1
|
Ramzy A, Abdel-Halim M, Manie T, Elemam NM, Mansour S, Youness RA, Sebak A. In-vitro immune-modulation of triple-negative breast cancer through targeting miR-30a-5p/MALAT1 axis using nano-PDT combinational approach. Transl Oncol 2025; 55:102365. [PMID: 40132387 DOI: 10.1016/j.tranon.2025.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an immunogenic tumor; however, its tumor immune microenvironment (TIME) is densely packed with immune suppressive cytokines and immune checkpoints. The immune-suppressive features of TNBC TIME represent a considerable obstacle to any immunotherapeutic approach. The objective of this study was to develop a multimodal in-vitro strategy to manipulate the TNBC TIME and enhance patients' outcomes by employing carefully tailored hybrid chitosan-lipid Nanoparticles (CLNPs), metformin and chlorin e6 (Ce-6)-mediated PDT, alone or combined. Special focus is directed towards evaluation of the role of the selected treatment agents on the non-coding RNAs (ncRNAs) involved in tuning the immuno-oncogenic profile of TNBC, for instance, the miR-30a-5p/MALAT1 network. METHODS This study enrolled 30 BC patients. CLNPs and ce-6-loaded CLNPs with different physicochemical features were synthesized and optimized using ionotropic gelation. The intracellular concentration and effects on MDA-MB-231 cellular viability were investigated. UHPLC was used to quantify ce-6. MDA-MB-231 cells were transfected with miR-30a-5p oligonucleotides and MALAT1 siRNAs using lipofection to investigate the interaction between MIF, PD-L1, TNF-α, IL-10, and the miR-30a-5p/MALAT1 ceRNA network. qRT-PCR was used to evaluate IL-10, TNF-α, and MIF expression levels, whereas flow cytometry was used for PD-L1. RESULTS Immunophenotyping of BC biopsies revealed significantly elevated levels of immunosuppressive markers, including IL-10, TNF-α, PD-L1, and MIF in BC biopsies compared to its normal counterparts. Upon patient stratification, it was shown that MIF and IL-10 are upregulated in TNBC patients compared to non-TNBC patients. Nonetheless, immune suppressive biomarkers expression investigated in the current study was generally correlated with signs of poor prognosis. CLNPs with mean particle size ranging from 50-150 nm were obtained. CLNPs exhibited different patterns of intracellular uptake, cytotoxicity and modulation of the immunosuppressive markers based on their physicochemical properties and composition. In particular, CLNP4 in-vitro effectively reduced IL-10, TNF-α, MIF, and PD-L1. Loading of Ce-6 into CLNP4 (Ce6-CLNPs) improved the in-vitro cytotoxic effects via PDT. In addition, PDT with Ce6-CLNP4 enhanced the expression of tumor-suppressive miR-30a-5p and decreased oncogenic lncRNA MALAT1 expression in MDA-MB-231 cells, suggesting a potential for modulating the TNBC immuno-oncogenic profile. CONCLUSION This study demonstrated that CLNPs and Ce-6-mediated PDT can modulate several key immunosuppressive factors and the miR-30a-5p/MALAT1 axis in TNBC cells. These findings provide a rationale for further in-vivo investigation of this multimodal therapeutic strategy.
Collapse
Affiliation(s)
- Asmaa Ramzy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt; Faculty of Pharmaceutical Engineering, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Rana A Youness
- Department of Molecular Biology and Biochemistry, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt.
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
2
|
Shinde A, Tang X, Singh R, Brindley DN. Infliximab, a Monoclonal Antibody against TNF-α, Inhibits NF-κB Activation, Autotaxin Expression and Breast Cancer Metastasis to Lungs. Cancers (Basel) 2023; 16:52. [PMID: 38201482 PMCID: PMC10778319 DOI: 10.3390/cancers16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
An inflammatory milieu in the tumor microenvironment leads to immune evasion, resistance to cell death, metastasis and poor prognosis in breast cancer patients. TNF-α is a proinflammatory cytokine that regulates multiple aspects of tumor biology from initiation to progression. TNF-α-induced NF-κB activation initiates inflammatory pathways, which determine cell survival, death and tumor progression. One candidate pathway involves the increased secretion of autotaxin, which produces lysophosphatidate that signals through six G-protein-coupled receptors. Significantly, autotaxin is one of the 40-50 most upregulated genes in metastatic tumors. In this study, we investigated the effects of TNF-α by blocking its action with a monoclonal antibody, Infliximab, and studied the effects on autotaxin secretion and tumor progression. Infliximab had little effect on tumor growth, but it decreased lung metastasis by 60% in a syngeneic BALB/c mouse model using 4T1 breast cancer cells. Infliximab-treated mice also showed a decrease in proliferation and metastatic markers like Ki-67 and vimentin in tumors. This was accompanied by decreases in NF-κB activation, autotaxin expression and the concentrations of plasma and tumor cytokines/chemokines which are involved in metastasis. We also demonstrated a positive correlation of TNF-α -NF-κB and ATX expression in breast cancer patients using cancer databases. Studies in vitro showed that TNF-α-induced NF-κB activation increases autotaxin expression and the clone forming ability of 4T1 breast cancer cells. This report highlights the potential role of Infliximab as an additional approach to attenuate signaling through the autotaxin-lysophosphatidate-inflammatory cycle and decrease mortality from metastatic cancer.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara 390002, Gujarat, India;
- Department of Molecular and Human Genetics, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
3
|
Uchendu I, Zhilenkova A, Pirogova Y, Basova M, Bagmet L, Kohanovskaia I, Ngaha Y, Ikebunwa O, Sekacheva M. Cytokines as Potential Therapeutic Targets and their Role in the Diagnosis and Prediction of Cancers. Curr Pharm Des 2023; 29:2552-2567. [PMID: 37916493 DOI: 10.2174/0113816128268111231024054240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
The death rate from cancer is declining as a result of earlier identification and more advanced treatments. Nevertheless, a number of unfavourable adverse effects, including prolonged, long-lasting inflammation and reduced immune function, usually coexist with anti-cancer therapies and lead to a general decline in quality of life. Improvements in standardized comprehensive therapy and early identification of a variety of aggressive tumors remain the main objectives of cancer research. Tumor markers in those with cancer are tumor- associated proteins that are clinically significant. Even while several tumor markers are routinely used, they don't always provide reliable diagnostic information. Serum cytokines are promising markers of tumor stage, prognosis, and responsiveness to therapy. In fact, several cytokines are currently proposed as potential biomarkers in a variety of cancers. It has actually been proposed that the study of circulatory cytokines together with biomarkers that are particular to cancer can enhance and accelerate cancer diagnosis and prediction, particularly via blood samples that require minimal to the absence of invasion. The purpose of this review was to critically examine relevant primary research literature in order to elucidate the role and importance of a few identified serum cytokines as prospective therapeutic targets in oncological diseases.
