1
|
Xu X, Zhang S, Luo Z, Zheng Y, Kong T, Huang C, Qiu Z. Frontiers and Controversies in De Novo Gastrointestinal Tumors After Organ Transplantation: Current Progress and Future Directions. Ann Surg Oncol 2025:10.1245/s10434-025-16975-w. [PMID: 40035907 DOI: 10.1245/s10434-025-16975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025]
Abstract
The increasing success of organ transplantation has significantly improved survival for patients with end-stage diseases, yet it introduces a complex dilemma: the elevated risk for the development of de novo gastrointestinal (GI) tumors. The sustained immunosuppression required to maintain graft function paradoxically undermines the body's natural defenses against cancer, leading to a higher incidence, aggressive progression, and atypical presentations of GI tumors among transplant recipients compared with the general population. This presents a pressing challenge: balancing the dual imperatives of preventing graft rejection and effectively managing malignancies. Current treatment paradigms, including surgical approaches, chemotherapy, radiation therapy, and the emerging role of immunotherapy, are fraught with complexities due to the altered immune landscape in these patients. This review underscores the critical need to understand the multifaceted relationship between post-transplantation immunosuppression and tumorigenesis, providing a comprehensive exploration of epidemiologic shifts, pathophysiologic insights, and the intricacies of the tumor microenvironment in this unique patient population. Understanding and managing GI tumors in transplant recipients is not only a clinical challenge, but also a necessary frontier in transplant oncology, promising to refine therapeutic strategies and improve the longevity and quality of life for this growing patient cohort.
Collapse
Affiliation(s)
- Ximo Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaopeng Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zheng
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Kong
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
3
|
Ning S, Zhang Z, Ren Y, Hou Y, Li D, Chen J, Zhai Y, Fan K, Zhang W. A Synergistic Dual-Atom Sites Nanozyme Augments Immunogenic Cell Death for Efficient Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414734. [PMID: 39716966 PMCID: PMC11831451 DOI: 10.1002/advs.202414734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Inducing immunogenic cell death (ICD) is a promising approach to elicit enduring antitumor immune responses. Hence, extensive efforts are being made to develop ICD inducers. Herein, a cascaded dual-atom nanozyme with Fe and Cu sites (FeCu-DA) as an efficient ICD inducer is presented. The Fe and Cu dual-atom sites synergistically enhance peroxidase (POD) and catalase activities, effectively converting intratumoral hydrogen peroxide (H2O2) to hydroxyl radicals (·OH) and oxygen (O2). Moreover, FeCu-DA exhibits superior glutathione-oxidase (GSH-OXD) activity, catalyzing GSH oxidation to generate H2O2, enabling cascaded catalysis for sustainable ∙OH generation and reducing reactive oxygen species (ROS) resistance by consuming GSH. Steady-state kinetic analysis and density functional theory calculations indicate that FeCu-DA exhibits a higher catalytic rate and efficiency than Fe single-atom nanozymes (Fe-SA) because of its stronger interactions with H2O2. Its POD activity is 948.05 U mg-1, which is 2.8-fold greater than that of Fe-SA. Furthermore, FeCu-DA exhibits impressive photothermal effects and photothermal-enhanced cascaded catalysis kinetics for ROS generation, thereby inducing potent ICD. Combined with anti-PD-L1 antibody (αPD-L1) blockade, FeCu-DA shows synergistic enhancement in treatment under near-infrared irradiation. This study provides insights for designing efficient dual-atom nanozymes and demonstrates their potential in ICD-induced cancer immunotherapy.
Collapse
Affiliation(s)
- Shipeng Ning
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| | - Zeyuan Zhang
- Department of ResearchGuangxi Medical University Cancer HospitalGuangxi Medical UniversityNanning530021China
- University Engineering Research Center of Oncolytic & Nanosystem DevelopmentGuangxi530021China
- West China School of MedicineSichuan UniversityChengdu610041China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & CatalysisSchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Yaxin Hou
- CAS Engineering Laboratory for NanozymeKey Laboratory of Biomacromolecules (CAS)CAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Dan Li
- Department of ResearchGuangxi Medical University Cancer HospitalGuangxi Medical UniversityNanning530021China
- University Engineering Research Center of Oncolytic & Nanosystem DevelopmentGuangxi530021China
| | - Jingqi Chen
- Department of ResearchGuangxi Medical University Cancer HospitalGuangxi Medical UniversityNanning530021China
- University Engineering Research Center of Oncolytic & Nanosystem DevelopmentGuangxi530021China
| | - Yujie Zhai
- Department of ResearchGuangxi Medical University Cancer HospitalGuangxi Medical UniversityNanning530021China
- University Engineering Research Center of Oncolytic & Nanosystem DevelopmentGuangxi530021China
| | - Kelong Fan
- CAS Engineering Laboratory for NanozymeKey Laboratory of Biomacromolecules (CAS)CAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- Nanozyme Laboratory in ZhongyuanHenan Academy of Innovations in Medical ScienceZhengzhouHenan451163China
| | - Weiqing Zhang
- Department of ResearchGuangxi Medical University Cancer HospitalGuangxi Medical UniversityNanning530021China
- University Engineering Research Center of Oncolytic & Nanosystem DevelopmentGuangxi530021China
| |
Collapse
|
4
|
Shahzadi M, Rafique H, Waheed A, Naz H, Waheed A, Zokirova FR, Khan H. Artificial intelligence for chimeric antigen receptor-based therapies: a comprehensive review of current applications and future perspectives. Ther Adv Vaccines Immunother 2024; 12:25151355241305856. [PMID: 39691280 PMCID: PMC11650588 DOI: 10.1177/25151355241305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Using artificial intelligence (AI) to enhance chimeric antigen receptor (CAR)-based therapies' design, production, and delivery is a novel and promising approach. This review provides an overview of the current applications and challenges of AI for CAR-based therapies and suggests some directions for future research and development. This paper examines some of the recent advances of AI for CAR-based therapies, for example, using deep learning (DL) to design CARs that target multiple antigens and avoid antigen escape; using natural language processing to extract relevant information from clinical reports and literature; using computer vision to analyze the morphology and phenotype of CAR cells; using reinforcement learning to optimize the dose and schedule of CAR infusion; and using AI to predict the efficacy and toxicity of CAR-based therapies. These applications demonstrate the potential of AI to improve the quality and efficiency of CAR-based therapies and to provide personalized and precise treatments for cancer patients. However, there are also some challenges and limitations of using AI for CAR-based therapies, for example, the lack of high-quality and standardized data; the need for validation and verification of AI models; the risk of bias and error in AI outputs; the ethical, legal, and social issues of using AI for health care; and the possible impact of AI on the human role and responsibility in cancer immunotherapy. It is important to establish a multidisciplinary collaboration among researchers, clinicians, regulators, and patients to address these challenges and to ensure the safe and responsible use of AI for CAR-based therapies.
Collapse
Affiliation(s)
- Muqadas Shahzadi
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Ahmad Waheed
- Department of Zoology, Faculty of Life Sciences, University of Okara, 2 KM Lahore Road, Renala Khurd, Okara 56130, Punjab, Pakistan
| | - Hina Naz
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Atifa Waheed
- Department of Biology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | | | - Humera Khan
- Department of Biochemistry, Sahiwal Medical College, Sahiwal, Pakistan
| |
Collapse
|
5
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Lutskovich D, Meleshko A, Katsin M. State of the art and perspectives of chimeric antigen receptor T cells cell therapy for neuroblastoma. Cytotherapy 2024; 26:1122-1131. [PMID: 38852096 DOI: 10.1016/j.jcyt.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Neuroblastoma (NB) is a solid, neuroendocrine pediatric solid tumor with divergent clinical behavior. Patients with high-risk diseases have poor prognoses despite complex multimodal therapy, which requires the search for new therapeutic approaches. Chimeric antigen receptor T cells (CAR-T) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early-phase clinical trials of CAR-T cell therapy for NB have proven safe and feasible, but limited clinical efficacy. At the same time, multiple experimental and preclinical studies have shown that the most common in clinical trials single 2nd or 3rd generation CAR structure is not sufficient for a complete response in solid tumors. Here, we review the recent advances and future perspectives associated with engineered receptors, including several antigens binding, armored CAR-T of 4th and 5th generation and CAR-T cell combination strategies with other immunotherapy. We also summarize the results and shortcomings of ongoing clinical trials of CAR-T therapy for NB.
