1
|
Anti-Gr-1 Antibody Provides Short-Term Depletion of MDSC in Lymphodepleted Mice with Active-Specific Melanoma Therapy. Vaccines (Basel) 2022; 10:vaccines10040560. [PMID: 35455309 PMCID: PMC9032646 DOI: 10.3390/vaccines10040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Lymphodepletion, reconstitution and active-specific tumor cell vaccination (LRAST) enhances the induction of tumor-specific T cells in a murine melanoma model. Myeloid-derived suppressor cells (MDSC) may counteract the induction of tumor-reactive T cells and their therapeutic efficacy. Thus, the aim of the study was to evaluate a possible benefit of MDSC depletion using anti-Gr-1 antibodies (Ab) in combination with LRAST. Female C57BL/6 mice with 3 days established subcutaneous (s.c.) D5 melanoma were lymphodepleted with cyclophosphamide and reconstituted with naive splenocytes. Vaccination was performed with irradiated syngeneic mGM-CSF-secreting D5G6 melanoma cells. MDSC depletion was performed using anti-Gr-1 Ab (clone RB6-8C5). Induction of tumor-specific T cells derived from tumor vaccine draining lymph nodes (TVDLN) was evaluated by the amount of tumor-specific interferon (IFN)-γ release. LRAST combined with anti-Gr-1 mAb administration enhanced the induction of tumor-specific T cells in TVDLN capable of releasing IFN-γ in a tumor-specific manner. Additional anti-Gr-1 mAb administration in LRAST-treated mice delayed growth of D5 melanomas by two weeks. Furthermore, we elucidate the impact of anti-Gr-1-depleting antibodies on the memory T cell compartment. Our data indicate that standard of care treatment regimens against cancer can be improved by implementing agents, e.g., depleting antibodies, which target and eliminate MDSC.
Collapse
|
2
|
Wu TH, Hsieh SC, Li TH, Lu CH, Liao HT, Shen CY, Li KJ, Wu CH, Kuo YM, Tsai CY, Yu CL. Molecular Basis for Paradoxical Activities of Polymorphonuclear Neutrophils in Inflammation/Anti-Inflammation, Bactericide/Autoimmunity, Pro-Cancer/Anticancer, and Antiviral Infection/SARS-CoV-II-Induced Immunothrombotic Dysregulation. Biomedicines 2022; 10:biomedicines10040773. [PMID: 35453523 PMCID: PMC9032061 DOI: 10.3390/biomedicines10040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cells in the circulation. These cells act as the fast and powerful defenders against environmental pathogenic microbes to protect the body. In addition, these innate inflammatory cells can produce a number of cytokines/chemokines/growth factors for actively participating in the immune network and immune homeostasis. Many novel biological functions including mitogen-induced cell-mediated cytotoxicity (MICC) and antibody-dependent cell-mediated cytotoxicity (ADCC), exocytosis of microvesicles (ectosomes and exosomes), trogocytosis (plasma membrane exchange) and release of neutrophil extracellular traps (NETs) have been successively discovered. Furthermore, recent investigations unveiled that PMNs act as a double-edged sword to exhibit paradoxical activities on pro-inflammation/anti-inflammation, antibacteria/autoimmunity, pro-cancer/anticancer, antiviral infection/COVID-19-induced immunothrombotic dysregulation. The NETs released from PMNs are believed to play a pivotal role in these paradoxical activities, especially in the cytokine storm and immunothrombotic dysregulation in the recent SARS-CoV-2 pandemic. In this review, we would like to discuss in detail the molecular basis for these strange activities of PMNs.
Collapse
Affiliation(s)
- Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Tsu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Shin Kong Wu Ho Shi Hospital, Taipei 11101, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (C.-Y.S.); (K.-J.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
3
|
Pollenus E, Gouwy M, Van den Steen PE. Neutrophils in malaria: the good, the bad or the ugly? Parasite Immunol 2022; 44:e12912. [PMID: 35175636 DOI: 10.1111/pim.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Neutrophils are the most abundant circulating leukocytes in human peripheral blood. They are often the first cells to respond to an invading pathogen and might therefore play an important role in malaria. Malaria is a globally important disease caused by Plasmodium parasites, responsible for more than 400 000 deaths each year. Most of these deaths are caused by complications, including cerebral malaria, severe malarial anemia, placental malaria, renal injury, metabolic problems and malaria-associated acute respiratory distress syndrome. Neutrophils contribute in the immune defense against malaria, through clearance of parasites via phagocytosis, production of reactive oxygen species and release of neutrophil extracellular traps (NETs). However, Plasmodium parasites diminish antibacterial functions of neutrophils, making patients more susceptible to other infections. Neutrophils might also be involved in the development of malaria complications, for example via the release of toxic granules and NETs. However, technical pitfalls in the determination of the roles of neutrophils have caused contradicting results. Further investigations need to consider these pitfalls, in order to elucidate the role of neutrophils in malaria complications.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Kuo TC, Chen A, Harrabi O, Sockolosky JT, Zhang A, Sangalang E, Doyle LV, Kauder SE, Fontaine D, Bollini S, Han B, Fu YX, Sim J, Pons J, Wan HI. Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. J Hematol Oncol 2020; 13:160. [PMID: 33256806 PMCID: PMC7706287 DOI: 10.1186/s13045-020-00989-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Signal regulatory protein α (SIRPα) is a myeloid-lineage inhibitory receptor that restricts innate immunity through engagement of its cell surface ligand CD47. Blockade of the CD47–SIRPα interaction synergizes with tumor-specific antibodies and T-cell checkpoint inhibitors by promoting myeloid-mediated antitumor functions leading to the induction of adaptive immunity. Inhibition of the CD47–SIRPα interaction has focused predominantly on targeting CD47, which is expressed ubiquitously and contributes to the accelerated blood clearance of anti-CD47 therapeutics. Targeting SIRPα, which is myeloid-restricted, may provide a differential pharmacokinetic, safety, and efficacy profile; however, SIRPα polymorphisms and lack of pan-allelic and species cross-reactive agents have limited the clinical translation of antibodies against SIRPα. Here, we report the development of humanized AB21 (hAB21), a pan-allelic anti-SIRPα antibody that binds human, cynomolgus monkey, and mouse SIRPα alleles with high affinity and blocks the interaction with CD47. Methods Human macrophages derived from donors with various SIRPα v1 and v2 allelic status were used to assess the ability of hAB21 to enhance phagocytosis. HAB21_IgG subclasses were evaluated for targeted depletion of peripheral blood mononuclear cells, phagocytosis and in vivo efficacy in xenograft models. Combination therapy with anti-PD1/anti-PD-L1 in several syngeneic models was performed. Immunophenotyping of tissues from MC38 tumor-bearing mice treated with AB21 and anti-PD-1 was evaluated. PK, PD and tolerability of hAB21 were evaluated in cynomolgus monkeys.
Results SIRPα blockade with hAB21 promoted macrophage-mediated antibody-dependent phagocytosis of tumor cells in vitro and improved responses to rituximab in the Raji human tumor xenograft mouse model. Combined with PD-1/PD-L1 blockade, AB21 improved response rates by facilitating monocyte activation, dendritic cell activation, and T cell effector functions resulting in long term, durable antitumor immunity. In cynomolgus monkeys, hAB21 has a half-life of 5.3 days at 10 mg/kg and complete target occupancy with no hematological toxicity or adverse findings at doses up to 30 mg/kg. Conclusions The in vitro and in vivo antitumor activity of hAB21 broadly recapitulates that of CD47 targeted therapies despite differences in ligand expression, binding partners, and function, validating the CD47–SIRPα axis as a fundamental myeloid checkpoint pathway and its blockade as promising therapeutic intervention for treatment of human malignancies.
Collapse
Affiliation(s)
- Tracy C Kuo
- ALX Oncology, Burlingame, CA, USA. .,Tallac Therapeutics, Burlingame, CA, USA.
| | - Amy Chen
- ALX Oncology, Burlingame, CA, USA.,Tallac Therapeutics, Burlingame, CA, USA
| | - Ons Harrabi
- ALX Oncology, Burlingame, CA, USA.,Tallac Therapeutics, Burlingame, CA, USA
| | | | - Anli Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emma Sangalang
- ALX Oncology, Burlingame, CA, USA.,Tallac Therapeutics, Burlingame, CA, USA
| | - Laura V Doyle
- ALX Oncology, Burlingame, CA, USA.,Tallac Therapeutics, Burlingame, CA, USA
| | - Steven E Kauder
- ALX Oncology, Burlingame, CA, USA.,Coherus BioSciences, Redwood City, CA, USA
| | - Danielle Fontaine
- ALX Oncology, Burlingame, CA, USA.,Tallac Therapeutics, Burlingame, CA, USA
| | | | - Bora Han
- ALX Oncology, Burlingame, CA, USA.,ProLynx Inc., San Francisco, CA, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Janet Sim
- ALX Oncology, Burlingame, CA, USA.,Tallac Therapeutics, Burlingame, CA, USA
| | | | - Hong I Wan
- ALX Oncology, Burlingame, CA, USA.,Tallac Therapeutics, Burlingame, CA, USA
| |
Collapse
|
5
|
McCarthy MK, Reynoso GV, Winkler ES, Mack M, Diamond MS, Hickman HD, Morrison TE. MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2. PLoS Pathog 2020; 16:e1008292. [PMID: 31999809 PMCID: PMC7012455 DOI: 10.1371/journal.ppat.1008292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/11/2020] [Accepted: 12/22/2019] [Indexed: 12/21/2022] Open
Abstract
Humoral immune responses initiate in the lymph node draining the site of viral infection (dLN). Some viruses subvert LN B cell activation; however, our knowledge of viral hindrance of B cell responses of important human pathogens is lacking. Here, we define mechanisms whereby chikungunya virus (CHIKV), a mosquito-transmitted RNA virus that causes outbreaks of acute and chronic arthritis in humans, hinders dLN antiviral B cell responses. Infection of WT mice with pathogenic, but not acutely cleared CHIKV, induced MyD88-dependent recruitment of monocytes and neutrophils to the dLN. Blocking this influx improved lymphocyte accumulation, dLN organization, and CHIKV-specific B cell responses. Both inducible nitric oxide synthase (iNOS) and the phagocyte NADPH oxidase (Nox2) contributed to impaired dLN organization and function. Infiltrating monocytes expressed iNOS through a local IRF5- and IFNAR1-dependent pathway that was partially TLR7-dependent. Together, our data suggest that pathogenic CHIKV triggers the influx and activation of monocytes and neutrophils in the dLN that impairs virus-specific B cell responses. Elucidating mechanisms by which viruses subvert B cell immunity and establish persistent infection is essential for the development of new therapeutic strategies against chronic viral infections. The humoral immune response initiates in the lymph node draining the site of viral infection. However, how persistent viruses evade B cell responses is poorly understood. In this study, we find that infection with pathogenic, persistent chikungunya virus triggers rapid recruitment of neutrophils and monocytes to the draining lymph node, which impair structural organization, lymphocyte accumulation, and downstream virus-specific B cell responses that are important for control of infection. This work enhances our understanding of the pathogenesis of acute and chronic CHIKV disease and highlights how local innate immune responses in draining lymphoid tissue dictate the effectiveness of downstream adaptive immunity.
