1
|
Yada K, Nogami K. Pharmacokinetic evaluation of efanesoctocog alfa: breakthrough factor VIII therapy for hemophilia A. Expert Opin Drug Metab Toxicol 2025; 21:5-14. [PMID: 39323385 DOI: 10.1080/17425255.2024.2409931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Blood coagulation factor (F)VIII functions as a cofactor in the tenase complex responsible for phospholipid-dependent FIXa-mediated activation of FX in plasma. Congenital defect of FVIII causes severe bleeding disorder, hemophilia (H) A. Intravenous FVIII replacement therapy is the gold standard therapy in patients with HA (PwHA) but requirement for frequent dosing of FVIII owing to pharmacokinetics burdens PwHA a lot. Efanesoctocog alfa is a new class of recombinant FVIII and has the ability to overcome conceivable unmet needs in treatment for PwHA. AREAS COVERED Efanesoctocog alfa is a B domain-deleted single-chain fusion FVIII connected to the Fc-region of human immunoglobulin G1, D'D3-fragment of von Willebrand factor (VWF), and unstructured hydrophilic recombinant polypeptides (XTEN). Owing to its novel design, it can function independently of endogenous VWF and elicits 2 to 4 times longer half-life compared to other existing FVIII products. The prolonged half-life contributes to maintain high level of FVIII activity for most of the week and has led to excellent hemostatic effect by once-weekly administration in phase 3 clinical trials. EXPERT OPINION Efanesoctocog alfa with outstanding pharmacological properties, well tolerated in the clinical trials, is a promising FVIII therapy for PwHA. Future studies should include long-term safety, especially in previously untreated patients.
Collapse
Affiliation(s)
- Koji Yada
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
2
|
Vijayakumar VE, Vijayalakshmi MA, Lacroix-Desmazes S, Venkataraman K. The use of Bacillus subtilis as a cost-effective expression system for production of Cholera Toxin B fused factor VIII epitope regions applicable for inducing oral immune tolerance. Folia Microbiol (Praha) 2024; 69:1267-1277. [PMID: 38683262 DOI: 10.1007/s12223-024-01166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Coagulation factor replacement therapy for the X-linked bleeding disorder Haemophilia, characterized by a deficiency of coagulation protein factor VIII (FVIII), is severely complicated by antibody (inhibitors) formation. The development of FVIII inhibitors drastically alters the quality of life of the patients and is associated with a tremendous increase in morbidity as well as treatment costs. The ultimate goal of inhibitor control is antibody elimination. Immune tolerance induction (ITI) is the only clinically established approach for developing antigen-specific tolerance to FVIII. This work aims to establish a novel cost-effective strategy to produce FVIII molecules in fusion with cholera toxin B (CTB) subunit at the N terminus using the Bacillus subtilis expression system for oral tolerance, as the current clinical immune tolerance protocols are expensive. Regions of B-Domain Deleted (BDD)-FVIII that have potential epitopes were identified by employing Bepipred linear epitope prediction; 2 or more epitopes in each domain were combined and cDNA encoding these regions were fused with CTB and cloned in the Bacillus subtilis expression vector pHT43 and expression analysis was carried out. The expressed CTB-fused FVIII epitope domains showed strong binding affinity towards the CTB-receptor GM1 ganglioside. To conclude, Bacillus subtilis expressing FVIII molecules might be a promising candidate for exploring for the induction of oral immune tolerance.
Collapse
Affiliation(s)
- Vijay Elakkya Vijayakumar
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India
| | | | - Sebastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
3
|
Königs C, Meeks SL, Nolan B, Schmidt A, Löfqvist M, Dumont J, Leickt L, Nayak S, Lethagen S. Rescue immune tolerance induction with a recombinant factor Fc-fused VIII: prospective ReITIrate study of clinical, humoral and cellular immune responses. Ther Adv Hematol 2024; 15:20406207241300809. [PMID: 39583653 PMCID: PMC11585064 DOI: 10.1177/20406207241300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Background Immune tolerance induction (ITI) is the gold standard for inhibitor eradication to restore the clinical efficacy of factor replacement therapy in haemophilia. However, as ITI often requires frequent administration over extended periods, it can be considered burdensome for patients and healthcare resources. Therefore, there is a need to optimise ITI treatment, particularly in patients who failed previous ITI attempts. Objectives The ReITIrate study aimed to prospectively evaluate rescue ITI with efmoroctocog alfa, an extended half-life recombinant FVIII Fc fusion protein (herein rFVIIIFc), within a limited 60-week timeframe in patients with severe haemophilia A and inhibitors who failed previous ITI attempts. Design ReITIrate was a phase IV, open-label, single-arm, interventional, multicentre study. Methods Primary endpoint was ITI success (negative titre, <0.6 BU/mL; incremental recovery >66%; elimination half-life ⩾7 hours) within 60 weeks. Exploratory immunophenotype analyses were performed to characterise anti-drug antibodies (ADA) and cellular immune responses. Results Nine of 16 enrolled subjects completed the ITI period during ReITIrate, of which one subject attained all 3 ITI success criteria after 46 weeks with no relapse. Two subjects achieved partial success (one subject met 2/3 success criteria; one met all criteria, but not simultaneously, with inhibitor recurrence). One additional subject (ITI failure) achieved negative inhibitor titre. Across these four subjects, median (range) time to negative titre was 19 (11-60) weeks. No new safety concerns were identified. IgG4 was the major contributor to the ADA IgG response. Subjects with partial/complete ITI success had fewer IgG subclasses involved than those who failed/withdrew. Immunophenotyping indicated an increase in regulatory T-cells (CD4+CD25+CD127low), supporting the ability to perform sensitive blood sampling to identify immune tolerance markers. Conclusion This study demonstrates that ITI with rFVIIIFc given within a limited timeframe has potential benefit in a difficult-to-treat inhibitor haemophilia population who failed previous ITI attempts. Trial registration NCT03103542.
Collapse
Affiliation(s)
- Christoph Königs
- Department of Pediatrics and Adolescent Medicine, Clinical and Molecular Hemostasis, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Shannon L. Meeks
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | | | - Anja Schmidt
- Department of Pediatrics and Adolescent Medicine, Clinical and Molecular Hemostasis, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Fischer K, Lassila R, Peyvandi F, Gatt A, Gouw SC, Hollingsworth R, Lambert T, Kaczmarek R, Carbonero D, Makris M. Inhibitor development according to concentrate after 50 exposure days in severe hemophilia: data from the European HAemophilia Safety Surveillance (EUHASS). Res Pract Thromb Haemost 2024; 8:102461. [PMID: 39026659 PMCID: PMC11255940 DOI: 10.1016/j.rpth.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Patients with hemophilia have a life-long risk of developing neutralizing antibodies (inhibitors) against clotting factor concentrates. After the first 50 exposure days (EDs), ie, in previously treated patients (PTPs), data on inhibitor development are limited. Objectives To report inhibitor development according to factor (F)VIII or FIX concentrate use in PTPs with severe hemophilia A and B. Methods Inhibitor development in PTPs was collected since 2008 from 97 centers participating in European HAemophilia Safety Surveillance. Per concentrate, inhibitors were reported quarterly and the number of PTPs treated annually. Incidence rates (IRs)/1000 treatment years with 95% CIs were compared between concentrate types (plasma derived FVIII/FIX, standard half-life recombinant FVIII/FIX, and extended half-life recombinant (EHL-rFVIII/IX) concentrates using IR ratios with CI. Medians and IQRs were calculated for inhibitor characteristics. Results For severe haemophilia A, inhibitor rate was 66/65,200 treatment years, IR 1.00/1000 years (CI 0.80-1.30), occurring at median 13.5 years (2.7-31.5) and 150 EDs (80-773). IR on plasma-derived pdFVIII (IR, 1.13) and standard half-life recombinant FVIII (IR, 1.12) were similar, whereas IR on EHL-rFVIII was lower at 0.13 (incidence rate ratio, 0.12; 95% CI, <0.01-0.70; P < .01).For severe hemophilia B, inhibitor rate was 5/11,160 treatment years and IR was 0.45/1000 years (95% CI, 0.15-1.04), at median 3.7 years (95% CI, 2.1-42.4) and 260 EDs (95% CI, 130 to >1000). Data were insufficient to compare by type of FIX concentrates. Conclusion Low inhibitor rates were observed for PTPs with severe hemophilia A and B. Data suggested reduced inhibitor development on EHL-rFVIII, but no significant difference between plasma-derived FVIII and standard half-life recombinant FVIII. FIX inhibitor rates were too low for robust statistical analysis.