Collapse
Affiliation(s)
- Ikenna Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Angelina Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yuliya Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Maria Basova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Leonid Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Iana Kohanovskaia
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yvan Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Obinna Ikebunwa
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
- Department of Biotechnology, First Moscow State Medical University of The Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Marina Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
4
|
Shologu N, Gurdal M, Szegezdi E, FitzGerald U, Zeugolis DI. Macromolecular crowding in the development of a three-dimensional organotypic human breast cancer model. Biomaterials 2022; 287:121642. [PMID: 35724540 DOI: 10.1016/j.biomaterials.2022.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Although cell-derived matrices are at the forefront of scientific research and technological innovation for the development of in vitro tumour models, their two-dimensional structure and low extracellular matrix composition restrict their capacity to accurately predict toxicity of candidate molecules. Herein, we assessed the potential of macromolecular crowding (a biophysical phenomenon that significantly enhances and accelerates extracellular matrix deposition, resulting in three-dimensional tissue surrogates) in improving cell-derived matrices in vitro tumour models. Among the various decellularisation protocols assessed (NH4OH, DOC, SDS/EDTA, NP40), the NP40 appeared to be the most effective in removing cellular matter and the least destructive to the deposited matrix. Among the various cell types (mammary, skin, lung fibroblasts) used to produce the cell-derived matrices, the mammary fibroblast derived matrices produced under macromolecular crowding conditions and decellularised with NP40 resulted in significant increase in focal adhesion molecules, matrix metalloproteinases and proinflammatory cytokines, when seeded with MDA-MB-231 cells. Further, macromolecular crowding derived matrices significantly increased doxorubicin resistance and reduced the impact of intracellular reactive oxygen species mediated cell death. Collectively our data clearly illustrate the potential of macromolecular crowding in the development of cell-derived matrices-based in vitro tumour models that more accurately resemble the tumour microenvironment.
Collapse
Affiliation(s)
- Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Eva Szegezdi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Apoptosis Research Centre, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Una FitzGerald
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Galway Neuroscience Centre, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
5
|
Jian Y, Yang K, Sun X, Zhao J, Huang K, Aldanakh A, Xu Z, Wu H, Xu Q, Zhang L, Xu C, Yang D, Wang S. Current Advance of Immune Evasion Mechanisms and Emerging Immunotherapies in Renal Cell Carcinoma. Front Immunol 2021; 12:639636. [PMID: 33767709 PMCID: PMC7985340 DOI: 10.3389/fimmu.2021.639636] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Renal cell carcinoma is a highly heterogeneous cancer group, and the complex microenvironment of the tumor provides appropriate immune evasion opportunities. The molecular mechanism of immune escape in renal cell carcinoma is currently a hot issue, focusing primarily on the major complex of histocompatibility, immunosuppressive cells, their secreted immunosuppressive cytokines, and apoptosis molecule signal transduction. Immunotherapy is the best treatment option for patients with metastatic or advanced renal cell carcinoma and combination immunotherapy based on a variety of principles has shown promising prospects. Comprehensive and in-depth knowledge of the molecular mechanism of immune escape in renal cell carcinoma is of vital importance for the clinical implementation of effective therapies. The goal of this review is to address research into the mechanisms of immune escape in renal cell carcinoma and the use of the latest immunotherapy. In addition, we are all looking forward to the latest frontiers of experimental combination immunotherapy.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Kangkang Yang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jun Zhao
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kai Huang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Haotian Wu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiwei Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Chang CM, Lam HYP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J 2021; 33:203-211. [PMID: 34386356 PMCID: PMC8323643 DOI: 10.4103/tcmj.tcmj_162_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a frequently diagnosed cancer among women worldwide. Currently, BC can be divided into different subgroups according to the presence of the following hormone receptors: estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Each of these subgroups has different treatment strategies. However, the presence of new metastatic lesions and patient deterioration suggest resistance to a given treatment. Various lines of evidence had shown that cytokines are one of the important mediators of tumor growth, invasion, metastasis, and treatment resistance. Interleukin-10 (IL-10) is an immunoregulatory cytokine, and acts as a poor prognostic marker in many cancers. The anti-inflammatory IL-10 blocks certain effects of inflammatory cytokines. It also antagonizes the co-stimulatory molecules on the antigen-presenting cells. Here, we review the current knowledge on the function and molecular mechanism of IL-10, and recent findings on how IL-10 contributes to the progression of BC.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
7
|
Natarajan S, Ranganathan M. Toll-like receptor (TLR) gene expression and immunostimulatory effect of CpG oligonucleotides in hormone receptor positive cell line T47D and triple negative breast cancer cell line MDA-MB-468. Immunopharmacol Immunotoxicol 2020; 42:408-415. [PMID: 32686546 DOI: 10.1080/08923973.2020.1797779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND We investigated the expression of TLR genes and the effects of CpG ODN in Estrogen Receptor positive, Progesterone Receptor positive breast cancer cell line (T47D) and a triple-negative breast cancer cell line (MDA-MB-468) followed by studying the immunostimulatory activity of CpG oligonucleotides in breast cancer cell lines T47D and MDA-MB-468. MATERIALS AND METHODS We evaluated the expression pattern of TLR genes (TLR1 to TLR9) in T47D and MDA-MB-468 cells using Real-time qPCR analysis. The intracellular TLR9 protein expression was studied by flow cytometry. The effect of CpG ODN on cell viability was tested using MTT assay. The relative expression of pro-inflammatory (IL6 and TNFα) and anti- inflammatory/immunosuppressive cytokines genes (IL10 and TGF beta1) were examined by Real-time qPCR. RESULTS We found that MDA-MB-468 cells expressed TLR2, TLR3, TLR6, TLR8, and TLR9 genes and T47D cells expressed TLR3, TRL5, TLR8, and TLR9 genes. Stimulation of TLR9 in vitro with CpG significantly reduced the cell viability of T47D and MDA-MB-468 cells. IL6 cytokine gene expression was significantly reduced in both CpG treated T47D cells and MDA-MB-468 cells. TNFα gene expression was significantly reduced after treatment with CpG in MDA-MB-468 cells but not in T47D cells. IL10 and TGFβ1 expression were downregulated in CpG treated T47D cells. Whereas, IL10 and TGFβ1 were elevated in CpG treated MDA-MB-468 cells. CONCLUSION Our in vitro finding gives preliminary evidence that triggering TLR9 using CpG ODN decreases the cell proliferation and alters the pro-inflammatory cytokines in favor of inhibition of hormone receptor positive breast cancer cells T47D and triple negative breast cancer cells MDA-MB-468.