Collapse
Affiliation(s)
- Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Emma S. Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthias Mack
- Regensburg University Medical Center, Regensburg, Germany
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
6
|
Stackowicz J, Jönsson F, Reber LL. Mouse Models and Tools for the in vivo Study of Neutrophils. Front Immunol 2020; 10:3130. [PMID: 32038641 PMCID: PMC6985372 DOI: 10.3389/fimmu.2019.03130] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and critical actors of the immune system. Many neutrophil functions and facets of their activity in vivo were revealed by studying genetically modified mice or by tracking fluorescent neutrophils in animals using imaging approaches. Assessing the roles of neutrophils can be challenging, especially when exact molecular pathways are questioned or disease states are interrogated that alter normal neutrophil homeostasis. This review discusses the main in vivo models for the study of neutrophils, their advantages and limitations. The side-by-side comparison underlines the necessity to carefully choose the right model(s) to answer a given scientific question, and exhibit caveats that need to be taken into account when designing experimental procedures. Collectively, this review suggests that at least two models should be employed to legitimately conclude on neutrophil functions.
Collapse
Affiliation(s)
- Julien Stackowicz
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Center for Pathophysiology Toulouse-Purpan (CPTP), UMR 1043, University of Toulouse, INSERM, CNRS, Toulouse, France
| |
Collapse
|
7
|
Ma X, Wang M, Yin T, Zhao Y, Wei X. Myeloid-Derived Suppressor Cells Promote Metastasis in Breast Cancer After the Stress of Operative Removal of the Primary Cancer. Front Oncol 2019; 9:855. [PMID: 31552179 PMCID: PMC6746963 DOI: 10.3389/fonc.2019.00855] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: To investigate the role of myeloid-derived suppressor cells (MDSC) in cancer progression after the stress of operative removal and the potential treatment value of MDSC depletion. Summary Background Data: Surgery is the most important treatment strategy in breast cancer. Recent research has provided evidence that operations may promote cancer metastases under some circumstances. Methods: A mouse model of breast cancer (administration of the murine breast cancer 4T1 cells subcutaneously) and the stress of operation were used to compare immune responses and survival outcomes. Flow cytometry was performed to detect the expression of CD11b and Gr1 MDSCs in tumor tissues and lung metastases. Cytokine levels were detected with three-color flow cytometry and enzyme-linked immunosorbent assay (ELISA). MDSCs were isolated and co-cultured with 4T1 cells to identify any morphological change with immunofluorescence. The anti Gr-1 antibody was used to detect the function of the anti-Gr1 treatment in breast cancer. Results: The operative stress impaired the overall survival, leading to an increased number of MDSCs that preferentially infiltrated the tumor microenvironment and promoted tumor metastasis. In both in vitro and in vivo assays, MDSCs induced the epithelial-mesenchymal transition (EMT) of tumor cells through the up-regulation of TGF-beta1, VEGF, and IL-10. Furthermore, a treatment strategy of MDSC depletion was found to reduce pulmonary metastases after operations. Conclusions: The stress of operation could impair the overall survival in mice. The infiltrated MDSCs appear to induce EMT of tumor cells and increase metastases through the up-regulation of TGF-beta1, VEGF, and IL-10 levels. MDSC depletion could be a promising treatment strategy to prevent immune evasion after operations.
Collapse
Affiliation(s)
- Xuelei Ma
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Yin
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunuo Zhao
- State Key Laboratory of Biotherapy, Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Partial trisomy 21 contributes to T-cell malignancies induced by JAK3-activating mutations in murine models. Blood Adv 2019; 2:1616-1627. [PMID: 29986854 DOI: 10.1182/bloodadvances.2018016089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 02/05/2023] Open
Abstract
JAK3-activating mutations are commonly seen in chronic or acute hematologic malignancies affecting the myeloid, megakaryocytic, lymphoid, and natural killer (NK) cell compartment. Overexpression models of mutant JAK3 or pharmacologic inhibition of its kinase activity have highlighted the role that these constitutively activated mutants play in the T-cell, NK cell, and megakaryocytic lineages, but to date, the functional impact of JAK3 mutations at an endogenous level remains unknown. Here, we report a JAK3A572V knockin mouse model and demonstrate that activated JAK3 leads to a progressive and dose-dependent expansion of CD8+ T cells in the periphery before colonization of the bone marrow. This phenotype is dependent on the γc chain of cytokine receptors and presents several features of the human leukemic form of cutaneous T-cell lymphoma (L-CTCL), including skin involvements. We also showed that the JAK3A572V-positive malignant cells are transplantable and phenotypically heterogeneous in bone marrow transplantation assays. Interestingly, we revealed that activated JAK3 functionally cooperates with partial trisomy 21 in vivo to enhance the L-CTCL phenotype, ultimately leading to a lethal and fully penetrant disorder. Finally, we assessed the efficacy of JAK3 inhibition and showed that CTCL JAK3A572V-positive T cells are sensitive to tofacitinib, which provides additional preclinical insights into the use of JAK3 inhibitors in these disorders. Altogether, this JAK3A572V knockin model is a relevant new tool for testing the efficacy of JAK inhibitors in JAK3-related hematopoietic malignancies.
Collapse
|
9
|
Cross EW, Blain TJ, Mathew D, Kedl RM. Anti-CD8 monoclonal antibody-mediated depletion alters the phenotype and behavior of surviving CD8+ T cells. PLoS One 2019; 14:e0211446. [PMID: 30735510 PMCID: PMC6368275 DOI: 10.1371/journal.pone.0211446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
It is common practice for researchers to use antibodies to remove a specific cell type to infer its function. However, it is difficult to completely eliminate a cell type and there is often limited or no information as to how the cells which survive depletion are affected. This is particularly important for CD8+ T cells for two reasons. First, they are more resistant to mAb-mediated depletion than other lymphocytes. Second, targeting either the CD8α or CD8β chain could induce differential effects. We show here that two commonly used mAbs, against either the CD8α or CD8β subunit, can differentially affect cellular metabolism. Further, in vivo treatment leaves behind a population of CD8+ T cells with different phenotypic and functional attributes relative to each other or control CD8+ T cells. The impact of anti-CD8 antibodies on CD8+ T cell phenotype and function indicates the need to carefully consider the use of these, and possibly other "depleting" antibodies, as they could significantly complicate the interpretation of results or change the outcome of an experiment. These observations could impact how immunotherapy and modulation of CD8+ T cell activation is pursued.
Collapse
Affiliation(s)
- Eric W. Cross
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
- * E-mail:
| | - Trevor J. Blain
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
| | - Divij Mathew
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
| | - Ross M. Kedl
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
10
|
Kusaka Y, Kajiwara C, Shimada S, Ishii Y, Miyazaki Y, Inase N, Standiford TJ, Tateda K. Potential Role of Gr-1+ CD8+ T Lymphocytes as a Source of Interferon-γ and M1/M2 Polarization during the Acute Phase of Murine Legionella pneumophila Pneumonia. J Innate Immun 2018; 10:328-338. [PMID: 30021216 DOI: 10.1159/000490585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/01/2018] [Indexed: 01/04/2023] Open
Abstract
In this study, we analyzed interferon (IFN)-γ-producing cells and M1/M2 macrophage polarization in Legionella pneumophila pneumonia following anti-Gr-1 antibody treatment. Anti-Gr-1 treatment induced an M1-to-M2 shift of macrophage subtypes in the lungs and weakly in the peripheral blood, which was associated with increased mortality in legionella-infected mice. CD8+ T lymphocytes and natural killer cells were the dominant sources of IFN-γ in the acute phase, and anti-Gr-1 treatment reduced the number of IFN-γ-producing CD8+ T lymphocytes. In the CD3-gated population, most Gr-1-positive cells were CD8+ T lymphocytes in the lungs and lymph nodes (LNs) of infected mice. Additionally, the number of IFN-γ-producing Gr-1+ CD8+ T lymphocytes in the lungs and LNs increased 2 and 4 days after L. pneumophila infection, with anti-Gr-1 treatment attenuating these populations. Antibody staining revealed that Gr-1+ CD8+ T lymphocytes were Ly6C-positive cells rather than Ly6G, a phenotype regarded as memory type cells. Furthermore, the adoptive transfer of Gr-1+ CD8+ T lymphocytes induced increases in IFN-γ, M1 shifting and reduced bacterial number in the Legionella pneumonia model. These data identified Ly6C+ CD8+ T lymphocytes as a source of IFN-γ in innate immunity and partially associated with reduced IFN-γ production, M2 polarization, and high mortality in anti-Gr-1 antibody-treated mice with L. pneumophila pneumonia.
