1
|
Morandi E, Adoue V, Bernard I, Friebel E, Nunez N, Aubert Y, Masson F, Dejean AS, Becher B, Astier A, Martinet L, Saoudi A. Impact of the Multiple Sclerosis-Associated Genetic Variant CD226 Gly307Ser on Human CD8 T-Cell Functions. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200306. [PMID: 39231385 PMCID: PMC11379124 DOI: 10.1212/nxi.0000000000200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVES The rs763361 nonsynonymous variant in the CD226 gene, which results in a glycine-to-serine substitution at position 307 of the CD226 protein, has been implicated as a risk factor of various immune-mediated diseases, including multiple sclerosis (MS). Compelling evidence suggests that this allele may play a significant role in predisposing individuals to MS by decreasing the immune-regulatory capacity of Treg cells and increasing the proinflammatory potential of effector CD4 T cells. However, the impact of this CD226 gene variant on CD8 T-cell functions, a population that also plays a key role in MS, remains to be determined. METHODS To study whether the CD226 risk variant affects human CD8 T-cell functions, we used CD8 T cells isolated from peripheral blood mononuclear cell of 16 age-matched healthy donors homozygous for either the protective or the risk allele of CD226. We characterized these CD8 T cells on T-cell receptor (TCR) stimulation using high-parametric flow cytometry and bulk RNAseq and through characterization of canonical signaling pathways and cytokine production. RESULTS On TCR engagement, the phenotype of ex vivo CD8 T cells bearing the protective (CD226-307Gly) or the risk (CD226-307Ser) allele of CD226 was largely overlapping. However, the transcriptomic signature of CD8 T cells from the donors carrying the risk allele presented an enrichment in TCR, JAK/STAT, and IFNγ signaling. We next found that the CD226-307Ser risk allele leads to a selective increase in the phosphorylation of the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) associated with enhanced phosphorylation of STAT4 and increased production of IFNγ. DISCUSSION Our data suggest that the CD226-307Ser risk variant imposes immune dysregulation by increasing the pathways related to IFNγ signaling in CD8 T cells, thereby contributing to the risk of developing chronic inflammation.
Collapse
Affiliation(s)
- Elena Morandi
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Véronique Adoue
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Isabelle Bernard
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Ekaterina Friebel
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Nunez
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Yann Aubert
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Frederick Masson
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Anne S Dejean
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Burkhard Becher
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Anne Astier
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Ludovic Martinet
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Abdelhadi Saoudi
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
2
|
Soler MF, Abaurrea A, Azcoaga P, Araujo AM, Caffarel MM. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J Immunother Cancer 2023; 11:e007530. [PMID: 37945321 PMCID: PMC10649711 DOI: 10.1136/jitc-2023-007530] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic inflammation has been recognized as a canonical cancer hallmark. It is orchestrated by cytokines, which are master regulators of the tumor microenvironment (TME) as they represent the main communication bridge between cancer cells, the tumor stroma, and the immune system. Interleukin (IL)-6 represents a keystone cytokine in the link between inflammation and cancer. Many cytokines from the IL-6 family, which includes IL-6, oncostatin M, leukemia inhibitory factor, IL-11, IL-27, IL-31, ciliary neurotrophic factor, cardiotrophin 1, and cardiotrophin-like cytokine factor 1, have been shown to elicit tumor-promoting roles by modulating the TME, making them attractive therapeutic targets for cancer treatment.The development of immune checkpoint blockade (ICB) immunotherapies has radically changed the outcome of some cancers including melanoma, lung, and renal, although not without hurdles. However, ICB shows limited efficacy in other solid tumors. Recent reports support that chronic inflammation and IL-6 cytokine signaling are involved in resistance to immunotherapy. This review summarizes the available preclinical and clinical data regarding the implication of IL-6-related cytokines in regulating the immune TME and the response to ICB. Moreover, the potential clinical benefit of combining ICB with therapies targeting IL-6 cytokine members for cancer treatment is discussed.
Collapse
Affiliation(s)
- Maria Florencia Soler
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Andrea Abaurrea
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Peio Azcoaga
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Angela M Araujo
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria M Caffarel
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Almuntashiri S, Alhumaid A, Zhu Y, Han Y, Dutta S, Khilji O, Zhang D, Wang X. TIMP-1 and its potential diagnostic and prognostic value in pulmonary diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:67-76. [PMID: 38343891 PMCID: PMC10857872 DOI: 10.1016/j.pccm.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Tissue inhibitors of metalloproteases (TIMPs) have caught the attention of many scientists due to their role in various physiological and pathological processes. TIMP-1, 2, 3, and 4 are known members of the TIMPs family. TIMPs exert their biological effects by, but are not limited to, inhibiting the activity of metalloproteases (MMPs). The balance between MMPs and TIMPs is critical for maintaining homeostasis of the extracellular matrix (ECM), while the imbalance between MMPs and TIMPs can lead to pathological changes, such as cancer. In this review, we summarized the current knowledge of TIMP-1 in several pulmonary diseases namely, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), pneumonia, asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and pulmonary fibrosis. Considering the potential of TIMP-1 serving as a non-invasive diagnostic and/or prognostic biomarker, we also reviewed the circulating TIMP-1 levels in translational and clinical studies.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Abdullah Alhumaid
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Yin Zhu
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Ohmed Khilji
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Defnet AE, Shah SD, Huang W, Shapiro P, Deshpande DA, Kane MA. Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB J 2021; 35:e22016. [PMID: 34784434 PMCID: PMC9361782 DOI: 10.1096/fj.202100835r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
Vitamin A deficiency has been shown to exacerbate allergic asthma. Previous studies have postulated that retinoic acid (RA), an active metabolite of vitamin A and high-affinity ligand for RA receptor (RAR), is reduced in airway inflammatory condition and contributes to multiple features of asthma including airway hyperresponsiveness and excessive accumulation of airway smooth muscle (ASM) cells. In this study, we directly quantified RA and examined the molecular basis for reduced RA levels and RA-mediated signaling in lungs and ASM cells obtained from asthmatic donors and in lungs from allergen-challenged mice. Levels of RA and retinol were significantly lower in lung tissues from asthmatic donors and house dust mite (HDM)-challenged mice compared to non-asthmatic human lungs and PBS-challenged mice, respectively. Quantification of mRNA and protein expression revealed dysregulation in the first step of RA biosynthesis consistent with reduced RA including decreased protein expression of retinol dehydrogenase (RDH)-10 and increased protein expression of RDH11 and dehydrogenase/reductase (DHRS)-4 in asthmatic lung. Proteomic profiling of non-asthmatic and asthmatic lungs also showed significant changes in the protein expression of AP-1 targets consistent with increased AP-1 activity. Further, basal RA levels and RA biosynthetic capabilities were decreased in asthmatic human ASM cells. Treatment of human ASM cells with all-trans RA (ATRA) or the RARγ-specific agonist (CD1530) resulted in the inhibition of mitogen-induced cell proliferation and AP-1-dependent transcription. These data suggest that RA metabolism is decreased in asthmatic lung and that enhancing RAR signaling using ATRA or RARγ agonists may mitigate airway remodeling associated with asthma.
Collapse
Affiliation(s)
- Amy E. Defnet
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Sushrut D. Shah
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
5
|
The excitotoxity of NMDA receptor NR2D subtype mediates human fetal lung fibroblasts proliferation and collagen production. Toxicol In Vitro 2017; 46:47-57. [PMID: 28987794 DOI: 10.1016/j.tiv.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 11/21/2022]
Abstract
Studies have suggested that endogenous glutamate and N-methyl-d-aspartate (NMDA) receptor have an excitotoxity role during acute lung injury. Fibroblasts play a critical role in lung development and chronic lung disease after acute lung injury. This study aims to explore the immediate role of NMDAR activation in human lung fibroblasts. The expression of NMDAR 1 subtype (NR1) and four individual NMDAR 2 (NR2) subtypes (NR 2 A to D) was measured in human fetal lung fibroblasts (HFL-1 and MRC-5). Five NMDARs expression were all detectable in two cell lines. Although the expressions of NMDARs were different between MRC-5 and HFL-1, 1mM NMDA elicited the same trend in the downregulation of NR2A expression, the upregulation of NR2D, and the increase of cells proliferation and collagen production. Glutamate stimulation after 24-h of NMDA exposure resulted in weaker and more delayed but more prolonged iCa2+ elevation in HFL-1 than no NMDA exposed cells. NMDA increased the level of pERK1/2, cells proliferation and collagen production, whereas nonspecific NMDAR antagonist MK-801, NR2D-preferring receptor antagonist UBP141 and ERK1/2 phosphorylation inhibitor U0126 suppressed it, respectively. In conclusion, we found that NMDAR activation, NR2D in particular, is involved in human fetal lung fibroblast proliferation and collagen production through a potential ERK1/2-mediated mechanism.