Collapse
Affiliation(s)
- Kathelijn Fischer
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utretch, the Netherlands
| | - Riitta Lassila
- Coagulation Disorders Unit, Division of Hematology Department of Medicine, Helsinki University Central Hospital, Finland Wihuri Research Institute, Helsinki, Finland
| | - Flora Peyvandi
- Angelo Bianchi Bonomi, Hemophilia and Thrombosis Centre, Fondazione Istituto Candiolo Centro Oncologico d'Eccellenza, Ca’ Granda Ospedale Maggiore Policlinico, Milan Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Samantha C. Gouw
- Department of Pediatric Hematology, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Public Health, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | | | - Thierry Lambert
- Reference Center for hemophilia and rare bleeding disorders, Hôpital Bicêtre, APHP, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Radek Kaczmarek
- Coagulation Products Safety Supply and Access Committee, World Federation of Hemophilia, Montreal, Quebec, Canada
- Wells Center for pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Diana Carbonero
- European Association for Haemophilia and Allied Disorders, Brussels, Belgium
| | - Mike Makris
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Sherman A, Bertolini TB, Arisa S, Herzog RW, Kaczmarek R. Factor IX administration in the skin primes inhibitor formation and sensitizes hemophilia B mice to systemic factor IX administration. Res Pract Thromb Haemost 2023; 7:102248. [PMID: 38193070 PMCID: PMC10772885 DOI: 10.1016/j.rpth.2023.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 01/10/2024] Open
Abstract
Background Factor IX inhibitor formation is the most serious complication of replacement therapy for the bleeding disorder hemophilia B, exacerbated by severe allergic reactions occurring in up to 60% of patients with inhibitors. Low success rates of immune tolerance induction therapy in hemophilia B necessitate the search for novel immune tolerance therapies. Skin-associated lymphoid tissues have been successfully targeted in allergen-specific immunotherapy. Objectives We aimed to develop a prophylactic immune tolerance protocol based on intradermal administration of FIX that would prevent inhibitor formation and/or anaphylaxis in response to replacement therapy. Methods We measured FIX inhibitor, anti-FIX immunoglobulin G1, and immunoglobulin E titers using the Bethesda assay and enzyme-linked immunosorbent assay after 4 weeks of twice-weekly intradermal FIX or FIX-Fc administration followed by 5 to 6 weeks of weekly systemic FIX injections in C3H/HeJ hemophilia B mice. We also measured skin antigen-presenting, follicular helper T, and germinal center B cell frequencies in skin-draining lymph nodes after a single or repeat intradermal FIX administration. Results Intradermal administration enhanced FIX inhibitor formation in response to systemic administration. We further found that intradermal administration alone triggers inhibitor formation, even at a low dose of 0.4 IU/kg, which is 100-fold lower than the intravenous dose of 40 IU/kg typically required to induce inhibitor development in hemophilia B mice. Also, intradermal administration triggered germinal center formation in skin-draining lymph nodes and sensitized mice to systemic administration. Factor IX-Fc fusion protein did not modulate inhibitor formation. Conclusion Intradermal FIX administration is highly immunogenic, suggesting that the skin compartment is not amenable to immune tolerance induction or therapeutic delivery of clotting factors.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Thais B. Bertolini
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sreevani Arisa
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Roland W. Herzog
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Richel E, Wagner JT, Klessing S, Di Vincenzo R, Temchura V, Überla K. Antigen-dependent modulation of immune responses to antigen-Fc fusion proteins by Fc-effector functions. Front Immunol 2023; 14:1275193. [PMID: 37868961 PMCID: PMC10585040 DOI: 10.3389/fimmu.2023.1275193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Fc-fusion proteins have been successfully developed for therapeutic purposes, but are also a promising platform for the fast generation and purification of immunogens capable of inducing strong humoral immune responses in preclinical immunization studies. As the Fc-portion of immunoglobulins fused to an antigen confers functional properties of the parental antibody, such as dimerization, binding to Fc-receptors and complement activation, several studies reported that Fc-fusion proteins elicit stronger antigen-specific antibody responses than the unfused antigen. However, dimerization or half-life extension of an antigen have also been described to enhance immunogenicity. Methods To explore the role of Fc-effector functions for the immunogenicity of fusions proteins of viral glycoproteins and Fc fragments, the HIV-1 gp120 and the RBD of SARS-CoV-2 were fused to the wild type muIgG2a Fc fragment or mutants with impaired (LALA-PG) or improved (GASDIE) Fc-effector functions. Results Immunization of BALB/c mice with DNA vaccines encoding gp120 - Fc LALA-PG induced significantly higher antigen-specific antibody responses than gp120 - Fc WT and GASDIE. In contrast, immunization with DNA vaccines encoding the RBD fused to the same Fc mutants, resulted in comparable anti-RBD antibody levels and similar neutralization activity against several SARS-CoV-2 variants. Conclusion Depending on the antigen, Fc-effector functions either do not modulate or suppress the immunogenicity of DNA vaccines encoding Fc-antigen fusion proteins.
Collapse
Affiliation(s)
- Elie Richel
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Nguyen NH, Jarvi NL, Balu-Iyer SV. Immunogenicity of Therapeutic Biological Modalities - Lessons from Hemophilia A Therapies. J Pharm Sci 2023; 112:2347-2370. [PMID: 37220828 DOI: 10.1016/j.xphs.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The introduction and development of biologics such as therapeutic proteins, gene-, and cell-based therapy have revolutionized the scope of treatment for many diseases. However, a significant portion of the patients develop unwanted immune reactions against these novel biological modalities, referred to as immunogenicity, and no longer benefit from the treatments. In the current review, using Hemophilia A (HA) therapy as an example, we will discuss the immunogenicity issue of multiple biological modalities. Currently, the number of therapeutic modalities that are approved or recently explored to treat HA, a hereditary bleeding disorder, is increasing rapidly. These include, but are not limited to, recombinant factor VIII proteins, PEGylated FVIII, FVIII Fc fusion protein, bispecific monoclonal antibodies, gene replacement therapy, gene editing therapy, and cell-based therapy. They offer the patients a broader range of more advanced and effective treatment options, yet immunogenicity remains the most critical complication in the management of this disorder. Recent advances in strategies to manage and mitigate immunogenicity will also be reviewed.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA; Currently at Truvai Biosciences, Buffalo, NY, USA
| | - Nicole L Jarvi
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
8
|
Vander Kooi A, Wang S, Fan MN, Chen A, Zhang J, Chen CY, Cai X, Konkle BA, Xiao W, Li L, Miao CH. Influence of N-glycosylation in the A and C domains on the immunogenicity of factor VIII. Blood Adv 2022; 6:4271-4282. [PMID: 35511725 PMCID: PMC9327553 DOI: 10.1182/bloodadvances.2021005758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
The most significant complication in hemophilia A treatment is the formation of inhibitors against factor VIII (FVIII) protein. Glycans and glycan-binding proteins are central to a properly functioning immune system. This study focuses on whether glycosylation of FVIII plays an important role in induction and regulation of anti-FVIII immune responses. We investigated the potential roles of 4 N-glycosylation sites, including N41 and N239 in the A1 domain, N1810 in the A3 domain, and N2118 in the C1 domain of FVIII, in moderating its immunogenicity. Glycomics analysis of plasma-derived FVIII revealed that sites N41, N239, and N1810 contain mostly sialylated complex glycoforms, while high mannose glycans dominate at site N2118. A missense variant that substitutes asparagine (N) to glutamine (Q) was introduced to eliminate glycosylation on each of these sites. Following gene transfer of plasmids encoding B domain deleted FVIII (BDD-FVIII) and each of these 4 FVIII variants, it was found that specific activity of FVIII in plasma remained similar among all treatment groups. Slightly increased or comparable immune responses in N41Q, N239Q, and N1810Q FVIII variant plasmid-treated mice and significantly decreased immune responses in N2118Q FVIII plasmid-treated mice were observed when compared with BDD-FVIII plasmid-treated mice. The reduction of inhibitor response by N2118Q FVIII variant was also demonstrated in AAV-mediated gene transfer experiments. Furthermore, a specific glycopeptide epitope surrounding the N2118 glycosylation site was identified and characterized to activate T cells in an FVIII-specific proliferation assay. These results indicate that N-glycosylation of FVIII can have significant impact on its immunogenicity.
Collapse
Affiliation(s)
- Amber Vander Kooi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA
| | - Meng-Ni Fan
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Alex Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Junping Zhang
- School of Medicines, Indiana University, Bloomington, IN; and
| | - Chun-Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Xiaohe Cai
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | | | - Weidong Xiao
- School of Medicines, Indiana University, Bloomington, IN; and
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA
| | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
9
|
Königs C, Ozelo MC, Dunn A, Kulkarni R, Nolan B, Brown SA, Schiavulli M, Gunawardena S, Mukhopadhyay S, Jayawardene D, Winding B, Carcao M. First study of extended half-life rFVIIIFc in previously untreated patients with hemophilia A: PUPs A-LONG final results. Blood 2022; 139:3699-3707. [PMID: 35421219 PMCID: PMC9642851 DOI: 10.1182/blood.2021013563] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/24/2022] [Indexed: 01/19/2023] Open
Abstract
PUPs A-LONG evaluated the safety and efficacy of recombinant factor VIII Fc fusion protein (rFVIIIFc) in previously untreated patients (PUPs) with hemophilia A. This open-label, phase 3 study enrolled male PUPs (<6 years) with severe hemophilia A to receive rFVIIIFc. The primary endpoint was the occurrence of inhibitor development. Secondary endpoints included annualized bleed rate (ABR). Of 103 subjects receiving ≥1 dose of rFVIIIFc, 80 (78%) were aged <1 year at the study start, 20 (19%) had a family history of inhibitors, and 82 (80%) had high-risk F8 mutations. Twenty subjects began on prophylaxis, while 81 began an on-demand regimen (69 later switched to prophylaxis). Eighty-seven (81%) subjects completed the study. Inhibitor incidence was 31.1% (95% confidence interval [CI], 21.8% to 41.7%) in subjects with ≥10 exposure days (or inhibitor); high-titer inhibitor incidence was 15.6% (95% CI, 8.8% to 24.7%). The median (range) time to high-titer inhibitor development was 9 (4-14) exposure days. Twenty-eight (27%) subjects experienced 32 rFVIIIFc treatment-related adverse events; most were inhibitor development. There was 1 nontreatment-related death due to intracranial hemorrhage (onset before the first rFVIIIFc dose). The overall median (interquartile range [IQR]) ABR was 1.49 (0.00-4.40) for subjects on variable prophylaxis dosing regimens. In this study of rFVIIIFc in pediatric PUPs with severe hemophilia A, overall inhibitor development was within the expected range, although high-titer inhibitor development was on the low end of the range reported in the literature. rFVIIIFc was well-tolerated and effective for prophylaxis and treatment of bleeds. This trial is registered at www.clinicaltrials.gov (NCT02234323).