Collapse
Affiliation(s)
- Yu Kusaka
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Sho Shimada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiko Inase
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Theodore J Standiford
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Carlsen ED, Liang Y, Shelite TR, Walker DH, Melby PC, Soong L. Permissive and protective roles for neutrophils in leishmaniasis. Clin Exp Immunol 2015; 182:109-18. [PMID: 26126690 DOI: 10.1111/cei.12674] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites are the causative agents of leishmaniasis, a neglected tropical disease that causes substantial morbidity and considerable mortality in many developing areas of the world. Recent estimates suggest that roughly 10 million people suffer from cutaneous leishmaniasis (CL), and approximately 76,000 are afflicted with visceral leishmaniasis (VL), which is universally fatal without treatment. Efforts to develop therapeutics and vaccines have been greatly hampered by an incomplete understanding of the parasite's biology and a lack of clear protective correlates that must be met in order to achieve immunity. Although parasites grow and divide preferentially in macrophages, a number of other cell types interact with and internalize Leishmania parasites, including monocytes, dendritic cells and neutrophils. Neutrophils appear to be especially important shortly after parasites are introduced into the skin, and may serve a dual protective and permissive role during the establishment of infection. Curiously, neutrophil recruitment to the site of infection appears to continue into the chronic phase of disease, which may persist for many years. The immunological impact of these cells during chronic leishmaniasis is unclear at this time. In this review we discuss the ways in which neutrophils have been observed to prevent and promote the establishment of infection, examine the role of anti-neutrophil antibodies in mouse models of leishmaniasis and consider recent findings that neutrophils may play a previously unrecognized role in influencing chronic parasite persistence.
Collapse
Affiliation(s)
- E D Carlsen
- Department of Internal Medicine, Division of Infectious Diseases, MD-PhD Combined Degree Program.,Department of Microbiology and Immunology
| | - Y Liang
- Department of Microbiology and Immunology
| | | | | | - P C Melby
- Department of Microbiology and Immunology.,Department of Pathology.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - L Soong
- Department of Microbiology and Immunology.,Department of Pathology
| |
Collapse
|
12
|
Stein J, Maxeiner JH, Montermann E, Höhn Y, Raker V, Taube C, Sudowe S, Reske-Kunz AB. Non-eosinophilic airway hyper-reactivity in mice, induced by IFN-γ producing CD4(+) and CD8(+) lung T cells, is responsive to steroid treatment. Scand J Immunol 2015; 80:327-38. [PMID: 25124713 DOI: 10.1111/sji.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 01/22/2023]
Abstract
Non-eosinophilic asthma is characterized by infiltration of neutrophils into the lung and variable responsiveness to glucocorticoids. The pathophysiological mechanisms have not been characterized in detail. Here, we present an experimental asthma model in mice associated with non-eosinophilic airway inflammation and airway hyper-responsiveness (AHR). For this, BALB/c mice were sensitized by biolistic DNA immunization with a plasmid encoding the model antigen β-galactosidase (pFascin-βGal mice). For comparison, eosinophilic airway inflammation was induced by subcutaneous injection of βGal protein (βGal mice). Intranasal challenge of mice in both groups induced AHR to a comparable extent as well as recruitment of inflammatory cells into the airways. In contrast to βGal mice, which exhibited extensive eosinophilic infiltration in the lung, goblet cell hyperplasia and polarization of CD4(+) T cells into Th2 and Th17 cells, pFascin-βGal mice showed considerable neutrophilia, but no goblet cell hyperplasia and a predominance of Th1 and Tc1 cells in the airways. Depletion studies in pFascin-βGal mice revealed that CD4(+) and CD8(+) cells cooperated to induce maximum inflammation, but that neutrophilic infiltration was not a prerequisite for AHR induction. Treatment of pFascin-βGal mice with dexamethasone before intranasal challenge did not affect neutrophilic infiltration, but significantly reduced AHR, infiltration of monocytes and lymphocytes as well as content of IFN-γ in the bronchoalveolar fluid. Our results suggest that non-eosinophilic asthma associated predominantly with Th1/Tc1 cells is susceptible to glucocorticoid treatment. pFascin-βGal mice might represent a mouse model to study pathophysiological mechanisms proceeding in the subgroup of asthmatics with non-eosinophilic asthma that respond to inhaled steroids.
Collapse
Affiliation(s)
- J Stein
- Clinical Research Unit Allergology, Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
The calcineurin-NFAT axis controls allograft immunity in myeloid-derived suppressor cells through reprogramming T cell differentiation. Mol Cell Biol 2014; 35:598-609. [PMID: 25452304 DOI: 10.1128/mcb.01251-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While cyclosporine (CsA) inhibits calcineurin and is highly effective in prolonging rejection for transplantation patients, the immunological mechanisms remain unknown. Herein, the role of calcineurin signaling was investigated in a mouse allogeneic skin transplantation model. The calcineurin inhibitor CsA significantly ameliorated allograft rejection. In CsA-treated allograft recipient mice, CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs) were functional suppressive immune modulators that resulted in fewer gamma interferon (IFN-γ)-producing CD8(+) T cells and CD4(+) T cells (T(H)1 T helper cells) and more interleukin 4 (IL-4)-producing CD4(+) T cells (T(H2)) and prolonged allogeneic skin graft survival. Importantly, the expression of NFATc1 is significantly diminished in the CsA-induced MDSCs. Blocking NFAT (nuclear factor of activated T cells) with VIVIT phenocopied the CsA effects in MDSCs and increased the suppressive activities and recruitment of CD11b(+) Gr1(+) MDSCs in allograft recipient mice. Mechanistically, CsA treatment enhanced the expression of indoleamine 2,3-dioxygenase (IDO) and the suppressive activities of MDSCs in allograft recipients. Inhibition of IDO nearly completely recovered the increased MDSC suppressive activities and the effects on T cell differentiation. The results of this study indicate that MDSCs are an essential component in controlling allograft survival following CsA or VIVIT treatment, validating the calcineurin-NFAT-IDO signaling axis as a potential therapeutic target in transplantation.
Collapse
|
14
|
James BR, Anderson KG, Brincks EL, Kucaba TA, Norian LA, Masopust D, Griffith TS. CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunol Immunother 2014; 63:1213-27. [PMID: 25143233 PMCID: PMC4412276 DOI: 10.1007/s00262-014-1598-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
Abstract
Tumor progression occurs through the modulation of a number of physiological parameters, including the development of immunosuppressive mechanisms to prevent immune detection and response. Among these immune evasion mechanisms, the mobilization of myeloid-derived suppressor cells (MDSC) is a major contributor to the suppression of antitumor T-cell immunity. Patients with renal cell carcinoma (RCC) show increased MDSC, and methods are being explored clinically to reduce the prevalence of MDSC and/or inhibit their function. In the present study, we investigated the relationship between MDSC and the therapeutic potential of a TRAIL-encoding recombinant adenovirus (Ad5-TRAIL) in combination with CpG-containing oligodeoxynucleotides (Ad5-TRAIL/CpG) in an orthotopic mouse model of RCC. This immunotherapy effectively clears renal (Renca) tumors and enhances survival, despite the presence of a high frequency of MDSC in the spleens and primary tumor-bearing kidneys at the time of treatment. Subsequent analyses revealed that the CpG component of the immunotherapy was responsible for decreasing the frequency of MDSC in Renca-bearing mice; further, treatment with CpG modulated the phenotype and function of MDSC that remained after immunotherapy and correlated with an increased T-cell response. Interestingly, the CpG-dependent alterations in MDSC frequency and function did not occur in tumor-bearing mice complicated with diet-induced obesity. Collectively, these data suggest that in addition to its adjuvant properties, CpG also enhances antitumor responses by altering the number and function of MDSC.
Collapse
Affiliation(s)
- Britnie R. James
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kristin G. Anderson
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Erik L. Brincks
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
| | - Lyse A. Norian
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Center for Immunology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | - David Masopust
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
15
|
Stromnes IM, Brockenbrough S, Izeradjene K, Carlson MA, Cuevas C, Simmons RM, Greenberg PD, Hingorani SR. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 2014; 63:1769-81. [PMID: 24555999 PMCID: PMC4340484 DOI: 10.1136/gutjnl-2013-306271] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is characterised by a robust desmoplasia, including the notable accumulation of immunosuppressive cells that shield neoplastic cells from immune detection. Immune evasion may be further enhanced if the malignant cells fail to express high levels of antigens that are sufficiently immunogenic to engender an effector T cell response. OBJECTIVE To investigate the predominant subsets of immunosuppressive cancer-conditioned myeloid cells that chronicle and shape the progression of pancreas cancer. We show that selective depletion of one subset of myeloid-derived suppressor cells (MDSC) in an autochthonous, genetically engineered mouse model (GEMM) of PDA unmasks the ability of the adaptive immune response to engage and target tumour epithelial cells. METHODS A combination of in vivo and in vitro studies were performed employing a GEMM that faithfully recapitulates the cardinal features of human PDA. The predominant cancer-conditioned myeloid cell subpopulation was specifically targeted in vivo and the biological outcomes determined. RESULTS PDA orchestrates the induction of distinct subsets of cancer-associated myeloid cells through the production of factors known to influence myelopoiesis. These immature myeloid cells inhibit the proliferation and induce apoptosis of activated T cells. Targeted depletion of granulocytic MDSC (Gr-MDSC) in autochthonous PDA increases the intratumoral accumulation of activated CD8 T cells and apoptosis of tumour epithelial cells and also remodels the tumour stroma. CONCLUSIONS Neoplastic ductal cells of the pancreas induce distinct myeloid cell subsets that promote tumour cell survival and accumulation. Targeted depletion of a single myeloid subset, the Gr-MDSC, can unmask an endogenous T cell response, disclosing an unexpected latent immunity and invoking targeting of Gr-MDSC as a potential strategy to exploit for treating this highly lethal disease.