Collapse
Affiliation(s)
- Sudhakar Natarajan
- Department of Biotechnology, Dr. M.G.R. Educational & Research Institute (Deemed to be University), Maduravoyal, Chennai, India
| | - Mohan Ranganathan
- Department of Biotechnology, Dr. M.G.R. Educational & Research Institute (Deemed to be University), Maduravoyal, Chennai, India
| |
Collapse
|
8
|
Guo CA, Ma L, Su XL, Wang YZ, Zhen LL, Zhang B, An H, Liu HB. Esmolol inhibits inflammation and apoptosis in the intestinal tissue via the overexpression of NF-κB-p65 in the early stage sepsis rats. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:331-341. [PMID: 32412904 DOI: 10.5152/tjg.2020.19341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Accumulating evidence reveals esmolol could protect the gut mucosa through the regulation of immune response and inflammation in patients with sepsis. However, its underlying mechanism is not fully understood. MATERIALS AND METHODS Diamine oxidase (DAO), intestinal fatty acid-binding protein (I-FABP), interleukin (IL)-6, and IL-10 in the plasma of rats were detected by ELISA assay. Western blotting was utilized to measure the expression levels of NF-kappa B-p65, Bcl-2, and cleaved caspase-3 in the intestinal tissues. The survival analysis was performed in each group. RESULTS The plasma levels of DAO and IL-10 levels were increased, whereas that of I-FABP and IL-6 were decreased in the sepsis rats after esmolol treatment, indicating that after the esmolol treatment, the intestinal inflammation and damages were remarkably reduced as compared to those in the normal saline treated sepsis rats. NF-κB-p65 and Bcl-2 were highly expressed, but cleaved caspase-3 showed lower expression in the esmolol treated groups. However, at the same time, we observed contrasting results in the normal saline treated group. Western blotting data indicated that the esmolol treatment inhibited the inflammation and apoptosis in the intestinal tissue due to the overexpression of NF-κB-p65 in the celiac sepsis rats. The survival analysis results indicate that the esmolol infusion should be used in the early stages sepsis rats. CONCLUSION Esmolol can suppress inflammation and apoptosis in the intestinal tissue via the overexpression of NF-kappa B-p65 in the early stage sepsis rats. kappa BEarly-stage use of esmolol might be an ideal treatment method for sepsis.
Collapse
Affiliation(s)
- Chang-An Guo
- Second Clinical Medical College, Lanzhou University, Gansu Province, China;First Aid Center, Lanzhou University Second Hospital, Gansu Province, China;Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, China
| | - Li Ma
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Xiao-Lu Su
- Department of Pathology, Lanzhou University Second Hospital, Gansu Province, China
| | - Ying-Zhen Wang
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Ling-Ling Zhen
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Bei Zhang
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Hong An
- Intensive Care Unit, Lanzhou University Second Hospital, Gansu Province, China
| | - Hong-Bin Liu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, China
| |
Collapse
|
9
|
Li M, Yue C, Zuo X, Jin G, Wang G, Guo H, Wu F, Huang S, Zhao X. The effect of interleukin 10 polymorphisms on breast cancer susceptibility in Han women in Shaanxi Province. PLoS One 2020; 15:e0232174. [PMID: 32380517 PMCID: PMC7205473 DOI: 10.1371/journal.pone.0232174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/09/2020] [Indexed: 01/24/2023] Open
Abstract
Background Previous studies have reported on several genetic variants related to breast cancer, but a substantial proportion of mutation loci have not yet been identified. In the current study, we aimed to evaluate the association between single nucleotide polymorphisms (SNPs) of interleukin-10 (IL-10) and susceptibility to breast cancer in Shaanxi Han women in China. Methods Six SNPs were genotyped in 530 breast cancer patients and 628 healthy women from the First Affiliated Hospital of Xi’an Jiaotong University Hospital. Odds ratios and 95% confidence intervals were calculated by unconditional logistic regression analysis to assess the association between breast cancer risk and polymorphisms of six loci. Results Two SNPs, rs3024490 and rs1800871, were found to be significantly different between breast cancer patients and healthy women. These SNPs also increased the risk of breast cancer in co-dominant and dominant models. Moreover, another SNP, rs1554286, was significantly associated with an increased risk of breast cancer in the co-dominant model. Functional assessments indicated that these three variants may influence the expression and transcription factor binding of IL-10. Conclusions Our findings suggest that variants of IL-10 may be likelihood risk factors for the development and progression of breast cancer. Future studies should replicate this study and evaluate functional assessments in Chinese Han women and women from other regions.
Collapse
Affiliation(s)
- Miao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Internal Medicine Oncology, The Fifth People’s Hospital of Qinghai Province, Xining, Qinghai, China
| | - Chenli Yue
- Department of Respiratory Medicine, Shaanxi Provincial Crops Hospital of Chinese Peoples Armed Police Force, Xi’an, Shaanxi, China
| | - Xiaoxiao Zuo
- Department of Radiation Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guoquan Jin
- Department of General Surgery, The Fifth People’s Hospital of Qinghai Province, Xining, Qinghai, China
| | - Guanying Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hulin Guo
- Department of Internal Medicine Oncology, The Fifth People’s Hospital of Qinghai Province, Xining, Qinghai, China
| | - Fang Wu
- Department of Neonatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|
10
|
Bujak JK, Szopa IM, Pingwara R, Kruczyk O, Krzemińska N, Mucha J, Majchrzak-Kuligowska K. The Expression of Selected Factors Related to T Lymphocyte Activity in Canine Mammary Tumors. Int J Mol Sci 2020; 21:E2292. [PMID: 32225066 PMCID: PMC7178106 DOI: 10.3390/ijms21072292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Crosstalk between neoplastic and immune cells in the tumor microenvironment (TME) influences the progression of disease in human and canine cancer patients. Given that canine mammary tumors are a useful model to study breast cancer biology, we aimed to evaluate the expression of genes associated with T lymphocyte activity in benign, malignant, and metastatic canine mammary tumors. Interestingly, metastatic tumors exhibit increased expression of CXCR3, CCR2, IL-4, IL-12p40, and IL-17. In particular, we focused on IL-17, a key interleukin associated with the Th17 lymphocyte phenotype. Th17 cells have been shown to play a contradictory role in tumor immunity. Although IL-17 showed a high expression in the metastatic tumors, the expression of RORγt, a crucial transcription factor for Th17 differentiation was barely detected. We further investigated IL-17 expression using immunohistochemistry, through which we confirmed the increased expression of this interleukin in malignant and metastatic mammary tumors. Finally, we compared the plasma levels of IL-17 in healthy and malignant mammary tumor-bearing dogs using ELISA but found no differences between the groups. Our data indicate that the IL-17 in metastatic tumors may be produced by other cell types, but not by Th17 lymphocytes. Overall, our results broaden the available knowledge on the interactions in canine mammary tumors and provide insight into the development of new therapeutic strategies, with potential benefits for human immune oncology.