Collapse
Affiliation(s)
- Christoph Königs
- University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Margareth C Ozelo
- Hemocentro UNICAMP (Universidade Estadual de Campinas), Campinas, SP, Brazil
| | - Amy Dunn
- Nationwide Children's Hospital, Columbus, OH
| | | | - Beatrice Nolan
- Children's Health Ireland at Crumlin, Dublin, Republic of Ireland
| | - Simon A Brown
- Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Michele Schiavulli
- A.O.R.N. (Association of periOperative Registered Nurses) Santobono-Pausilipon, Naples, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Lagassé HAD, Hopkins LB, Jankowski W, Jacquemin MG, Sauna ZE, Golding B. Factor VIII-Fc Activates Natural Killer Cells via Fc-Mediated Interactions With CD16. Front Immunol 2021; 12:692157. [PMID: 34262568 PMCID: PMC8273617 DOI: 10.3389/fimmu.2021.692157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
The most challenging complication associated with Factor VIII (FVIII) replacement therapy is the development of neutralizing anti-drug antibodies, or inhibitors, which occur in 23-35% of severe (FVIII level <1%) hemophilia A (HA) patients and are a serious hindrance to effective management of HA. Consequently, strategies that can either prevent anti-FVIII inhibitors from developing or "tolerize" individuals who develop such antibodies represent a clinically important unmet need. One intervention for patients with high-titer inhibitors is immune tolerance induction (ITI) therapy. Although ITI therapy is the only clinically proven strategy to eradicate anti-FVIII inhibitors, mechanisms of inhibitor reduction remain unknown. Factor VIII Fc-fusion (rFVIIIFc) is an enhanced half-life antihemophilic factor used in replacement therapy for HA. Fc-fusion is a successful protein bio-engineering platform technology. In addition to enhancement of plasma half-life via neonatal Fc receptor (FcRn) binding, other Fc-mediated interactions, including engagement with Fc gamma receptors (FcγR), may have immunological consequences. Several case reports and retrospective analyses suggest that rFVIIIFc offers superior outcomes with respect to ITI compared to other FVIII products. Previously we and others demonstrated rFVIIIFc interactions with activating FcγRIIIA/CD16. Here, we investigated if rFVIIIFc activates natural killer (NK) cells via CD16. We demonstrated rFVIIIFc signaling via CD16 independent of Von Willebrand Factor (VWF):FVIII complex formation. We established that rFVIIIFc potently activated NK cells in a CD16-dependent fashion resulting in IFNγ secretion and cytolytic perforin and granzyme B release. We also demonstrated an association between rFVIIIFc-mediated NK cell IFNγ secretion levels and the high-affinity (158V) CD16 genotype. Furthermore, we show that rFVIIIFc-activated CD16+ NK cells were able to lyse a B-cell clone (BO2C11) bearing an anti-FVIII B-cell receptor in an antibody-dependent cellular cytotoxicity (ADCC) assay. These in vitro findings provide an underlying molecular mechanism that may help explain clinical case reports and retrospective studies suggesting rFVIIIFc may be more effective in tolerizing HA patients with anti-FVIII inhibitors compared to FVIII not linked to Fc. Our in vitro findings suggest a potential use of Fc-fusion proteins acting via NK cells to target antigen-specific B-cells, in the management of unwanted immune responses directed against immunogenic self-antigens or therapeutic protein products.
Collapse
Affiliation(s)
- H A Daniel Lagassé
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Louis B Hopkins
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Wojciech Jankowski
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Marc G Jacquemin
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Basil Golding
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
11
|
Hermans C, Mancuso ME, Nolan B, Pasi KJ. Recombinant factor VIII Fc for the treatment of haemophilia A. Eur J Haematol 2021; 106:745-761. [PMID: 33650192 PMCID: PMC8252769 DOI: 10.1111/ejh.13610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Prophylaxis with factor VIII (FVIII) is the current therapeutic approach for people with haemophilia A. However, standard half-life (SHL) FVIII products must be injected frequently, imposing a substantial burden on the individual and making it difficult to tailor therapy according to patient need and lifestyle, which could impact adherence. Recombinant FVIII Fc fusion protein (rFVIIIFc; Elocta® , Sobi; Eloctate® , Sanofi) is a recombinant fusion protein that undergoes slower clearance from the body than SHL FVIII products. This pharmacokinetic property of rFVIIIFc allows prophylactic administration every 3-5 days, or once weekly in selected patients, with doses adjusted to patient needs and clinical outcomes. Higher FVIII levels can be achieved maintaining dosing frequency similar to that usually applied with SHL FVIII. This review provides a summary of recent data from the A-LONG, Kids A-LONG, ASPIRE and PUPs A-LONG studies and recently published real-world experience relevant to rFVIIIFc use in individualised regimens. The review also introduces ongoing studies of rFVIIIFc, including its use for induction of immune tolerance, and discusses some aspects to consider when switching patients to rFVIIIFc and managing ongoing treatment. In summary, rFVIIIFc is suitable for individualised prophylaxis regimens that can be tailored according to patient clinical needs and lifestyle.
Collapse
Affiliation(s)
- Cedric Hermans
- Haemostasis and Thrombosis UnitDivision of HaematologyCliniques Universitaires Saint‐LucUniversité catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Maria Elisa Mancuso
- Center for Thrombosis and Hemorrhagic DiseasesHumanitas Clinical and Research Center ‐ IRCCSRozzanoItaly
| | | | - K. John Pasi
- Royal London Haemophilia CentreBarts and the London School of Medicine and DentistryLondonUK
| |
Collapse
|
12
|
The design of a Bayesian platform trial to prevent and eradicate inhibitors in patients with hemophilia. Blood Adv 2021; 4:5433-5441. [PMID: 33156923 DOI: 10.1182/bloodadvances.2020002789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/22/2020] [Indexed: 02/02/2023] Open
Abstract
Among individuals with the rare congenital bleeding disorder hemophilia A, the major challenge is inhibitor formation, which is associated with significant morbidity and cost. Yet, as the optimal approach to prevent and eradicate inhibitors is not known, we are at equipoise. Because classic trial design is not practical in a rare disease setting, we designed 2 48-week randomized trials comparing ELOCTATE and emicizumab to prevent and eradicate inhibitors. To achieve statistical efficiency, we incorporated historic data (Bayesian priors) on inhibitor formation to allow preferential randomization to emicizumab, piecewise exponential survival models to determine mean and 95% confidence interval for inhibitor formation in each arm, and simulations to determine the best model design to optimize power. To achieve administrative efficiency, the trials will be performed with the same sites, staff, visit frequency, blood sampling, laboratories, and laboratory assays, with streamlined enrollment so patients developing inhibitors in the first trial may be enrolled on the second trial. The primary end point is the probability of inhibitor formation or inhibitor eradication, respectively. The design indicates early stopping rules for overwhelming evidence of superiority of the emicizumab arms. Simulations indicate that, with 66 subjects, the Prevention Trial will have 84% power to detect noninferiority of emicizumab to ELOCTATE with a margin of 10% if emicizumab is truly 10% superior to ELOCTATE; with 90 subjects, the Eradication Trial will have 80% power to detect 15% superiority of ELOCTATE immune tolerance induction with vs without emicizumab. Thus, a platform design provides statistical and administrative efficiency to conduct INHIBIT trials.
Collapse
|
13
|
Peyvandi F, Miri S, Garagiola I. Immune Responses to Plasma-Derived Versus Recombinant FVIII Products. Front Immunol 2021; 11:591878. [PMID: 33552050 PMCID: PMC7862552 DOI: 10.3389/fimmu.2020.591878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/04/2020] [Indexed: 11/27/2022] Open
Abstract
The most severe side effect of hemophilia treatment is the inhibitor development occurring in 30% of patients, during the earliest stages of treatment with factor (F)VIII concentrates. These catastrophic immune responses rapidly inactivate the infused FVIII, rendering the treatment ineffective. This complication is associated with a substantial morbidity and mortality. The risk factors involved in the onset of the inhibitors are both genetic and environmental. The source of FVIII products, i.e. plasma-derived or recombinant FVIII products, is considered one of the most relevant factors for inhibitor development. Numerous studies in the literature report conflicting data on the different immunogenicity of the products. The SIPPET randomized trial showed an increased in the inhibitor rate in patients using recombinant FVIII products than those receiving plasma-derived products in the first exposure days. The SIPPET randomized trial showed an increase in the inhibitor rate in patients using recombinant FVIII products compared to those treated with plasma-derived products in the first days of exposure. The potential increase in the immunogenicity of recombinant products can be attributed to several factors such as: the different post-translational modification in different cell lines, the presence of protein aggregates, and the role played by the chaperon protein of FVIII, the von Willebrand factor, which modulates the uptake of FVIII by antigen presenting cells (APCs). Furthermore, the presence of non-neutralizing antibodies against FVIII has shown to be in increased inhibitor development as demonstrated in a sub-analysis of the SIPPET study. In addition, the presence of the specific subclasses of the immunoglobulins may also be an important biomarker to indicate whether the inhibitor will evolve into a persistent neutralizing antibody or a transient one that would disappear without any specific treatment. Recently, the availability of novel non-replacement therapies as well as emicizumab, administered by weekly subcutaneous infusion, have significantly changed the quality of life of patients with inhibitors showing a considerable reduction of the annual bleeding rate and in most patients the absence of bleeding. Although, these novel drugs improve patients' quality of life, they do not abolish the need to infuse FVIII during acute bleeding or surgery. Therefore, the issue of immunogenicity against FVIII still remains an important side effect of hemophilia treatment.