Collapse
Affiliation(s)
- Ingunn M. Stromnes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109,Department of Immunology, University of Washington, Seattle, WA, 98195
| | - Scott Brockenbrough
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Kamel Izeradjene
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Markus A. Carlson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Carlos Cuevas
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98195
| | - Randi M. Simmons
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Philip D. Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109,Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, 98195,Department of Immunology, University of Washington, Seattle, WA, 98195,Correspondence: Sunil R. Hingorani, MD, PhD, Fred Hutchinson Cancer Research Center, Mail Stop M5-C800, P.O. Box 19024, Seattle, WA 98109-1024, , Philip D. Greenberg, MD, Fred Hutchinson Cancer Research Center, Mail Stop D3-100, P.O. Box 19024, Seattle, WA 98109-1024,
| | - Sunil R. Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109,Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, 98195,Correspondence: Sunil R. Hingorani, MD, PhD, Fred Hutchinson Cancer Research Center, Mail Stop M5-C800, P.O. Box 19024, Seattle, WA 98109-1024, , Philip D. Greenberg, MD, Fred Hutchinson Cancer Research Center, Mail Stop D3-100, P.O. Box 19024, Seattle, WA 98109-1024,
| |
Collapse
|
16
|
Role for Gr-1+ cells in the control of high-dose Mycobacterium bovis recombinant BCG. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1120-7. [PMID: 24920602 DOI: 10.1128/cvi.00363-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is an attractive target for development as a live vaccine vector delivering transgenic antigens from HIV and other pathogens. Most studies aimed at defining the clearance of BCG have been performed at doses between 10(2) and 10(4) CFU. Interestingly, however, recombinant BCG (rBCG) administered at doses of >10(6) CFU effectively generates antigen-specific T-cell responses and primes for heterologous boost responses. Thus, defining clearance at high doses might aid in the optimization of rBCG as a vector. In this study, we used bioluminescence imaging to examine the kinetics of rBCG transgene expression and clearance in mice immunized with 5 × 10(7) CFU rBCG expressing luciferase. Similar to studies using low-dose rBCG, our results demonstrate that the adaptive immune response is necessary for long-term control of rBCG beginning 9 days after immunizing mice. However, in contrast to these reports, we observed that the majority of mycobacterial antigen was eliminated prior to day 9. By examining knockout and antibody-mediated depletion mouse models, we demonstrate that the rapid clearance of rBCG occurs in the first 24 h and is mediated by Gr-1(+) cells. As Gr-1(+) granulocytes have been described as having no impact on BCG clearance at low doses, our results reveal an unappreciated role for Gr-1(+) neutrophils and inflammatory monocytes in the clearance of high-dose rBCG. This work demonstrates the potential of applying bioluminescence imaging to rBCG in order to gain an understanding of the immune response and increase the efficacy of rBCG as a vaccine vector.
Collapse
|
17
|
The combination of a low-dose chemotherapeutic agent, 5-fluorouracil, and an adenoviral tumor vaccine has a synergistic benefit on survival in a tumor model system. PLoS One 2013; 8:e67904. [PMID: 23840786 PMCID: PMC3695864 DOI: 10.1371/journal.pone.0067904] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/23/2013] [Indexed: 12/13/2022] Open
Abstract
Standard cancer therapies, particularly those involving chemotherapy, are in need of modifications that both reduce short-term and long-term side effects as well as improve the overall survival of cancer patients. Here we show that combining low-dose chemotherapy with a therapeutic vaccination using an adenovirus encoding a model tumor-associated antigen, ovalbumin (Ad5-OVA), had a synergistic impact on survival in tumor-challenged mice. Mice that received the combinatorial treatment of Ad5-OVA plus low-dose 5-fluorouracil (5-FU) had a 95% survival rate compared to 7% and 30% survival rates for Ad5-OVA alone and 5-FU alone respectively. The presence of 5-FU enhanced the levels of OVA-specific CD8+ T lymphocytes in the spleens and draining lymph nodes of Ad5-OVA-treated mice, a phenomenon that was dependent on the mice having been tumor-challenged. Thus 5-FU may have enhanced survival of Ad5-OVA-treated mice by enhancing the tumor-specific immune response combined with eliminating tumor bulk. We also investigated the possibility that the observed therapeutic benefit may have been derived from the capacity of 5-FU to deplete MDSC populations. The findings presented here promote the concept of combining adenoviral cancer vaccines with low-dose chemotherapy.
Collapse
|
18
|
Schaefer JS, Montufar-Solis D, Nakra N, Vigneswaran N, Klein JR. Small intestine inflammation in Roquin-mutant and Roquin-deficient mice. PLoS One 2013; 8:e56436. [PMID: 23451046 PMCID: PMC3581552 DOI: 10.1371/journal.pone.0056436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/10/2013] [Indexed: 01/05/2023] Open
Abstract
Roquin, an E3 ubiquitin ligase that localizes to cytosolic RNA granules, is involved in regulating mRNA stability and translation. Mice that have a M199R mutation in the Roquin protein (referred to as sanroque or Roquinsan/san mice) develop autoimmune pathologies, although the extent to which these occur in the intestinal mucosa has not been determined. Here, we demonstrate that Roquinsan/san mice reproducibly develop intestinal inflammation in the small intestine but not the colon. Similarly, mice generated in our laboratory in which the Roquin gene was disrupted by insertion of a gene trap cassette (Roquingt/gt mice) had small intestinal inflammation that mimicked that of Roquinsan/san mice. MLN cells in Roquinsan/san mice consisted of activated proliferating T cells, and had increased numbers of CD44hi CD62Llo KLRG1+ short-lived effector cells. Proportionally more small intestinal intraepithelial lymphocytes in Roquinsan/san mice expressed the ICOS T cell activation marker. Of particular interest, small intestinal lamina propria lymphocytes in Roquinsan/san mice consisted of a high proportion of Gr-1+ T cells that included IL-17A+ cells and CD8+ IFN-γ+ cells. Extensive cytokine dysregulation resulting in both over-expression and under-expression of chemotactic cytokines occurred in the ileum of Roquinsan/san mice, the region most prone to the development of inflammation. These findings demonstrate that chronic inflammation ensues in the intestine following Roquin alteration either as a consequence of protein mutation or gene disruption, and they have implications for understanding how small intestinal inflammation is perpetuated in Crohn's disease (CD). Due to the paucity of animal models of CD-like pathophysiology in the small intestine, and because the primary gene/protein defects of the Roquin animal systems used here are well-defined, it will be possible to further elucidate the underlying genetic and molecular mechanisms that drive the disease process.
Collapse
Affiliation(s)
- Jeremy S. Schaefer
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - Dina Montufar-Solis
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - Niyati Nakra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
| | - John R. Klein
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Herpes simplex virus-1 (HSV-1) infects the majority of the world's population. These infections are often asymptomatic, but ocular HSV-1 infections cause multiple pathologies with perhaps the most destructive being herpes stromal keratitis (HSK). HSK lesions, which are immunoinflammatory in nature, can recur throughout life and often cause progressive corneal scaring resulting in visual impairment. Current treatment involves broad local immunosuppression with topical steroids along with antiviral coverage. Unfortunately, the immunopathologic mechanisms defined in animal models of HSK have not yet translated into improved therapy. Herein, we review the clinical epidemiology and pathology of the disease and summarize the large amount of basic research regarding the immunopathology of HSK. We examine the role of the innate and adaptive immune system in the clearance of virus and the destruction of the normal corneal architecture that is typical of HSK. Our goal is to define current knowledge of the pathogenic mechanisms and recurrent nature of HSK and identify areas that require further study.
Collapse
|
20
|
Diaz-Arevalo D, Ito JI, Kalkum M. Protective Effector Cells of the Recombinant Asp f3 Anti-Aspergillosis Vaccine. Front Microbiol 2012; 3:299. [PMID: 23024640 PMCID: PMC3441197 DOI: 10.3389/fmicb.2012.00299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/28/2012] [Indexed: 12/24/2022] Open
Abstract
An Aspergillus fumigatus vaccine based on recombinant Asp f3-protein has the potential to prevent aspergillosis in humans, a devastating fungal disease that is the prime obstacle to the success of hematopoietic cell transplantation. This vaccine protects cortisone acetate (CA)-immunosuppressed mice from invasive pulmonary aspergillosis via CD4(+) T cell mediators. Aside from these mediators, the nature of downstream fungicidal effectors is not well understood. Neutrophils and macrophages protect immunocompetent individuals from invasive fungal infections, and selective neutrophil depletion rendered mice susceptible to aspergillosis whereas macrophage depletion failed to increase fungal susceptibility. We investigated the effect of neutrophil depletion on rAsp f3-vaccine protection, and explored differences in pathophysiology and susceptibility between CA-immunosuppression and neutrophil depletion. In addition to being protective under CA-immunosuppression, the vaccine also had a protective effect in neutrophil-depleted mice. However, in non-immunized mice, a 10-fold higher conidial dose was required to induce similar susceptibility to infection with neutrophil depletion than with CA-immunosuppression. The lungs of non-immunized neutrophil-depleted mice became invaded by a patchy dense mycelium with highly branched hyphae, and the peribronchial inflammatory infiltrate consisted mainly of CD3(+) T cells and largely lacked macrophages. In contrast, lungs of non-immunized CA-immunosuppressed mice were more evenly scattered with short hyphal elements. With rAsp f3-vaccination, the lungs were largely clear of fungal burden under either immunosuppressive condition. We conclude that neutrophils, although important for innate antifungal protection of immunocompetent hosts, are not the relevant effectors for rAsp f3-vaccine derived protection of immunosuppressed hosts. It is therefore more likely that macrophages represent the crucial effectors of the rAsp f3-based vaccine.