Collapse
|
6
|
Abraityte A, Vinge LE, Askevold ET, Lekva T, Michelsen AE, Ranheim T, Alfsnes K, Fiane A, Aakhus S, Lunde IG, Dahl CP, Aukrust P, Christensen G, Gullestad L, Yndestad A, Ueland T. Wnt5a is elevated in heart failure and affects cardiac fibroblast function. J Mol Med (Berl) 2017; 95:767-777. [PMID: 28357477 DOI: 10.1007/s00109-017-1529-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
Abstract
Wnt signaling is dysregulated in heart failure (HF) and may promote cardiac hypertrophy, fibrosis, and inflammation. Blocking the Wnt ligand Wnt5a prevents HF in animal models. However, the role of Wnt5a in human HF and its functions in cardiac cells remain unclear. Here, we investigated Wnt5a regulation in HF patients and its effects on primary mouse and human cardiac fibroblasts. Serum Wnt5a was elevated in HF patients and associated with hemodynamic, neurohormonal, and clinical measures of disease severity. In failing human hearts, Wnt5a protein correlated with interleukin (IL)-6 and tissue inhibitor of metalloproteinase (TIMP)-1. Wnt5a messenger RNA (mRNA) levels were markedly upregulated in failing myocardium and both mRNA and protein levels declined following left ventricular assist device therapy. In primary mouse and human cardiac fibroblasts, recombinant Wnt5a dose-dependently upregulated mRNA and protein release of IL-6 and TIMP-1. Wnt5a did not affect β-catenin levels, but activated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Importantly, inhibition of ERK1/2 activation attenuated Wnt5a-induced release of IL-6 and TIMP-1. In conclusion, our results show that Wnt5a is elevated in the serum and myocardium of HF patients and is associated with measures of progressive HF. Wnt5a induces IL-6 and TIMP-1 in cardiac fibroblasts, which might promote myocardial inflammation and fibrosis, and thereby contribute to HF progression. KEY MESSAGES • Wnt5a is elevated in serum and myocardium of HF patients and is associated with measures of progressive HF. • In cardiac fibroblasts, Wnt5a upregulates interleukin (IL)-6 and tissue inhibitor of metalloproteinase (TIMP)-1 through the ERK pathway. • Wnt5a-mediated effects might promote myocardial inflammation and fibrosis, and thereby contribute to HF progression.
Collapse
Affiliation(s)
- Aurelija Abraityte
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway. .,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.
| | - Leif E Vinge
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Medicine, Diakonhjemmet Hospital, Postboks 23 Vinderen, 0319, Oslo, Norway
| | - Erik T Askevold
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Katrine Alfsnes
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Arnt Fiane
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Svend Aakhus
- Department of Cardiology, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Circulation and Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Postboks 8905 NTNU, Faculty of Medicine, 7491, Trondheim, Norway
| | - Ida G Lunde
- Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Postboks 4956 Nydalen, 0424, Oslo, Norway
| | - Christen P Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromsø, Norway
| | - Geir Christensen
- Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Postboks 4956 Nydalen, 0424, Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,Center for Heart Failure Research, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,K. G. Jebsen Inflammation Research Center, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet; Postboks 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1078 Blindern, 0316, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, The Arctic University of Norway, Postboks 6050 Langnes, 9037, Tromsø, Norway
| |
Collapse
|
7
|
Richards CD. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung. J Interferon Cytokine Res 2017; 37:52-61. [PMID: 28117653 DOI: 10.1089/jir.2016.0112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.
Collapse
Affiliation(s)
- Carl D Richards
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, Canada
| |
Collapse
|
8
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
9
|
Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci 2014; 19:125-32. [PMID: 25205985 PMCID: PMC4117080 DOI: 10.5214/ans.0972.7531.190309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain (NP) is a significant and disabling clinical problem with very few therapeutic treatment options available. A major priority is to identify the molecular mechanisms responsible for NP. Although many seemingly relevant pathways have been identified, more research is needed before effective clinical interventions can be produced. Initial insults to the nervous system, such as spinal cord injury (SCI), are often compounded by secondary mechanisms such as inflammation, the immune response, and the changing expression of receptors and ion channels. The consequences of these secondary effects myriad and compound those elicited by the primary injury. Chronic NP syndromes following SCI can greatly complicate the clinical treatment of the primary injury and result in high comorbidity. In this review, we will describe physiological outcomes associated with SCI along with some of the mechanisms known to contribute to chronic NP development.
Collapse
|
10
|
Novel targets for Spinal Cord Injury related neuropathic pain. Ann Neurosci 2014; 18:162-7. [PMID: 25205949 PMCID: PMC4116958 DOI: 10.5214/ans.0972.7531.1118413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 08/26/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022] Open
Abstract
Millions of people suffer from spinal cord injury (SCI) with little known effective clinical therapy. Neuropathic pain (NP) is often accompanied with SCI, making clinical treatment challenging. Even though the key mediators in the development of NP have been discovered, the pathogenesis is still unclear. Some of the key mediators in the sustenance of NP include the inflammatory processes, cannabinoid receptors, matrix metalloproteases, and their tissue inhibitors. Animal models have shown promising results with modulation of these mediators, yet the clinical models have been unsuccessful. One such study with matrix metalloproteases (MMPs) has yielded encouraging results. The relationship between MMPs and their tissue inhibitors (TIMPs) plays a significant role in the pathogenesis and recovery of SCI and the CNS. Key factors that lead to the functional consequences of MMP activity are cellular localization, tissue distribution, and temporal pattern of MMP expression. Studies concluding that MMPs can be seen as contributors of tissue damage and as contributors in the repair mechanisms have provided a need to reexamine their roles after acute and chronic neuropathic pain
Collapse
|
11
|
Lauber S, Wong S, Cutz JC, Tanaka M, Barra N, Lhoták Š, Ashkar A, Richards CD. Novel function of Oncostatin M as a potent tumour-promoting agent in lung. Int J Cancer 2014; 136:831-43. [DOI: 10.1002/ijc.29055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Sean Lauber
- Department of Microbiology & Immunology; McGill University; Montreal Canada
| | - Steven Wong
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Centre, McMaster University; Hamilton Canada
| | - Jean-Claude Cutz
- Department of Medicine; St. Joseph's Healthcare Hamilton, McMaster University; Hamilton Canada
| | - Minoru Tanaka
- Institute of Molecular and Cellular Biosciences; The University of Tokyo; Tokyo Japan
| | - Nicole Barra
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Centre, McMaster University; Hamilton Canada
| | - Šárka Lhoták
- Department of Medicine; St. Joseph's Healthcare Hamilton, McMaster University; Hamilton Canada
| | - Ali Ashkar
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Centre, McMaster University; Hamilton Canada
| | - Carl Douglas Richards
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Centre, McMaster University; Hamilton Canada
| |
Collapse
|
12
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
13
|
Tang W, Yang J, Zhang F, Guo H, Peng F, Wang X. Activation of extracellular signal-regulated kinase 1/2 and Sp1 may contribute to the expression of tissue inhibitor of metalloproteinases-1 induced by transforming growth factor-β1 in human pulmonary arterial smooth muscle cells. Cytotherapy 2013; 16:225-33. [PMID: 24113427 DOI: 10.1016/j.jcyt.2013.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/17/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND AIMS Tissue inhibitor of metalloproteinases-1 (TIMP-1) plays an important role in the development of pulmonary arterial hypertension. However, the molecular regulatory mechanisms of TIMP-1 in the pulmonary arteries are not fully understood, especially in human pulmonary arterial smooth muscle cells (HPASMCs). We investigated the signaling pathway involved in the regulation of TIMP-1 in HPASMCs induced by transforming growth factor (TGF)-β1. METHODS Cultured HPASMCs were incubated with different concentrations of TGF-β1 (0-40 ng/mL) for 24 h or with 10 ng/mL TGF-β1 for different times (1-48 h). RESULTS Western blot, real-time polymerase chain reaction and enzyme-linked immunosorbent assay analyses showed that TGF-β1 enhanced the expression and secretion of TIMP-1 in a time-dependent and dose-dependent fashion. TGF-β1 could phosphorylate two of the three mitogen-activated protein kinases-extracellular signal-regulated kinase 1/2 (ERK1/2) and p38, but not c-Jun NH2-terminal kinase. Of these kinases, only the inhibition of ERK1/2 by U0126, which was a specific inhibitor of mitogen-activated protein kinase/ERK1/2, effectively blocked the TGF-β1-induced expression of TIMP-1. Mithramycin, an inhibitor of Sp1 transcription factor, also significantly inhibited the expression of TIMP-1. Additionally, electrophoretic mobility shift assay showed that TGF-β1 could up-regulate the DNA-binding activity of Sp1 and that U0126 and mithramycin could effectively inhibit these events. CONCLUSIONS TGF-β1 could stimulate the expression and secretion of TIMP-1 in HPASMCs in a time-dependent and dose-dependent fashion, and ERK1/2 and Sp1 signaling pathways might be involved in these activities.