Collapse
Affiliation(s)
- Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Syna Miri
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Isabella Garagiola
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
14
|
BIVV001, a new class of factor VIII replacement for hemophilia A that is independent of von Willebrand factor in primates and mice. Blood 2020; 135:1484-1496. [PMID: 32078672 DOI: 10.1182/blood.2019001292] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/29/2020] [Indexed: 01/19/2023] Open
Abstract
Factor VIII (FVIII) replacement products enable comprehensive care in hemophilia A. Treatment goals in severe hemophilia A are expanding beyond low annualized bleed rates to include long-term outcomes associated with high sustained FVIII levels. Endogenous von Willebrand factor (VWF) stabilizes and protects FVIII from degradation and clearance, but it also subjects FVIII to a half-life ceiling of ∼15 to 19 hours. Increasing recombinant FVIII (rFVIII) half-life further is ultimately dependent upon uncoupling rFVIII from endogenous VWF. We have developed a new class of FVIII replacement, rFVIIIFc-VWF-XTEN (BIVV001), that is physically decoupled from endogenous VWF and has enhanced pharmacokinetic properties compared with all previous FVIII products. BIVV001 was bioengineered as a unique fusion protein consisting of a VWF-D'D3 domain fused to rFVIII via immunoglobulin-G1 Fc domains and 2 XTEN polypeptides (Amunix Pharmaceuticals, Inc, Mountain View, CA). Plasma FVIII half-life after BIVV001 administration in mice and monkeys was 25 to 31 hours and 33 to 34 hours, respectively, representing a three- to fourfold increase in FVIII half-life. Our results showed that multifaceted protein engineering, far beyond a few amino acid substitutions, could significantly improve rFVIII pharmacokinetic properties while maintaining hemostatic function. BIVV001 is the first rFVIII with the potential to significantly change the treatment paradigm for severe hemophilia A by providing optimal protection against all bleed types, with less frequent doses. The protein engineering methods described herein can also be applied to other complex proteins.
Collapse
|
15
|
Carcao M, Shapiro A, Hwang N, Pipe S, Ahuja S, Lieuw K, Staber JM, Belletrutti M, Sun HL, Ding H, Wang M, Price V, Steele M, Tsao E, Feng J, Al-Khateeb Z, Dumont J, Jain N. Real-world data of immune tolerance induction using recombinant factor VIII Fc fusion protein in patients with severe haemophilia A with inhibitors at high risk for immune tolerance induction failure: A follow-up retrospective analysis. Haemophilia 2020; 27:19-25. [PMID: 33210397 PMCID: PMC8243250 DOI: 10.1111/hae.14192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Amy Shapiro
- Indiana Hemophilia & Thrombosis Center, Inc, Indianapolis, IN, USA
| | - Nina Hwang
- Center For Inherited Blood Disorders, Orange, CA, USA
| | | | - Sanjay Ahuja
- University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Ken Lieuw
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Janice M Staber
- University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA
| | - Mark Belletrutti
- University of Alberta Stollery Children's Hospital, Edmonton, AB, Canada
| | | | - Hilda Ding
- Rady Children's Hospital, San Diego, CA, USA
| | - Michael Wang
- Hemophilia and Thrombosis Center, University of Colorado, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Meeks SL, Lacroix-Desmazes S. Emerging benefits of Fc fusion technology in the context of recombinant factor VIII replacement therapy. Haemophilia 2020; 26:958-965. [PMID: 32885562 PMCID: PMC7818509 DOI: 10.1111/hae.14123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Although the primary reason for recombinant factor VIII Fc fusion protein (rFVIIIFc) development was to reduce treatment burden associated with routine prophylaxis, new evidence suggests additional benefits of Fc fusion technology in the treatment of people with haemophilia A. Preclinical research has been utilized to characterize the potential immunomodulatory properties of rFVIIIFc, including an ability to reduce inflammation and induce tolerance to factor VIII. This has since been expanded into clinical research in immune tolerance induction (ITI) with rFVIIIFc, results of which suggest the potential for rapid tolerization in first‐time ITI patients and therapeutic benefit in patients undergoing rescue ITI. The potential for improved joint health through the anti‐inflammatory properties of rFVIIIFc has also been suggested. In addition, a new avenue of research into the role of rFVIIIFc in promoting bone health in patients with haemophilia A, potentially through reduced osteoclast formation, has yielded encouraging results that support further study. This review summarizes the existing preclinical and clinical studies of immunomodulation and tolerization with rFVIIIFc, as well as studies in joint and bone health, to elucidate the potential benefits of rFVIIIFc in haemophilia A beyond the extension of factor VIII half‐life.
Collapse
Affiliation(s)
- Shannon L Meeks
- Aflac Cancer Center and Blood Disorders Center at Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
17
|
Escobar M, Santagostino E, Mancuso ME, Coppens M, Balasa V, Taylor JA, Iorio A, Negrier C. Switching patients in the age of long-acting recombinant products? Expert Rev Hematol 2020; 12:1-13. [PMID: 31282771 DOI: 10.1080/17474086.2018.1564032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: Prophylaxis with factor replacement therapy is the gold standard for the treatment of hemophilia, but this often requires frequent infusions. A number of long-acting factor products have been developed to reduce the burden on patients. Areas covered: This is an overview of information presented at two symposia held at the World Federation of Hemophilia and International Society on Thrombosis and Haemostasis - Scientific and Standardization Committee annual meetings. The pharmacokinetic, safety and efficacy data for long-acting recombinant products are reviewed, with a focus on recombinant factor IX albumin fusion protein (rIX-FP) and rVIII-SingleChain. This overview also provides a guide for managing a patient's switch to long-acting products. Expert opinion: Long-acting products may allow patients to maintain or decrease bleeding rates whilst increasing their dosing interval, which may in turn reduce the burden on patients and caregivers. When switching patients to long-acting products health-care professionals should provide balanced and thorough education to the patient, whilst supporting their emotional well-being. Regimens should address patients' needs and goals but should also be guided by clinical phenotype and pharmacokinetic assessment. Follow-up should assess safety concerns, bleeding rates, joint health and the impact of the regimen on patients' lifestyle.
Collapse
Affiliation(s)
- Miguel Escobar
- a Department of Internal Medicine and Pediatrics, Division of Hematology , University of Texas Health Science Center and the Gulf States Hemophilia and Thrombophilia Center , Houston , TX , USA
| | - Elena Santagostino
- b Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Angelo Bianchi Bonomi Hemophilia and Thrombosis Centre , Milan , Italy
| | - Maria Elisa Mancuso
- b Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Angelo Bianchi Bonomi Hemophilia and Thrombosis Centre , Milan , Italy
| | - Michiel Coppens
- c Department of Vascular Medicine , Amsterdam Cardiovascular Sciences, Amsterdam UMC , Amsterdam , the Netherlands
| | - Vinod Balasa
- d Division Chief and Medical Director, Hematology/Oncology , Valley Children's Hospital , Madera , CA , USA
| | - Jason A Taylor
- e Division of Hematology and Medical Oncology , The Hemophilia Center, Knight Cancer Institute, Oregon Health & Science University and Portland VA Medical Center , Portland , OR , USA
| | - Alfonso Iorio
- f Department of Health Research Methods, Evidence and Impact , McMaster University , Hamilton , ON , Canada
| | - Claude Negrier
- g National Reference Centre for Haemophilia, Louis Pradel Hospital , University Claude Bernard Lyon I , Lyon , France
| |
Collapse
|
18
|
Georgescu MT, Moorehead PC, Liu T, Dumont J, Scott DW, Hough C, Lillicrap D. Recombinant Factor VIII Fc Inhibits B Cell Activation via Engagement of the FcγRIIB Receptor. Front Immunol 2020; 11:138. [PMID: 32117285 PMCID: PMC7025534 DOI: 10.3389/fimmu.2020.00138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
The development of neutralizing antibodies (inhibitors) against factor VIII (FVIII) is a major complication of hemophilia A treatment. The sole clinical therapy to restore FVIII tolerance in patients with inhibitors remains immune tolerance induction (ITI) which is expensive, difficult to administer and not always successful. Although not fully understood, the mechanism of ITI is thought to rely on inhibition of FVIII-specific B cells (1). Its efficacy might therefore be improved through more aggressive B cell suppression. FcγRIIB is an inhibitory Fc receptor that down-regulates B cell signaling when cross-linked with the B cell receptor (BCR). We sought to investigate if recombinant FVIII Fc (rFVIIIFc), an Fc fusion molecule composed of FVIII and the Fc region of immunoglobulin G1 (IgG1) (2), is able to inhibit B cell activation more readily than FVIII. rFVIIIFc was able to bind FVIII-exposed and naïve B cells from hemophilia A mice as well as a FVIII-specific murine B cell hybridoma line (413 cells). An anti-FcγRIIB antibody and FVIII inhibited binding, suggesting that rFVIIIFc is able to interact with both FcγRIIB and the BCR. Furthermore, incubation of B cells from FVIII-exposed mice and 413 cells with rFVIIIFc resulted in increased phosphorylation of SH-2 containing inositol 5-phosphatase (SHIP) when compared to FVIII. B cells from FVIII-exposed hemophilia A mice also exhibited decreased extracellular signal-regulated kinase (ERK) phosphorylation when exposed to rFVIIIFc. These differences were absent in B cells from naïve, non-FVIII exposed hemophilic mice suggesting an antigen-dependent effect. Finally, rFVIIIFc was able to inhibit B cell calcium flux induced by anti-Ig F(ab)2. Our results therefore indicate that rFVIIIFc is able to crosslink FcγRIIB and the BCR of FVIII-specific B cells, causing inhibitory signaling in these cells.