Collapse
Affiliation(s)
- Diana Diaz-Arevalo
- Department of Immunology, Beckman Research Institute of the City of Hope Duarte, CA, USA
| | | | | |
Collapse
|
21
|
Ribeiro-Gomes FL, Sacks D. The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Front Cell Infect Microbiol 2012; 2:59. [PMID: 22919650 PMCID: PMC3417510 DOI: 10.3389/fcimb.2012.00059] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/16/2012] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are the first cells recruited to the dermal site of Leishmania infection following injection by needle or sand fly bite. The role of neutrophils in either promoting or suppressing host immunity remains controversial. We discuss the events driving neutrophil recruitment, their interaction with the parasite and apoptotic fate, and the nature of their encounters with other innate cells. We suggest that the influence of the neutrophil response on infection outcome critically depends on the timing of their recruitment and the tissue environment in which it occurs.
Collapse
Affiliation(s)
- Flavia L Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, USA
| | | |
Collapse
|
22
|
Frazer LC, O'Connell CM, Andrews CW, Zurenski MA, Darville T. Enhanced neutrophil longevity and recruitment contribute to the severity of oviduct pathology during Chlamydia muridarum infection. Infect Immun 2011; 79:4029-41. [PMID: 21825059 PMCID: PMC3187238 DOI: 10.1128/iai.05535-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/01/2011] [Indexed: 12/31/2022] Open
Abstract
Our previous studies revealed that intravaginal infection of mice with a plasmid-deficient strain of Chlamydia muridarum, CM3.1, does not induce the development of oviduct pathology. In this study, we determined that infection with CM3.1 resulted in a significantly reduced frequency and absolute number of neutrophils in the oviducts during acute infection. This reduction in neutrophils was associated with significantly lower levels of neutrophil chemokines in the oviducts and decreased production of neutrophil chemokines by oviduct epithelial cells infected with CM3.1 in vitro. Infection with CM3.1 also resulted in an increased frequency of late apoptotic/dead neutrophils in the oviduct. Examination of the ability of Chlamydia trachomatis to prevent neutrophil apoptosis in vitro revealed that C. trachomatis strain D/UW-3/Cx exhibited an enhanced ability to prevent neutrophil apoptosis compared to plasmid-deficient CTD153, and this effect was dependent on the presence of CD14(high) monocytes. The presence of monocytes also resulted in enhanced neutrophil cytokine production and increased production of tissue-damaging molecules in response to D/UW-3/Cx relative to results with CTD153. Attempts to use antibody-mediated depletion to discern the specific role of neutrophils in infection control and pathology in vivo revealed that although Ly6G(high) neutrophils were eliminated from the blood and oviducts with this treatment, immature neutrophils and high levels of tissue-damaging molecules were still detectable in the upper genital tract. These data support the role of neutrophils in chlamydia-induced pathology and reveal that novel methods of depletion must be developed before their role can be specifically determined in vivo.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Catherine M. O'Connell
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | | | - Toni Darville
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
23
|
Carr KD, Sieve AN, Indramohan M, Break TJ, Lee S, Berg RE. Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. Eur J Immunol 2011; 41:2666-76. [PMID: 21660934 DOI: 10.1002/eji.201041363] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/06/2011] [Accepted: 06/01/2011] [Indexed: 11/05/2022]
Abstract
Previous studies have suggested that neutrophils are required for resistance during infection with multiple pathogenic microorganisms. However, the depleting antibody used in those studies binds to both Ly6G and Ly6C (anti-Gr-1; clone RB6-8C5). This antibody has been shown to deplete not only neutrophils but also monocytes and a subset of CD8(+) T cells. Recently, an antibody against Ly6G, which specifically depletes neutrophils, was characterized. In the present study, neutrophils are depleted using the antibody against Ly6G during infection with the intracellular bacterium Listeria monocytogenes (LM). Our data show that neutrophil-depleted mice are much less susceptible to infection than mice depleted with anti-Gr-1. Although neutrophils are required for clearance of LM, their importance is more pronounced in the liver and during a high-dose bacterial challenge. Furthermore, we demonstrate that the protection mediated by neutrophils is due to the production of TNF-α, but not IFN-γ. Additionally, neutrophils are not required for the recruitment of monocytes or the generation of adaptive T-cell responses during LM infection. This study highlights the importance of neutrophils during LM infection, and indicate that depletion of neutrophils is less detrimental to the host than depletion of all Gr-1-expressing cell populations.
Collapse
Affiliation(s)
- Karen D Carr
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | |
Collapse
|
24
|
Neutrophils sustain effective CD8(+) T-cell responses in the respiratory tract following influenza infection. Immunol Cell Biol 2011; 90:197-205. [PMID: 21483446 DOI: 10.1038/icb.2011.26] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neutrophils have an important role in early host protection during influenza A virus infection. Their ability to modulate the virus-specific adaptive immune response is less clear. Here, we have used a mouse model to examine the impact of neutrophils on CD8(+) T-cell responses during influenza virus infection. CD8(+) T-cell priming, expansion, migration, cytokine secretion and cytotoxic capacity were investigated in the virus-infected airways and secondary lymphoid organs. To do this, we utilised a Ly6G-specific monoclonal antibody (mAb; 1A8) that specifically depletes neutrophils in vivo. Neutrophil depletion early after infection with influenza virus strain HKx31 (H3N2) did not alter influenza virus-derived antigen presentation or naïve CD8(+) T-cell expansion in the secondary lymphoid organs. Trafficking of virus-specific CD8(+) T cells into the infected pulmonary airways was also unaltered. Instead, early neutropenia reduced both the overall magnitude of influenza virus-specific CD8(+) T cells, together with impaired cytokine production and cytotoxic effector function. Therefore, neutrophils are important participants in anti-viral mechanisms that sustain effective CD8(+) T-cell responses in the respiratory tract of influenza virus-infected mice.
Collapse
|
25
|
Tate MD, Ioannidis LJ, Croker B, Brown LE, Brooks AG, Reading PC. The role of neutrophils during mild and severe influenza virus infections of mice. PLoS One 2011; 6:e17618. [PMID: 21423798 PMCID: PMC3056712 DOI: 10.1371/journal.pone.0017618] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022] Open
Abstract
Neutrophils have been implicated in both protective and pathological responses following influenza virus infections. We have used mAb 1A8 (anti-Ly6G) to specifically deplete LyG6(high) neutrophils and induce neutropenia in mice infected with virus strains known to differ in virulence. Mice were also treated with mAb RB6-8C5 (anti-Ly6C/G or anti-Gr-1), a mAb widely used to investigate the role of neutrophils in mice that has been shown to bind and deplete additional leukocyte subsets. Using mAb 1A8, we confirm the beneficial role of neutrophils in mice infected with virus strains of intermediate (HKx31; H3N2) or high (PR8; H1N1) virulence whereas treatment of mice infected with an avirulent strain (BJx109; H3N2) did not affect disease or virus replication. Treatment of BJx109-infected mice with mAb RB6-8C5 was, however, associated with significant weight loss and enhanced virus replication indicating that other Gr-1(+) cells, not neutrophils, limit disease severity during mild influenza infections.
Collapse
Affiliation(s)
- Michelle D. Tate
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lisa J. Ioannidis
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ben Croker
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Lorena E. Brown
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
26
|
Haverkamp JM, Crist SA, Elzey BD, Cimen C, Ratliff TL. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol 2011; 41:749-59. [PMID: 21287554 DOI: 10.1002/eji.201041069] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/25/2010] [Accepted: 12/17/2010] [Indexed: 12/17/2022]
Abstract
Current paradigms suggest that, despite the heterogeneity of myeloid-derived suppressor cells (MDSC), all Gr-1(+) CD11b(+) cells can exert suppressive function when exposed to inflammatory stimuli. In vitro evaluation shows that MDSC from multiple tissue sites have suppressive activity, and in vivo inhibition of MDSC enhances T-cell function; however, the relative capacity of MDSC present at localized inflammatory sites or in peripheral tissues to suppress T-cell responses in vivo has not been directly evaluated. In the current study, we observed that during a tissue-specific inflammatory response, MDSC inhibition of CD8(+) T-cell proliferation and IFN-γ production was restricted to the inflammatory site. Using a prostate-specific inflammatory model and a heterotopic prostate tumor model, we showed that MDSC from inflammatory sites or from tumor tissue possess immediate capacity to inhibit T-cell function, whereas those isolated from peripheral tissues (spleens and liver) were not suppressive without activation of iNOS by exposure to IFN-γ. These data suggest that MDSC are important regulators of immune responses in the prostate during acute inflammation and the chronic inflammatory setting of tumor growth, and that regulation of T-cell function by MDSC during a localized inflammatory response is restricted in vivo to the site of an ongoing immune response.
Collapse
|
27
|
Toda M, Wang L, Ogura S, Torii M, Kurachi M, Kakimi K, Nishikawa H, Matsushima K, Shiku H, Kuribayashi K, Kato T. UV irradiation of immunized mice induces type 1 regulatory T cells that suppress tumor antigen specific cytotoxic T lymphocyte responses. Int J Cancer 2011; 129:1126-36. [PMID: 21710495 DOI: 10.1002/ijc.25775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/22/2010] [Indexed: 01/11/2023]
Abstract
We previously showed that exposure to UV radiation after immunization suppresses Th1 and Th2 immune responses, leading to impaired Ab and allo-immune responses, but the impact of UV radiation after immunization on anti-tumor immune responses mediated by tumor-specific CD8(+) T cell responses remains less clear. Furthermore, the exact phenotypic and functional characteristics of regulatory T cell population responsible for the UV-induced immunosuppression still remain elusive. Using the MBL-2 lymphoma cell line engineered to express OVA as a surrogate tumor Ag, here we demonstrate that UV irradiation after tumor Ag-immunization suppresses the anti-tumor immune response in a manner dependent on the immunizing Ag. This suppression was mediated by interleukin (IL)-10 released from CD4(+) CD25(+) T cells, by which impaired the induction of cytotoxic T lymphocytes (CTL) able to kill Ag-expressing tumor cells. In addition, we generated a panel of T cell clones from UV-irradiated and non-irradiated mice, and all of the clones derived from UV-irradiated mice had a Tr1-type regulatory T cell phenotype with expression of IL-10 and c-Maf, but not Foxp3. These Tr1-type regulatory T cell clones suppressed tumor rejection in vivo as well as Th cell activation in vitro in an IL-10 dependent manner. Given that suppression of Ag-specific CTL responses can be induced in Ag-sensitized mice by UV irradiation, our results may imply that exposure to UV radiation during premalignant stage induces tumor-Ag specific Tr1 cells that mediate tumor-Ag specific immune suppression resulting in the promotion of tumor progression.