Collapse
Affiliation(s)
- Weiliang Tang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing City, Zhejiang, PR China; Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang, PR China
| | - Jinxiu Yang
- Department of Cardiology, Zhejiang Traditional Chinese Medical Hospital, Hangzhou City, Zhejiang, PR China
| | - Furong Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang, PR China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing City, Zhejiang, PR China
| | - Fang Peng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing City, Zhejiang, PR China
| | - Xingxiang Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang, PR China.
| |
Collapse
|
14
|
Nardo G, Iennaco R, Fusi N, Heath PR, Marino M, Trolese MC, Ferraiuolo L, Lawrence N, Shaw PJ, Bendotti C. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2013; 136:3305-32. [PMID: 24065725 DOI: 10.1093/brain/awt250] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis is heterogeneous with high variability in the speed of progression even in cases with a defined genetic cause such as superoxide dismutase 1 (SOD1) mutations. We reported that SOD1(G93A) mice on distinct genetic backgrounds (C57 and 129Sv) show consistent phenotypic differences in speed of disease progression and life-span that are not explained by differences in human SOD1 transgene copy number or the burden of mutant SOD1 protein within the nervous system. We aimed to compare the gene expression profiles of motor neurons from these two SOD1(G93A) mouse strains to discover the molecular mechanisms contributing to the distinct phenotypes and to identify factors underlying fast and slow disease progression. Lumbar spinal motor neurons from the two SOD1(G93A) mouse strains were isolated by laser capture microdissection and transcriptome analysis was conducted at four stages of disease. We identified marked differences in the motor neuron transcriptome between the two mice strains at disease onset, with a dramatic reduction of gene expression in the rapidly progressive (129Sv-SOD1(G93A)) compared with the slowly progressing mutant SOD1 mice (C57-SOD1(G93A)) (1276 versus 346; Q-value ≤ 0.01). Gene ontology pathway analysis of the transcriptional profile from 129Sv-SOD1(G93A) mice showed marked downregulation of specific pathways involved in mitochondrial function, as well as predicted deficiencies in protein degradation and axonal transport mechanisms. In contrast, the transcriptional profile from C57-SOD1(G93A) mice with the more benign disease course, revealed strong gene enrichment relating to immune system processes compared with 129Sv-SOD1(G93A) mice. Motor neurons from the more benign mutant strain demonstrated striking complement activation, over-expressing genes normally involved in immune cell function. We validated through immunohistochemistry increased expression of the C3 complement subunit and major histocompatibility complex I within motor neurons. In addition, we demonstrated that motor neurons from the slowly progressing mice activate a series of genes with neuroprotective properties such as angiogenin and the nuclear factor (erythroid-derived 2)-like 2 transcriptional regulator. In contrast, the faster progressing mice show dramatically reduced expression at disease onset of cell pathways involved in neuroprotection. This study highlights a set of key gene and molecular pathway indices of fast or slow disease progression which may prove useful in identifying potential disease modifiers responsible for the heterogeneity of human amyotrophic lateral sclerosis and which may represent valid therapeutic targets for ameliorating the disease course in humans.
Collapse
Affiliation(s)
- Giovanni Nardo
- 1 Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa, 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fields J, Cisneros IE, Borgmann K, Ghorpade A. Extracellular regulated kinase 1/2 signaling is a critical regulator of interleukin-1β-mediated astrocyte tissue inhibitor of metalloproteinase-1 expression. PLoS One 2013; 8:e56891. [PMID: 23457635 PMCID: PMC3572966 DOI: 10.1371/journal.pone.0056891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Irma E. Cisneros
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
16
|
Signaling by IL-31 and functional consequences. Eur J Cell Biol 2011; 91:552-66. [PMID: 21982586 DOI: 10.1016/j.ejcb.2011.07.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 11/20/2022] Open
Abstract
Cytokines are key to control cellular communication. Interleukin-31 (IL-31) was recently discovered as a new member of the IL-6 family of cytokines. IL-31 signals through a heterodimeric receptor composed of OSMR and IL-31RA, a complex that stimulates the JAK-STAT, the RAS/ERK and the PI3K/AKT signal transduction pathways. The available data suggests that IL-31 is important for both innate and adaptive immunity in tissues that are in close contact with the environment, i.e. the skin, the airways and the lung, and the lining of the intestine. Enhanced expression of IL-31 is associated with a number of diseases, including pruritic diseases such as atopic dermatitis, but also in allergy and inflammatory bowel disease. In these tissues IL-31 coordinates the interaction of different immune cells, including T-cells, mast cells, and eosinophils, with epithelial cells. In this review we have summarized the available data on IL-31 and its receptor, their expression pattern and how they are regulated. We describe the current state of knowledge of the involvement of IL-31 in diseases, both in humans and in mouse models. From these studies it is becoming clear that IL-31 plays an important role in the proper functioning of the skin and of airway and intestinal epithelia. The findings available suggest that IL-31 might be an interesting target for directed drug therapy.
Collapse
|
17
|
Tai SH, Chen HY, Lee EJ, Chen TY, Lin HW, Hung YC, Huang SY, Chen YH, Lee WT, Wu TS. Melatonin inhibits postischemic matrix metalloproteinase-9 (MMP-9) activation via dual modulation of plasminogen/plasmin system and endogenous MMP inhibitor in mice subjected to transient focal cerebral ischemia. J Pineal Res 2010; 49:332-41. [PMID: 20663046 DOI: 10.1111/j.1600-079x.2010.00797.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have shown that melatonin attenuated matrix metalloproteinase-9 (MMP-9) activation and decreased the risk of hemorrhagic transformation following cerebral ischemia-reperfusion. Herein, we investigate the possible involvement of the plasminogen/plasmin system and endogenous MMPs inhibitor underlying the melatonin-mediated MMP-9 inhibition. Mice were subjected to 1-hr ischemia and 48-hr reperfusion of the right middle cerebral artery. Melatonin (5 mg/kg) or vehicle was intravenously injected upon reperfusion. Brain infarction and hemorrhagic transformation were measured. Extracellular matrix damage was determined by Western immunoblot analysis for laminin protein. The activity and expression of MMP-2 and MMP-9 were determined by gelatin zymography, in situ zymography, and Western immunoblot analysis. In addition, the activities of tissue and urokinase plasminogen activators (tPA and uPA) were evaluated by plasminogen-dependent casein zymography. Endogenous plasminogen activator inhibitor (PAI) and tissue inhibitors of MMP (TIMP-1) were investigated using enzyme-linked immunosorbent assay (ELISA) and Western immunoblot analysis, respectively. Cerebral ischemia-reperfusion induced increased MMP-9 activity and expression at 12-48 hr after reperfusion onset. Relative to controls, melatonin-treated animals had significantly decreased MMP-9 activity and expression (P<0.05), in addition to reduced brain infarction and hemorrhagic transformation as well as improved laminin protein preservation. This melatonin-mediated MMP-9 inhibition was accompanied by reduced uPA activity (P<0.05), as well as increased TIMP-1 expression and PAI activity (P<0.05, respectively). These results demonstrate the melatonin's pluripotent mechanisms for attenuating postischemic MMP-9 activation and neurovascular damage, and further support it as an add-on to thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
DaSilva M, Deming MO, Fligiel SE, Dame MK, Johnson KJ, Swartz RD, Varani J. Responses of human skin in organ culture and human skin fibroblasts to a gadolinium-based MRI contrast agent: comparison of skin from patients with end-stage renal disease and skin from healthy subjects. Invest Radiol 2010; 45:733-9. [PMID: 20661146 PMCID: PMC3164303 DOI: 10.1097/rli.0b013e3181e9436b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Nephrogenic systemic fibrosis is a clinical syndrome occurring in a small subset of patients with end-stage renal disease (ESRD). Exposure to certain of the gadolinium-based contrast agents during magnetic resonance imaging appears to be a trigger. The pathogenesis of the disease is largely unknown. The present study addresses potential pathophysiologic mechanisms. MATERIALS AND METHODS We have compared responses in organ-cultured skin and skin fibroblasts from individuals with ESRD to responses of healthy control subjects to Omniscan treatment. RESULTS Treatment of skin from ESRD patients with Omniscan stimulated production of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1, but not type I procollagen. The same treatment also stimulated an increase in hyaluronan production. Similar results were seen with skin from normal controls but basal levels were higher in ESRD patients. Fibroblasts in monolayer culture gave the same responses, but there were no differences based on whether the cells were isolated from the skin of healthy subjects or those with ESRD. CONCLUSION These data indicate that Omniscan exposure alters an enzyme/inhibitor system responsible for regulating collagen turnover in the skin and directly stimulates hyaluronan production. The higher basal levels of type I procollagen, matrix metalloproteinase-1, tissue inhibitor of metalloproteinases-1, and hyaluronan in the skin from ESRD patients could contribute to the sensitivity of this patient population to fibrotic changes, which might be induced by exposure to some of the gadolinium-based contrast agents.
Collapse
Affiliation(s)
- Marissa DaSilva
- The Department of Pathology, The University of Michigan Medical School Ann Arbor, Michigan 48109
| | - Monica O’Brien Deming
- The Department of Pathology, The University of Michigan Medical School Ann Arbor, Michigan 48109
| | - Suzanne E.G. Fligiel
- The Department of Pathology, The University of Michigan Medical School Ann Arbor, Michigan 48109
| | - Michael K. Dame
- The Department of Pathology, The University of Michigan Medical School Ann Arbor, Michigan 48109
| | - Kent J. Johnson
- The Department of Pathology, The University of Michigan Medical School Ann Arbor, Michigan 48109
| | - Richard D. Swartz
- The Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - James Varani
- The Department of Pathology, The University of Michigan Medical School Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Bilsborough J, Mudri S, Chadwick E, Harder B, Dillon SR. IL-31 Receptor (IL-31RA) Knockout Mice Exhibit Elevated Responsiveness to Oncostatin M. THE JOURNAL OF IMMUNOLOGY 2010; 185:6023-30. [DOI: 10.4049/jimmunol.0902769] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Ramer R, Merkord J, Rohde H, Hinz B. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem Pharmacol 2010; 79:955-66. [DOI: 10.1016/j.bcp.2009.11.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 01/12/2023]
|
21
|
Collagenolytic activity is suppressed in organ-cultured human skin exposed to a gadolinium-based MRI contrast agent. Invest Radiol 2010; 45:42-8. [PMID: 19996758 DOI: 10.1097/rli.0b013e3181bf95eb] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Human skin produces increased amounts of matrix metalloproteinase-1 (MMP-1) when exposed in organ culture to Omniscan, one of the gadolinium-based MRI contrast agents (GBCA). MMP-1, by virtue of its ability to degrade structural collagen, contributes to collagen turnover in the skin. The objective of the present study was to determine whether collagenolytic activity was concomitantly up-regulated with increased enzyme. MATERIALS AND METHODS Skin biopsies from normal volunteers were exposed in organ culture to Omniscan. Organ culture fluids obtained from control and treated skin were examined for ability to degrade type I collagen. The same culture fluids were examined for levels of MMP-1, tissue inhibitor of metalloproteinases-1 (TIMP-1), and complexes of MMP-1 and TIMP-1. RESULTS Although MMP-1 was increased in culture fluid from Omniscan-treated skin, there was no increase in collagenolytic activity. In fact, collagenolytic activity declined. Increased production of TIMP-1 was also observed in Omniscan-treated skin, and the absolute amount of TIMP-1 was greater than the amount of MMP-1. Virtually all of the MMP-1 was present in MMP-1-TIMP-1 complexes, but the majority of TIMP-1 was not associated with MMP-1. When human dermal fibroblasts were exposed to TIMP-1 (up to 250 ng/mL), no increase in proliferation was observed, but an increase in collagen deposition into the cell layer was seen. CONCLUSION Gadolinium-based MRI contrast agent exposure has recently been linked to a fibrotic skin condition in patients with impaired kidney function. The mechanism is unknown. The increase in TIMP-1 production and concomitant reduction in collagenolytic activity demonstrated here could result in decreased collagen turnover and increased deposition of collagen in lesional skin.