Collapse
Affiliation(s)
- Maria T Georgescu
- Clinical and Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Paul C Moorehead
- Janeway Children's Health and Rehabilitation Centre, St. John's, NL, Canada.,Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Tongyao Liu
- Bioverativ, a Sanofi Company, Cambridge, MA, United States
| | | | - David W Scott
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Christine Hough
- Clinical and Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David Lillicrap
- Clinical and Molecular Hemostasis Research Group, Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Mannucci PM. Benefits and limitations of extended plasma half-life factor VIII products in hemophilia A. Expert Opin Investig Drugs 2020; 29:303-309. [DOI: 10.1080/13543784.2020.1723547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pier Mannuccio Mannucci
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
20
|
Scott DW, Pratt KP. Factor VIII: Perspectives on Immunogenicity and Tolerogenic Strategies. Front Immunol 2020; 10:3078. [PMID: 32010137 PMCID: PMC6978909 DOI: 10.3389/fimmu.2019.03078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Therapeutic treatment of bleeds with FVIII can lead to an antibody response that effectively inhibits its function. Herein, we review the factors that contribute to this immunogenicity and possible ways to overcome it.
Collapse
Affiliation(s)
- David W. Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
21
|
Lacroix-Desmazes S, Voorberg J, Lillicrap D, Scott DW, Pratt KP. Tolerating Factor VIII: Recent Progress. Front Immunol 2020; 10:2991. [PMID: 31998296 PMCID: PMC6965068 DOI: 10.3389/fimmu.2019.02991] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as “inhibitors,” which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was “Immune Tolerance Induction,” consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to “bypass” the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.
Collapse
Affiliation(s)
| | - Jan Voorberg
- Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David W Scott
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kathleen P Pratt
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
22
|
Zhou JY, Barnes RFW, Foster G, Iorio A, Cramer TJ, von Drygalski A. Joint Bleeding Tendencies in Adult Patients With Hemophilia: It's Not All Pharmacokinetics. Clin Appl Thromb Hemost 2020; 25:1076029619862052. [PMID: 31298044 PMCID: PMC6714908 DOI: 10.1177/1076029619862052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hemophilic arthropathy from joint bleeding remains a complication with major morbidity in the increasingly aging patients with hemophilia. Prophylactic clotting factor infusions, based on pharmacokinetic dosing to reduce bleeding rates, are being explored more and more. However, there is little evidence on the benefits of pharmacokinetic dosing in direct association with bleeding events. Here, we prospectively followed a cohort of adult patients with hemophilia A and B (n = 26) and arthropathic joints on various clotting factor products over a period of 2 years with clinical and radiographic joint health assessments, frequent joint ultrasound, and pharmacokinetic studies. Joint bleeds and synovitis with synovial vascularity changes were objectively diagnosed by musculoskeletal ultrasound and power Doppler and analyzed in relation to pharmacokinetic, joint- and patient-specific parameters. Results revealed that, contrary to common beliefs, bleeding episodes were not readily explained by pharmacokinetic features, as they were not associated with more time spent below certain clotting factor thresholds. Joint bleeding was found to be associated with prominent vascularity changes, suggesting that vascular remodeling and leakiness may contribute to joint bleeding that cannot be prevented by clotting factor replacement alone.
Collapse
Affiliation(s)
- Jenny Y Zhou
- 1 Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Richard F W Barnes
- 1 Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Gary Foster
- 2 Department of Health Evidence, Research Methodology and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Alfonso Iorio
- 2 Department of Health Evidence, Research Methodology and Impact, McMaster University, Hamilton, Ontario, Canada.,3 Department of Medicine, McMaster-Bayer Endowed Research Chair in Clinical Epidemiology of Congenital Bleeding Disorders, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Cramer
- 1 Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Annette von Drygalski
- 1 Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, USA.,4 Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Factor VIII Fc Fusion Protein but not FVIII Drives Human Monocyte-Derived Dendritic Cell Activation via FcγRIIa. Hemasphere 2020; 4:e330. [PMID: 32072146 PMCID: PMC7000470 DOI: 10.1097/hs9.0000000000000330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
This study compares the effect of recombinant Factor VIII Fc fusion protein (rFVIII-Fc) with recombinant FVIII (rFVIII) on monocyte-derived dendritic cells (moDC's). Cells treated with rFVIII-Fc showed morphological changes typical for cell activation, had a significant up-regulation of cell activation markers and produced higher levels of pro-inflammatory cytokines. Even after stimulation with Lipopolysaccharides, the addition of rFVIII-Fc led to increased expression of activation markers, indicating that rFVIII-Fc is capable of amplifying the maturation signal. On the contrary, cultivation of moDC's with rFVIII did not alter cell morphology or increase surface activation marker expression and pro-inflammatory cytokine production. The binding of the Fc domain to the activating Fcγ receptor IIa (FcγRIIa) can cause cell activation. Therefore, the effect of rFVIII-Fc on FcγRIIa was analyzed in detail. Cultivation of moDC's with rFVIII-Fc led to increased phosphorylation of FcγRIIa, which was not detected for rFVIII. Blocking FcγRIIa prior to the cultivation with rFVIII-Fc significantly reduced the activating effect of rFVIII-Fc, indicating that rFVIII-Fc-induced moDC activation was caused by FcγRIIa. Moreover, rFVIII-Fc bound to FCGR2A-transfected human embryonic kidney 293 cells. Taken together, our data present a new mechanism of moDC activation by rFVIII-Fc via FcγRIIa.
Collapse
|
24
|
Chowdary P. Extended half-life recombinant products in haemophilia clinical practice - Expectations, opportunities and challenges. Thromb Res 2019; 196:609-617. [PMID: 31883700 DOI: 10.1016/j.thromres.2019.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Extended half-life (EHL) products have shown robust efficacy in clinical trials, whilst allowing for less intense treatment regimens when compared with standard half-life products. Regimen optimisation with EHL products could lead to further improvements in bleeding rates, quality of life and reductions in treatment burden. Patients now expect good efficacy, a lower treatment burden and equivalent safety when compared with standard half-life products. As our knowledge base grows these expectations have evolved and targeting an annualised bleeding rate of zero has become a more realistic clinical goal. Personalised prophylaxis can help patients achieve these goals. However, a number of challenges still remain, including cost, challenges in predicting outcomes for patients and differences in patients' and clinicians' expectations. When switching a patient, comprehensive patient care can reduce the impact of these issues. This review presents in brief the protein therapeutics with an extended half-life, including key trial results, challenges of chronic care that impact on patients' outcomes and how the modified proteins might help address some of these issues. In addition, practical steps for managing the switch to EHL products are presented.
Collapse
Affiliation(s)
- Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK.
| |
Collapse
|
25
|
Schifferli A, Nimmerjahn F, Kühne T. Immunomodulation in Primary Immune Thrombocytopenia: A Possible Role of the Fc Fragment of Romiplostim? Front Immunol 2019; 10:1196. [PMID: 31214173 PMCID: PMC6557984 DOI: 10.3389/fimmu.2019.01196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fc fusion proteins and Fc fusion peptides or peptibodies are chimeric molecules composed of an active pharmacological protein or peptide and the Fc fragment of an immunoglobulin. The primary aim of this drug construct is to prolong the half-life of the active component. This molecular architecture is seen in drugs, such as etanercept, romiplostim, and the recombinant factor VIII (efmoroctocog alfa). A considerable number of Fc fusion proteins and peptibodies are currently in pre-clinical and clinical development. The isolated effect of the Fc fragment has been studied intensively during last years, but is still poorly understood in the clinical setting and in relation with the active drug and underlying disease. In this short review, we will propose new hypotheses of possible immunomodulatory functions of the Fc fragment of romiplostim in patients with primary immune thrombocytopenia.