Collapse
Affiliation(s)
- Masaaki Toda
- Department of Cellular and Molecular Immunology, Mie Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van Deventer HW, Burgents JE, Wu QP, Woodford RMT, Brickey WJ, Allen IC, McElvania-Tekippe E, Serody JS, Ting JPY. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res 2010; 70:10161-9. [PMID: 21159638 PMCID: PMC3059219 DOI: 10.1158/0008-5472.can-10-1921] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inflammasome is a proteolysis complex that generates the active forms of the proinflammatory cytokines interleukin (IL)-1β and IL-18. Inflammasome activation is mediated by NLR proteins that respond to microbial and nonmicrobial stimuli. Among NLRs, NLRP3 senses the widest array of stimuli and enhances adaptive immunity. However, its role in antitumor immunity is unknown. Therefore, we evaluated the function of the NLRP3 inflammasome in the immune response using dendritic cell vaccination against the poorly immunogenic melanoma cell line B16-F10. Vaccination of Nlrp3(-/-) mice led to a relative 4-fold improvement in survival relative to control animals. Immunity depended on CD8(+) T cells and exhibited immune specificity and memory. Increased vaccine efficacy in Nlrp3(-/-) hosts did not reflect differences in dendritic cells but rather differences in myeloid-derived suppressor cells (MDSC). Although Nlrp3 was expressed in MDSCs, the absence of Nlrp3 did not alter either their functional capacity to inhibit T cells or their presence in peripheral lymphoid tissues. Instead, the absence of Nlrp3 caused a 5-fold reduction in the number of tumor-associated MDSCs found in host mice. Adoptive transfer experiments also showed that Nlrp3(-/-) MDSCs were less efficient in reaching the tumor site. Depleting MDSCs with an anti-Gr-1 antibody increased the survival of tumor-bearing wild-type mice but not Nlrp3(-/-) mice. We concluded that Nlrp3 was critical for accumulation of MDSCs in tumors and for inhibition of antitumor T-cell immunity after dendritic cell vaccination. Our findings establish an unexpected role for Nlrp3 in impeding antitumor immune responses, suggesting novel approaches to improve the response to antitumor vaccines by limiting Nlrp3 signaling.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/antagonists & inhibitors
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Cell Line, Tumor
- Cell Movement/immunology
- Dendritic Cells/immunology
- Inflammasomes/immunology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Transgenic
- Myeloid Cells/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Hendrik W. van Deventer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Joseph E. Burgents
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Qing Ping Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Rita-Marie T. Woodford
- School of Dentistry, Oral Biology Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - W. June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Irving C. Allen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Erin McElvania-Tekippe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Jonathan S. Serody
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Jenny P-Y Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
- School of Dentistry, Oral Biology Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
29
|
Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1. Virology 2010; 407:143-51. [DOI: 10.1016/j.virol.2010.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/08/2010] [Accepted: 08/02/2010] [Indexed: 12/19/2022]
|
30
|
Duriancik DM, Hoag KA. Vitamin A deficiency alters splenic dendritic cell subsets and increases CD8(+)Gr-1(+) memory T lymphocytes in C57BL/6J mice. Cell Immunol 2010; 265:156-63. [PMID: 20832059 DOI: 10.1016/j.cellimm.2010.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/12/2010] [Accepted: 08/19/2010] [Indexed: 12/24/2022]
Abstract
Vitamin A-deficient populations have impaired T cell-dependent antibody responses. Dendritic cells (DCs) are the most proficient antigen-presenting cells to naïve T cells. In the mouse, CD11b(+) myeloid DCs stimulate T helper (Th) 2 antibody immune responses, while CD8α(+) lymphoid DCs stimulate Th1 cell-mediated immune responses. Therefore, we hypothesized that vitamin A-deficient animals would have decreased numbers of myeloid DCs and unaffected numbers of lymphoid DCs. We performed dietary depletion of vitamin A in C57BL/6J male and female mice and used multicolor flow cytometry to quantify immune cell populations of the spleen, with particular focus on DC subpopulations. We show that vitamin A-depleted animals have increased polymorphonuclear neutrophils, lymphoid DCs, and memory CD8(+) T cells and decreased CD4(+) T lymphocytes. Therefore, vitamin A deficiency alters splenic DC subpopulations, which may contribute to skewed immune responses of vitamin A-deficient populations.
Collapse
Affiliation(s)
- David M Duriancik
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
31
|
Rowland CA, Lever MS, Griffin KF, Bancroft GJ, Lukaszewski RA. Protective cellular responses to Burkholderia mallei infection. Microbes Infect 2010; 12:846-53. [PMID: 20542133 DOI: 10.1016/j.micinf.2010.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/28/2010] [Accepted: 05/31/2010] [Indexed: 11/29/2022]
Abstract
Burkholderia mallei is a Gram-negative bacillus causing the disease glanders in humans. During intraperitoneal infection, BALB/c mice develop a chronic disease characterised by abscess formation where mice normally die up to 70 days post-infection. Although cytokine responses have been investigated, cellular immune responses to B. mallei infection have not previously been characterised. Therefore, the influx and activation status of splenic neutrophils, macrophages and T cells was examined during infection. Gr-1+ neutrophils and F4/80+ macrophages infiltrated the spleen 5 h post-infection and an increase in activated macrophages, neutrophils and T cells occurred by 24 h post-infection. Mice depleted of Gr-1+ cells were acutely susceptible to B. mallei infection, succumbing to the infection 5 days post-infection. Mice depleted of both CD4 and CD8 T cells did not succumb to the infection until 14 days post-infection. Infected μMT (B cell) and CD28 knockout mice did not differ from wildtype mice whereas iNOS-2 knockout mice began to succumb to the infection 30 days post-infection. The data presented suggests that Gr-1+ cells, activated early in B. mallei infection, are essential for controlling the early, innate response to B. mallei infection and T cells or nitric oxide are important during the later stages of infection.
Collapse
|
32
|
Wojtasiak M, Pickett DL, Tate MD, Londrigan SL, Bedoui S, Brooks AG, Reading PC. Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. J Gen Virol 2010; 91:2158-66. [DOI: 10.1099/vir.0.021915-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res 2010; 70:2697-706. [PMID: 20215523 DOI: 10.1158/0008-5472.can-09-2982] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation therapy is one of the primary treatment modalities for cancer along with chemotherapy and surgical therapy. The main mechanism of the tumor reduction after irradiation has been considered to be damage to the tumor DNA. However, we found that tumor-specific CTL, which were induced in the draining lymph nodes (DLN) and tumor tissue of tumor-bearing mice, play a crucial role in the inhibition of tumor growth by radiation. Indeed, the therapeutic effect of irradiation was almost completely abolished in tumor-bearing mice by depleting CD8(+) T cells through anti-CD8 monoclonal antibody administration. In mice whose DLN were surgically ablated or genetically defective (Aly/Aly mice), the generation of tetramer(+) tumor-specific CTL at the tumor site was greatly reduced in parallel with the attenuation of the radiation-induced therapeutic effect against the tumor. This indicates that DLN are essential for the activation and accumulation of radiation-induced CTL, which are essential for inhibition of the tumor. A combined therapy of local radiation with Th1 cell therapy augmented the generation of tumor-specific CTL at the tumor site and induced a complete regression of the tumor, although radiation therapy alone did not exhibit such a pronounced therapeutic effect. Thus, we conclude that the combination treatment of local radiation therapy and Th1 cell therapy is a rational strategy to augment antitumor activity mediated by tumor-specific CTL.
Collapse
Affiliation(s)
- Tsuguhide Takeshima
- Department of Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Laws TR, Davey MS, Titball RW, Lukaszewski R. Neutrophils are important in early control of lung infection by Yersinia pestis. Microbes Infect 2010; 12:331-5. [PMID: 20114086 DOI: 10.1016/j.micinf.2010.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/12/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
In this paper we evaluate the role of neutrophils in pneumonic plague. Splenic neutrophils from naïve BALB/c mice were found to reduce numbers of culturable Yersinia pestis strain GB in suspension. A murine, BALB/c, intranasal model of pneumonic plague was used in conjunction with in vivo neutrophil ablation, using the GR-1 antibody. This treatment reduced neutrophil numbers without affecting other leukocyte numbers. Neutrophil ablated mice exhibited increased bacterial colonisation of the lung 24h post infection. Furthermore, exposure of Y. pestis to human neutrophils resulted in a 5-fold reduction in the number of viable bacterial cells, whereas, PBMCs had no effect.
