingly, Interferon-stimulated genes are elevated in senescent human beta cells, but genes encoding senescence-associated secretory phenotype (SASP) cytokines are not. Senescent beta cells in culture and in human tissue show elevated levels of cytoplasmic DNA, contributing to their increased interferon responsiveness. Human beta-cell senescence thus involves chromatin-driven upregulation of a functional-maturation program, and increased responsiveness of interferon-stimulated genes, changes that could increase both insulin secretion and immune reactivity.
Collapse
Affiliation(s)
- Milan Patra
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reba Condiotti
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Binyamin Kaffe
- Department of Genetics, the Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zeina Drawshy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Avrahami
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Matan Hofree
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
48
|
Paul SK, Oshima M, Patil A, Sone M, Kato H, Maezawa Y, Kaneko H, Fukuyo M, Rahmutulla B, Ouchi Y, Tsujimura K, Nakanishi M, Kaneda A, Iwama A, Yokote K, Eto K, Takayama N. Retrotransposons in Werner syndrome-derived macrophages trigger type I interferon-dependent inflammation in an atherosclerosis model. Nat Commun 2024; 15:4772. [PMID: 38858384 PMCID: PMC11164933 DOI: 10.1038/s41467-024-48663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.
Collapse
Affiliation(s)
- Sudip Kumar Paul
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masamitsu Sone
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kyoko Tsujimura
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
49
|
Adler GL, Le K, Fu Y, Kim WS. Human Endogenous Retroviruses in Neurodegenerative Diseases. Genes (Basel) 2024; 15:745. [PMID: 38927681 PMCID: PMC11202925 DOI: 10.3390/genes15060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are DNA transposable elements that have integrated into the human genome via an ancestral germline infection. The potential importance of HERVs is underscored by the fact that they comprise approximately 8% of the human genome. HERVs have been implicated in the pathogenesis of neurodegenerative diseases, a group of CNS diseases characterized by a progressive loss of structure and function of neurons, resulting in cell death and multiple physiological dysfunctions. Much evidence indicates that HERVs are initiators or drivers of neurodegenerative processes in multiple sclerosis and amyotrophic lateral sclerosis, and clinical trials have been designed to target HERVs. In recent years, the role of HERVs has been explored in other major neurodegenerative diseases, including frontotemporal dementia, Alzheimer's disease and Parkinson's disease, with some interesting discoveries. This review summarizes and evaluates the past and current research on HERVs in neurodegenerative diseases. It discusses the potential role of HERVs in disease manifestation and neurodegeneration. It critically reviews antiretroviral strategies used in the therapeutic intervention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gabrielle L. Adler
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kelvin Le
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - YuHong Fu
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
50
|
Chou Y, Lee Y, Su C, Lee H, Hsieh C, Tien T, Lin C, Yeh H, Wu Y. Senescence induces miR-409 to down-regulate CCL5 and impairs angiogenesis in endothelial progenitor cells. J Cell Mol Med 2024; 28:e18489. [PMID: 38899522 PMCID: PMC11187746 DOI: 10.1111/jcmm.18489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.
Collapse
Affiliation(s)
- Yen‐Hung Chou
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
- Institute of Biomedical SciencesMacKay Medical CollegeNew TaipeiTaiwan
| | - Yi‐Nan Lee
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Cheng‐Huang Su
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Hsin‐I Lee
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
| | - Chin‐Ling Hsieh
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Ting‐Yi Tien
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Chao‐Feng Lin
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Hung‐I Yeh
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| | - Yih‐Jer Wu
- Department of MedicineMacKay Medical CollegeNew TaipeiTaiwan
- Institute of Biomedical SciencesMacKay Medical CollegeNew TaipeiTaiwan
- Division of Preventive Cardiology & Pulmonary Circulation Medicine, Department of Cardiovascular Medicine, Department of Internal Medicine and Department of Medical ResearchMacKay Memorial HospitalNew TaipeiTaiwan
| |
Collapse
|