Collapse
Affiliation(s)
- Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kühne
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Dingman R, Balu-Iyer SV. Immunogenicity of Protein Pharmaceuticals. J Pharm Sci 2019; 108:1637-1654. [PMID: 30599169 PMCID: PMC6720129 DOI: 10.1016/j.xphs.2018.12.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Protein therapeutics have drastically changed the landscape of treatment for many diseases by providing a regimen that is highly specific and lacks many off-target toxicities. The clinical utility of many therapeutic proteins has been undermined by the potential development of unwanted immune responses against the protein, limiting their efficacy and negatively impacting its safety profile. This review attempts to provide an overview of immunogenicity of therapeutic proteins, including immune mechanisms and factors influencing immunogenicity, impact of immunogenicity, preclinical screening methods, and strategies to mitigate immunogenicity.
Collapse
Affiliation(s)
- Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
27
|
Abstract
Introduction: rFVIIIFC was the first extended half-life product to complete the phase 3 development program and be registered. It was developed to reduce the high treatment burden imposed by prophylaxis. It is now one of four extended half-life products available for a variety of indications in hemophilia A. This article focus on the efficacy use of rFVIIIFC in the prevention of bleeds in hemophilia A. Areas covered: This article provides an update on efficacy data from three clinical studies describing the use of rFVIIIFC in the treatment and prevention of bleeds in hemophilia A. The update includes the efficacy use of rFVIII in all age groups, in the perisurgical setting, in immune tolerance induction, and in improving the quality of life of patients. The role of rFVIIIFC prophylaxis in the face of rapidly evolving non-replacement therapy and gene therapy is summarized. Expert commentary: The role of rFVIIIFC in hemophilia A prophylaxis is uncertain in the light of development of newer prophylaxis agents with better route of administration, improved pharmacokinetic and superior efficacy profiles. While rFVIIIFC was primarily developed for prophylaxis in hemophilia A, this role may change in the face of competitive extended half-life products and non-replacement therapies.
Collapse
Affiliation(s)
- Johnny Mahlangu
- a NHLS and the Charlotte Maxeke , Johannesburg academic Hospital, University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
28
|
Thornburg CD. How I approach: Previously untreated patients with severe congenital hemophilia A. Pediatr Blood Cancer 2018; 65:e27466. [PMID: 30251355 DOI: 10.1002/pbc.27466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/19/2023]
Abstract
Previously untreated patients with severe hemophilia A are a vulnerable population at risk for severe bleeding which is currently managed with exogenous clotting factor replacement. The primary burden of current treatment is high-titer inhibitor development. Evolving data on current treatment products as well as emerging therapeutics may inform treatment decisions to prevent bleeding and inhibitor formation. Considerations for diagnosis, education, and shared decision-making related to product choice and treatment regimen are discussed.
Collapse
Affiliation(s)
- Courtney D Thornburg
- Rady Children's Hospital San Diego, San Diego, California.,UC San Diego, La Jolla, California
| |
Collapse
|
29
|
Kis-Toth K, Rajani GM, Simpson A, Henry KL, Dumont J, Peters RT, Salas J, Loh C. Recombinant factor VIII Fc fusion protein drives regulatory macrophage polarization. Blood Adv 2018; 2:2904-2916. [PMID: 30396910 PMCID: PMC6234359 DOI: 10.1182/bloodadvances.2018024497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
The main complication of replacement therapy with factor in hemophilia A (HemA) is the formation of inhibitors (neutralizing anti-factor VIII [FVIII] antibodies) in ∼30% of severe HemA patients. Because these inhibitors render replacement FVIII treatment essentially ineffective, preventing or eliminating them is of top priority in disease management. The extended half-life recombinant FVIII Fc fusion protein (rFVIIIFc) is an approved therapy for HemA patients. In addition, it has been reported that rFVIIIFc may induce tolerance to FVIII more readily than FVIII alone in HemA patients that have developed inhibitors. Given that the immunoglobulin G1 Fc region has the potential to interact with immune cells expressing Fc receptors (FcRs) and thereby affect the immune response to rFVIII, we investigated how human macrophages, expressing both FcRs and receptors reported to bind FVIII, respond to rFVIIIFc. We show herein that rFVIIIFc, but not rFVIII, uniquely skews macrophages toward an alternatively activated regulatory phenotype. rFVIIIFc initiates signaling events that result in morphological changes, as well as a specific gene expression and metabolic profile that is characteristic of the regulatory type Mox/M2-like macrophages. Further, these changes are dependent on rFVIIIFc-FcR interactions. Our findings elucidate mechanisms of potential immunomodulatory properties of rFVIIIFc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joe Salas
- Bioverativ, a Sanofi company, Waltham, MA; and
| | | |
Collapse
|
30
|
Mannully S, L.N. R, Pulicherla K. Perspectives on progressive strategies and recent trends in the production of recombinant human factor VIII. Int J Biol Macromol 2018; 119:496-504. [DOI: 10.1016/j.ijbiomac.2018.07.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
|
31
|
Abstract
The unprecedented emergence of novel therapeutics for both hemophilia A and B during the last half decade has been accompanied by the promise of even more extraordinary progress in ameliorative and curative strategies for both disorders. Paradoxically, the speed of innovation has created new dilemmas for persons with hemophilia and their physicians with respect to optimizing individual choices from the expanding menu of standard and novel therapies and approaches to symptom or risk reduction, and ultimately, to normalizing the hemophilia phenotype. Among the most disruptive new approaches, challenges remain in the form of the adverse reactions that have been observed with nonfactor therapies, as well as in the uncertain long-term safety profile of potentially curative gene therapy. Together, these challenges have generated uncertainty as to how to adopt novel therapies and treatment strategies across a diverse patient population, creating speed bumps on the hemophilia innovation highway. It is from this perspective that this article discusses the current state of gene therapy and bleeding prophylaxis for hemophilia A and B, as well as prevention and treatment of the factor VIII inhibitor phenotype in hemophilia A. It further posits that these speed bumps may provide important clues to the mechanistic understanding of both symptom manifestation and resilience within the hemophilia phenotype, as well as opportunities to reconsider and reconfigure the current paradigms for symptom prediction and individualized therapeutic decision making.
Collapse
Affiliation(s)
- Donna M DiMichele
- Division of Blood Diseases and Resources, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Hemophilia is an X-linked blood coagulation genetic disorder, which can cause significant disability. Replacement therapy for coagulation factor VIII (hemophilia A) or factor IX (hemophilia B) may result in the development of high-affinity alloantibodies ('inhibitors') to the replacement therapy, thus making it ineffective. Therefore, there is interest in directing immunological responses towards tolerance to infused factors. RECENT FINDINGS In this review, we will discuss latest advancements in the development of potentially less immunogenic replacement clotting factors, optimization of current tolerance induction protocols (ITI), preclinical and clinical data of pharmacological immune modulation, hepatic gene therapy, and the rapidly advancing field of cell therapies. We will also evaluate publications reporting data from preclinical studies on oral tolerance induction using chloroplast-transgenic (transplastomic) plants. SUMMARY Until now, no clinical prophylactic immune modulatory protocol exists to prevent inhibitor formation to infused clotting factors. Recent innovative technologies provide hope for improved eradication and perhaps even prevention of inhibitors.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
33
|
Schep S, Schutgens R, Fischer K, Boes M. Review of immune tolerance induction in hemophilia A. Blood Rev 2018; 32:326-338. [DOI: 10.1016/j.blre.2018.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/22/2022]
|
34
|
Abstract
Haemophilia is a rare disease for which the approved therapeutic options have remained virtually unchanged for 50 years. In the past decade, however, there has been an explosion of innovation in the treatment options that are either in development or have been approved for haemophilia, including engineered clotting factors and an extensive pipeline of new approaches and modalities. Several of these new modalities, especially gene therapy, demonstrate proof of principle in haemophilia but could have broader applications. These advances, in combination with better diagnostics, are now enabling clinicians to improve the standard of care for people with haemophilia. The different mechanisms of action and modifications used in these therapies have implications for their safe and efficacious use, which must be balanced with their therapeutic utility. This Review focuses on the biological aspects of the most advanced and innovative approaches for haemophilia treatment and considers their future use.
Collapse
|
35
|
Mannucci PM. Miracle of haemophilia drugs: Personal views about a few main players. Haemophilia 2018; 24:557-562. [PMID: 29808952 DOI: 10.1111/hae.13519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In the second decade of the third millennium there have been dramatic developments pertaining to the availability of highly innovative drugs for hemophilia care, notwithstanding a satisfactory previous scenario. AIM I am going to emphasize the role of 2 main categories of players: scientist physicians who produced important translational research and the pharmaceutical industry, who developed, produced and made commercially available so many improved treatment weapons stemming from the translational research of the forementioned scientist physicians. RESULTS Pertaining to the role of scientist physicians, I chose to mention first those who were successful in the 1980 in the production of recombinant coagulation factors. In addition, those who more recently helped to produce new non substitutive therapies given by the subcutaneous route, and recombination coagulation factors with an extended half-life. CONCLUSIONS Current miraculous progress in hemophilia therapy is stemming from the research work of outstanding scientist physicians who acted in close collaboration with small biotechnology companies, leading to the early development of innovative therapeutic products, subsequently taken to the market place by the so called Big Pharma. I shall briefly provide my views to explain the fact that large pharmaceutical companies show more and more interest in such a rare disease as the hemophilias.