Collapse
|
22
|
Fritz DK, Kerr C, Botelho F, Stampfli M, Richards CD. Oncostatin M (OSM) primes IL-13- and IL-4-induced eotaxin responses in fibroblasts: Regulation of the type-II IL-4 receptor chains IL-4Rα and IL-13Rα1. Exp Cell Res 2009; 315:3486-99. [DOI: 10.1016/j.yexcr.2009.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 09/10/2009] [Accepted: 09/24/2009] [Indexed: 01/13/2023]
|
23
|
Ridd K, Dhir S, Smith AG, Gant TW. Defective TPA signalling compromises HaCat cells as a human in vitro skin carcinogenesis model. Toxicol In Vitro 2009; 24:910-5. [PMID: 19945525 DOI: 10.1016/j.tiv.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/16/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
HaCat cells, a human keratinocyte line, are commonly utilised as an in vitro cell model for toxicity testing and the discernment of processes of chemically induced skin carcinogenesis. Here, as part of an ongoing program of carcinogenesis research, we tested the genomic transcriptional response of two keratinocyte cell lines HaCat (human) and Pam212 (mouse) to 12-O-tetradecanoylphorbol 13-acetate (TPA), one of the most studied skin carcinoma promoting agents, and compared this with the response in primary keratinocytes. Differences in the genomic response profile indicated an insufficiency in the MEK/ERK pathway signalling in HaCat but not Pam212 cells compared to primary keratinocytes. TPA can also activate NFkappaB and so we tested whether this was also deficient in the HaCat cells using TNFalpha which signals directly to NFkappaB. By this method NFkappaB was found to be equally active in both HaCat and Pam212 cells. Analysis of ERK phosphorylation showed that while TPA mediated ERK phosphorylation occurred in both cell lines it was more robust and difficult to inhibit in Pam212 cells suggesting that there may be an insufficiency in this step in HaCat cells leading to a reduced response. Overall these data indicate that caution should be employed when using HaCat cells as an in vitro skin model for biochemical research or toxicological evaluation.
Collapse
Affiliation(s)
- Katie Ridd
- Medical Research Council Toxicology Unit, Hodgkin Building, University of Leicester, PO Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
24
|
Regulation of collagen turnover in human skin fibroblasts exposed to a gadolinium-based contrast agent. Invest Radiol 2009; 44:433-9. [PMID: 19561517 DOI: 10.1097/rli.0b013e3181a4d7e9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Nephrogenic systemic fibrosis is a clinical syndrome linked with exposure in renal failure patients to gadolinium-based contrast agents (GBCAs) during magnetic resonance imaging. Recently, we demonstrated that GBCA exposure led to increased matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) levels in human skin fibroblasts. The goals of the present work were to assess the relationship between altered MMP-1/TIMP-1 expression and collagen production/deposition, and the intracellular signaling events that lead from GBCA stimulation to altered MMP-1 and TIMP-1 production. MATERIALS AND METHODS Human dermal fibroblasts were treated with one of the currently used GBCAs (Omniscan). Proliferation was quantified as were levels of MMP-1, TIMP-1, procollagen type I, and collagen type I. Signaling events were concomitantly assessed, and signaling inhibitors were used. RESULTS Fibroblasts exposed to Omniscan had increases in both MMP-1 and TIMP-1 levels. Omniscan treatment interfered with collagen turnover, leading to increased type I collagen deposition without an increase in type I procollagen production. U0126, an inhibitor of mitogen-activated protein kinase signaling, and LY294002, a phosphatidylinositol-3 kinase inhibitor, reduced MMP-1 levels. U0126 also reduced TIMP-1 levels, but LY294002 increased TIMP-1. CONCLUSION These data provide evidence for complex regulation of collagen deposition in Omniscan-treated skin. They suggest that the major effect of Omniscan exposure is on an enzyme/inhibitor system that regulates collagen breakdown rather than on collagen production, per se.
Collapse
|
25
|
Díaz-Carballo D, Malak S, Bardenheuer W, Freistuehler M, Reusch HP. Cytotoxic activity of nemorosone in neuroblastoma cells. J Cell Mol Med 2009; 12:2598-608. [PMID: 18194446 PMCID: PMC3828876 DOI: 10.1111/j.1582-4934.2008.00232.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuroblastoma is the second most common solid tumour during childhood, characterized by rapid disease progression. Most children with metastasized neuroblastoma die despite intensive chemotherapy due to an intrinsic or acquired chemotherapy resistance. Thus, new therapeutic strategies are urgently needed. Here, we demonstrate that the novel compound nemorosone isolated from alcoholic extracts of Clusia rosea resins by reverse phase high pressure liquid chromatography (RP-HPLC) exerts cytotoxic activity in neuroblas-toma cell lines both parental and their clones selected for resistance against adriamycin, cisplatin, etoposide or 5-fluorouracil. Cell cycle studies revealed that nemorosone induces an accumulation in G0/G1- with a reduction in S-phase population combined with a robust up-regulation of p21Cip1. Furthermore, a dose-dependent apoptotic DNA laddering accompanied by an activation of caspase-3 activity was detected. Nemorosone induced a significant dephosphorylation of ERK1/2 in LAN-1 parental cells probably by the inhibition of its upstream kinase MEK1/2. No significant modulation of signal transducers JNK, p38 MAPK and Akt/PKB was detected. The enzymatic activity of immunoprecipitated Akt/PKB was strongly inhibited in vitro, suggesting that nemorosone exerts its anti-proliferative activity at least in part by targeting Akt/PKB in the cell lines studied. In addition, a synergistic effect with Raf-1 inhibitor BAY 43-9006 was found. Finally, nemorosone induced a considerable down-regulation of N-myc protein levels in parental LAN-1 and an etoposide resistant sub-line at the same drug-concentrations.
Collapse
Affiliation(s)
- D Díaz-Carballo
- Abteilung Klinische Pharmakologie, Ruhr-Universitaet Bochum, Bochum, Germany.
| | | | | | | | | |
Collapse
|
26
|
Teramoto T, Matsunaga T, Toba M, Sunazuka T, Omura S, Ohmori S. Role of Dexamethasone and Oncostatin M on the Formation of Vacuoles in Human Fetal Liver Cells. Biol Pharm Bull 2009; 32:209-12. [DOI: 10.1248/bpb.32.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Mie Toba
- Department of Pharmacy, Shinshu University Hospital
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences, Kitasato University, Kitasato Institute
| | - Satoshi Omura
- Kitasato Institute for Life Sciences, Kitasato University, Kitasato Institute
| | | |
Collapse
|
27
|
Mozaffarian A, Brewer AW, Trueblood ES, Luzina IG, Todd NW, Atamas SP, Arnett HA. Mechanisms of oncostatin M-induced pulmonary inflammation and fibrosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:7243-53. [PMID: 18981146 DOI: 10.4049/jimmunol.181.10.7243] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oncostatin M (OSM), an IL-6 family cytokine, has been implicated in a number of biological processes including the induction of inflammation and the modulation of extracellular matrix. In this study, we demonstrate that OSM is up-regulated in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and scleroderma, and investigate the pathological consequences of excess OSM in the lungs. Delivery of OSM to the lungs of mice results in a significant recruitment of inflammatory cells, as well as a dose-dependent increase in collagen deposition in the lungs, with pathological correlates to characteristic human interstitial lung disease. To better understand the relationship between OSM-induced inflammation and OSM-induced fibrosis, we used genetically modified mice and show that the fibrotic response is largely independent of B and T lymphocytes, eosinophils, and mast cells. We further explored the mechanisms of OSM-induced inflammation and fibrosis using both protein and genomic array approaches, generating a "fibrotic footprint" for OSM that shows modulation of various matrix metalloproteinases, extracellular matrix components, and cytokines previously implicated in fibrosis. In particular, although the IL-4/IL-13 and TGF-beta pathways have been shown to be important and intertwined of fibrosis, we show that OSM is capable of inducing lung fibrosis independently of these pathways. The demonstration that OSM is a potent mediator of lung inflammation and extracellular matrix accumulation, combined with the up-regulation observed in patients with pulmonary fibrosis, may provide a rationale for therapeutically targeting OSM in human disease.