Collapse
Affiliation(s)
- Dzmitry Lutskovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus.
| | - Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikalai Katsin
- Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| |
Collapse
|
7
|
Huang X, Zhang W. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. SMALL METHODS 2024; 8:e2301326. [PMID: 38040834 DOI: 10.1002/smtd.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy for tumors has arisen in growing interest. However, the low response rate of tumors to ICB is mainly attributed to the inhibitory infiltration of immune cells in the tumor microenvironment (TME). Despite the promising benefits of ICB, the therapeutic effects of antibodies are dependent on a high dose and long-term usage in the clinic, thereby leading to immune-related adverse effects. Accordingly, ICB combined with nano-delivery systems could be used to overcome T cell exhaustion, which reduces the side effects and the usage of antibodies with higher response rates in patients. In this review, the authors aim to overcome T cell exhaustion in TME via immune checkpoint modulation with nano-delivery systems for enhanced immunotherapy. Several strategies are summarized to combine ICB and nano-delivery systems to further enhance immunotherapy: a) expressing immune checkpoint on the surface of nano-delivery systems; b) loading immune checkpoint inhibitors into nano-delivery systems; c) loading gene-editing technology into nano-delivery systems; and d) nano-delivery systems mediated immune checkpoint modulation. Taken together, ICB combined with nano-delivery systems might be a promising strategy to overcome T cell exhaustion in TME for enhanced immunotherapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Debatin NF, Bady E, Mandelkow T, Huang Z, Lurati MCJ, Raedler JB, Müller JH, Vettorazzi E, Plage H, Samtleben H, Klatte T, Hofbauer S, Elezkurtaj S, Furlano K, Weinberger S, Giacomo Bruch P, Horst D, Roßner F, Schallenberg S, Marx AH, Fisch M, Rink M, Slojewski M, Kaczmarek K, Ecke TH, Hallmann S, Koch S, Adamini N, Lennartz M, Minner S, Simon R, Sauter G, Zecha H, Schlomm T, Blessin NC. Prognostic Impact and Spatial Interplay of Immune Cells in Urothelial Cancer. Eur Urol 2024; 86:42-51. [PMID: 38383257 DOI: 10.1016/j.eururo.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Quantity and the spatial relationship of specific immune cell types can provide prognostic information in bladder cancer. The objective of the study was to characterize the spatial interplay and prognostic role of different immune cell subpopulations in bladder cancer. METHODS A total of 2463 urothelial bladder carcinomas were immunostained with 21 antibodies using BLEACH&STAIN multiplex fluorescence immunohistochemistry in a tissue microarray format and analyzed using a framework of neuronal networks for an image analysis. Spatial immune parameters were compared with histopathological parameters and overall survival data. KEY FINDINGS AND LIMITATIONS The identification of > 300 different immune cell subpopulations and the characterization of their spatial relationship resulted in numerous spatial interaction patterns. Thirty-nine immune parameters showed prognostic significance in univariate analyses, of which 16 were independent from pT, pN, and histological grade in muscle-invasive bladder cancer. Among all these parameters, the strongest association with prolonged overall survival was identified for intraepithelial CD8+ cytotoxic T cells (time-dependent area under receiver operating characteristic curve [AUC]: 0.70), while stromal CD8+ T cells were less relevant (AUC: 0.65). A favorable prognosis of inflamed cancers with high levels of "exhaustion markers" suggests that TIM3, PD-L1, PD-1, and CTLA-4 on immune cells do not hinder antitumoral immune response in tumors rich of tumor infiltrating immune cells. CONCLUSIONS AND CLINICAL IMPLICATIONS The density of intraepithelial CD8+ T cells was the strongest prognostic feature in muscle-invasive bladder cancer. Given that tumor cell killing by CD8+ cytotoxic T lymphocytes through direct cell-to-cell-contacts represents the "terminal end route" of antitumor immunity, the quantity of "tumor cell adjacent CD8+ T cells" may constitute a surrogate for the efficiency of cancer recognition by the immune system that can be measured straightaway in routine pathology as the CD8 labeling index. PATIENT SUMMARY Quantification of intraepithelial CD8+ T cells, the strongest prognosticfeature identified in muscle-invasive bladder cancer, can easily be assessed by brightfield immunohistochemistry and is therefore "ready to use" for routine pathology.
Collapse
Affiliation(s)
- Nicolaus F Debatin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Bady
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Mandelkow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zhihao Huang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magalie C J Lurati
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas B Raedler
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; College of Arts and Sciences, Boston University, Boston, MA, USA
| | - Jan H Müller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Plage
- Department of Urology, Charité Berlin, Berlin, Germany
| | - Henrik Samtleben
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Tobias Klatte
- Department of Urology, Charité Berlin, Berlin, Germany; Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | | | | | - Kira Furlano
- Department of Urology, Charité Berlin, Berlin, Germany
| | | | | | - David Horst
- Institute of Pathology, Charité Berlin, Berlin, Germany
| | | | | | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology, University Hospital Stettin, Stettin, Poland
| | | | - Thorsten H Ecke
- Department of Urology, Charité Berlin, Berlin, Germany; Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Steffen Hallmann
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Zecha
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | | | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Rodrigues-Jesus J, Canadas-Sousa A, Oliveira P, Figueira AC, Marrinhas C, Petrucci GN, Gregório H, Tinoco F, Goulart A, Felga H, Vilhena H, Dias-Pereira P. Distribution of Inflammatory Infiltrate in Feline Mammary Lesions: Relationship With Clinicopathological Features. Vet Comp Oncol 2024. [PMID: 38863270 DOI: 10.1111/vco.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Inflammation is a frequent finding in feline mammary neoplasms. Recent research suggests that the presence and location of tumour-associated immune cells might play a significant role in the clinical outcome of feline mammary carcinomas. The present study aimed to characterise the overall inflammatory infiltrates in healthy, hyperplastic/dysplastic, benign and malignant lesions of the feline mammary gland, and to evaluate its association with clinicopathological features. Perilesional and intralesional inflammatory foci were evaluated in 307 lesions from 185 queens, and categorised according to its distribution and intensity. The presence, location and density of tertiary lymphoid structures were also assessed. A control group included 24 queens without mammary changes. The presence of intralesional and perilesional inflammatory infiltrate was observed in a majority of the lesions (80.8% and 90.2%, respectively), but differed according to the type of mammary lesion, being more remarkable in malignant neoplasms. Only scarce individual cells were observed in 28.1% of the normal mammary glands. Data analysis revealed statistically significant associations (p < 0.05) between the presence of a more prominent intralesional and perilesional inflammatory reaction and several clinicopathological features associated with worse prognosis, including clinical stage, tumour size, mitotic count, lymphovascular invasion and lymph node metastasis. Furthermore, tertiary lymphoid structures were significantly more frequent in tumours with an infiltrative growth and lymph node metastasis. According to our results, the inflammatory reaction present in different types of feline mammary lesions is associated with the development of more aggressive tumours.
Collapse
Affiliation(s)
- Joana Rodrigues-Jesus
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| | - Ana Canadas-Sousa
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| | - Pedro Oliveira
- Department of Populations Studies, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| | - Ana Catarina Figueira
- OneVet Veterinary University Hospital of Coimbra (HVUC), Coimbra, Portugal
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
| | - Carla Marrinhas
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
- OneVet Veterinary Hospital of Baixo Vouga (HVBV), Águeda, Portugal
| | - Gonçalo N Petrucci
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
- OneVet Veterinary Hospital of Porto (HVP), Porto, Portugal
- Department of Animal and Veterinary Sciences, University Institute for Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Hugo Gregório
- Department of Animal and Veterinary Sciences, University Institute for Health Sciences, CESPU, CRL, Gandra, Portugal
- AniCura Veterinary Hospital Centre (CHV), Porto, Portugal
| | - Flora Tinoco
- Dra. Flora Tinoco Veterinary Clinic, Maia, Portugal
| | | | - Helena Felga
- Clínica dos Gatos Veterinary Clinic, Porto, Portugal
| | - Hugo Vilhena
- OneVet Veterinary University Hospital of Coimbra (HVUC), Coimbra, Portugal
- Centre for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Coimbra, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory of Animal and Veterinary Sciences AL4AnimaLS, Lisbon, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, ICBAS-UP, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Louault K, De Clerck YA, Janoueix-Lerosey I. The neuroblastoma tumor microenvironment: From an in-depth characterization towards novel therapies. EJC PAEDIATRIC ONCOLOGY 2024; 3:100161. [PMID: 39036648 PMCID: PMC11259008 DOI: 10.1016/j.ejcped.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Neuroblastoma is a cancer of the sympathetic nervous system that develops in young children, either as low-risk or high-risk disease. The tumor microenvironment (TME) is now recognized as an important player of the tumor ecosystem that may promote drug resistance and immune escape. Targeting the TME in combination with therapies directly targeting tumor cells therefore represents an interesting strategy to prevent the emergence of resistance in cancer and improve patient's outcome. The development of such strategies however requires an in-depth understanding of the TME landscape, due to its high complexity and intra and inter-tumoral heterogeneity. Various approaches have been used in the last years to characterize the immune and non-immune cell populations present in tumors of neuroblastoma patients, both quantitatively and qualitatively, in particular with the use of single-cell transcriptomics. It is anticipated that in the near future, both genomic and TME information in tumors will contribute to a precise approach to therapy in neuroblastoma. Deciphering the mechanisms of interaction between neuroblastoma cells and stromal or immune cells in the TME is key to identify novel therapeutic combinations. Over the last decade, numerous in vitro studies and in vivo pre-clinical experiments in immune-competent and immune-deficient models have identified therapeutic approaches to circumvent drug resistance and immune escape. Some of these studies have formed the basis for early phase I and II clinical trials in children with recurrent and refractory high-risk neuroblastoma. This review summarizes recently published data on the characterization of the TME landscape in neuroblastoma and novel strategies targeting various TME cellular components, molecules and pathways activated as a result of the tumor-host interactions.