Collapse
MESH Headings
- Animals
- Dog Diseases/genetics
- Dog Diseases/immunology
- Dog Diseases/pathology
- Dogs
- Female
- Interleukins/genetics
- Interleukins/metabolism
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/pathology
- Neoplasm Metastasis
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- Th17 Cells/immunology
- Transcriptome
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences -SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.K.B.); (I.M.S.); (R.P.); (O.K.); (N.K.); (J.M.)
| |
Collapse
|
11
|
Jayaganesh R, Pugalendhi P, Murali R. Effect of citronellol on NF-kB inflammatory signaling molecules in chemical carcinogen-induced mammary cancer in the rat model. J Biochem Mol Toxicol 2020; 34:e22441. [PMID: 31926054 DOI: 10.1002/jbt.22441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/09/2019] [Accepted: 12/17/2019] [Indexed: 02/02/2023]
Abstract
Inflammation plays a vital role in the process of carcinogenesis and anti-inflammatory properties of phytochemicals are gaining more attention in the chemoprevention of cancer. The present study was designed to evaluate the anti-inflammatory potential of citronellol (CT) on 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis in rats. The inflammation-associated gene and protein markers were analyzed by immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot techniques. Markers such as nuclear factor-kB (NF-kB), tumor necrosis factor-α, interleukin-6 (IL-6), cyclooxygenase-2, macrophage inflammatory protein-1α, and inducible nitric oxide synthase are upregulated in DMBA-alone-treated mammary tumor tissues. The oral administration of CT (50 mg/kg BW) to DMBA-treated rats significantly downregulated the expression NF-kB and other inflammatory markers, and also increased the level of IL-10 in mammary tissues. The results suggested that the anti-inflammatory potential of CT prevented the incidence of chemical carcinogen-induced mammary cancer in rats.
Collapse
Affiliation(s)
- Rajendran Jayaganesh
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Annamalai Nagar, Tamil Nadu, India
| | - Pachaiappan Pugalendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Annamalai Nagar, Tamil Nadu, India
| | - Raju Murali
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
12
|
Alotaibi MR, Hassan ZK, Al-Rejaie SS, Alshammari MA, Almutairi MM, Alhoshani AR, Alanazi WA, Hafez MM, Al-Shabanah OA. Characterization of Apoptosis in a Breast Cancer Cell Line after IL-10 Silencing. Asian Pac J Cancer Prev 2018; 19:777-783. [PMID: 29582634 PMCID: PMC5980855 DOI: 10.22034/apjcp.2018.19.3.777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Breast cancer is affected by the immune system in that different cytokines play roles in its initiation
and progression. Interleukin-10 (IL-10), an anti-inflammatory cytokine, is an immunosuppressive factor involved in
tumorigenesis. The present study was conducted to investigate the gene silencing effect of a small interference RNA
(siRNA) targeting IL-10 on the apoptotic pathway in breast cancer cell line. Methods: The siRNA targeting IL-10 and
a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) clone were introduced into MDA-MB-231 cells. Real-time
PCR assays were used to determine IL-10 and GAPDH gene expression levels, in addition to those for protein kinase
B (AKT), phosphoinositide 3-kinase (PI3K), B-cell lymphoma 2 (Bcl2), caspase-3 and caspase-9 genes related to
apoptosis. Results: Inhibition of IL-10 by the siRNA accelerated apoptosis and was accompanied by significant
increase in caspase-3 and caspase-9 and a significant decrease in PI3K, AKT and Bcl2 expression levels compared to
the non-transfected case. Conclusions: In conclusion, the production of IL-10 may represent a new escape mechanism
by breast cancer cells to evade destruction by the immune system. IL-10 gene silencing causes down regulation of both
PI3K/AKT and Bcl2 gene expression and also increases the Bbc3, BAX caspase3, and caspase 3 cleavage expression
levels. IL–10 might represent a promising new target for therapeutic strategies.
Collapse
Affiliation(s)
- Moureq R Alotaibi
- College of Pharmacy, Pharmacology and Toxicology Department, Kind Saud University, Riyadh, kingdom of Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Todorović-Raković N, Radulovic M, Vujasinović T, Milovanović J, Nikolić-Vukosavljević D. The time-dependent prognostic value of intratumoral cytokine expression profiles in a natural course of primary breast cancer with a long-term follow-up. Cytokine 2018; 102:12-17. [DOI: 10.1016/j.cyto.2017.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023]
|
14
|
Ahmad N, Ammar A, Storr SJ, Green AR, Rakha E, Ellis IO, Martin SG. IL-6 and IL-10 are associated with good prognosis in early stage invasive breast cancer patients. Cancer Immunol Immunother 2017; 67:537-549. [PMID: 29256156 PMCID: PMC5860102 DOI: 10.1007/s00262-017-2106-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/12/2017] [Indexed: 12/26/2022]
Abstract
Macrophage-associated cytokines play an important role in cancer metastasis; however, the functions of interleukins (IL) 6 and 10 in breast cancer (BC) progression and metastasis are not clear. In this study the roles of IL-6/IL-10 in regulating vascular invasion and their prognostic significance in BC are investigated. MDA-MB-231 and MCF-7 migration (± IL-6 or IL-10) was assessed by scratch wound assay. Cancer cell adhesion to IL-6/IL-10 stimulated blood and lymphatic endothelial cells (EC) was investigated. Expression of IL-6 /IL-10 was assessed using immunohistochemistry in an annotated cohort of early stage BC (n = 1380) and associations with clinicopathological variables and clinical outcome evaluated. IL-6 did not alter BC cell migration however a dose-dependent inhibition in MDA-MB-231 migration with IL-10 treatment was observed (P = 0.03). BC cells were more adhesive to blood vs lymphatic EC, however, IL-6/IL-10 had no effect on adhesion patterns. High expression of IL-6/IL-10 was associated with clinicopathological criteria (e.g. hormone receptor status, all P < 0.05), improved disease-free survival (DFS; P < 0.05) and improved BC-specific survival (BCSS; only IL-6, P = 0.017). However, neither IL-6 nor IL-10 expression were independent prognostic factors from multivariate analysis. In BC subgroups, IL-6 and IL-10 were good prognosticators in terms of DFS in non-basal, non-triple-negative (non-TN), ER-positive, PgR-positive (only IL-10), and Her-2-negative (only IL-6) BC (all P < 0.05). IL-6 was associated with improved BCSS in non-basal, ER-positive and non-TN BC (all P < 0.05).