Collapse
|
28
|
Hohensinner PJ, Kaun C, Rychli K, Niessner A, Pfaffenberger S, Rega G, Furnkranz A, Uhrin P, Zaujec J, Afonyushkin T, Bochkov VN, Maurer G, Huber K, Wojta J. The inflammatory mediator oncostatin M induces stromal derived factor‐1 in human adult cardiac cells. FASEB J 2008; 23:774-82. [DOI: 10.1096/fj.08-108035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P. J. Hohensinner
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster for Cardiovascular ResearchViennaAustria
| | - C. Kaun
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - K. Rychli
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - A. Niessner
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - S. Pfaffenberger
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - G. Rega
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - A. Furnkranz
- Third Department of MedicineWilhelminenhospitalViennaAustria
| | - P. Uhrin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - J. Zaujec
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - T. Afonyushkin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - V. N. Bochkov
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - G. Maurer
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - K. Huber
- Third Department of MedicineWilhelminenhospitalViennaAustria
| | - J. Wojta
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster for Cardiovascular ResearchViennaAustria
| |
Collapse
|
29
|
Hung YC, Chen TY, Lee EJ, Chen WL, Huang SY, Lee WT, Lee MY, Chen HY, Wu TS. Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats. J Pineal Res 2008; 45:459-67. [PMID: 18624955 DOI: 10.1111/j.1600-079x.2008.00617.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously shown that melatonin reduces postischemic rises in the blood-brain barrier (BBB) permeability and improves neurovascular dysfunction and hemorrhagic transformation following ischemic stroke. It is known that activation of the matrix metalloproteinases (MMPs) plays a crucial role in the pathogenesis of brain edema and hemorrhagic transformation after ischemic stroke. We, herein, investigated whether melatonin would ameliorate MMP-2 and MMP-9 activation and expression in a rat model of transient focal cerebral ischemia. Adult male Sprague-Dawley rats were subjected to a 90-min middle cerebral artery (MCA) occlusion using an intraluminal filament. Melatonin (5 mg/kg) or vehicle was intravenously injected upon reperfusion. Brain infarction and hemorrhage within infarcts were measured, and neurological deficits were scored. The activity and expression of MMP-2 and MMP-9 were determined by zymography, in situ zymography and Western immunoblot analysis. Cerebral ischemia-reperfusion induced increased pro-MMP-9 and MMP-9 activity and expression 24 hr after reperfusion onset. Relative to controls, melatonin-treated animals, however, had significantly reduced levels in the MMP-9 activity and expression (P < 0.01), in addition to reduced brain infarct volume and hemorrhagic transformation as well as improved sensorimotor neurobehavioral outcomes. No significant change in MMP-2 activity was observed throughout the course experiments. Our results indicate that the melatonin-mediated reductions in ischemic brain damage and reperfusion-induced hemorrhage are partly attributed to its ability to reduce postischemic MMP-9 activation and increased expression, and further support the fact that melatonin is a suitable as an add-on to thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- Yu-Chang Hung
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RWE. A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol 2008; 22:2677-88. [PMID: 18927239 DOI: 10.1210/me.2008-0097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes beta-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed beta-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.
Collapse
Affiliation(s)
- Paul G Tiffen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Cortelezzi A, Colombo G, Pellegrini C, Silvestris I, Moronetti Mazzeo L, Bosari S, Lambertenghi Deliliers G, Fracchiolla NS. Bone marrow glycophorin-positive erythroid cells of myelodysplastic patients responding to high-dose rHuEPO therapy have a different gene expression pattern from those of nonresponders. Am J Hematol 2008; 83:531-9. [PMID: 18383321 DOI: 10.1002/ajh.21178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The main clinical problems of low-risk patients with myelodysplastic syndromes (MDS), as defined by the International Prognostic Scoring System, are infections and the need for frequent transfusions due to ineffective myelopoiesis and peripheral blood cytopenia. Promising results in treating MDS-related anemia have been obtained using high-dose recombinant human erythropoietin (rhEPO). To evaluate the molecular basis of the response to rhEPO, we used commercially available macro-arrays to investigate gene expression profiles in the glycophorin-expressing (Gly+) bone marrow (BM) erythroid cells of five responders (ERs) and five non-responders (ENRs) to rhEPO treatment. The cells were separated by means of positive selection using an immunomagnetic procedure, after which flow cytometry showed that their purity was more than 97% in all cases. The array data were validated by means of real time RT-PCR. The results showed that the genes responsible for proliferation/differentiation and DNA repair/stability were repressed in the BM Gly+ erythroid cells of the ENRs, but almost normally expressed in the ERs. Furthermore, the expression of genes involved in signal transduction suggested that the activity of the MAPK signaling pathway is inhibited in ERs. The different gene expression profiles of ERs and ENRs may provide a basis for early gene testing as a means of predicting the response to rhEPO of MDS patients with low endogenous EPO levels.
Collapse
Affiliation(s)
- Agostino Cortelezzi
- Hematology-Bone Marrow Transplant Unit, Fondazione Ospedale Maggiore Maggiore Policlinico, Mangiagalli, Regina Elena IRCCS, Milan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Smyth DC, Kerr C, Li Y, Tang D, Richards CD. Oncostatin M induction of eotaxin-1 expression requires the convergence of PI3′K and ERK1/2 MAPK signal transduction pathways. Cell Signal 2008; 20:1142-50. [DOI: 10.1016/j.cellsig.2008.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/26/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
33
|
Ramer R, Hinz B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst 2007; 100:59-69. [PMID: 18159069 DOI: 10.1093/jnci/djm268] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion. METHODS Matrigel-coated and uncoated Boyden chambers were used to quantify invasiveness and migration, respectively, of human cervical cancer (HeLa) cells that had been treated with cannabinoids (the stable anandamide analog R(+)-methanandamide [MA] and the phytocannabinoid delta9-tetrahydrocannabinol [THC]) in the presence or absence of antagonists of the CB1 or CB2 cannabinoid receptors or of transient receptor potential vanilloid 1 (TRPV1) or inhibitors of p38 or p42/44 mitogen-activated protein kinase (MAPK) pathways. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting were used to assess the influence of cannabinoids on the expression of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs). The role of TIMP-1 in the anti-invasive action of cannabinoids was analyzed by transfecting HeLa, human cervical carcinoma (C33A), or human lung carcinoma cells (A549) cells with siRNA targeting TIMP-1. All statistical tests were two-sided. RESULTS Without modifying migration, MA and THC caused a time- and concentration-dependent suppression of HeLa cell invasion through Matrigel that was accompanied by increased expression of TIMP-1. At the lowest concentrations tested, MA (0.1 microM) and THC (0.01 microM) led to a decrease in invasion (normalized to that observed with vehicle-treated cells) of 61.5% (95% CI = 38.7% to 84.3%, P < .001) and 68.1% (95% CI = 31.5% to 104.8%, P = .0039), respectively. The stimulation of TIMP-1 expression and suppression of cell invasion were reversed by pretreatment of cells with antagonists to CB1 or CB2 receptors, with inhibitors of MAPKs, or, in the case of MA, with an antagonist to TRPV1. Knockdown of cannabinoid-induced TIMP-1 expression by siRNA led to a reversal of the cannabinoid-elicited decrease in tumor cell invasiveness in HeLa, A549, and C33A cells. CONCLUSION Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, Rostock D-18057, Germany
| | | |
Collapse
|
34
|
Das P, Ezashi T, Gupta R, Roberts RM. Combinatorial roles of protein kinase A, Ets2, and 3',5'-cyclic-adenosine monophosphate response element-binding protein-binding protein/p300 in the transcriptional control of interferon-tau expression in a trophoblast cell line. Mol Endocrinol 2007; 22:331-43. [PMID: 17975022 DOI: 10.1210/me.2007-0300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In ruminants, conceptus interferon-tau (IFNT) production is necessary for maintenance of pregnancy. We examined the role of protein kinase A (PKA) in regulating IFNT expression through the activation of Ets2 in JAr choriocarcinoma cells. Although overexpression of the catalytic subunit of PKA or the addition of 8-bromo-cAMP had little ability to up-regulate boIFNT1 reporter constructs on their own, coexpression with Ets2 led to a large increase in gene expression. Progressive truncation of reporter constructs indicated that the site of PKA/Ets2 responsiveness lay in a region of the promoter between -126 and -67, which lacks a cAMP response element but contains the functional Ets2-binding site and an activator protein 1 (AP1) site. Specific mutation of the former reduced the PKA/Ets2 effects by more than 98%, whereas mutation of an AP1-binding site adjacent to the Ets2 site or pharmacological inhibition of MAPK kinase 2 led to a doubling of the combined Ets2/PKA effects, suggesting there is antagonism between the Ras/MAPK pathway and the PKA signal transduction pathway. Although Ets2 is not a substrate for PKA, lowering the effective concentrations of the coactivators, cAMP response element-binding protein-binding protein (CBP)/p300, known PKA targets, reduced the ability of PKA to synergize with Ets2, suggesting that PKA effects on IFNT regulation might be mediated through CBP/p300 coactivation, particularly as CBP and Ets2 occupy the proximal promoter region of IFNT in bovine trophoblast CT-1 cells. The up-regulation of IFNT in the elongating bovine conceptus is likely due to the combinatorial effects of PKA, Ets2, and CBP/p300 and triggered via growth factors released from maternal endometrium.