Collapse
Affiliation(s)
- Kevin Louault
- Children’s Hospital Los Angeles, Cancer, and Blood Disease Institute, 4650 Sunset Bld., Los Angeles, CA, USA
| | - Yves A. De Clerck
- Children’s Hospital Los Angeles, Cancer, and Blood Disease Institute, 4650 Sunset Bld., Los Angeles, CA, USA
- Department of Pediatrics and Biochemistry and Molecular Medicine, University of Southern California, CA, USA
| | - Isabelle Janoueix-Lerosey
- Curie Institute, PSL Research University, Inserm U830, Paris, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Curie Institute, Paris, France
| |
Collapse
|
11
|
Li F, Ouyang J, Chen Z, Zhou Z, Milon Essola J, Ali B, Wu X, Zhu M, Guo W, Liang XJ. Nanomedicine for T-Cell Mediated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301770. [PMID: 36964936 DOI: 10.1002/adma.202301770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiang Ouyang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Zuqin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Barkat Ali
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- Food Sciences Research Institute, Pakistan Agricultural Research Council, 44000, Islamabad, Pakistan
| | - Xinyue Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Yang P, Bian ZQ, Song ZB, Yang CY, Wang L, Yao ZX. Dominant mechanism in spinal cord injury-induced immunodeficiency syndrome (SCI-IDS): sympathetic hyperreflexia. Rev Neurosci 2024; 35:259-269. [PMID: 37889575 DOI: 10.1515/revneuro-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Clinical studies have shown that individuals with spinal cord injury (SCI) are particularly susceptible to infectious diseases, resulting in a syndrome called SCI-induced immunodeficiency syndrome (SCI-IDS), which is the leading cause of death after SCI. It is believed that SCI-IDS is associated with exaggerated activation of sympathetic preganglionic neurons (SPNs). After SCI, disruption of bulbospinal projections from the medulla oblongata C1 neurons to the SPNs results in the loss of sympathetic inhibitory modulation from the brain and brainstem and the occurrence of abnormally high levels of spinal sympathetic reflexes (SSR), named sympathetic hyperreflexia. As the post-injury survival time lengthens, mass recruitment and anomalous sprouting of excitatory interneurons within the spinal cord result in increased SSR excitability, resulting in an excess sympathetic output that disrupts the immune response. Therefore, we first analyze the structural underpinnings of the spinal cord-sympathetic nervous system-immune system after SCI, then demonstrate the progress in highlighting mechanisms of SCI-IDS focusing on norepinephrine (NE)/Beta 2-adrenergic receptor (β2-AR) signal pathways, and summarize recent preclinical studies examining potential means such as regulating SSR and inhibiting β2-AR signal pathways to improve immune function after SCI. Finally, we present research perspectives such as to promote the effective regeneration of C1 neurons to rebuild the connection of C1 neurons with SPNs, to regulate excitable or inhibitory interneurons, and specifically to target β2-AR signal pathways to re-establish neuroimmune balance. These will help us design effective strategies to reverse post-SCI sympathetic hyperreflexia and improve the overall quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi-Qun Bian
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhen-Bo Song
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng-Ying Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhong-Xiang Yao
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
13
|
Levstek L, Janžič L, Ihan A, Kopitar AN. Biomarkers for prediction of CAR T therapy outcomes: current and future perspectives. Front Immunol 2024; 15:1378944. [PMID: 38558801 PMCID: PMC10979304 DOI: 10.3389/fimmu.2024.1378944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy holds enormous potential for the treatment of hematologic malignancies. Despite its benefits, it is still used as a second line of therapy, mainly because of its severe side effects and patient unresponsiveness. Numerous researchers worldwide have attempted to identify effective predictive biomarkers for early prediction of treatment outcomes and adverse effects in CAR T cell therapy, albeit so far only with limited success. This review provides a comprehensive overview of the current state of predictive biomarkers. Although existing predictive metrics correlate to some extent with treatment outcomes, they fail to encapsulate the complexity of the immune system dynamics. The aim of this review is to identify six major groups of predictive biomarkers and propose their use in developing improved and efficient prediction models. These groups include changes in mitochondrial dynamics, endothelial activation, central nervous system impairment, immune system markers, extracellular vesicles, and the inhibitory tumor microenvironment. A comprehensive understanding of the multiple factors that influence therapeutic efficacy has the potential to significantly improve the course of CAR T cell therapy and patient care, thereby making this advanced immunotherapy more appealing and the course of therapy more convenient and favorable for patients.
Collapse
Affiliation(s)
| | | | | | - Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Yan M, Wu R, Fu H, Hu C, Hao Y, Zeng J, Chen T, Wang Y, Wang Y, Hu J, Jin A. Integrated analysis of single-cell and bulk RNA sequencing data reveals the association between hypoxic tumor cells and exhausted T cells in predicting immune therapy response. Comput Biol Med 2024; 171:108179. [PMID: 38394803 DOI: 10.1016/j.compbiomed.2024.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Continuous stimulation of tumor neoantigens and various cytokines in the tumor microenvironment leads to T cell dysfunction, but the specific mechanisms by which these key factors are distributed among different cell subpopulations and how they affect patient outcomes and treatment response are incompletely characterized. By integrating single-cell and bulk sequencing data of non-small cell lung cancer patients, we constructed a clinical outcome-associated T cell exhaustion signature. We discovered a significant association between the T cell exhaustion state and tumor cell hypoxia. Hypoxic malignant cells were significantly correlated with the proportion of exhausted T cells, and they co-occurred in patients at advanced stage. By analyzing the ligand-receptor interactions between these two cell states, we observed that T cells were recruited towards tumor cells through production of chemokines such as CXCL16-CXCR6 axis and CCL3/CCL4/CCL5-CCR5 axis. Based on 15 immune checkpoint blockade (ICB)-treatment cohorts, we constructed an interaction signature that can be used to predict the response to immune checkpoint blockade therapy. Among genes composed of the signature, CXCR6 alone has similarly high prediction efficacy (Area Under Curve (AUC) = 1, 0.89 and 0.73 for GSE126044, GSE135222 and GSE93157, respectively) with the signature and thus could serve as a potential biomarker for predicting immunotherapy response. Together, we have discovered and validated a significant association between exhausted T cells and hypoxic malignant cells, elucidating key interaction factors that significantly associated with response to immunotherapy.
Collapse
Affiliation(s)
- Min Yan
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Ruixin Wu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Han Fu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chao Hu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yanan Hao
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jie Zeng
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Tong Chen
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yingming Wang
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yingying Wang
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jing Hu
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
15
|
Hamilton AG, Swingle KL, Joseph RA, Mai D, Gong N, Billingsley MM, Alameh MG, Weissman D, Sheppard NC, June CH, Mitchell MJ. Ionizable Lipid Nanoparticles with Integrated Immune Checkpoint Inhibition for mRNA CAR T Cell Engineering. Adv Healthc Mater 2023; 12:e2301515. [PMID: 37602495 DOI: 10.1002/adhm.202301515] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/13/2023] [Indexed: 08/22/2023]
Abstract
The programmed cell death protein 1 (PD-1) signaling pathway is a major source of dampened T cell activity in the tumor microenvironment. While clinical approaches to inhibiting the PD-1 pathway using antibody blockade have been broadly successful, these approaches lead to widespread PD-1 suppression, increasing the risk of autoimmune reactions. This study reports the development of an ionizable lipid nanoparticle (LNP) platform for simultaneous therapeutic gene expression and RNA interference (RNAi)-mediated transient gene knockdown in T cells. In developing this platform, interesting interactions are observed between the two RNA cargoes when co-encapsulated, leading to improved expression and knockdown characteristics compared to delivering either cargo alone. This messenger RNA (mRNA)/small interfering RNA (siRNA) co-delivery platform is adopted to deliver chimeric antigen receptor (CAR) mRNA and siRNA targeting PD-1 to primary human T cells ex vivo and strong CAR expression and PD-1 knockdown are observed without apparent changes to overall T cell activation state. This delivery platform shows great promise for transient immune gene modulation for a number of immunoengineering applications, including the development of improved cancer immunotherapies.
Collapse
Affiliation(s)
- Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Mai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil C Sheppard
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Chang C, Pei Y, Zhang C, Zhang W, Qin Y, Shi S. Combination therapy with dendritic cell loaded-exosomes supplemented with PD-1 inhibition at different time points have superior antitumor effect in hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:3727-3738. [PMID: 37665374 PMCID: PMC10991982 DOI: 10.1007/s00262-023-03525-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Hepatocellular carcinoma (HCC), a prevalent cause of cancer-related deaths, is insensitive to traditional treatments. At different time intervals, the combined antitumor effects of DC-TEX and the programmed death protein 1 (PD-1) antibody (Ab) have not been investigated. In this study, HCC models were established and treated at different time intervals with DC-TEX alone or in combination with PD-1 Ab. In addition, we developed an orthotopic HCC model in BALB/c nude mice and restored T cells. Results demonstrated that the PD-1 + CD8 + T-cell population also increased significantly after DC-TEX treatment, in addition to the increased number of CD8 + T cells. The number of CD8 + T cells increased 72 h after DC-TEX administration. Similar observations were made for PD-1 + CD8 + T cells. Subsequently, PD-1 Ab was administered in combination with DC-TEX at different time points (0, 24, 72, 96, 120, or 168 h). Surprisingly, the combination treatment demonstrated a strong antitumor effect, which was very prominent when PD-1 Ab was administered at 72 h. PD-1 Ab significantly reversed the proliferative ability of PD-1 + CD8 + T cells at 72 h in vitro. The combined antitumor effects of PD-1 Ab and DC-TEX occurred mainly by stimulating CD8 + T cell proliferation and inhibiting T cell exhaustion. In conclusion, our results indicate that the combination of DC-TEX and PD-1 Ab significantly inhibits tumor growth in a murine HCC model and that the timing of PD-1 Ab administration impacts the antitumor effect.