Collapse
Affiliation(s)
- Narmeen Ahmad
- Division of Cancer and Stem Cells, Academic Clinical Oncology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Aula Ammar
- Division of Cancer and Stem Cells, Academic Clinical Oncology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Sarah J Storr
- Division of Cancer and Stem Cells, Academic Clinical Oncology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, Histopathology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Emad Rakha
- Division of Cancer and Stem Cells, Histopathology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, Histopathology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Stewart G Martin
- Division of Cancer and Stem Cells, Academic Clinical Oncology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
15
|
Marks E, Naudin C, Nolan G, Goggins BJ, Burns G, Mateer SW, Latimore JK, Minahan K, Plank M, Foster PS, Callister R, Veysey M, Walker MM, Talley NJ, Radford-Smith G, Keely S. Regulation of IL-12p40 by HIF controls Th1/Th17 responses to prevent mucosal inflammation. Mucosal Immunol 2017; 10:1224-1236. [PMID: 28120851 DOI: 10.1038/mi.2016.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023]
Abstract
Intestinal inflammatory lesions are inherently hypoxic, due to increased metabolic demands created by cellular infiltration and proliferation, and reduced oxygen supply due to vascular damage. Hypoxia stabilizes the transcription factor hypoxia-inducible factor-1α (HIF) leading to a coordinated induction of endogenously protective pathways. We identified IL12B as a HIF-regulated gene and aimed to define how the HIF-IL-12p40 axis influenced intestinal inflammation. Intestinal lamina propria lymphocytes (LPL) were characterized in wild-type and IL-12p40-/- murine colitis treated with vehicle or HIF-stabilizing prolyl-hydroxylase inhibitors (PHDi). IL12B promoter analysis was performed to examine hypoxia-responsive elements. Immunoblot analysis of murine and human LPL supernatants was performed to characterize the HIF/IL-12p40 signaling axis. We observed selective induction of IL-12p40 following PHDi-treatment, concurrent with suppression of Th1 and Th17 responses in murine colitis models. In the absence of IL-12p40, PHDi-treatment was ineffective. Analysis of the IL12B promoter identified canonical HIF-binding sites. HIF stabilization in LPLs resulted in production of IL-12p40 homodimer which was protective against colitis. The selective induction of IL-12p40 by HIF-1α leads to a suppression of mucosal Th1 and Th17 responses. This HIF-IL12p40 axis may represent an endogenously protective mechanism to limit the progression of chronic inflammation, shifting from pro-inflammatory IL-12p70 to an antagonistic IL-12p40 homodimer.
Collapse
Affiliation(s)
- E Marks
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - C Naudin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - G Nolan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - B J Goggins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia
| | - G Burns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia
| | - S W Mateer
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia
| | - J K Latimore
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia
| | - K Minahan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia
| | - M Plank
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - P S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - R Callister
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia
| | - M Veysey
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia.,School of Medicine, Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - M M Walker
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia.,School of Medicine, Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - N J Talley
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia.,School of Medicine, Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - G Radford-Smith
- Royal Brisbane and Women's Hospital, Brisbane, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - S Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
16
|
Rico MJ, Perroud HA, Herrera C, Alasino CM, Roggero EA, Pezzotto SM, Nocito AL, Rozados VR, Scharovsky OG. Putative Biomarkers of Response to Treatment in Breast Cancer Patients: A Pilot Assay. Cancer Invest 2017; 35:377-385. [DOI: 10.1080/07357907.2017.1309545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- María J. Rico
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
- National Scientific and Technological Research Council (CONICET), Rosario, Argentina
| | - Herman A. Perroud
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
- National Scientific and Technological Research Council (CONICET), Rosario, Argentina
| | - Cintia Herrera
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
| | | | - Eduardo A. Roggero
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
| | - Stella M. Pezzotto
- Institute of Immunology, School of Medical Sciences, National University of Rosario, Rosario, Argentina
- National University of Rosario Research Council (CIUNR), Rosario, Argentina
| | - Ana Lía Nocito
- Department of Pathological Anatomy and Physiology, School of Medical Sciences, National University of Rosario, Rosario, Argentina
| | - Viviana R. Rozados
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
| | - O. Graciela Scharovsky
- Institute of Experimental Genetics, School of Medicine, National University of Rosario, Rosario, Argentina
- National Scientific and Technological Research Council (CONICET), Rosario, Argentina
- National University of Rosario Research Council (CIUNR), Rosario, Argentina
| |
Collapse
|
17
|
Regier MC, Montanez-Sauri SI, Schwartz MP, Murphy WL, Beebe DJ, Sung KE. The Influence of Biomaterials on Cytokine Production in 3D Cultures. Biomacromolecules 2017; 18:709-718. [PMID: 28157290 PMCID: PMC5672812 DOI: 10.1021/acs.biomac.6b01469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As a result of improved relevance to in vivo physiology, in vitro studies are increasingly performed in diverse, three-dimensional (3D) biomaterials. However, material-cell type pairing effects on cytokine availability remain unclear. We cultured five cell types in agarose, alginate, collagen, Matrigel, or RGD-functionalized polyethylene glycol (PEG) hydrogels. We measured 21 cytokines in the conditioned media, and we identified differences in measured cytokine levels that were cell-type- or material-dependent. We further evaluated our data using principal component analysis. Interestingly, component one identified two classes of biomaterials with characteristic cytokine expression levels. Component two identified cell-type-dependent differences in cytokines related to the wound response. Although elements of soluble cytokine availability are shared despite parameter differences, material and cellular properties variably influenced cytokine levels, underlining the influence of biomaterial-cell type pairings on in vitro assay outcomes. Relationships between material properties, cellular responses, and cytokine availability in 3D in vitro models warrant further investigation.
Collapse
Affiliation(s)
- Mary C. Regier
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sara I. Montanez-Sauri
- Materials Science Program, University of Wisconsin-Madison,
Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael P. Schwartz
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - William L. Murphy
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Materials Science and Engineering, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Orthopedics and Rehabilitation, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David J. Beebe
- Department of Biomedical Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Wisconsin Institutes for Medical Research, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University of Wisconsin Carbone Cancer Center, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyung Eun Sung
- Division of Cellular and Gene Therapies, Office of Tissues
and Advanced Therapies, Center for Biologics Evaluation and Research, The U.S. Food
and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
18
|
Andrade SS, Sumikawa JT, Castro ED, Batista FP, Paredes-Gamero E, Oliveira LC, Guerra IM, Peres GB, Cavalheiro RP, Juliano L, Nazário AP, Facina G, Tsai SM, Oliva MLV, Girão MJBC. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells. Oncotarget 2017; 8:16851-16874. [PMID: 28187434 PMCID: PMC5370006 DOI: 10.18632/oncotarget.15170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.