Collapse
Affiliation(s)
- Thomas R Laws
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK.
| | | | | | | |
Collapse
|
35
|
Tate MD, Deng YM, Jones JE, Anderson GP, Brooks AG, Reading PC. Neutrophils Ameliorate Lung Injury and the Development of Severe Disease during Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:7441-50. [DOI: 10.4049/jimmunol.0902497] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Duriancik DM, Hoag KA. The identification and enumeration of dendritic cell populations from individual mouse spleen and Peyer's patches using flow cytometric analysis. Cytometry A 2009; 75:951-9. [DOI: 10.1002/cyto.a.20794] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Ma Y, Chen H, Wang Q, Luo F, Yan J, Zhang XL. IL-24 protects againstSalmonella typhimuriuminfection by stimulating early neutrophil Th1 cytokine production, which in turn activates CD8+T cells. Eur J Immunol 2009; 39:3357-68. [DOI: 10.1002/eji.200939678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun 2009; 77:5300-10. [PMID: 19805527 DOI: 10.1128/iai.00501-09] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of pneumonia, and many components of the innate immune system have been proposed to exert important effects in preventing lung infection. However, a vigorous experimental system to identify an overriding, key effector mediating innate immunity to lung infection has not been utilized. As many of the important components of innate immunity are involved in recruitment and activation of polymorphonuclear neutrophils (PMNs) to infected tissues, we hypothesized that the cells and factors needed for their proper recruitment to the lung comprised the major mediators of innate immunity. In neutropenic mice, intranasal (i.n.) doses of P. aeruginosa as low as 10 to 100 CFU/mouse produced a fatal lung infection, compared with 10(7) to >10(8) CFU for nonneutropenic mice. There was only a very modest increased mortality in mice lacking mature lymphocytes and no increased mortality in mice depleted of alveolar macrophages when administered i.n. P. aeruginosa. Recombinant mouse granulocyte colony-stimulating factor increased survival of neutropenic mice after i.n. P. aeruginosa inoculation. MyD88(-/-) mice, which cannot recruit PMNs to the lungs, were highly susceptible to fatal P. aeruginosa lung infection, with bacterial doses of <120 CFU being lethal. Activation of a MyD88-independent pathway for PMN recruitment to the lungs in MyD88(-/-) mice resulted in enhanced protection against P. aeruginosa lung infection. Overall, in the absence of PMNs, mice cannot resist P. aeruginosa lung infection from extremely small bacterial doses. There is an inescapable requirement for local PMN recruitment and activation to mediate innate immunity to P. aeruginosa lung infection.
Collapse
|
39
|
Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, Witztum JL, Kolls JK. Critical role of IL-17RA in immunopathology of influenza infection. THE JOURNAL OF IMMUNOLOGY 2009; 183:5301-10. [PMID: 19783685 DOI: 10.4049/jimmunol.0900995] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute lung injury due to influenza infection is associated with high mortality, an increase in neutrophils in the airspace, and increases in tissue myeloperoxidase (MPO). Because IL-17A and IL-17F, ligands for IL-17 receptor antagonist (IL-17RA), have been shown to mediate neutrophil migration into the lung in response to LPS or Gram-negative bacterial pneumonia, we hypothesized that IL-17RA signaling was critical for acute lung injury in response to pulmonary influenza infection. IL-17RA was critical for weight loss and both neutrophil migration and increases in tissue myeloperoxidase (MPO) after influenza infection. However, IL-17RA was dispensable for the recruitment of CD8(+) T cells specific for influenza hemagglutinin or nucleocapsid protein. Consistent with this, IL-17RA was not required for viral clearance. However, in the setting of influenza infection, IL-17RA(-/-) mice showed significantly reduced levels of oxidized phospholipids, which have previously been shown to be an important mediator in several models of acute lung injury, including influenza infection and gastric acid aspiration. Taken together, these data support targeting IL-17 or IL-17RA in acute lung injury due to acute viral infection.
Collapse
|
40
|
Abstract
The mouse is the most commonly used experimental animal, and a wide range of tumor types can arise in their hematopoietic system. Therefore, for research scientists and graduate students working in the field of experimental hematology, immunology, and cancer research, there is an urgent need for well-established protocols for the preparation of histology and cytology for leukemia diagnosis. Moreover, the criteria for the classification of hematopoietic neoplasms often vary between different laboratories. In this chapter, we describe diagnosis and analysis of leukemia in murine bone marrow transplantation models based primarily on the findings of the histology and cytology of hematopoietic and infiltrated tissues, peripheral blood smear, and immunophenotyping by FACS analysis.
Collapse
Affiliation(s)
- Zhixiong Li
- Department of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
41
|
Atsumi T, Sato M, Kamimura D, Moroi A, Iwakura Y, Betz UAK, Yoshimura A, Nishihara M, Hirano T, Murakami M. IFN-gamma expression in CD8+ T cells regulated by IL-6 signal is involved in superantigen-mediated CD4+ T cell death. Int Immunol 2008; 21:73-80. [PMID: 19050105 DOI: 10.1093/intimm/dxn125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infection with pathogens containing superantigens (Sags) can result in massive excessive CD4+ T cell activation and death in such conditions as toxic shock, food poisoning and autoimmune diseases. We here showed how enhancement of IL-6 signaling suppresses Sag-mediated activated CD4+ T cell death. Sag-induced CD4+ T cell death increased in IL-6 knockout (KO) mice, whereas it decreased in mice characterized by enhanced IL-6-gp130-STAT3 signaling. The serum concentration of IFN-gamma was inversely correlated with the magnitude of IL-6 signaling, and IFN-gamma deficiency inhibited Sag-induced activated CD4+ T cell death, suggesting that IL-6 suppresses CD4+ T cell death via IFN-gamma expression. Interestingly, depletion of activated CD8+ T cells inhibited Sag-mediated increases in IFN-gamma expression in IL-6 KO mice as well as the augmented CD4+ T cell death. The results demonstrate that IL-6-gp130-STAT3 signaling in activated CD8+ T cells contributes to Sag-induced CD4+ T cell death via IFN-gamma expression, highlighting this signaling axis in CD8+ T cells as a potential therapeutic target for Sag-related syndromes.
Collapse
Affiliation(s)
- Toru Atsumi
- Laboratory of Developmental Immunology and the Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mildner A, Djukic M, Garbe D, Wellmer A, Kuziel WA, Mack M, Nau R, Prinz M. Ly-6G+CCR2- myeloid cells rather than Ly-6ChighCCR2+ monocytes are required for the control of bacterial infection in the central nervous system. THE JOURNAL OF IMMUNOLOGY 2008; 181:2713-22. [PMID: 18684962 DOI: 10.4049/jimmunol.181.4.2713] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myeloid cell recruitment is a characteristic feature of bacterial meningitis. However, the cellular mechanisms important for the control of Streptococcus pneumoniae infection remain largely undefined. Previous pharmacological or genetic studies broadly depleted many myeloid cell types within the meninges, which did not allow defining the function of specific myeloid subsets. Herein we show that besides CD11b(+)Ly-6G(+)CCR2(-) granulocytes, also CD11b(+)Ly-6C(high)CCR2(+) but not Ly-6C(low)CCR2(-) monocytes were recruited in high numbers to the brain as early as 12 h after bacterial challenge. Surprisingly, CD11b(+)Ly-6C(high)CCR2(+) inflammatory monocytes modulated local CXCL2 and IL-1beta production within the meninges but did not provide protection against bacterial infection. Consistent with these results, CCR2 deficiency strongly impaired monocyte recruitment to the infected brains but was redundant for disease pathogenesis. In contrast, specific depletion of polymorphonuclear granulocytes caused elevated local bacterial titer within the brains, led to an aggravated clinical course, and enhanced mortality. These findings demonstrate that Ly-6C(high)CCR2(+) inflammatory monocytes play a redundant role for the host defense during bacterial meningitis and that predominantly CD11b(+)Ly-6G(+)CCR2(-) myeloid cells are involved in the restriction of the extracellular bacteria.
Collapse
Affiliation(s)
- Alexander Mildner
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 2008; 112:5193-201. [PMID: 18824600 DOI: 10.1182/blood-2008-02-139535] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously shown that G-CSF-deficient (G-CSF(-/-)) mice are markedly protected from collagen-induced arthritis (CIA), which is the major murine model of rheumatoid arthritis, and now investigate the mechanisms by which G-CSF can promote inflammatory disease. Serum G-CSF levels were significantly elevated during CIA. Reciprocal bone marrow chimeras using G-CSF(-/-), G-CSFR(-/-), and wild-type (WT) mice identified nonhematopoietic cells as the major producers of G-CSF and hematopoietic cells as the major responders to G-CSF during CIA. Protection against CIA was associated with relative neutropenia. Depletion of neutrophils or blockade of the neutrophil adhesion molecule, Mac-1, dramatically attenuated the progression of established CIA in WT mice. Intravital microscopy of the microcirculation showed that both local and systemic administration of G-CSF significantly increased leukocyte trafficking into tissues in vivo. G-CSF-induced trafficking was Mac-1 dependent, and G-CSF up-regulated CD11b expression on neutrophils. Multiphoton microscopy of synovial vessels in the knee joint during CIA revealed significantly fewer adherent Gr-1(+) neutrophils in G-CSF(-/-) mice compared with WT mice. These data confirm a central proinflammatory role for G-CSF in the pathogenesis of inflammatory arthritis, which may be due to the promotion of neutrophil trafficking into inflamed joints, in addition to G-CSF-induced neutrophil production.
Collapse
|
44
|
Tate MD, Brooks AG, Reading PC. The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respir Res 2008; 9:57. [PMID: 18671884 PMCID: PMC2526083 DOI: 10.1186/1465-9921-9-57] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 08/01/2008] [Indexed: 11/21/2022] Open
Abstract
Background Neutrophils have been shown to play a role in host defence against highly virulent and mouse-adapted strains of influenza virus, however it is not clear if an effective neutrophil response is an important factor moderating disease severity during infection with other virus strains. In this study, we have examined the role of neutrophils during infection of mice with influenza virus strain HKx31, a virus strain of the H3N2 subtype and of moderate virulence for mice, to determine the role of neutrophils in the early phase of infection and in clearance of influenza virus from the respiratory tract during the later phase of infection. Methods The anti-Gr-1 monoclonal antibody (mAb) RB6-8C5 was used to (i) identify neutrophils in the upper (nasal tissues) and lower (lung) respiratory tract of uninfected and influenza virus-infected mice, and (ii) deplete neutrophils prior to and during influenza virus infection of mice. Results Neutrophils were rapidly recruited to the upper and lower airways following influenza virus infection. We demonstrated that use of mAb RB6-8C5 to deplete C57BL/6 (B6) mice of neutrophils is complicated by the ability of this mAb to bind directly to virus-specific CD8+ T cells. Thus, we investigated the role of neutrophils in both the early and later phases of infection using CD8+ T cell-deficient B6.TAP-/- mice. Infection of B6.TAP-/- mice with a low dose of influenza virus did not induce clinical disease in control animals, however RB6-8C5 treatment led to profound weight loss, severe clinical disease and enhanced virus replication throughout the respiratory tract. Conclusion Neutrophils play a critical role in limiting influenza virus replication during the early and later phases of infection. Furthermore, a virus strain of moderate virulence can induce severe clinical disease in the absence of an effective neutrophil response.