Collapse
Affiliation(s)
- Chunxiao Chang
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, #440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Yanqing Pei
- Department of Infection Management, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Chuangnian Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, 300192, China
| | - Wenyu Zhang
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, #440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Yibo Qin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, 300192, China
| | - Shengbin Shi
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, #440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, 300192, China.
| |
Collapse
|
18
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
19
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Liao Y, Chen Y, Liu S, Wang W, Fu S, Wu J. Low-dose total body irradiation enhances systemic anti-tumor immunity induced by local cryotherapy. J Cancer Res Clin Oncol 2023; 149:10053-10063. [PMID: 37261526 DOI: 10.1007/s00432-023-04928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Strategies that restore the immune system's ability to recognize malignant cells have yielded clinical benefits but only in some patients. Tumor cells survive cryotherapy and produce a vast amount of antigens to trigger innate and adaptive responses. However, because tumor cells have developed immune escape mechanisms, cryotherapy alone may not be enough to induce a significant immune response. METHODS The mice were randomly divided into four groups: Group A: low-dose total body irradiation combined with cryotherapy (L-TBI+cryo); Group B: cryotherapy (cryo); Group C: low-dose total body irradiation(L-TBI); Group D: control group (Control). The tumor growth, recurrence, and survival time of mice in each group were compared and the effects of different treatments on systemic anti-tumor immunity were explored. RESULTS L-TBI in conjunction with cryotherapy can effectively control tumor regrowth, inhibit tumor lung metastasis, extend the survival time of mice, and stimulate a long-term protective anti-tumor immune response to resist the re-challenge of tumor cells. The anti-tumor mechanism of this combination therapy may be related to the stimulation of inflammatory factors IFN-γ and IL-2, as well as an increase in immune effector cells (CD8+ T cells) and a decrease in immunosuppressive cells (MDSC, Treg cells) in the spleen or tumor tissue. CONCLUSIONS We present unique treatment options for enhancing the immune response caused by cryotherapy, pointing to the way forward for cancer treatment.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Weizhou Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
| |
Collapse
|
21
|
Bertolini M, Wong MS, Mendive-Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies. Chem Soc Rev 2023; 52:5352-5372. [PMID: 37376918 PMCID: PMC10424634 DOI: 10.1039/d2cs00928e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 06/29/2023]
Abstract
T cells are an essential part of the immune system with crucial roles in adaptive response and the maintenance of tissue homeostasis. Depending on their microenvironment, T cells can be differentiated into multiple states with distinct functions. This myriad of cellular activities have prompted the development of numerous smart probes, ranging from small molecule fluorophores to nanoconstructs with variable molecular architectures and fluorescence emission mechanisms. In this Tutorial Review, we summarize recent efforts in the design, synthesis and application of smart probes for imaging T cells in tumors and inflammation sites by targeting metabolic and enzymatic biomarkers as well as specific surface receptors. Finally, we briefly review current strategies for how smart probes are employed to monitor the response of T cells to anti-cancer immunotherapies. We hope that this Review may help chemists, biologists and immunologists to design the next generation of molecular imaging probes for T cells and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Man Sing Wong
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
22
|
Hegde MM, Sandbhor P, J. A, Gota V, Goda JS. Insight into lipid-based nanoplatform-mediated drug and gene delivery in neuro-oncology and their clinical prospects. Front Oncol 2023; 13:1168454. [PMID: 37483515 PMCID: PMC10357293 DOI: 10.3389/fonc.2023.1168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Tumors of the Central nervous System (CNS) are a spectrum of neoplasms that range from benign lesions to highly malignant and aggressive lesions. Despite aggressive multimodal treatment approaches, the morbidity and mortality are high with dismal survival outcomes in these malignant tumors. Moreover, the non-specificity of conventional treatments substantiates the rationale for precise therapeutic strategies that selectively target infiltrating tumor cells within the brain, and minimize systemic and collateral damage. With the recent advancement of nanoplatforms for biomaterials applications, lipid-based nanoparticulate systems present an attractive and breakthrough impact on CNS tumor management. Lipid nanoparticles centered immunotherapeutic agents treating malignant CNS tumors could convene the clear need for precise treatment strategies. Immunotherapeutic agents can selectively induce specific immune responses by active or innate immune responses at the local site within the brain. In this review, we discuss the therapeutic applications of lipid-based nanoplatforms for CNS tumors with an emphasis on revolutionary approaches in brain targeting, imaging, and drug and gene delivery with immunotherapy. Lipid-based nanoparticle platforms represent one of the most promising colloidal carriers for chemotherapeutic, and immunotherapeutic drugs. Their current application in oncology especially in brain tumors has brought about a paradigm shift in cancer treatment by improving the antitumor activity of several agents that could be used to selectively target brain tumors. Subsequently, the lab-to-clinic transformation and challenges towards translational feasibility of lipid-based nanoplatforms for drug and gene/immunotherapy delivery in the context of CNS tumor management is addressed.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Aishwarya J.
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Vikram Gota
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Jayant S. Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
23
|
Qadir J, Wen SY, Yuan H, Yang BB. CircRNAs regulate the crosstalk between inflammation and tumorigenesis: The bilateral association and molecular mechanisms. Mol Ther 2023; 31:1514-1532. [PMID: 36518080 PMCID: PMC10278049 DOI: 10.1016/j.ymthe.2022.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of the chemotherapeutic agents in cancer. Chronic inflammation provides a favorable environment for tumorigenesis by inducing immunosuppression, whereas acute inflammation prompts tumor suppression by generating anti-tumor immune responses. Inflammatory factors derived from interstitial cells or tumor cells can stimulate cell proliferation and survival by modulating oncogenes and/or tumor suppressors. Recently, a new class of RNAs, i.e., circular RNAs (circRNAs), has been implicated in inflammatory diseases. Although there are reports on circRNAs imparting functions in inflammatory insults, whether these circularized transcripts hold the potential to regulate inflammation-induced cancer or tumor-related inflammation, and modulate the interactions between tumor microenvironment (TME) and the inflammatory stromal/immune cells, awaits further elucidation. Contextually, the current review describes the molecular association between inflammation and cancer, and spotlights the regulatory mechanisms by which circRNAs can moderate TME in response to inflammatory signals/triggers. We also present comprehensive information about the immune cell(s)-specific expression and functions of the circRNAs in TME, modulation of inflammatory signaling pathways to drive tumorigenesis, and their plausible roles in inflammasomes and tumor development. Moreover, the therapeutic potential of these circRNAs in harnessing inflammatory responses in cancer is also discussed.
Collapse
Affiliation(s)
- Javeria Qadir
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shuo-Yang Wen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Metformin enhances T lymphocyte anti-tumor immunity by increasing the infiltration via vessel normalization. Eur J Pharmacol 2023; 944:175592. [PMID: 36804835 DOI: 10.1016/j.ejphar.2023.175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Abnormal tumor vasculature blocks the extravasation of T lymphocytes into the tumor, thereby suppressing anti-tumor immunity. Recently, metformin has been shown to affect tumor vasculature and enhance T lymphocyte anti-tumor immunity. However, whether or how metformin affects T lymphocyte anti-tumor immunity via a vascular mechanism remains poorly understood. Herein, we show that a large number of CD8+ lymphocytes gathered in the peri-tumoral region, while very few infiltrated the tumor. Metformin administration increased the expression of anti-tumor immunity-associated genes and the number of tumor-infiltrating CD8+ lymphocytes. Injection of CD8 but not CD4 neutralization antibody into tumor-bearing mice significantly abrogated the anti-tumor effect of metformin. Critically, CD8+ lymphocytes were found to pass through the wall of perfused vessel. Further results of immunofluorescent staining showed that metformin greatly elevated tumor perfusion, which was accompanied by increased vascular maturity in the intratumoral region (ITR) but not peritumoral region (PTR). These findings provide evidence for the vascular mechanism involved in metformin-induced enhancement of T lymphocyte anti-tumor immunity. By remodeling the abnormal tumor vasculature, also called vessel normalization metformin increases vascular maturity and tumor perfusion, thus allowing more CD8+ lymphocytes to infiltrate the tumor.
Collapse
|
25
|
Hu P, Ma J, Chen J. A systematic and comprehensive analysis of T cell exhaustion related to therapy in lung adenocarcinoma tumor microenvironment. Front Pharmacol 2023; 14:1126916. [PMID: 36814485 PMCID: PMC9939659 DOI: 10.3389/fphar.2023.1126916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Background: T cell exhaustion (TEX) is an important immune escape mechanism, and an in-depth understanding of it can help improve cancer immunotherapy. However, the prognostic role of TEX in malignant lung adenocarcinoma (LUAD) remains unclear. Methods: Through TCGA and GEO datasets, we enrolled a total of 498 LUAD patients. The patients in TCGA-LUAD were unsupervised clustered into four clusters according to TEX signaling pathway. WGCNA analysis, survival random forest analysis and lasso regression analysis were used to select five differentially expressed genes among different clusters to construct a TEX risk model. The risk model was subsequently validated with GEO31210. By analyzing signaling pathways, immune cells and immune checkpoints using GSEA, GSVA and Cibersortx, the relationship between TEX risk score and these variables was evaluated. In addition, we further analyzed the expression of CCL20 at the level of single-cell RNA-seq and verified it in cell experiments. Results: According to TEX signaling pathway, people with better prognosis can be distinguished. The risk model constructed by CD109, CCL20, DKK1, TNS4, and TRIM29 genes could further accurately identify the population with poor prognosis. Subsequently, it was found that dendritic cells, CD44 and risk score were closely related. The final single-cell sequencing suggested that CCL2O is a potential therapeutic target of TEX, and the interaction between TEX and CD8 + T is closely related. Conclusion: The classification of T cell depletion plays a crucial role in the clinical decision-making of lung adenocarcinoma and needs to be further deepened.