Collapse
Affiliation(s)
- Sheila Siqueira Andrade
- Department of Gynecology of The Federal University of São Paulo, Brazil
- Charitable Association of Blood Collection – COLSAN, São Paulo, SP, Brazil
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo USP, Piracicaba, SP, Brazil
| | | | | | | | | | | | | | | | | | - Luiz Juliano
- Department of Biophysics of The Federal University of São Paulo, Brazil
| | | | - Gil Facina
- Department of Gynecology of The Federal University of São Paulo, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo USP, Piracicaba, SP, Brazil
| | | | - Manoel João Batista Castello Girão
- Department of Gynecology of The Federal University of São Paulo, Brazil
- Charitable Association of Blood Collection – COLSAN, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Huang C, Li N, Li Z, Chang A, Chen Y, Zhao T, Li Y, Wang X, Zhang W, Wang Z, Luo L, Shi J, Yang S, Ren H, Hao J. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression. Nat Commun 2017; 8:14035. [PMID: 28102193 PMCID: PMC5253665 DOI: 10.1038/ncomms14035] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1-fibrinogen-ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression.
Collapse
Affiliation(s)
- Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Na Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zengxun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Wei Zhang
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Zhimin Wang
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Lin Luo
- Tianjin Hepingqu Gynaechology and Obstetrics Hospital, Tianjin 300000, China
| | - Jingjing Shi
- Department of Tissue Bank, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - He Ren
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
20
|
Lapeyre-Prost A, Terme M, Pernot S, Pointet AL, Voron T, Tartour E, Taieb J. Immunomodulatory Activity of VEGF in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:295-342. [PMID: 28215534 DOI: 10.1016/bs.ircmb.2016.09.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability of tumor cells to escape tumor immunosurveillance contributes to cancer development. Factors produced in the tumor microenvironment create "tolerizing" conditions and thereby help the tumor to evade antitumoral immune responses. VEGF-A, already known for its major role in tumor vessel growth (neoangiogenesis), was recently identified as a key factor in tumor-induced immunosuppression. In particular, VEGF-A fosters the proliferation of immunosuppressive cells, limits T-cell recruitment into tumors, and promotes T-cell exhaustion. Antiangiogenic therapies have shown significant efficacy in patients with a variety of solid tumors, preventing tumor progression by limiting tumor-induced angiogenesis. VEGF-targeting therapies have also been shown to modulate the tumor-induced immunosuppressive microenvironment, enhancing Th1-type T-cell responses and increasing tumor infiltration by T cells. The immunomodulatory properties of VEGF-targeting therapies open up new perspectives for cancer treatment, especially through strategies combining antiangiogenic drugs with immunotherapy. Preclinical models and early clinical studies of these combined approaches have given promising results.
Collapse
Affiliation(s)
- A Lapeyre-Prost
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France
| | - M Terme
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France.
| | - S Pernot
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'hépatogastroentérologie et d'oncologie digestive, Hôpital Européen Georges Pompidou, Paris, France
| | - A-L Pointet
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'hépatogastroentérologie et d'oncologie digestive, Hôpital Européen Georges Pompidou, Paris, France
| | - T Voron
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service de chirurgie digestive, Hôpital Européen Georges Pompidou, Paris, France
| | - E Tartour
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'immunologie biologique. Hôpital Européen Georges Pompidou, Paris, France
| | - J Taieb
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'hépatogastroentérologie et d'oncologie digestive, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
21
|
Is Interleukin 10 (IL10) Expression in Breast Cancer a Marker of Poor Prognosis? Indian J Surg Oncol 2016; 7:320-5. [PMID: 27651693 DOI: 10.1007/s13193-016-0512-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
Interleukin 10 (IL10) is a poor prognostic marker in several cancers. Its role in breast cancer is not well elucidated. The present study is designed to see the expression of IL10 in breast cancer tissue and to evaluate its correlation with the established markers of prognosis. Sixty female patients who underwent surgery for breast cancer were enrolled for the study. Immediately after surgery, 2-5 g of tumour tissue and similar volume of peritumoural normal breast tissue were collected for IL10 assay. IL10 expression was assayed by immunohistochemistry. IL10 expressing tumours and IL10 non expressing tumours were compared. Chi square/Fisher exact test and student's t test were used to compare the data. p- valueless than 0.05 was considered as statistically significant. Thirty six patients (60 %) of carcinoma breast showed IL 10 expression in tumour tissue as compared to no IL 10 expression in any peritumouralnormal breast tissue (p < 0.01). IL10 expression had statistically significant correlation with locally advanced disease, tumour grade, HER2 + ve tumours and ER-ve, PR-ve, HER2 + ve breast cancer subtypes (p = 0.001, 0.001, 0.001 and 0.01 respectively). No correlation could be found with patient's age, tumour size, tumour histology and ER and PR status. Correlation of IL10 expressing tumours with several established poor prognostic markers of breast cancer may indicate the possible association of IL10 expression with poor prognosis. Large studies with long term follow up are needed to substantiate the association of IL10 with poor prognosis.
Collapse
|
22
|
Proinflammatory and Anti-Inflammatory Cytokines Mediated by NF-κB Factor as Prognostic Markers in Mammary Tumors. Mediators Inflamm 2016; 2016:9512743. [PMID: 26989335 PMCID: PMC4771900 DOI: 10.1155/2016/9512743] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
Inflammation results in the production of cytokines, such as interleukin- (IL-) 4 and IL-10 with immunosuppressive properties or IL-6 and TNF-α with procarcinogenic activity. Furthermore, NF-κB is the major link between inflammation and tumorigenesis. This study verified the interaction between active inflammatory cytokines in the tumor microenvironment and serum of female dogs with mammary tumors and their correlation with the clinicopathological characteristics and overall survival. Measurement of gene expression was performed by qPCR and protein levels by ELISA/Luminex. High gene and protein expression levels of NF-κB, IL-6, and TNF-α were found in association with characteristics that reflect worse prognosis and a negative correlation between TNF-α protein expression and survival time was observed (p < 0.05). In contrast, high gene and protein expression levels of IL-4 and IL-10 were associated with characteristics of better prognosis and an increased level of IL-4 and a longer survival time of animals were obtained (p < 0.05). In addition, there was a positive correlation between TNF-α and IL-6 expression in association with NF-κB. The results show a significant correlation of these cytokines with tumor development, associated with NF-κB expression and cytokines promodulation, showing that these biological factors could be used as predictive and prognostic markers in breast cancer.