Collapse
Affiliation(s)
- Padmalaya Das
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 East Rollins Street, Columbia, MO 65211-7310, USA
| | | | | | | |
Collapse
|
35
|
Guo M, Cox B, Mahale S, Davis W, Carranza A, Hayes K, Sprague S, Jimenez D, Ding Y. Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke. Neuroscience 2007; 151:340-51. [PMID: 18160227 DOI: 10.1016/j.neuroscience.2007.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/18/2007] [Accepted: 10/15/2007] [Indexed: 12/14/2022]
Abstract
Exercise reduces ischemia and reperfusion (I/R) injury in the rat stroke model. We investigated whether pre-ischemic exercise ameliorates blood-brain barrier (BBB) dysfunction in stroke by reducing matrix metalloproteinase (MMP)-9 expression and strengthening basal lamina. Adult male Sprague-Dawley rats were subjected to a 30 min exercise program on a treadmill 5 days a week for 3 weeks. Stroke was induced by a 2-h middle cerebral artery (MCA) occlusion using an intraluminal filament in the exercised and non-exercised groups. Brain infarction was measured and neurological deficits were scored. BBB dysfunction was determined by examining brain edema and Evans Blue extravasation. Expression of collagen IV, the major component of basal lamina essential for maintenance of the endothelial permeability barrier, was quantitatively detected by Western blot and immunocytochemistry. Ex vivo techniques were used to compare collagen IV-labeled vessels in response to ischemic insult. Temporal relationship of expression of MMP-9 and its endogenous inhibitor, the tissue inhibitors of metalloproteinase-1 (TIMP-1), was determined by real-time PCR for mRNA and Western blot for protein during reperfusion. Brain edema and Evans Blue leakage were both significantly (P<0.01) reduced after stroke in the exercised group, in association with reduced brain infarct volume and neurological deficits. Western blot analysis indicated that exercise enhanced collagen IV expression and reduced the collagen loss after stroke. Immunocytochemistry demonstrated that collagen IV-labeled vessels were significantly (P<0.01) increased in exercised rats. In the ex vivo study, after exercised brains were incubated with ischemic brain tissue, a significantly (P<0.01) higher level of collagen IV-labeled vessels was observed as compared with non-exercised brains following the same treatment. The ex vivo study also revealed a key role of MMP-9 in exercise-strengthened collagen IV expression against I/R injury. TIMP-1 protein levels were significantly (P<0.01) increased by exercise. Our results indicate that pre-ischemic exercise reduces brain injury by improving BBB function and enhancing basal lamina integrity in stroke. This study suggests that the neuroprotective effect of physical exercise is associated with an imbalance of MMP-9 and TIMP-1 expression.
Collapse
Affiliation(s)
- M Guo
- Department of Neurosurgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou X, Hu H, Huynh MLN, Kotaru C, Balzar S, Trudeau JB, Wenzel SE. Mechanisms of tissue inhibitor of metalloproteinase 1 augmentation by IL-13 on TGF-beta 1-stimulated primary human fibroblasts. J Allergy Clin Immunol 2007; 119:1388-97. [PMID: 17418380 DOI: 10.1016/j.jaci.2007.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND TGF-beta induces expression of tissue inhibitor of metalloproteinase 1 (TIMP-1), a potent inhibitor of matrix metalloproteinases that controls extracellular matrix metabolism and deposition. IL-13 alone does not induce TIMP-1, but in combination with TGF-beta it augments TIMP-1 expression. Although these interactions have implications for remodeling in asthma, little is understood regarding the mechanisms controlling TIMP-1 product. OBJECTIVE To explore the role of Smads and mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) in the TIMP-1 augmentation by IL-13+TGF-beta1 in primary human airway fibroblasts. METHODS Real-time PCR, Western blot, ELISA, and transient transfection were used to evaluate the mechanisms of TIMP-1 augmentation. RESULTS IL-13 enhanced TGF-beta1-induced Smad-2 and Smad-3 phosphorylation, transient transfection with dominant-negative Smad-2 or Smad-3 decreased TIMP-1 mRNA expression in the presence of TGF-beta1 and IL-13+TGF-beta1 through inhibition of Smad-2 or Smad-3 phosphorylation. ERK phosphorylation was increased by IL-13 and IL-13+TGF-beta1. MEK-ERK inhibition decreased TIMP-1 mRNA/protein to a greater degree after IL-13+TGF-beta1 stimulation versus TGF-beta1 alone. MEK-ERK inhibition also significantly increased Akt phosphorylation under all conditions and decreased Smad-3 phosphorylation in the presence of IL-13+TGF-beta1. In contrast, phosphoinositide-3 kinase-Akt inhibition increased phosphorylation of ERK and Smads, leading to increased TIMP-1. CONCLUSION These results indicate that IL-13 augments TGF-beta1-induced TIMP-1 expression through increased Smad phosphorylation. These increases occur as TGF-beta1 downregulates IL-13-induced phosphoinositide-3 kinase activation while leaving the positive effect of IL-13-induced ERK on Smad signaling. CLINICAL IMPLICATIONS This augmentation of TGF-beta1-induced TIMP-1 by IL-13 could contribute to the fibrosis and airway remodeling seen in the presence of T(H)2 inflammation in asthma.
Collapse
Affiliation(s)
- Xiuxia Zhou
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ramer R, Eichele K, Hinz B. Upregulation of tissue inhibitor of matrix metalloproteinases-1 confers the anti-invasive action of cisplatin on human cancer cells. Oncogene 2007; 26:5822-7. [PMID: 17369856 DOI: 10.1038/sj.onc.1210358] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer cell invasion is one of the crucial events in local spreading, growth and metastasis of tumors. The present study investigates the mechanism underlying the anti-invasive action of the chemotherapeutic cisplatin. In human cervical carcinoma cells (HeLa), cisplatin caused a time- and concentration-dependent suppression of cell invasion through Matrigel. Inhibition of invasion was accompanied by upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), whereas levels of matrix metalloproteinase-2 (MMP-2), MMP-9 and TIMP-2 remained unchanged. Cisplatin's effects on TIMP-1 expression and invasion were associated with phosphorylations of p38 and p42/44 mitogen-activated protein kinases and were abrogated by specific inhibitors of both pathways. The impact of TIMP-1 in the anti-invasive action of cisplatin was proven by transfecting cells with small interfering RNA targeting TIMP-1, which completely reversed suppression of invasion by cisplatin. A functional relevance of TIMP-1 upregulation was substantiated by findings showing a concentration-dependent inhibition of Matrigel invasion by recombinant TIMP-1. The essential role of TIMP-1 in the anti-invasive action of cisplatin was confirmed using another human cervical carcinoma cell line (C33A) and human lung carcinoma cells (A549). Altogether, our data demonstrate a hitherto unknown mechanism by which cisplatin exerts its antimetastatic properties on highly invasive cancer cells.
Collapse
Affiliation(s)
- R Ramer
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
38
|
El Mabrouk M, Sylvester J, Zafarullah M. Signaling pathways implicated in oncostatin M-induced aggrecanase-1 and matrix metalloproteinase-13 expression in human articular chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:309-20. [PMID: 17208315 DOI: 10.1016/j.bbamcr.2006.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 11/04/2006] [Accepted: 11/27/2006] [Indexed: 11/26/2022]
Abstract
Molecular mechanisms of oncostatin M (OSM)-stimulated cartilage extracellular matrix catabolism and signaling pathways were investigated in human arthritic chondrocytes. OSM, alone or with Interleukin-1 (IL-1beta), increased glycosaminoglycan release and induced ADAMTS-4 and MMP-13 protein expression in human cartilage explants. OSM dose- and time-dependently increased ADAMTS-4 mRNA and MMP-13 protein expression in human femoral head chondrocytes. Extracellular signal-regulated kinases (ERK1/2)-MAPK pathway inhibitor, U0126, down-regulated ADAMTS-4 and MMP-13 induction by OSM. Janus kinase 2 (JAK2) inhibitor, AG490, suppressed OSM-induced ADAMTS-4 mRNA expression but did not affect MMP-13 levels while JAK3 pharmacological inhibitor and siRNA transfection suppressed both. Parthenolide, a signal transducer and activator of transcription (STAT1 and STAT3) phosphorylation inhibitor, reduced OSM-induced ADAMTS-4 and MMP-13 gene expression and prevented STAT1/3 DNA binding activity. Additionally, OSM-enhanced ADAMTS-4 mRNA and MMP-13 expression was down-regulated by phosphatidylinositol 3-kinase (PI3K) and Akt/PKB inhibitors, LY294002 and NL-71-101. Furthermore, JAK3 inhibition time-dependently down-regulated Akt but not ERK1/2 phosphorylation suggesting that Akt is a downstream target of JAK3. These results suggest that OSM-stimulated ADAMTS-4 and MMP-13 expression is mediated by ERK1/2, JAK3/STAT1/3 and PI3K/Akt and by cross talk between these pathways. The inhibitors of these cascades could block OSM-evoked degeneration of cartilage by ADAMTS-4 and MMP-13.
Collapse
Affiliation(s)
- Mohammed El Mabrouk
- Department of Medicine and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), K-5255 Mailloux, Notre-Dame Hospital, 1560 Sherbrooke E. Montreal, Quebec, Canada H2L 4M1
| | | | | |
Collapse
|
39
|
Smyth DC, Kerr C, Richards CD. Oncostatin M-Induced IL-6 Expression in Murine Fibroblasts Requires the Activation of Protein Kinase Cδ. THE JOURNAL OF IMMUNOLOGY 2006; 177:8740-7. [PMID: 17142776 DOI: 10.4049/jimmunol.177.12.8740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oncostatin M (OSM) is an IL-6/LIF cytokine family member whose role has been identified in a range of biological activities in vitro, including up-regulation of inflammatory gene expression and regulation of connective tissue metabolism. However, the mechanisms through which OSM regulates cellular responses are not completely understood. In this study, we show that activation of the calcium-independent or novel protein kinase C (PKC) isoform PKCdelta is a critical event during OSM-mediated up-regulation of IL-6 expression in murine fibroblasts. The pan-PKC inhibitor GF109203X (bisindolylmaleimide I) reduced secretion of IL-6; however, use of Go6976, an inhibitor of calcium-dependent PKC enzymes, did not. The PKCdelta-selective inhibitory compound rottlerin abrogated expression of IL-6 transcript and protein, but only reduced PKCdelta activity when used at higher concentrations as determined by kinase activity assay, suggesting rottlerin may inhibit IL-6 expression in a PKCdelta-independent manner. However, silencing of PKCdelta protein expression, but not the related novel isoform PKCepsilon, by use of RNA interference (i.e., small interfering RNA) demonstrated that PKCdelta is required for murine OSM (mOSM) induction of IL-6 protein secretion. Furthermore, inhibition of PI3K by use of LY294002 reduces expression of IL-6 at both the mRNA and protein level in murine fibroblasts, and we suggest that PI3K is required for activation of PKCdelta. Knockdown of phosphoinositide-dependent kinases PDK-1 or Akt1 using small interfering RNA strategies did not influence mOSM-induced IL-6 expression, suggesting mOSM uses a PI3K-PKCdelta pathway of activation independent of these kinases. Our findings illustrate a novel signaling network used by mOSM that may be important for its mediation of inflammatory processes.