Collapse
Affiliation(s)
- Peipei Hu
- Department of General Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahao Ma
- Department of General Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Nano-carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, School of Pharmacy, Xinxiang University, Xinxiang, China,*Correspondence: Jiahao Ma, ; Jinjian Chen,
| | - Jinjian Chen
- Department of General Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Jiahao Ma, ; Jinjian Chen,
| |
Collapse
|
26
|
Kim M, Lee NK, Wang CPJ, Lim J, Byun MJ, Kim TH, Park W, Park DH, Kim SN, Park CG. Reprogramming the tumor microenvironment with biotechnology. Biomater Res 2023; 27:5. [PMID: 36721212 PMCID: PMC9890796 DOI: 10.1186/s40824-023-00343-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/22/2023] [Indexed: 02/02/2023] Open
Abstract
The tumor microenvironment (TME) is a unique environment that is developed by the tumor and controlled by tumor-induced interactions with host cells during tumor progression. The TME includes immune cells, which can be classified into two types: tumor- antagonizing and tumor-promoting immune cells. Increasing the tumor treatment responses is associated with the tumor immune microenvironment. Targeting the TME has become a popular topic in research, which includes polarizing macrophage phenotype 2 into macrophage phenotype 1 using Toll-like receptor agonists with cytokines, anti-CD47, and anti-SIPRα. Moreover, inhibiting regulatory T cells through blockades and depletion restricts immunosuppressive cells in the TME. Reprogramming T cell infiltration and T cell exhaustion improves tumor infiltrating lymphocytes, such as CD8+ or CD4+ T cells. Targeting metabolic pathways, including glucose, lipid, and amino acid metabolisms, can suppress tumor growth by restricting the absorption of nutrients and adenosine triphosphate energy into tumor cells. In conclusion, these TME reprogramming strategies exhibit more effective responses using combination treatments, biomaterials, and nanoparticles. This review highlights how biomaterials and immunotherapy can reprogram TME and improve the immune activity.
Collapse
Affiliation(s)
- Minjeong Kim
- grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Na Kyeong Lee
- grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Chi-Pin James Wang
- grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Jaesung Lim
- grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Min Ji Byun
- grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Tae-Hyung Kim
- grid.254224.70000 0001 0789 9563School of Integrative Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974 Republic of Korea
| | - Wooram Park
- grid.264381.a0000 0001 2181 989XDepartment of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Dae-Hwan Park
- grid.254229.a0000 0000 9611 0917Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea ,grid.254229.a0000 0000 9611 0917Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea ,grid.254229.a0000 0000 9611 0917Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea ,grid.254229.a0000 0000 9611 0917LANG SCIENCE Inc., Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju, Chungbuk 28644 Republic of Korea
| | - Chun Gwon Park
- grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea ,Research and Development Center, MediArk Inc., Cheongju, Chungbuk 28644 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi 16419 Republic of Korea ,grid.410720.00000 0004 1784 4496Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi 16419 Republic of Korea
| |
Collapse
|
27
|
Guo Z, Zhang R, Yang AG, Zheng G. Diversity of immune checkpoints in cancer immunotherapy. Front Immunol 2023; 14:1121285. [PMID: 36960057 PMCID: PMC10027905 DOI: 10.3389/fimmu.2023.1121285] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Finding effective treatments for cancer remains a challenge. Recent studies have found that the mechanisms of tumor evasion are becoming increasingly diverse, including abnormal expression of immune checkpoint molecules on different immune cells, in particular T cells, natural killer cells, macrophages and others. In this review, we discuss the checkpoint molecules with enhanced expression on these lymphocytes and their consequences on immune effector functions. Dissecting the diverse roles of immune checkpoints in different immune cells is crucial for a full understanding of immunotherapy using checkpoint inhibitors.
Collapse
Affiliation(s)
- Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guoxu Zheng, ; An-Gang Yang,
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guoxu Zheng, ; An-Gang Yang,
| |
Collapse
|
28
|
Hu Y, Mohammad Mirzaei N, Shahriyari L. Bio-Mechanical Model of Osteosarcoma Tumor Microenvironment: A Porous Media Approach. Cancers (Basel) 2022; 14:cancers14246143. [PMID: 36551627 PMCID: PMC9777270 DOI: 10.3390/cancers14246143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescents with a poor prognosis. To describe the progression of osteosarcoma, we expanded a system of data-driven ODE from a previous study into a system of Reaction-Diffusion-Advection (RDA) equations and coupled it with Biot equations of poroelasticity to form a bio-mechanical model. The RDA system includes the spatio-temporal information of the key components of the tumor microenvironment. The Biot equations are comprised of an equation for the solid phase, which governs the movement of the solid tumor, and an equation for the fluid phase, which relates to the motion of cells. The model predicts the total number of cells and cytokines of the tumor microenvironment and simulates the tumor's size growth. We simulated different scenarios using this model to investigate the impact of several biomedical settings on tumors' growth. The results indicate the importance of macrophages in tumors' growth. Particularly, we have observed a high co-localization of macrophages and cancer cells, and the concentration of tumor cells increases as the number of macrophages increases.
Collapse
|
29
|
The Association of CD8+ Cytotoxic T Cells and Granzyme B+ Lymphocytes with Immunosuppressive Factors, Tumor Stage and Prognosis in Cutaneous Melanoma. Biomedicines 2022; 10:biomedicines10123209. [PMID: 36551965 PMCID: PMC9775436 DOI: 10.3390/biomedicines10123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) consists of suppressive cells producing a variety of immunomodulatory proteins, such as programmed death ligand 1 (PD-L1) and indoleamine-2,3-dioxygenase (IDO). Although granzyme B (GrB) is known to convey the cytolytic activities of CD8+ cytotoxic lymphocytes, it is also expressed by other cells, such as regulatory T and B cells, for immunosuppressive purposes. The role of GrB+ lymphocytes in melanoma has not been examined extensively. In this study, benign, premalignant, and malignant melanocytic tumors were stained immunohistochemically for CD8 and GrB. PD-L1 was also stained from malignant samples that had accompanying clinicopathological data. The association of CD8+ and GrB+ lymphocytes with PD-L1 expression, tumor stage, prognosis, and previously analyzed immunosuppressive factors were evaluated. Our aim was to obtain a more comprehensive perception of the immunosuppressive TME in melanoma. The results show that both CD8+ and GrB+ lymphocytes were more abundant in pT4 compared to pT1 melanomas, and in lymph node metastases compared to primary melanomas. Surprisingly, a low GrB/CD8 ratio was associated with better recurrence-free survival in primary melanomas, which indicates that GrB+ lymphocytes might represent activated immunosuppressive lymphocytes rather than cytotoxic T cells. In the present study, CD8+ lymphocytes associated positively with both tumor and stromal immune cell PD-L1 and IDO expression. In addition, PD-L1+ tumor and stromal immune cells associated positively with IDO+ stromal immune and melanoma cells. The data suggest that IDO and PD-L1 seem to be key immunosuppressive factors in CD8+ lymphocyte-predominant tumors in CM.
Collapse
|
30
|
Lindsay RS, Melssen MM, Stasiak K, Annis JL, Woods AN, Rodriguez AB, Brown MG, Engelhard VH. NK cells reduce anergic T cell development in early-stage tumors by promoting myeloid cell maturation. Front Oncol 2022; 12:1058894. [PMID: 36531040 PMCID: PMC9755581 DOI: 10.3389/fonc.2022.1058894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Studies of NK cells in tumors have primarily focused on their direct actions towards tumor cells. We evaluated the impact of NK cells on expression of homing receptor ligands on tumor vasculature, intratumoral T cell number and function, and T cell activation in tumor draining lymph node. Methods Using an implantable mouse model of melanoma, T cell responses and homing receptor ligand expression on the vasculature were evaluated with and without NK cells present during the early stages of the tumor response by flow cytometry. Results NK cells in early-stage tumors are one source of IFNγ that augments homing receptor ligand expression. More significantly, NK cell depletion resulted in increased numbers of intratumoral T cells with an anergic phenotype. Anergic T cell development in tumor draining lymph node was associated with increased T-cell receptor signaling but decreased proliferation and effector cell activity, and an incomplete maturation phenotype of antigen presenting cells. These effects of NK depletion were similar to those of blocking CD40L stimulation. Discussion We conclude that an important function of NK cells is to drive proper APC maturation via CD40L during responses to early-stage tumors, reducing development of anergic T cells. The reduced development of anergic T cells resulting in improved tumor control and T cell responses when NK cells were present.
Collapse
Affiliation(s)
- Robin S. Lindsay
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Marit M. Melssen
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Katarzyna Stasiak
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Jessica L. Annis
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Amber N. Woods
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Anthony B. Rodriguez
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Michael G. Brown
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Victor H. Engelhard
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
31
|
Abstract
Significance: Cancer immunotherapy has yielded striking antitumor effects in many cancers, yet the proportion of benefited patients is still limited. As key mediators of tumor suppression, CD8+ T cells are crucial for cancer immunotherapy. It has been widely appreciated that the modulation of CD8+ T cell immunity could be an effective way to further improve the therapeutic benefit of immunotherapy. Recent Advances: Emerging evidence has underlined a close link between metabolism and immune functions, providing a metabolism-immune axis that is increasingly investigated for understanding CD8+ T cell regulation. On the other hand, growing findings have reported that tumors adopt multiple approaches to induce metabolic reprogramming of CD8+ T cells, leading to compromised immunotherapy. Critical Issues: CD8+ T cell metabolism in the tumor microenvironment (TME) is often adapted to diminish antitumor immune responses and thereby evade from immune surveillance. A better understanding of metabolic regulation of CD8+ T cells in the TME is believed to hold promise for opening a new therapeutic window to further improve the benefit of immunotherapy. We herein review the mechanistic understanding of how CD8+ T cell metabolism is reprogrammed in the TME, mainly focusing on the impact of nutrient availability and bioactive molecules secreted by surrounding cells. Future Directions: Future research should pay attention to tumor heterogeneity in the metabolic microenvironment and associated immune responses. It is also important to include the trending opinion of "precision medicine" in cancer immunotherapies to tailor metabolic interventions for individual patients in combination with immunotherapy treatments. Antioxid. Redox Signal. 37, 1234-1253.