Collapse
|
23
|
Zheng H, Ban Y, Wei F, Ma X. Regulation of Interleukin-12 Production in Antigen-Presenting Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:117-138. [PMID: 27734411 DOI: 10.1007/978-94-024-0921-5_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Interleukin-12 is a heterodimeric cytokine produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells, during encountering with intracellular microbes. IL-12 plays a key role in the activation of natural killer cells and CD4+ T helper cells in both innate and adaptive immune responses against infectious agents and immunosurveillance against endogenous malignancies. However, the potency of IL-12 makes it a target for stringent regulation. Indeed, the temporal, spatial, and quantitative expression of IL-12 during an immune response in a microenvironment contributes critically to the determination of the type, extent, and ultimate resolution of the reaction. Breaching of the delicate control and balance involving IL-12 frequently leads to autoimmune inflammatory disorders and pathogenesis. Thus, a better understanding of the regulatory mechanisms in the production and control of this cytokine is both scientifically significant and clinically beneficial. Here we provide an update on the research that has been conducted on this subject particularly in the last 10 years since the publication of a major thesis of this nature.
Collapse
Affiliation(s)
- Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Fang Wei
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Cai C, Zhang J, Li M, Wu ZJ, Song KH, Zhan TW, Wang LH, Sun YH. Interleukin 10-expressing B cells inhibit tumor-infiltrating T cell function and correlate with T cell Tim-3 expression in renal cell carcinoma. Tumour Biol 2015; 37:8209-18. [DOI: 10.1007/s13277-015-4687-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022] Open
|
25
|
Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, Li N, Wei F. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res 2015; 4. [PMID: 26918147 PMCID: PMC4754024 DOI: 10.12688/f1000research.7010.1] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells. IL-10 and IL-12 play very important immunoregulatory roles in host defense and immune homeostasis. Being anti- and pro-inflammatory in nature, respectively, their functions are antagonistically opposing. A comprehensive and in-depth understanding of their immunological properties and signaling mechanisms will help develop better clinical intervention strategies in therapy for a wide range of human disorders. Here, we provide an update on some emerging concepts, controversies, unanswered questions, and opinions regarding the immune signaling of IL-10 and IL-12.
Collapse
Affiliation(s)
- Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Wenjun Yan
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Qinglin Du
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Lixing Zhang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Yi Ban
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Na Li
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| | - Fang Wei
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, USA
| |
Collapse
|
26
|
Salatino M, Dalotto-Moreno T, Rabinovich GA. Thwarting galectin-induced immunosuppression in breast cancer. Oncoimmunology 2014; 2:e24077. [PMID: 23762796 PMCID: PMC3667902 DOI: 10.4161/onci.24077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 12/14/2022] Open
Abstract
Novel therapeutic strategies are needed to counteract breast cancer-associated immunosuppression. Silencing the expression of galectin-1 in a breast carcinoma model inhibited tumor growth and prevented lung metastasis by reducing the frequency and immunosuppressive activity of CD4+CD25+ FOXP3+ regulatory T cells.
Collapse
Affiliation(s)
- Mariana Salatino
- Laboratorio de Inmunopatología; Instituto de Biología y Medicina Experimental (IBYME-CONICET); Buenos Aires, Argentina
| | | | | |
Collapse
|
27
|
Louw-du Toit R, Hapgood JP, Africander D. Medroxyprogesterone acetate differentially regulates interleukin (IL)-12 and IL-10 in a human ectocervical epithelial cell line in a glucocorticoid receptor (GR)-dependent manner. J Biol Chem 2014; 289:31136-49. [PMID: 25202013 DOI: 10.1074/jbc.m114.587311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medroxyprogesterone acetate (MPA), designed to mimic the actions of the endogenous hormone progesterone (P4), is extensively used by women as a contraceptive and in hormone replacement therapy. However, little is known about the steroid receptor-mediated molecular mechanisms of action of MPA in the female genital tract. In this study, we investigated the regulation of the pro-inflammatory cytokine, interleukin (IL)-12, and the anti-inflammatory cytokine IL-10, by MPA versus P4, in an in vitro cell culture model of the female ectocervical environment. This study shows that P4 and MPA significantly increase the expression of the IL-12p40 and IL-12p35 genes, whereas IL-10 gene expression is suppressed in a dose-dependent manner. Moreover, these effects were abrogated when reducing the glucocorticoid receptor (GR) levels with siRNA. Using a combination of chromatin immunoprecipitation (ChIP), siRNA, and re-ChIP assays, we show that recruitment of the P4- and MPA-bound GR to the IL-12p40 promoter requires CCAAT enhancer-binding protein (C/EBP)-β and nuclear factor κB (NFκB), although recruitment to the IL-10 promoter requires signal transducer and activator of transcription (STAT)-3. These results suggest that both P4 and MPA may modulate inflammation in the ectocervix via this genomic mechanism.
Collapse
Affiliation(s)
- Renate Louw-du Toit
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| | - Janet P Hapgood
- the Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7700, South Africa
| | - Donita Africander
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| |
Collapse
|
28
|
Lim KP, Chun NAL, Ismail SM, Abraham MT, Yusoff MN, Zain RB, Ngeow WC, Ponniah S, Cheong SC. CD4+CD25hiCD127low regulatory T cells are increased in oral squamous cell carcinoma patients. PLoS One 2014; 9:e103975. [PMID: 25153698 PMCID: PMC4143252 DOI: 10.1371/journal.pone.0103975] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/08/2014] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+ T cells plays a pivotal role in regulating the immune system. An increase in Treg numbers enables cancer progression by dampening the immune system and allowing tumor cells to evade immune detection and destruction. An increase in Treg numbers and expression of inhibitory cytokines including TGF-β and IL-10 are mechanisms by which Tregs exert their immune suppressive function. However, the presence of Tregs and inhibitory cytokines in oral cancer patients is still unclear. In this study, the presence of circulating Tregs in 39 oral cancer patients and 24 healthy donors was examined by studying the presence of the CD4+CD25hiCD127low cell population in their peripheral blood mononuclear cells using flow cytometry. Serum levels of TGF-β and IL-10 were measured by ELISA. T cell subsets of OSCC patients were found to differ significantly from healthy donors where a decrease in CD8+ cytotoxic T cells and an increase in Tregs (CD4+CD25hiCD127low) were observed. Further, the ratio of CD8+ T cells/Tregs was also decreased in patients compared to healthy donors. The presence of Tregs was accompanied by a decrease in IL-10 but not TGF-β secretion in OSCC patients when compared to donors; in addition, the analysis also revealed that an increased presence of Tregs was accompanied by better patient survival. Amongst OSCC patients, smokers had significantly higher levels of TGF-β. It is apparent that the immune system is compromised in OSCC patients and the characterization of the Treg subpopulation could form a basis for improving our understanding of the perturbations in the immune system that occur during OSCC tumorigenesis.