Collapse
Affiliation(s)
- P M Mannucci
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, IRCCS Ca' Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| |
Collapse
|
36
|
Arruda VR, Doshi BS, Samelson-Jones BJ. Emerging therapies for hemophilia: controversies and unanswered questions. F1000Res 2018; 7. [PMID: 29770199 PMCID: PMC5931262 DOI: 10.12688/f1000research.12491.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Several new therapies for hemophilia have emerged in recent years. These strategies range from extended half-life factor replacement products and non-factor options with improved pharmacokinetic profiles to gene therapy aiming for phenotypic cure. While these products have the potential to change hemophilia care dramatically, several challenges and questions remain regarding broader applicability, long-term safety, and which option to pursue for each patient. Here, we review these emerging therapies with a focus on controversies and unanswered questions in each category.
Collapse
Affiliation(s)
- Valder R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA
| | - Bhavya S Doshi
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin J Samelson-Jones
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Tolerogenic properties of the Fc portion of IgG and its relevance to the treatment and management of hemophilia. Blood 2018; 131:2205-2214. [PMID: 29588277 DOI: 10.1182/blood-2017-12-822908] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Hemophilia, or inherited genetic deficiencies in coagulation factors, results in uncontrolled bleeding requiring replacement therapy with recombinant proteins given preventively or on demand. However, a major problem with these approaches is the potential for development of immune responses to the administered proteins due to the underlying genetic deficiency of the factor(s) throughout life. As such, there is great interest in developing strategies that avoid immunogenicity and induce immune tolerance. Recently, recombinant factor VIII (rFVIII) and rFIX fused to the crystallizable fragment (Fc) domain of immunoglobulin G (IgG) have been developed as therapeutic agents for hemophilia A and B, respectively. Although it is well known that the possession of an Fc domain confers IgG's longer-lasting circulating half-life, it is not generally appreciated that the Fc domain also confers immunoregulatory properties that are associated with the induction of tolerance. Here, we review some of the latest advances in our understanding of the tolerogenic abilities of IgG Fc and the impact of Fc-fusion proteins of rFVIII on the treatment of hemophilia.
Collapse
|
38
|
Carcao M, Shapiro A, Staber JM, Hwang N, Druzgal C, Lieuw K, Belletrutti M, Thornburg CD, Ahuja SP, Morales-Arias J, Dumont J, Miyasato G, Tsao E, Jain N, Pipe SW. Recombinant factor VIII Fc fusion protein for immune tolerance induction in patients with severe haemophilia A with inhibitors-A retrospective analysis. Haemophilia 2018; 24:245-252. [PMID: 29436077 DOI: 10.1111/hae.13413] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Immune tolerance induction (ITI) is the gold standard for eradication of factor VIII inhibitors in severe haemophilia A; however, it usually requires treatment for extended periods with associated high burden on patients and healthcare resources. AIM Review outcomes of ITI with recombinant factor VIII Fc fusion protein (rFVIIIFc) in patients with severe haemophilia A and high-titre inhibitors. METHODS Multicentre retrospective chart review of severe haemophilia A patients treated with rFVIIIFc for ITI. RESULTS Of 19 patients, 7 were first-time ITI and 12 were rescue ITI. Of 7 first-time patients, 6 had at least 1 high-risk feature for ITI failure. Four of 7 first-time patients were tolerized in a median of 7.8 months. The remaining 3 patients continue on rFVIIIFc ITI. Of 12 rescue patients, 7 initially achieved a negative Bethesda titre (≤0.6) in a median of 3.3 months, 1 had a decrease in Bethesda titre and continues on rFVIIIFc ITI and 4 have not demonstrated a decrease in Bethesda titre. Of these 4, 3 continue on rFVIIIFc ITI and 1 switched to bypass therapy alone. Two initially responsive patients transitioned to other factors due to recurrence. Overall, 16 of 19 patients remain on rFVIIIFc (prophylaxis or ITI). For those still undergoing ITI, longer follow-up is needed to determine final outcomes. No adverse events reported. CONCLUSIONS Recombinant factor VIII Fc fusion protein demonstrated rapid time to tolerization in high-risk first-time ITI patients. For rescue ITI, rFVIIIFc showed therapeutic benefit in some patients who previously failed ITI with other products. These findings highlight the need to further evaluate the use of rFVIIIFc for ITI.
Collapse
Affiliation(s)
- M Carcao
- Division of Haematology/Oncology, Department of Paediatrics, Child Health Evaluative Sciences, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - A Shapiro
- Indiana Hemophilia & Thrombosis Center, Indianapolis, IN, USA
| | - J M Staber
- University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA
| | - N Hwang
- Center for Inherited Blood Disorders, Orange, CA, USA
| | - C Druzgal
- University of Virginia Health System, Charlottesville, VA, USA
| | - K Lieuw
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - M Belletrutti
- University of Alberta Stollery Children's Hospital, Edmonton, AB, Canada
| | - C D Thornburg
- Rady Children's Hospital San Diego, San Diego, CA, USA
| | - S P Ahuja
- University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | | | - J Dumont
- Bioverativ Therapeutics, Inc., Waltham, MA, USA
| | | | - E Tsao
- Bioverativ Therapeutics, Inc., Waltham, MA, USA
| | - N Jain
- Bioverativ Therapeutics, Inc., Waltham, MA, USA
| | - S W Pipe
- University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Sherman A, Biswas M, Herzog RW. Innovative Approaches for Immune Tolerance to Factor VIII in the Treatment of Hemophilia A. Front Immunol 2017; 8:1604. [PMID: 29225598 PMCID: PMC5705551 DOI: 10.3389/fimmu.2017.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is primarily treated with intravenous replacement therapy. Despite a variety of factor VIII protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current clinical immune tolerance induction protocols to eliminate inhibitors are not effective in all patients, and there are no prophylactic protocols to prevent the immune response. New experimental therapies, such as gene and cell therapies, show promising results in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, an oral tolerance protocol is being developed based on transgenic lettuce plants, which suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor formation in future treatment of hemophilia A.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Scott DW. From IgG Fusion Proteins to Engineered-Specific Human Regulatory T Cells: A Life of Tolerance. Front Immunol 2017; 8:1576. [PMID: 29181011 PMCID: PMC5693857 DOI: 10.3389/fimmu.2017.01576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023] Open
Abstract
Recent efforts have concentrated on approaches to expand and “specify” human regulatory T cells (Tregs) and to apply them to modulate adverse immune responses in autoimmunity and hemophilia. We have used retroviral transduction of specific T-cell receptor, single chain Fv, or antigen domains in Tregs to achieve this goal. Each of these approaches have advantages and disadvantages. Results with these engineered T cells and evolution of the research developments and paths that led to the development of specific regulatory approaches for tolerance are summarized.
Collapse
Affiliation(s)
- David W Scott
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
41
|
Novel approaches to hemophilia therapy: successes and challenges. Blood 2017; 130:2251-2256. [PMID: 29018078 DOI: 10.1182/blood-2017-08-742312] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
New therapies for hemophilia A and hemophilia B will likely continue to change clinical practice. Ranging from extended half-life to nonfactor products and gene therapy, these innovative approaches have the potential to enhance the standard of care by decreasing infusion frequency to increase compliance, promoting prophylaxis, offering alternatives to inhibitor patients, and easing route of administration. Each category has intrinsic challenges that may limit the broader application of these promising therapies. To date, none specifically address the challenge of dispersing treatment to the developing world.
Collapse
|
42
|
Cafuir LA, Kempton CL. Current and emerging factor VIII replacement products for hemophilia A. Ther Adv Hematol 2017; 8:303-313. [PMID: 29051801 DOI: 10.1177/2040620717721458] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Hemophilia A is a congenital X-linked bleeding disorder caused by coagulation factor VIII (FVIII) deficiency. Routine infusion of factor replacement products is the current standard of care; however, the development of alloantibodies against FVIII remains a challenge. The treatment of hemophilia has undergone major advances over the past century to improve safety, effectiveness, manufacturing, and convenience of factor products. Major recent advances in the treatment of hemophilia A include the emergence of extended half-life products, factor VIII orthologs, and gene therapy products. Extended half-life products were designed to decrease the frequency of infusions, but only modest half-life extension is achieved. Factor VIII orthologs featuring lower cross-reactivity with anti-FVIII antibodies may be less susceptible to inactivation by inhibitors. Meanwhile, gene therapy may potentially provide a cure for hemophilia A, thus abrogating the need for protein-based factor replacement. This review aims to discuss current and emerging FVIII replacement products for hemophilia A.
Collapse
Affiliation(s)
- Lorraine A Cafuir
- Department of Hematology and Medical Oncology, Emory University School of Medicine, USA
| | - Christine L Kempton
- Department of Hematology and Medical Oncology, Emory University, School of Medicine, 550 Peachtree Street NE, Medical Office Tower, Suite 1035, Atlanta, GA 30308, USA
| |
Collapse
|
43
|
Lieuw K. Many factor VIII products available in the treatment of hemophilia A: an embarrassment of riches? J Blood Med 2017; 8:67-73. [PMID: 28670147 PMCID: PMC5479262 DOI: 10.2147/jbm.s103796] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hemophilia A (HA) is a common bleeding disorder caused by the deficiency of factor VIII (FVIII) with an incidence of ~1 in 5000 male births. Replacement of FVIII is necessary to prevent and treat bleeding episodes. However, with multiple new drugs in addition to old standards, choosing among the different FVIII treatment options is harder than ever. There are FVIII products that are plasma derived or recombinant, FVIII products designed to extend the half-life of FVIII, and the first single-chain FVIII product, recombinant factor VIII single chain (rFVIII-SC). As development of inhibitors to FVIII continues to be a major problem in the care of HA patients, recent studies showing lower rates of inhibitor development with plasma-derived FVIIII products versus recombinant FVIII products have made choosing among the many options now available even more complex. Although still unproven, extended half-life (EHL) products may provide the hope of decreased immunogenicity but need further testing in previously untreated patients (PUPs). This review highlights some of the differences between FVIII products currently available and hopefully assists the clinician to decide which FVIII product to choose for their patients.