Collapse
Affiliation(s)
- Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Akbari B, Hosseini Z, Shahabinejad P, Ghassemi S, Mirzaei HR, O'Connor RS. Metabolic and epigenetic orchestration of (CAR) T cell fate and function. Cancer Lett 2022; 550:215948. [DOI: 10.1016/j.canlet.2022.215948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
33
|
Wang ST, Chou CH, Chen TT, Lin CC, Bai LY, Yeh SP, Ho MW, Lien MY. High rate of invasive fungal infections during early cycles of azacitidine for patients with acute myeloid leukemia. Front Cell Infect Microbiol 2022; 12:1012334. [PMID: 36530436 PMCID: PMC9748082 DOI: 10.3389/fcimb.2022.1012334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a form of cancer that is characterized by infiltration of the bone marrow, blood, and other tissues by proliferative, clonal, abnormally differentiated, and occasionally poorly differentiated cells of the hematopoietic system. Patients with acute myeloid leukemia (AML) receiving azacitidine (AZA) alone or in combination with venetoclax (VEN-AZA) are at increased risk for invasive fungal infections (IFIs). We compared the incidence and risk of IFI during these treatment regimens in a single Taiwan hospital. Materials and methods A total of 61 patients with AML received at least one course of AZA in the hematology ward of China Medical University Hospital (Taichung, Taiwan) between September 2012 and June 2020. Thirty-eight patients (62.3%) received AZA monotherapy; 23 (37.7%) received VEN-AZA. Results Incidence rates of probable and proven IFI were 18% and 1.6%, respectively, during AZA treatment. One proven case of Fusarium spp. infection was isolated by skin and soft tissue culture. Most (75%) IFI cases occurred during the first cycle of AZA therapy. Half of all IFI cases occurred in patients with prolonged neutropenia. The risk of IFI was significantly higher for the European LeukemiaNet (ELN) nonfavorable-risk group (intermediate- and adverse-risk group) versus the ELN favorable-risk group and for patients with prolonged neutropenia versus those without (P<0.05 for both comparisons). In this study, median OS did not differ significantly between patients with and without IFIs during AZA-containing regimens (14.6 months vs 13.7 months; P=0.59). Conclusion The incidence of IFI was high in this AML cohort treated with AZA-containing regiments in Taiwan. The majority of IFI cases occurred during the early cycles of AZA (cycles 1-2). Prospective studies are needed to determine the optimal choice of antifungal prophylaxis agent during VEN-AZA therapy for AML.
Collapse
Affiliation(s)
- Sing-Ting Wang
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Huei Chou
- Division of Infection Disease, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Ting Chen
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan,Department of Internal Medicine, Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Peng Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan,Department of Internal Medicine, Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Division of Infection Disease, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yu Lien
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan,*Correspondence: Ming-Yu Lien,
| |
Collapse
|
34
|
Qiu W, Sang T, Chen H, Zhou H, Wang Z, Zhou H. Wenzi Jiedu Recipe ameliorates colorectal cancer by remodeling the gut microbiota and tumor microenvironment. Front Oncol 2022; 12:915498. [PMID: 36212428 PMCID: PMC9541612 DOI: 10.3389/fonc.2022.915498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionWenzi Jiedu Recipe (WJR), traditional Chinese medicine (TCM) formula, has been proven to be clinically useful in the treatment of colorectal cancer (CRC). However, its underlying mechanisms are still elusive, which limits its wider application. Thus, we aimed to evaluate the effect of WJR on CRC and elucidate mechanisms underlying its action.MethodsNetwork pharmacology was employed to clarify the “herb-active ingredient-target” network of WJR. The 16S rDNA sequencing method was used to analyze the changes of gut microbes mediated by WJR in tumor-bearing mice with CRC. The proportions of CD4+ T cell and CD8+ T cell were measured by flow cytometry. Levels of the cytokines interleukin (IL)-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were assessed by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA).ResultsWJR showed significant anti-CRC effects both in vitro and in vivo. Network pharmacology revealed that WJR exerts anti-CRC therapeutic effect on multiple targets and signaling pathways. Gut microbiota analysis revealed that WJR therapy significantly enriched for Oscillibacter and Bacteroides_acidifacien. In particular, we found that WJR significantly increased the proportion of CD8+ T cells and the expression of immune-associated cytokines IL-10, IFN-γ, and TNF-α.ConclusionThe regulation of gut microbiota by WJR may be the breakthrough point to clarify its mechanism of action in the treatment of CRC, and it has a good prospect of clinical application.
Collapse
Affiliation(s)
- Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianqing Sang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongguang Zhou,
| |
Collapse
|
35
|
Zhang Z, Chen L, Chen H, Zhao J, Li K, Sun J, Zhou M. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine 2022; 83:104207. [PMID: 35961204 PMCID: PMC9382263 DOI: 10.1016/j.ebiom.2022.104207] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND T cells form the major component of anti-tumor immunity. A deeper understanding of T cell exhaustion (TEX) heterogeneity within the tumor microenvironment (TME) is key to overcoming TEX and improving checkpoint blockade immunotherapies in the clinical setting. METHODS We conducted a comprehensive pan-cancer analysis of TEX subsets from 9564 tumor samples across 30 bulk solid cancer types. Pan-cancer TEX subtypes were identified using literature-derived hierarchical TEX-specific developmental pathway signatures. The potential multi-omics and clinical features involved in TEX heterogeneity were determined. FINDINGS Our study yielded a dynamic, progressive roadmap and a hierarchical dysfunction landscape regarding TEX within the TME. In total, we identified five pan-cancer TEX subtypes, revealing tissue/cancer type-specific TEX patterns in low immunogenic tumors. By contrast, highly immunogenic tumors tend to harbor high frequencies of progenitor TEX subsets. In addition, the TEX profile also revealed distinct prognoses, intrinsic molecular subtype distribution, immune microenvironment and multi-omics features among the cancers. Network analysis identified four previously unknown TEX-associated cancer genes (tolloid-like 1, myosin heavy chain 111, P2Y receptor family member 8 and protein kinase D2), the possible association with anti-PD-1 immunotherapy response was validated using a single-cell dataset. Finally, a machine learning-based gene signature was developed to model the hierarchical TEX stages, verified in single-cell and immunotherapy patient cohorts. INTERPRETATION Our study provided a TEX-derived system that can be applied for the immune subtyping of cancers and may have implications for the further optimization of personalized cancer immunotherapy. FUNDING This study was supported by the National Natural Science Foundation of China (Grant No. 62072341 and 61973240). The funders had no roles in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Zicheng Zhang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Lu Chen
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongyan Chen
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jingting Zhao
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Ke Li
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Sun
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Meng Zhou
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
36
|
Costa A, Thirant C, Kramdi A, Pierre-Eugène C, Louis-Brennetot C, Blanchard O, Surdez D, Gruel N, Lapouble E, Pierron G, Sitbon D, Brisse H, Gauthier A, Fréneaux P, Bohec M, Raynal V, Baulande S, Leclere R, Champenois G, Nicolas A, Meseure D, Bellini A, Marabelle A, Geoerger B, Mechta-Grigoriou F, Schleiermacher G, Menger L, Delattre O, Janoueix-Lerosey I. Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma. J Immunother Cancer 2022; 10:jitc-2022-004807. [PMID: 36054452 PMCID: PMC9362821 DOI: 10.1136/jitc-2022-004807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment.
Collapse
Affiliation(s)
- Ana Costa
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Thirant
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Amira Kramdi
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Pierre-Eugène
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Caroline Louis-Brennetot
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Orphée Blanchard
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Didier Surdez
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nadege Gruel
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Department of Translational Research, Institut Curie, Paris, France
| | - Eve Lapouble
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Deborah Sitbon
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Hervé Brisse
- Department of Imaging, PSL Research University, Institut Curie, Paris, France
| | | | - Paul Fréneaux
- Department of Biopathology, Institut Curie, Paris, France
| | - Mylène Bohec
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Virginie Raynal
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Renaud Leclere
- Department of Biopathology, Institut Curie, Paris, France
| | | | - Andre Nicolas
- Department of Biopathology, Institut Curie, Paris, France
| | - Didier Meseure
- Department of Biopathology, Institut Curie, Paris, France
| | - Angela Bellini
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Aurelien Marabelle
- Inserm U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Birgit Geoerger
- Inserm U1015, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- Inserm U830, Equipe labelisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Centre, Paris, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Laurie Menger
- Inserm U932, PSL Research University, Institut Curie, Paris, France
| | - Olivier Delattre
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France .,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| |
Collapse
|
37
|
Hunt EG, Andrews AM, Larsen SR, Thaxton JE. The ER-Mitochondria Interface as a Dynamic Hub for T Cell Efficacy in Solid Tumors. Front Cell Dev Biol 2022; 10:867341. [PMID: 35573704 PMCID: PMC9091306 DOI: 10.3389/fcell.2022.867341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
The endoplasmic reticulum (ER) is a large continuous membranous organelle that plays a central role as the hub of protein and lipid synthesis while the mitochondria is the principal location for energy production. T cells are an immune subset exhibiting robust dependence on ER and mitochondrial function based on the need for protein synthesis and secretion and metabolic dexterity associated with foreign antigen recognition and cytotoxic effector response. Intimate connections exist at mitochondrial-ER contact sites (MERCs) that serve as the structural and biochemical platforms for cellular metabolic homeostasis through regulation of fission and fusion as well as glucose, Ca2+, and lipid exchange. Work in the tumor immunotherapy field indicates that the complex interplay of nutrient deprivation and tumor antigen stimulation in the tumor microenvironment places stress on the ER and mitochondria, causing dysfunction in organellar structure and loss of metabolic homeostasis. Here, we assess prior literature that establishes how the structural interface of these two organelles is impacted by the stress of solid tumors along with recent advances in the manipulation of organelle homeostasis at MERCs in T cells. These findings provide strong evidence for increased tumor immunity using unique therapeutic avenues that recharge cellular metabolic homeostasis in T cells.