Collapse
Affiliation(s)
- David C Smyth
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
40
|
Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL. Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006; 20:2369-71. [PMID: 17023520 DOI: 10.1096/fj.06-5850fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oncostatin M (OsM) is a member of the interleukin (IL)-6 family of cytokines and is well known for its role in inflammation, cell proliferation, and hematopoiesis. OsM, together with its glycoprotein 130 containing receptor complex, is expressed and regulated in most cells of the central nervous system (CNS), yet the function of OsM within this compartment is poorly understood. Here we have investigated the effect of OsM using in vitro and in vivo models of excitotoxic injury. Using primary cultures of mouse cortical neurons, OsM was shown to reduce N-methyl-D-aspartate (NMDA) -induced neuronal death by 50% when added simultaneously with NMDA while pretreatment of neurons with OsM fully prevented NMDA toxicity indicating a profound protective effect of this cytokine. OsM was also shown to inhibit NMDA-mediated increase in levels of free intracellular calcium and to selectively reduce neuronal expression of the NR2C subunit of the NMDA receptor. Finally, using an in vivo model of excitotoxic injury, OsM significantly reduced the NMDA-induced lesion volume when coinjected with NMDA into the mouse striatum. Taken together, these results identify OsM as a powerful neuroprotective cytokine and provide a rational foundation to explore the therapeutic potential for OsM in diseases of the CNS.
Collapse
Affiliation(s)
- Thomas W Weiss
- Australian Centre for Blood Diseases, Monash University, 89 Commercial Rd., Prahran 3181, Victoria, Australia
| | | | | | | | | |
Collapse
|
41
|
Wilczynska KM, Gopalan SM, Bugno M, Kasza A, Konik BS, Bryan L, Wright S, Griswold-Prenner I, Kordula T. A novel mechanism of tissue inhibitor of metalloproteinases-1 activation by interleukin-1 in primary human astrocytes. J Biol Chem 2006; 281:34955-64. [PMID: 17012236 DOI: 10.1074/jbc.m604616200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive astrogliosis is the gliotic response to brain injury with activated astrocytes and microglia being the major effector cells. These cells secrete inflammatory cytokines, proteinases, and proteinase inhibitors that influence extracellular matrix (ECM) remodeling. In astrocytes, the expression of tissue inhibitor of metalloproteinases-1 (TIMP-1) is up-regulated by interleukin-1 (IL-1), which is a major neuroinflammatory cytokine. We report that IL-1 activates TIMP-1 expression via both the IKK/NF-kappaB and MEK3/6/p38/ATF-2 pathways in astrocytes. The activation of the TIMP-1 gene can be blocked by using pharmacological inhibitors, including BAY11-7082 and SB202190, overexpression of the dominant-negative inhibitor of NF-kappaB (IkappaBalphaSR), or by the knock-down of p65 subunit of NF-kappaB. Binding of activated NF-kappaB (p50/p65 heterodimer) and ATF-2 (homodimer) to two novel regulatory elements located -2.7 and -2.2 kb upstream of the TIMP-1 transcription start site, respectively, is required for full IL-1-responsiveness. Mutational analysis of these regulatory elements and their weak activity when linked to the minimal tk promoter suggest that cooperative binding is required to activate transcription. In contrast to astrocytes, we observed that TIMP-1 is expressed at lower levels in gliomas and is not regulated by IL-1. We provide evidence that the lack of TIMP-1 activation in gliomas results from either dysfunctional IKK/NF-kappaB or MEK3/6/p38/ATF-2 activation by IL-1. In summary, we propose a novel mechanism of TIMP-1 regulation, which ensures an increased supply of the inhibitor after brain injury, and limits ECM degradation. This mechanism does not function in gliomas, and may in part explain the increased invasiveness of glioma cells.
Collapse
Affiliation(s)
- Katarzyna M Wilczynska
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cohen M, Marchand-Adam S, Lecon-Malas V, Marchal-Somme J, Boutten A, Durand G, Crestani B, Dehoux M. HGF synthesis in human lung fibroblasts is regulated by oncostatin M. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1097-103. [PMID: 16684952 DOI: 10.1152/ajplung.00166.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oncostatin M (OSM) is a IL-6 family cytokine locally produced in acute lung injury. Its profibrotic properties suggest a role in lung wound repair. Hepatocyte growth factor (HGF), produced by fibroblasts, is involved in pulmonary epithelial repair. We investigated the role of OSM in HGF synthesis by human lung fibroblasts. We showed that OSM upregulated HGF mRNA in MRC5 cells and in human lung fibroblasts, whereas IL-6 and leukemia inhibitory factor did not. OSM induced HGF secretion to a similar extent as IL-1beta in both a time- and dose-dependent manner. HGF was released in its cleaved mature form, and its secretion was completely inhibited in the presence of cycloheximide, indicating a de novo protein synthesis. OSM in combination with prostaglandin E(2), a powerful HGF inductor, led to an additive effect. OSM and indomethacin in combination further increased HGF secretion. This could be explained, at least in part, by a moderate upregulation of specific OSM receptor beta mRNA expression through cyclooxygenase inhibition. These results demonstrate that OSM-induced HGF synthesis did not involve a PGE(2) pathway. OSM-induced HGF secretion was inhibited by PD-98059 (a specific pharmacological inhibitor of ERK1/2), SB-203580 (a p38 MAPK inhibitor), and SP-600125 (a JNK inhibitor) by 70, 82, and 100%, respectively, whereas basal HGF secretion was only inhibited by SP-600125 by 30%. Our results demonstrate a specific upregulation of HGF synthesis by OSM, most likely through a MAPK pathway, and support the suggestion that OSM may participate in lung repair through HGF production.
Collapse
Affiliation(s)
- Murielle Cohen
- Service de Biochimie A, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, 46 rue Henri Huchard, 75877 Paris cedex 18, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nagashima H, Maeda-Nakamura K, Iwashita K, Goto T. Induced secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) in vivo and in vitro by hepatotoxin rubratoxin B. Food Chem Toxicol 2006; 44:1138-43. [PMID: 16530906 DOI: 10.1016/j.fct.2006.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 01/12/2006] [Accepted: 01/24/2006] [Indexed: 10/24/2022]
Abstract
To elucidate the mechanism of rubratoxin B toxicity, we investigated rubratoxin B-induced secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) in mice and cultured cells; we also documented the involvement of stress-activated MAP kinases (c-Jun-N-terminal kinases [JNKs] and p38s) in this process. Rubratoxin B significantly (P<0.05) induced serum TIMP-1 levels in mice. Because TIMP-1 is thought to play a crucial role in the process of liver fibrosis, rubratoxin B may cause liver fibrosis. Rubratoxin B enhanced TIMP-1 secretion in HepG2 cells to a peak level of approximately 40 microg/ml. The amount of TIMP-1 mRNA increased with the duration of rubratoxin B treatment; and this hepatotoxin appears to induce TIMP-1 secretion through a transcriptional control mechanism. Unlike similar treatment with rubratoxin B and JNK inhibitor, concomitant treatment with rubratoxin B and p38 inhibitor increased rubratoxin B-induced TIMP-1 secretion, suggesting that p38s (but not JNKs) antagonize this process. In addition, treatment with p38 inhibitor slightly increased the amount of rubratoxin B-induced TIMP-1 mRNA, suggesting that p38s control rubratoxin B-induced TIMP-1 secretion chiefly post-transcriptionally. In this study, we showed that rubratoxin B induces TIMP-1 production in vivo and in vitro and that p38s antagonize rubratoxin B-induced TIMP-1 secretion.