Collapse
Affiliation(s)
- Michelle D Tate
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| | | | | |
Collapse
|
45
|
Egan CE, Sukhumavasi W, Bierly AL, Denkers EY. Understanding the multiple functions of Gr-1(+) cell subpopulations during microbial infection. Immunol Res 2008; 40:35-48. [PMID: 18193362 DOI: 10.1007/s12026-007-0061-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The murine cell surface determinant Gr-1 is expressed at high level on neutrophils. Depletion of polymorphonuclear leukocytes with anti-Gr-1(+) monoclonal antibody results in increased susceptibility and dysregulated immunity to many microbial pathogens, a finding widely interpreted to indicate the importance of neutrophils during infection. Yet, in recent years it has become clear that additional cell types express the Gr-1 determinant, including dendritic cell and monocyte subpopulations. In this review, we evaluate current knowledge on the functional aspects of Gr-1(+) cell populations. We focus on infection with the opportunistic protozoan Toxoplasma gondii, a case where host survival depends on an intact Gr-1(+) cell population.
Collapse
Affiliation(s)
- Charlotte E Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | |
Collapse
|
46
|
Miu J, Mitchell AJ, Müller M, Carter SL, Manders PM, McQuillan JA, Saunders BM, Ball HJ, Lu B, Campbell IL, Hunt NH. Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. THE JOURNAL OF IMMUNOLOGY 2008; 180:1217-30. [PMID: 18178862 DOI: 10.4049/jimmunol.180.2.1217] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. Using murine models of malaria, we found much greater up-regulation of a number of chemokine mRNAs, including those for CXCR3 and its ligands, in the brain during fatal murine CM (FMCM) than in a model of non-CM. Expression of CXCL9 and CXCL10 RNA was localized predominantly to the cerebral microvessels and in adjacent glial cells, while expression of CCL5 was restricted mainly to infiltrating lymphocytes. The majority of mice deficient in CXCR3 were found to be protected from FMCM, and this protection was associated with a reduction in the number of CD8+ T cells in brain vessels as well as reduced expression of perforin and FasL mRNA. Adoptive transfer of CD8+ cells from C57BL/6 mice with FMCM abrogated this protection in CXCR3-/- mice. Moreover, there were decreased mRNA levels for the proinflammatory cytokines IFN-gamma and lymphotoxin-alpha in the brains of mice protected from FMCM. These data suggest a role for CXCR3 in the pathogenesis of FMCM through the recruitment and activation of pathogenic CD8+ T cells.
Collapse
Affiliation(s)
- Jenny Miu
- Molecular Immunopathology Unit, Bosch Institute, School of Medical Sciences, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wareing MD, Shea AL, Inglis CA, Dias PB, Sarawar SR. CXCR2 is required for neutrophil recruitment to the lung during influenza virus infection, but is not essential for viral clearance. Viral Immunol 2007; 20:369-78. [PMID: 17931107 DOI: 10.1089/vim.2006.0101] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neutrophils traffic to the lungs in large numbers during influenza virus infection. Although the ability of these cells to respond to numerous chemotactic stimuli has been described in other systems, the chemokine receptors mediating recruitment of neutrophils to the lungs during influenza virus infection and the role of this cell type in viral clearance are currently undefined. In the present study, we used CXCR2(/) mice to investigate the role of the chemokine receptor CXCR2 in neutrophil recruitment to the lungs during influenza virus infection and to determine the role of neutrophils in viral clearance. We infected CXCR2(/) or wild-type mice with influenza and assessed the level of inflammation, the cellular composition of the inflammatory infiltrate, and viral titers in the lungs. Absence of CXCR2 ablated neutrophil recruitment to the lungs, but had no effect on peak viral titers or on the kinetics of viral clearance. Thus, it appears that CXCR2 is the major receptor mediating neutrophil trafficking to the lung during influenza virus infection, but that neutrophils do not play an essential role in viral clearance.
Collapse
Affiliation(s)
- Mark D Wareing
- Viral Immunology, Torrey Pines Institute for Molecular Studies, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
48
|
Miyazaki S, Ishikawa F, Shimizu K, Ubagai T, Edelstein PH, Yamaguchi K. Gr-1highPolymorphonuclear Leukocytes and NK Cells Act via IL-15 to Clear IntracellularHaemophilus influenzaein Experimental Murine Peritonitis and Pneumonia. THE JOURNAL OF IMMUNOLOGY 2007; 179:5407-14. [PMID: 17911627 DOI: 10.4049/jimmunol.179.8.5407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) can be divided into Gr-1(high) and Gr-1(low) subpopulations, but the differences in the functions of these cells in the host are unknown. This study investigated the roles of these two cell populations in the clearance of an intracellular pathogen (Haemophilus influenzae) causing murine peritonitis and pneumonia. Microarray analysis and quantitative real-time PCR analysis of proteose peptone-elicited peritoneal murine PMNs showed that IL-15 mRNA levels were significantly higher in Gr-1(high) PMNs than in Gr-1(low) PMNs. In addition, IL-15 was produced only by Gr-1-positive PMNs, especially Gr-1(high) PMNs. IL-15 was required for efficient clearance of experimental murine H. influenzae pneumonia, as 4 days postinfection lungs from IL-15 knockout mice contained 50- to 100-fold more bacteria than did wild-type mouse lungs. Gr-1 PMN-depleted C57BL/6 mice were more susceptible to H. influenzae pneumonia than were Gr-1 PMN replete C57BL/6 mice or C57BL/6 nude mice, demonstrating that Gr-1 PMNs are important in the clearance of intracellular bacteria. IL-15-activated NK cells killed H. influenzae in PMNs. Flow cytometry confirmed the expression of CD69 on the cell membrane of IL-15-activated NK cells. Our results show that Gr-1(high) PMNs produce more IL-15 than Gr-1(low) PMNs, and that IL-15-activated NK cells protect against early infection by H. influenzae.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Coculture Techniques
- Colony Count, Microbial
- Female
- Haemophilus influenzae/immunology
- Interleukin-15/physiology
- Intracellular Fluid/immunology
- Intracellular Fluid/microbiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Leukocyte Count
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/microbiology
- Peritonitis/immunology
- Peritonitis/microbiology
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/physiology
Collapse
Affiliation(s)
- Shuichi Miyazaki
- Departments of Microbiology and Infectious Disease, School of Medicine, Toho University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Sá-Nunes A, Medeiros AI, Sorgi CA, Soares EG, Maffei CML, Silva CL, Faccioli LH. Gr-1+ cells play an essential role in an experimental model of disseminated histoplasmosis. Microbes Infect 2006; 9:1393-401. [PMID: 17296322 DOI: 10.1016/j.micinf.2006.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/07/2006] [Accepted: 10/06/2006] [Indexed: 11/21/2022]
Abstract
Recent studies have shown the participation of Gr-1(+) cells in many types of infections; however, the role played by these cells in the immune response to fungal pathogens is controversial. In this study we determined whether Gr-1(+) cells are involved in the protective immune response in systemic Histoplasma capsulatum infection. Depletion of Gr-1(+) cells using the monoclonal antibody (MAb) RB6-8C5 increased histoplasmosis severity and inhibited the subsequent development of a protective immune response. In addition to the increased fungal burden in lungs and spleens, the Th1 response was found to be unbalanced in these mice and the suppression of the cellular immune response seemed to be associated with increased nitric oxide production. Taken together, these results indicate that Gr-1(+) cell depletion at the beginning of infection allows yeast multiplication and increases mice mortality. This study improves the understanding of the role of Gr-1(+) cells on the protective immunity in histoplasmosis.
Collapse
Affiliation(s)
- Anderson Sá-Nunes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/no, Ribeirão Preto, São Paulo 14040-903, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Shiratsuchi Y, Iyoda T, Tanimoto N, Kegai D, Nagata K, Kobayashi Y. Infiltrating neutrophils induce allospecific CTL in response to immunization with apoptotic cells via MCP-1 production. J Leukoc Biol 2006; 81:412-20. [PMID: 17095610 DOI: 10.1189/jlb.0606399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Our previous studies demonstrated that i.p. injection of late apoptotic P388 cells caused phagocytosis by macrophages and transient infiltration of neutrophils into the peritoneal cavity. As neutrophils are known to function as effectors as well as regulators in the immune response, we examined the roles of infiltrating neutrophils in alloantigen-specific CTL induction after immunization with late apoptotic P388 cells. The CTL induction and infiltration of CD8(+) T cells into the peritoneal cavity were inhibited by depletion of neutrophils by anti-Gr-1 mAb or inhibition of neutrophil infiltration by anti-MIP-2 antibody, suggesting that neutrophils are involved in CD8(+) T cell infiltration into the peritoneal cavity. It is known that MIP-1alpha, MIP-1beta, and MCP-1 are capable of attracting CD8(+) T cells and that they are produced by neutrophils. These chemokines were detected in the peritoneal cavity, and among them, MCP-1 production was reduced remarkably by suppression of neutrophil infiltration. Moreover, infiltration of CD8(+) T cells into the peritoneal cavity as well as CTL activity was clearly reduced by administering anti-MCP-1 antibody i.p. Furthermore, the CTL induction and infiltration of CD8(+) T cells in neutrophil-depleted mice were restored significantly by administering recombinant murine MCP-1 into the peritoneal cavity. These results indicate that MCP-1 appears to link infiltration of neutrophils with CTL induction.
Collapse
Affiliation(s)
- Yoshiko Shiratsuchi
- Division of Molecular Medicine, Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, Japan
| | | | | | | | | | | |
Collapse
|