Collapse
Affiliation(s)
- Elizabeth G. Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Alex M. Andrews
- Hollings Cancer Center, Charleston, SC, United States,Department of Orthopedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Jessica E. Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States,*Correspondence: Jessica E. Thaxton,
| |
Collapse
|
38
|
Chaudhary O, Trotta D, Wang K, Wang X, Chu X, Bradley C, Okulicz J, Maves RC, Kronmann K, Schofield CM, Blaylock JM, Deng Y, Schalper KA, Kaech SM, Agan B, Ganesan A, Emu B. Patients with HIV-associated cancers have evidence of increased T cell dysfunction and exhaustion prior to cancer diagnosis. J Immunother Cancer 2022; 10:jitc-2022-004564. [PMID: 35470232 PMCID: PMC9039380 DOI: 10.1136/jitc-2022-004564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND People living with HIV (PLWH) have increased risk of developing cancers after controlling traditional risk factors and viral suppression. This study explores whether T cells can serve as a marker of risk for cancer among HIV-infected virally suppressed patients. METHODS A nested case control study design was pursued with 17 cancer cases and 73 controls (PLWH without cancer)ouidentified among the US Military HIV Natural History Study cohort, and were matched for CD4 + count, duration of HIV infection, and viral suppression. Cells were obtained from PLWH on an average of 12 months prior to clinical cancer diagnosis. Expression of inhibitory receptors (PD-1, CD160, CD244, Lag-3, and TIGIT), and transcription factors (T-bet, Eomesodermin, TCF-1, and (TOX) was measured on CD8 +T cells from that early time point. RESULTS We found that cases have increased expression of PD-1 +CD160+CD244+ ('triple positive') on total and effector CD8 + compared with controls (p=0.02). Furthermore, CD8 +T cells that were both PD-1 +CD160+CD244+ and T-betdimEomeshi were significantly elevated in cases at time point before cancer detection, compared with controls without cancer (p=0.008). This was driven by the finding that transcriptional factor profile of cells was altered in cancers compared with controls. Triple-positive cells were noted to retain the ability for cytotoxicity and cytokine secretion mediated by expression of CD160 and PD-1, respectively. However, triple-positive cells demonstrated high expression of TOX-1, a transcription factor associated with T cell exhaustion. CONCLUSION In conclusion, we have found a subset of dysfunctional CD8 +T cells, PD-1 +CD160+CD244+T-betdimEomeshi, that is elevated 12 months before cancer diagnosis, suggesting that peripheral T cell alterations may serve as a biomarker of increased cancer risk among PLWH.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Internal Medicine; Infectious Disease, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diane Trotta
- Flow Cytometry Facility, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kaicheng Wang
- School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Xun Wang
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Xiuping Chu
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Chip Bradley
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Jason Okulicz
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Ryan C Maves
- Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Karl Kronmann
- Internal Medicine, Naval Medical Center Portsmouth, Portsmouth, Virginia, USA
| | - Christina M Schofield
- Internal Medicine; Infectious Diseases, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Jason M Blaylock
- Internal Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Yanhong Deng
- School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Kurt A Schalper
- Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Kaech
- Departments of Immunobiology, Salk Institute, La Jolla, California, USA
| | - Brian Agan
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Anuradha Ganesan
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brinda Emu
- Internal Medicine; Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA,Internal Medicine; Infectious Diseases, VA Connecticut Healthcare System - West Haven Campus, West Haven, Connecticut, USA
| |
Collapse
|
39
|
Chen L, Jiang X, Zhang Q, Li Q, Zhang X, Zhang M, Yu Q, Gao D. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC. Clin Immunol 2022; 237:108962. [DOI: 10.1016/j.clim.2022.108962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/17/2021] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
|
40
|
Morita Y, Saijo A, Nokihara H, Mitsuhashi A, Yoneda H, Otsuka K, Ogino H, Bando Y, Nishioka Y. Radiation therapy induces an abscopal effect and upregulates programmed death-ligand 1 expression in a patient with non-small cell lung cancer. Thorac Cancer 2022; 13:1079-1082. [PMID: 35064748 PMCID: PMC8977150 DOI: 10.1111/1759-7714.14330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Radiation therapy (RT) activates the antigen presentation of dendritic cells and priming of cancer‐specific cytotoxic CD8+ T cells, occasionally resulting in a systemic immune response to the tumor outside of the treatment field. The phenomenon of tumor regression at the site distant from irradiated fields is known as the abscopal effect. Several case reports have indicated a potential role of RT in overcoming primary and acquired resistance against immune checkpoint inhibitors in non‐small cell lung cancer (NSCLC) and melanoma patients. We herein report an NSCLC patient who developed acquired resistance to an RT‐induced abscopal effect and subsequently experienced reactivation of the systemic antitumor immune response by pembrolizumab, an antiprogrammed death 1 antibody. In this case, RT not only induced an abscopal effect but also upregulated the programmed death‐ligand 1 expression outside of the irradiated field when the patient developed resistance to the abscopal effect. This case can facilitate our understanding of the mechanism underlying the RT‐induced systemic immune response against cancer cells and adaptive resistance mechanism of cancer cells from immune surveillance. These findings highlight the promising results of current clinical trials combining RT and immune checkpoint inhibitors. Ongoing clinical trials will further establish evidence supporting combination therapy with RT and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yutaka Morita
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuro Saijo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroto Yoneda
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Otsuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
41
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
42
|
Li HB, Yang ZH, Guo QQ. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: limitations and prospects: a systematic review. Cell Commun Signal 2021; 19:117. [PMID: 34819086 PMCID: PMC8611916 DOI: 10.1186/s12964-021-00789-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is an extremely malignant tumor with the lowest 5-year survival rate among all tumors. Pancreatic ductal adenocarcinoma (PDAC), as the most common pathological subtype of pancreatic cancer, usually has poor therapeutic results. Immune checkpoint inhibitors (ICIs) can relieve failure of the tumor-killing effect of immune effector cells caused by immune checkpoints. Therefore, they have been used as a novel treatment for many solid tumors. However, PDAC is not sensitive to monotherapy with ICIs, which might be related to the inhibitory immune microenvironment of pancreatic cancer. Therefore, the way to improve the microenvironment has raised a heated discussion in recent years. Here, we elaborate on the relationship between different immune cellular components in this environment, list some current preclinical or clinical attempts to enhance the efficacy of ICIs by targeting the inhibitory tumor microenvironment of PDAC or in combination with other therapies. Such information offers a better understanding of the sophisticated tumor-microenvironment interactions, also providing insights on therapeutic guidance of PDAC targeting. Video Abstract.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Zi-Han Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Qing-Qu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| |
Collapse
|
43
|
Ghahri-Saremi N, Akbari B, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Genetic Modification of Cytokine Signaling to Enhance Efficacy of CAR T Cell Therapy in Solid Tumors. Front Immunol 2021; 12:738456. [PMID: 34721401 PMCID: PMC8552010 DOI: 10.3389/fimmu.2021.738456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown unprecedented success in treating advanced hematological malignancies. Its effectiveness in solid tumors has been limited due to heterogeneous antigen expression, a suppressive tumor microenvironment, suboptimal trafficking to the tumor site and poor CAR T cell persistence. Several approaches have been developed to overcome these obstacles through various strategies including the genetic engineering of CAR T cells to blunt the signaling of immune inhibitory receptors as well as to modulate signaling of cytokine/chemokine molecules and their receptors. In this review we offer our perspective on how genetically modifying cytokine/chemokine molecules and their receptors can improve CAR T cell qualities such as functionality, persistence (e.g. resistance to pro-apoptotic signals) and infiltration into tumor sites. Understanding how such modifications can overcome barriers to CAR T cell effectiveness will undoubtedly enhance the potential of CAR T cells against solid tumors.
Collapse
Affiliation(s)
- Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Zeng T, Cao Y, Jin T, Tian Y, Dai C, Xu F. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:285. [PMID: 34507594 PMCID: PMC8431939 DOI: 10.1186/s13046-021-02053-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023]
Abstract
The recent discovery of immune checkpoint inhibitors is a significant milestone in cancer immunotherapy research. However, some patients with primary or adaptive drug resistance might not benefit from the overall therapeutic potential of immunotherapy in oncology. Thus, it is becoming increasingly critical for oncologists to explore the availability of new immune checkpoint inhibitors. An emerging co-inhibitory receptor, CD112R (also called PVRIG), is most commonly expressed on natural killer (NK) and T cells. It binds to its ligand (CD112 or PVRL2/nectin-2) and inhibits the strength with which T cells and NK cells respond to cancer. Therefore, CD112R is being presented as a new immune checkpoint inhibitor with high potential in cancer immunotherapy. CD112 is easily detectable on antigen-presenting or tumor cells, and its high level of expression has been linked with tumor progression and poor outcomes in most cancer patients. This review explores the molecular and functional relationship between CD112R, TIGIT, CD96, and CD226 in T cell responses. In addition, this review comprehensively discusses the recent developments of CD112R/CD112 immune checkpoints in cancer immunotherapy and prognosis.