Collapse
Affiliation(s)
- H Nagashima
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | | | | | | |
Collapse
|
44
|
Fritz DK, Kerr C, Tong L, Smyth D, Richards CD. Oncostatin-M Up-Regulates VCAM-1 and Synergizes with IL-4 in Eotaxin Expression: Involvement of STAT6. THE JOURNAL OF IMMUNOLOGY 2006; 176:4352-60. [PMID: 16547273 DOI: 10.4049/jimmunol.176.7.4352] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oncostatin-M (OSM) is an IL-6/gp130 family member that can stimulate the eosinophil-selective CC chemokine eotaxin-1 in vitro and eosinophil accumulation in mouse lung in vivo. The adhesion molecule VCAM-1 and eotaxin have been implicated in extravasation and accumulation of eosinophils into tissue in animal models of asthma. In this study, we investigated the role of OSM in regulation of VCAM-1 expression, and STAT6 tyrosine 641 phosphorylation in murine fibroblasts. OSM induced VCAM-1 expression in C57BL/6 mouse lung fibroblasts (MLF) and NIH 3T3 fibroblasts at the protein and mRNA level in vitro. OSM also induced STAT6 Y641 phosphorylation in MLF and NIH 3T3 fibroblasts, an activity not observed with other IL-6/gp130 cytokine family members (IL-6, leukemia inhibitory factor, cardiotropin-1, and IL-11) nor in cells derived from STAT6(-/-) mice (STAT6(-/-) MLF). STAT6 was not essential for OSM-induced VCAM-1 or eotaxin-1 as assessed in STAT6(-/-) MLF. Combination of IL-4 and OSM synergistically enhanced eotaxin-1 expression in MLF. IL-4 induction and the IL-4/OSM synergistic induction of eotaxin-1 was abrogated in STAT6(-/-) MLF, however, regulation of IL-6 was similar in -/- or wild-type MLF. Induction of VCAM-1 by OSM was diminished by pharmacological inhibitors of PI3K (LY294002) but not inhibitors of ERK1/2 (PD98059) or p38 MAPK (SB203580). These data support the role of OSM in eosinophil accumulation into lung tissue through eotaxin-1 and VCAM-1 expression and the notion that OSM is able to induce unique signal transduction events through its receptor complex of OSMR beta-chain and gp130.
Collapse
Affiliation(s)
- Dominik K Fritz
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
45
|
Kwak HJ, Park MJ, Cho H, Park CM, Moon SI, Lee HC, Park IC, Kim MS, Rhee CH, Hong SI. Transforming Growth Factor-β1 Induces Tissue Inhibitor of Metalloproteinase-1 Expression via Activation of Extracellular Signal-Regulated Kinase and Sp1 in Human Fibrosarcoma Cells. Mol Cancer Res 2006; 4:209-20. [PMID: 16547158 DOI: 10.1158/1541-7786.mcr-05-0140] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The net balance of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinases (TIMP) system has been known to be a key factor in tumor cell invasion. In the present study, we investigated the molecular mechanisms of anti-invasive and antimigrative activity of transforming growth factor (TGF)-beta1 on HT1080 human fibrosarcoma cells. In in vitro Matrigel invasion and Transwell migration assays, TGF-beta1 dose-dependently inhibited the invasion and migration of HT1080 cells, respectively. Gelatin zymography, Western blot, and real-time PCR analysis showed that TGF-beta1 enhanced the expression and secretion of MMP-2, TIMP-1, and, to a lesser degree, MMP-9 but not membrane type 1-MMP and TIMP-2. The addition of recombinant TIMP-1 protein reduced the Matrigel invasion and Transwell migration of HT1080 cells, similar to TGF-beta1. Because augmentation of TIMP-1 might be the major factor for the anti-invasive and antimigrative activity of TGF-beta1, we investigated possible molecular mechanisms responsible for the expression of TIMP-1 induced by TGF-beta1. Treatment of HT1080 cells with TGF-beta1 rapidly phosphorylated three mitogen-activated protein kinases [MAPK; extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun NH2-terminal kinase] and Akt. Among these kinases, the inhibition of only ERK1/2 pathway by PD98059, a specific inhibitor of MAPK/ERK kinase(MEK)-1, and transfection of dominant-negative MEK 1 effectively blocked the TIMP-1 induction by TGF-beta1. Mithramycin, a specific inhibitor of Sp1 transcription factor, but not curcumin, an inhibitor of activator protein-1, and transfection of Sp1 small interfering RNA significantly inhibited the TGF-beta1-induced expression of TIMP-1. In addition, electrophoretic mobility shift assay showed that TGF-beta1 up-regulated Sp1 DNA-binding activity, and PD98059 and mithramycin effectively inhibited these events. Finally, pretreatment of HT1080 cells with PD98059 and mithramycin, but not curcumin, restored the invasive activity of these cells. Taken together, these data suggest that TGF-beta1 modulates the net balance of the MMPs/TIMPs the systems in HT1080 cells for anti-invasion and antimigration by augmenting TIMP-1 through ERK1/2 pathway and Sp1 transcription factor.
Collapse
Affiliation(s)
- Hee-Jin Kwak
- Laboratory of Functional Genomics, Korea Institute of Radiological and Medical Sciences, Gongneung-Dong, Seoul 139-706, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H, Manabe T. Integrin-linked kinase activity is associated with interleukin-1α-induced progressive behavior of pancreatic cancer and poor patient survival. Oncogene 2006; 25:3237-46. [PMID: 16407822 DOI: 10.1038/sj.onc.1209356] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cancer cell adhesion and invasion into extracellular matrix are regulated by integrin-linked kinase (ILK) activity in a phosphatidylinositol 3-kinase (PI3-K)-dependent manner. In this study, we demonstrated that ILK and beta(1)-integrin play important roles in interleukin (IL)-1alpha-induced enhancement of adhesion and invasion of pancreatic cancer cells through p38 mitogen-activated protein kinase (MAPK) signaling pathway and activator protein-1 (AP-1) activation. Alteration of ILK kinase activity controlled IL-1alpha-induced p38 MAPK phosphorylation and its downstream AP-1 activation with subsequent regulation of pancreatic cancer cell adhesion and invasion. Overexpressed ILK enhances the IL-1alpha-induced p38 MAPK phosphorylation more strongly through glycogen synthase kinase 3 (GSK-3) activation, and subsequently induces AP-1 activation, which promotes aggressive capabilities of pancreatic cancer cells. In contrast, knockdown of ILK kinase activity inhibits the IL-1alpha-induced activation of MAPK/AP-1 pathway via inhibition of GSK-3 phosphorylation. In immunohistochemical analysis, statistically significant association between strong expression of ILK and poor prognosis of pancreatic cancer patients were observed, and strong expression of ILK in cancerous tissues can be a significant prognostic indicator of pancreatic cancer patients. Our results suggest that ILK is involved with aggressive capability in pancreatic cancer and that these regulations can be helpful to understand biological processes for a better translational treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- H Sawai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kim SK, Park HJ, Hong HS, Baik EJ, Jung MW, Mook-Jung I. ERK1/2 is an endogenous negative regulator of the gamma-secretase activity. FASEB J 2005; 20:157-9. [PMID: 16293708 DOI: 10.1096/fj.05-4055fje] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As an essential protease in the generation of amyloid beta, gamma-secretase is believed to play an important role in the pathogenesis of Alzheimer's disease. Although a great deal of progress has been made in identifying the components of gamma-secretase complex, the endogenous regulatory mechanism of gamma-secretase is unknown. Here we show that gamma-secretase is endogenously regulated via extracellular signal regulated MAP kinase (ERK) 1/2-dependent mitogen-activated protein kinase (MAPK) pathway. The inhibition of ERK1/2 activity, either by a treatment with a MEK inhibitor or an ERK knockdown transfection, dramatically increased gamma-secretase activity in several different cell types. JNK or p38 kinase inhibitors had little effect, indicating that the effect is specific to ERK1/2-dependent MAPK pathway. Conversely, increased ERK1/2 activity, by adding purified active ERK1/2 or EGF-induced activation of ERK1/2, significantly reduced gamma-secretase activity, demonstrating down-regulation of gamma-secretase activity by ERK1/2. Whereas gamma-secretase expression was not affected by ERK1/2, its activity was enhanced by phosphatase treatment, indicating that ERK1/2 regulates gamma-secretase activity by altering the pattern of phophorylation. Among the components of isolated gamma-secretase complex, only nicastrin was phosphorylated by ERK1/2, and it precipitated with ERK1/2 in a co-immunoprecipitation assay, which suggests binding between ERK1/2 and nicastrin. Our results show that ERK1/2 is an endogenous regulator of gamma-secretase, which raises the possibility that ERK1/2 down-regulates gamma-secretase activity by directly phosphorylating nicastrin.
Collapse
Affiliation(s)
- Su-Kyoung Kim
- Department of Biochemistry and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Böing I, Stross C, Radtke S, Lippok BE, Heinrich PC, Hermanns HM. Oncostatin M-induced activation of stress-activated MAP kinases depends on tyrosine 861 in the OSM receptor and requires Jak1 but not Src kinases. Cell Signal 2005; 18:50-61. [PMID: 15935618 DOI: 10.1016/j.cellsig.2005.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/11/2005] [Accepted: 03/15/2005] [Indexed: 11/16/2022]
Abstract
We have investigated the molecular mechanisms involved in the activation process of the stress-activated protein kinases (SAPK) p38 and JNK in response to the interleukin-6-type cytokine oncostatin M (OSM). Interestingly, activation of p38 and JNK originates from tyrosine residue 861 in the OSMR; the same tyrosine residue which we identified before to be involved in the activation of the mitogen-activated kinases Erk1/2 [Hermanns, H. M., Radtke, S., Schaper, F., Heinrich, P. C., and Behrmann, I. (2000) J. Biol. Chem. 275, 40742-40748]. Therefore, activation of members belonging to all three MAPK families is mediated by one tyrosine motif in the cytoplasmic region of the human OSMR. Concomitantly, point mutation of this residue abrogates the phosphorylation of these kinases. The Janus kinase Jak1 is absolutely essential for the activation of p38 in response to OSM, while Src kinase family members appear to be generally dispensable. Finally, we demonstrate that mutation of tyrosine 861 abrogates OSMR-mediated cell proliferation and identify Erk1/2 as mainly responsible for the proliferative effect. Erk1/2 activation is negatively influenced by p38 activation and inhibition of p38 significantly prolongs the half-life of OSM-induced Egr-1.
Collapse
Affiliation(s)
- Irene Böing
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|