Collapse
Affiliation(s)
- Kenneth Lieuw
- Department of Pediatrics, Walter Reed National Military Medical Center.,Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
44
|
Leksa N, Chiu PL, Bou-Assaf G, Quan C, Liu Z, Goodman A, Chambers M, Tsutakawa S, Hammel M, Peters R, Walz T, Kulman J. The structural basis for the functional comparability of factor VIII and the long-acting variant recombinant factor VIII Fc fusion protein. J Thromb Haemost 2017; 15:1167-1179. [PMID: 28397397 PMCID: PMC5500164 DOI: 10.1111/jth.13700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 01/13/2023]
Abstract
Essentials Recombinant factor VIII (rFVIII) Fc fusion protein has a 1.5-fold longer half-life than rFVIII. Five orthogonal methods were used to characterize the structure of rFVIIIFc compared to rFVIII. The C-terminal Fc fusion does not perturb the structure of FVIII in rFVIIIFc. The FVIII and Fc components of rFVIIIFc are flexibly tethered and functionally independent. SUMMARY Background Fusion of the human IgG1 Fc domain to the C-terminal C2 domain of B-domain-deleted (BDD) factor VIII (FVIII) results in the recombinant FVIII Fc (rFVIIIFc) fusion protein, which has a 1.5-fold longer half-life in humans. Objective To assess the structural properties of rFVIIIFc by comparing its constituent FVIII and Fc elements with their respective isolated components, and evaluating their structural independence within rFVIIIFc. Methods rFVIIIFc and its isolated FVIII and Fc components were compared by the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS). The structure of rFVIIIFc was also evaluated by the use of X-ray crystallography, small-angle X-ray scattering (SAXS), and electron microscopy (EM). The degree of steric interference by the appended Fc domain was assessed by EM and surface plasmon resonance (SPR). Results HDX-MS analysis of rFVIIIFc revealed that fusion caused no structural perturbations in FVIII or Fc. The rFVIIIFc crystal structure showed that the FVIII component is indistinguishable from published BDD FVIII structures. The Fc domain was not observed, indicating high mobility. SAXS analysis was consistent with an ensemble of rigid-body models in which the Fc domain exists in a largely extended orientation relative to FVIII. Binding of Fab fragments of anti-C2 domain antibodies to BDD FVIII was visualized by EM, and the affinities of the corresponding intact antibodies for BDD FVIII and rFVIIIFc were comparable by SPR analysis. Conclusions The FVIII and Fc components of rFVIIIFc are structurally indistinguishable from their isolated constituents, and show a high degree of structural independence, consistent with the functional comparability of rFVIIIFc and unmodified FVIII.
Collapse
Affiliation(s)
| | - P.-L. Chiu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | - Z. Liu
- Biogen, Cambridge, MA, USA
| | | | - M.G. Chambers
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - S.E. Tsutakawa
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - M. Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - T. Walz
- Biogen, Cambridge, MA, USA
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY, USA
| | | |
Collapse
|
45
|
Comparative N-Glycosylation Analysis of the Fc Portions of a Chimeric Human Coagulation Factor VIII and Immunoglobulin G1. Bioengineering (Basel) 2017; 4:bioengineering4020044. [PMID: 28952523 PMCID: PMC5590467 DOI: 10.3390/bioengineering4020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
Prevention and treatment of bleeding in patients suffering from hemophilia A are inconvenient due to repeated intravenous infusions owing to the short half-life of coagulation factor VIII (FVIII) in circulation. Besides (glyco-)pegylation of the FVIII molecule, a bioengineering approach comprises the protein fusion to Fc-immunoglobulin (Ig)G that mediate protection from clearance or degradation via binding to the neonatal Fc receptor. While human-like N-glycosylation of recombinant FVIII is known to be crucial for the clotting factor’s quality and function, the particular glycosylation of the fused Fc portion has not been investigated in detail so far, despite its known impact on Fcγ receptor binding. Here, we analyzed the N-glycosylation of the Fc part of a chimeric FVIII-Fc protein compared to a commercial IgG1 purified from human plasma. Fc parts from both samples were released by enzymatic cleavage and were subsequently separated via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Corresponding protein bands were referred to PNGase F in-gel digestion in order to release the respective N-glycans. Analysis via matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed structural differences of both N-glycan patterns. Labeling with 2-aminobenzamide (2AB) and analysis via hydrophilic interaction liquid chromatography (HILIC) allowed a quantitative comparison of the respective N-glycosylation. Observed variations in Fc glycosylation of the chimeric FVIII fusion protein and human plasma-derived IgG1, e.g., regarding terminal sialylation, are discussed, focusing on the impact of the clotting factor’s properties, most notably its binding to Fcγ receptors.
Collapse
|
46
|
Pearson RM, Casey LM, Hughes KR, Miller SD, Shea LD. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv Drug Deliv Rev 2017; 114:240-255. [PMID: 28414079 PMCID: PMC5582017 DOI: 10.1016/j.addr.2017.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
Technologies that induce antigen-specific immune tolerance by mimicking naturally occurring mechanisms have the potential to revolutionize the treatment of many immune-mediated pathologies such as autoimmunity, allograft rejection, and allergy. The immune system intrinsically has central and peripheral tolerance pathways for eliminating or modulating antigen-specific responses, which are being exploited through emerging technologies. Antigen-specific tolerogenic responses have been achieved through the functional reprogramming of antigen-presenting cells or lymphocytes. Alternatively, immune privileged sites have been mimicked using biomaterial scaffolds to locally suppress immune responses and promote long-term allograft survival. This review describes natural mechanisms of peripheral tolerance induction and the various technologies being developed to achieve antigen-specific immune tolerance in vivo. As currently approved therapies are non-specific and carry significant associated risks, these therapies offer significant progress towards replacing systemic immune suppression with antigen-specific therapies to curb aberrant immune responses.
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA; Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA.
| |
Collapse
|
47
|
Janbain M, Pipe S. What is the role of an extended half-life product in immune tolerance induction in a patient with severe hemophilia A and high-titer inhibitors? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:648-649. [PMID: 27913541 PMCID: PMC6142440 DOI: 10.1182/asheducation-2016.1.648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A 10-year-old boy presents with a history of severe hemophilia A and high-titer inhibitor that had failed high-dose immune tolerance induction (ITI) with a recombinant factor VIII (rFVIII) product and a plasma-derived FVIII product. You are asked by his mother whether he should be tried on ITI with an extended half-life product, in particular, consideration of a rFVIIIFc concentrate.
Collapse
Affiliation(s)
- Maissaa Janbain
- Section of Hematology and Medical Oncology, Department of Internal Medicine, Tulane School of Medicine, New Orleans, LA
| | - Steven Pipe
- Division of Pediatric Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
48
|
Challa DK, Mi W, Lo ST, Ober RJ, Ward ES. Antigen dynamics govern the induction of CD4 + T cell tolerance during autoimmunity. J Autoimmun 2016; 72:84-94. [DOI: 10.1016/j.jaut.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/16/2022]
|
49
|
Abstract
Hemophilia A, a deficiency in the activity of coagulation factor (F) VIII, is an X-linked bleeding disorder with an approximate incidence of one in 5,000 male infants. Bleeding-related complications often result in greater severity of disease, poor quality of life, surgical interventions for severe joint destruction, and shortened life span. With the availability of plasma-derived and recombinant FVIII products, the benefits of primary prophylaxis were demonstrated and is now the standard of care for patients with severe factor deficiencies. Current hemophilia research is focusing on the creation of new factor replacement therapies with longer half-lives; accessing alternative mechanisms to achieve desired hemostasis and enhance bypassing activity; and limiting the immunogenicity of the protein. PEGylation involves the covalent attachment of polyethylene glycol (PEG) to a protein, peptide, or a small molecule drug. PEG effectively increases the molecular weight and size of the protein by creating a hydrophilic cloud around the molecule. This molecular change may reduce susceptibility of the molecule to proteolytic activity and degradation. It is also believed that PEGylation changes the surface charge of the protein that ultimately interferes with some receptor-mediated clearance processes. The half-life of PEGylated factor is more prolonged when compared to non-PEGylated full-length recombinant FVIII. The dawn of a new era in the care of hemophilia patients is upon us with the release of recombinant FVIII products with extended half-lives, and products with even more extended half-life will become available in a very short time. With all the promise of these new agents, many questions still remain.
Collapse
Affiliation(s)
- Tung Thanh Wynn
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Florida, Gainesville, FL
| | - Burak Gumuscu
- Pediatric Hematology-Oncology, Bon Secours Health System, St. Mary's Hospital, Richmond, VA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
50
|
Immunogenicity of long-lasting recombinant factor VIII products. Cell Immunol 2016; 301:40-8. [DOI: 10.1016/j.cellimm.2015.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/27/2015] [Accepted: 12/18/2015] [Indexed: 01/11/2023]
|