Collapse
Affiliation(s)
- Taofei Zeng
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
45
|
Mardomi A, Limoni SK, Rahbarghazi R, Mohammadi N, Khorashadizadeh M, Ranjbaran H, Nataj HH, Jafari N, Hasani B, Abediankenari S. PD-L1 overexpression conveys tolerance of mesenchymal stem cell-derived cardiomyocyte-like cells in an allogeneic mouse model. J Cell Physiol 2021; 236:6328-6343. [PMID: 33507552 DOI: 10.1002/jcp.30299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
Although the autologously transplanted cells are immunologically durable, allogeneic cell transplantation is inevitable in a series of cases. Mesenchymal stem cells (MSCs) are one of the suitable candidates for cardiac tissue regeneration that have been shown to acquire immunogenicity concurrent with cardiomyogenic differentiation. The present study aimed to exploit PD-L1, as a key immunomodulatory checkpoint ligand to protect the MSCs-derived cardiomyocyte-like cells (CLCs) against the detrimental alloimmunity. Mouse bone marrow-derived MSCs were stably transduced to overexpress PD-L1. MSCs were in vitro differentiated into CLCs and the expressions of immunologic molecules were compared between MSCs and CLCs. The in vitro and in vivo allogeneic immune responses were also examined. The differentiated CLCs had higher expressions of MHC-I and CD80. Upon in vitro coculture with allogeneic splenocytes, CLCs caused more CD4+ and CD8+ T cell activation, lymphocyte proliferation, and interferon-γ (IFN-γ) release in comparison to MSCs. PD-L1 overexpression on CLCs decreased the activation of CD8+ T cells, proliferation of lymphocytes, and release of IFN-γ. The PD-L1-overexpressing CLCs elicited lower in vivo CD4+ and CD8+ T cell activation and reduced the anti-donor antibody response accompanied by increased durability and reduced T cell infiltration. The present study verified the potential of PD-L1 overexpression as a preparative strategy for the protection of allogeneic MSCs-derived CLCs against the detrimental alloreaction.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali K Limoni
- Department of Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nabiallah Mohammadi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Khorashadizadeh
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Ranjbaran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi H Nataj
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Bahareh Hasani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
46
|
Haslauer T, Greil R, Zaborsky N, Geisberger R. CAR T-Cell Therapy in Hematological Malignancies. Int J Mol Sci 2021; 22:8996. [PMID: 34445701 PMCID: PMC8396650 DOI: 10.3390/ijms22168996] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cells (CAR T-cells) are a promising therapeutic approach in treating hematological malignancies. CAR T-cells represent engineered autologous T-cells, expressing a synthetic CAR, targeting tumor-associated antigens (TAAs) independent of major histocompatibility complex (MHC) presentation. The most common target is CD19 on B-cells, predominantly used for the treatment of lymphoma and acute lymphocytic leukemia (ALL), leading to approval of five different CAR T-cell therapies for clinical application. Despite encouraging clinical results, treatment of other hematological malignancies such as acute myeloid leukemia (AML) remains difficult. In this review, we focus especially on CAR T-cell application in different hematological malignancies as well as strategies for overcoming CAR T-cell dysfunction and increasing their efficacy.
Collapse
Affiliation(s)
- Theresa Haslauer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Cancer Cluster Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
47
|
Pollari M, Leivonen SK, Leppä S. Testicular Diffuse Large B-Cell Lymphoma-Clinical, Molecular, and Immunological Features. Cancers (Basel) 2021; 13:cancers13164049. [PMID: 34439203 PMCID: PMC8392512 DOI: 10.3390/cancers13164049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Testicular diffuse large B-cell lymphoma (T-DLBCL) is a rare and aggressive lymphoma entity that mainly affects elderly men. It has a high relapse rate with especially the relapses of the central nervous system associating with dismal outcome. T-DLBCL has a unique biology with distinct genetic characteristics and clinical presentation, and the increasing knowledge on the tumor microenvironment of T-DLBCL highlights the significance of the host immunity and immune escape in this rare lymphoma, presenting in an immune-privileged site of the testis. This review provides an update on the latest progress made in T-DLBCL research and summarizes the clinical perspectives in T-DLBCL. Abstract Primary testicular lymphoma is a rare lymphoma entity, yet it is the most common testicular malignancy among elderly men. The majority of the cases represent non-germinal center B-cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL) with aggressive clinical behavior and a relatively high relapse rate. Due to the rareness of the disease, no randomized clinical trials have been conducted and the currently recognized standard of care is based on retrospective analyses and few phase II trials. During recent years, the tumor microenvironment (TME) and tumor-related immunity have been the focus of many tumor biology studies, and the emergence of targeted therapies and checkpoint inhibitors has significantly modulated the field of cancer therapies. Testicular DLBCL (T-DLBCL) is presented in an immune-privileged site of the testis, and the roles of NF-κB pathway signaling, 9p24.1 aberrations, and tumor-infiltrating immune cells, especially immune checkpoint expressing lymphocytes and macrophages, seem to be unique compared to other lymphoma entities. Preliminary data on the use of immune checkpoint inhibitors in the treatment of T-DLBCL are promising and more studies are ongoing.
Collapse
Affiliation(s)
- Marjukka Pollari
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, 33521 Tampere, Finland
- Correspondence:
| | - Suvi-Katri Leivonen
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Sirpa Leppä
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
48
|
Li J, Mei X, Sun D, Guo M, Xie M, Chen X. A Nutrition and Inflammation-Related Nomogram to Predict Overall Survival in Surgically Resected Esophageal Squamous Cell Carcinoma (ESCC) Patients. Nutr Cancer 2021; 74:1625-1635. [PMID: 34369223 DOI: 10.1080/01635581.2021.1957131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pretreatment inflammation-based biomarkers and the prognostic nutrition index (PNI) have been used to evaluate prognosis in cancer patients. However, few studies have focused on the prognostic value of post-treatment inflammation-based biomarkers and PNI in ESCC patients. We aimed to investigate the values of pre/post-treatment inflammatory parameters and PNI for establishing a nomogram to predict overall survival (OS) in ESCC patients. A retrospective review was performed on 268 ESCC patients with esophagectomy. The prognostic values of inflammatory and nutrition indexes were evaluated. Based on the results of multivariable Cox analysis, a nomogram was developed. The predictive accuracy and discriminative ability of the nomogram were determined using the concordance-index (C-index) and a calibration curve and subsequently compared to tumor-node-metastasis (TNM) staging by C-index, receiver operating characteristic (ROC) and decision curve analysis (DCA). PreSII, PostSII, PrePNI, N stage, and TNM classification were assembled into a nomogram. The C-index of the nomogram was 0.774, and the area under curve (AUC) of the nomogram was 0.862. DCA demonstrated that the established nomogram was a better predictive model compared to the TNM system. The developed nomogram with superior predictive ability provides more valuable prognostic information for patients and clinicians than TNM classification.
Collapse
Affiliation(s)
- Juan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xinyu Mei
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Di Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Mingfa Guo
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | | | - Xia Chen
- Department of Southern District Nursing, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
49
|
Hong J, Kang M, Jung M, Lee YY, Cho Y, Kim C, Song SY, Park CG, Doh J, Kim BS. T-Cell-Derived Nanovesicles for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101110. [PMID: 34235790 DOI: 10.1002/adma.202101110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Although T-cell therapy is a remarkable breakthrough in cancer immunotherapy, the therapeutic efficacy is limited for solid tumors. A major cause of the low efficacy is T-cell exhaustion by immunosuppressive mechanisms of solid tumors, which are mainly mediated by programmed death-ligand 1 (PD-L1) and transforming growth factor-beta (TGF-β). Herein, T-cell-derived nanovesicles (TCNVs) produced by the serial extrusion of cytotoxic T cells through membranes with micro-/nanosized pores that inhibit T-cell exhaustion and exhibit antitumoral activity maintained in the immunosuppressive tumor microenvironment (TME) are presented. TCNVs, which have programmed cell death protein 1 and TGF-β receptor on their surface, block PD-L1 on cancer cells and scavenge TGF-β in the immunosuppressive TME, thereby preventing cytotoxic-T-cell exhaustion. In addition, TCNVs directly kill cancer cells via granzyme B delivery. TCNVs successfully suppress tumor growth in syngeneic-solid-tumor-bearing mice. Taken together, TCNV offers an effective cancer immunotherapy strategy to overcome the tumor's immunosuppressive mechanisms.
Collapse
Affiliation(s)
- Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, and BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
50
|
Naїja A, Merhi M, Inchakalody V, Fernandes Q, Mestiri S, Prabhu KS, Uddin S, Dermime S. The role of PAK4 in the immune system and its potential implication in cancer immunotherapy. Cell Immunol 2021; 367:104408. [PMID: 34246086 DOI: 10.1016/j.cellimm.2021.104408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023]
Abstract
The p21 activated kinases (PAKs) are known to play a role in the regulation of cell morphology and functions. Among the various members of PAKs family, only the PAK4 protein has been shown to be overexpressed in cancer cells and its upregulation was associated with tumor development. Indeed, several studies have shown that PAK4 overexpression is implicated in carcinogenesis by different mechanisms including promotion of cell proliferation, invasion and migration, protection of cells from apoptosis, stimulation of the tumor-specific anchorage-independent cell growth and regulation of the cytoskeletal organisation and adhesion. Moreover, high PAK4 protein levels have been observed in several solid tumors and have been shown able to enhance cancer cell resistance to many treatments especially chemotherapy. Interestingly, it has been recently demonstrated that PAK4 downregulation can inhibit the PD-1/PD-L1 immune regulatory pathway. Taken together, these findings not only implicate PAK4 in oncogenic transformation and in prediction of tumor response to treatment but also suggest its role as an attractive target for immunotherapy. In the current review we will summarize the different mechanisms of PAK4 implication in tumor development, describe its role as a regulator of the immune response and as a potential novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Azza Naїja
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic health system, Hamad medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|