Collapse
Affiliation(s)
- Kue Peng Lim
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), 2 Floor Outpatient Centre, Subang Jaya, Selangor, Malaysia
| | - Nicole Ai Leng Chun
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), 2 Floor Outpatient Centre, Subang Jaya, Selangor, Malaysia
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Mazlipah Ismail
- Department of Oro-Maxillofacial Surgery and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Mannil Thomas Abraham
- Department of Oral & Maxillofacial Surgery, Tengku Ampuan Rahimah Hospital, Klang, Malaysia
| | - Mohd Nury Yusoff
- Department of Oral & Maxillofacial Surgery, Tengku Ampuan Rahimah Hospital, Klang, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oro-Maxillofacial Surgery and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Cheong Ngeow
- Department of Oro-Maxillofacial Surgery and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sathibalan Ponniah
- Cancer Vaccine Development Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sok Ching Cheong
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), 2 Floor Outpatient Centre, Subang Jaya, Selangor, Malaysia
- Department of Oro-Maxillofacial Surgery and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Nonneuronal Cholinergic System in Breast Tumors and Dendritic Cells: Does It Improve or Worsen the Response to Tumor? ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/486545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.
Collapse
|
30
|
Olson BM, McNeel DG. Monitoring regulatory immune responses in tumor immunotherapy clinical trials. Front Oncol 2013; 3:109. [PMID: 23653893 PMCID: PMC3644716 DOI: 10.3389/fonc.2013.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/21/2013] [Indexed: 12/31/2022] Open
Abstract
While immune monitoring of tumor immunotherapy often focuses on the generation of productive Th1-type inflammatory immune responses, the importance of regulatory immune responses is often overlooked, despite the well-documented effects of regulatory immune responses in suppressing anti-tumor immunity. In a variety of malignancies, the frequency of regulatory cell populations has been shown to correlate with disease progression and a poor prognosis, further emphasizing the importance of characterizing the effects of immunotherapy on these populations. This review focuses on the role of suppressive immune populations (regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages) in inhibiting anti-tumor immunity, how these populations have been used in the immune monitoring of clinical trials, the prognostic value of these responses, and how the monitoring of these regulatory responses can be improved in the future.
Collapse
Affiliation(s)
- Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center Madison, WI, USA
| | | |
Collapse
|
31
|
High expression of interleukin 10 might predict poor prognosis in early stage oral squamous cell carcinoma patients. Clin Chim Acta 2013; 415:25-30. [PMID: 22981868 DOI: 10.1016/j.cca.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/20/2022]
|
32
|
Kaarvatn MH, Vrbanec J, Kulic A, Knezevic J, Petricevic B, Balen S, Vrbanec D, Dembic Z. Single nucleotide polymorphism in the interleukin 12B gene is associated with risk for breast cancer development. Scand J Immunol 2012; 76:329-35. [PMID: 22702905 DOI: 10.1111/j.1365-3083.2012.02736.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We analysed the association of a single nucleotide polymorphism (SNP) in the gene encoding the IL-12 subunit p40 (IL12B, rs3212227, A>C) with breast cancer. The SNPs allelic and genotypic frequencies were compared between patients (n = 191) and healthy (n = 194) women in a case-control study from Croatia. The major allele (A) was associated with susceptibility to breast cancer (P = 0.003; OR = 1.67; 95% CI: 1.17-2.38). Likewise, the minor allele (C) was significantly correlated with protection (P = 0.003; OR = 0.60; 95% CI: 0.42-0.86). At the genotype level, AA homozygosity was significantly associated with predisposition to disease (P = 0.013; OR = 1.68, 95% CI: 1.09-2.59), whereas the minor allele homozygosity (CC) was correlated with protection to disease (P = 0.020, OR = 0.28, 95% CI: 0.09-0.91). The heterozygous genotype showed no significant correlation with disease. The product of the IL12B gene (IL-12 p40) can either form a homodimeric cytokine or be part of two pro-inflammatory (IL-12 and IL-23) cytokines. It is presently unclear whether the major allele is associated with higher or lower protein levels of IL-12 p40 and IL-12 p70, which are critical in inflammation and adaptive immune responses. However, as the A allele is high producer of IL12B (p40) mRNA, these results might imply that higher levels of IL-12 p40 (either as homodimers or joined with one or both of the other two subunits) predispose to breast cancer.
Collapse
Affiliation(s)
- M H Kaarvatn
- Molecular Genetics Laboratory, Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Changkija B, Konwar R. Role of interleukin-10 in breast cancer. Breast Cancer Res Treat 2011; 133:11-21. [PMID: 22057973 DOI: 10.1007/s10549-011-1855-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/25/2011] [Indexed: 12/13/2022]
Abstract
Cytokines are low molecular weight regulatory proteins or glycoprotein that modulates the intensity and duration of immune response by stimulating or inhibiting the activation, proliferation, and/or differentiation of target cells. Different cytokines are known to have diverse role in breast cancer initiation and progression. Interleukin-10 (IL-10), a pleiotropic anti-inflammatory cytokine, induces immunosuppression and assists in escape from tumor immune surveillance. Like several other cytokines, IL-10 also can exert dual proliferative and inhibitory effect on breast tumor cells indicating a complex role of IL-10 in breast cancer initiation and progression. In this review, we tried to put together a comprehensive current view on significance of IL-10 in promotion, inhibition, and importance as prognosticator in breast cancer based on in vitro, in vivo, and clinical evidences. For literature collection, we conducted PubMed search with keywords "IL-10" and "breast cancer".
Collapse
|
34
|
Kees T, Egeblad M. Innate immune cells in breast cancer--from villains to heroes? J Mammary Gland Biol Neoplasia 2011; 16:189-203. [PMID: 21789554 DOI: 10.1007/s10911-011-9224-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/18/2011] [Indexed: 12/13/2022] Open
Abstract
The innate immune system ensures effective protection against foreign pathogens and plays important roles in tissue remodeling. There are many types of innate immune cells, including monocytes, macrophages, dendritic cells, and granulocytes. Interestingly, these cells accumulate in most solid tumors, including those of the breast. There, they play a tumor-promoting role through secretion of growth and angiogenic factors, as well as immunosuppressive molecules. This is in strong contrast to the tumor-suppressing effects that innate immune cells exert in vitro upon proper activation. Therapeutic approaches have been developed with the aim of achieving similar suppressive activities in vivo. However, multiple factors in the tumor microenvironment, many of which are immunosuppressive, represent a major obstacle to effective treatment. Here, we discuss the potential of combating breast cancer through activation of the innate immune system, including possible strategies to enhance the success of immunotherapy.
Collapse
Affiliation(s)
- Tim Kees
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|