1
|
Elmore G, Ahern BM, McVay NM, Barker KW, Lohano SS, Ali N, Sebastian A, Andres DA, Satin J, Levitan BM. The C-terminus of Rad is required for membrane localization and L-type calcium channel regulation. J Gen Physiol 2024; 156:e202313518. [PMID: 38990175 PMCID: PMC11244639 DOI: 10.1085/jgp.202313518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel β subunits (CaVβ) to promote inhibition of ICa,L. In addition to CaVβ interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to β-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Garrett Elmore
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Brooke M Ahern
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Nicholas M McVay
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kyle W Barker
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Sarisha S Lohano
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Nemat Ali
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Andrea Sebastian
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Bryana M Levitan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Gill Heart and Vascular Institute , Lexington, KY, USA
| |
Collapse
|
2
|
Lucaci AG, Brew WE, Lamanna J, Selberg A, Carnevale V, Moore AR, Kosakovsky Pond SL. The evolution of mammalian Rem2: unraveling the impact of purifying selection and coevolution on protein function, and implications for human disorders. FRONTIERS IN BIOINFORMATICS 2024; 4:1381540. [PMID: 38978817 PMCID: PMC11228553 DOI: 10.3389/fbinf.2024.1381540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Rad And Gem-Like GTP-Binding Protein 2 (Rem2), a member of the RGK family of Ras-like GTPases, is implicated in Huntington's disease and Long QT Syndrome and is highly expressed in the brain and endocrine cells. We examine the evolutionary history of Rem2 identified in various mammalian species, focusing on the role of purifying selection and coevolution in shaping its sequence and protein structural constraints. Our analysis of Rem2 sequences across 175 mammalian species found evidence for strong purifying selection in 70% of non-invariant codon sites which is characteristic of essential proteins that play critical roles in biological processes and is consistent with Rem2's role in the regulation of neuronal development and function. We inferred epistatic effects in 50 pairs of codon sites in Rem2, some of which are predicted to have deleterious effects on human health. Additionally, we reconstructed the ancestral evolutionary history of mammalian Rem2 using protein structure prediction of extinct and extant sequences which revealed the dynamics of how substitutions that change the gene sequence of Rem2 can impact protein structure in variable regions while maintaining core functional mechanisms. By understanding the selective pressures, protein- and gene - interactions that have shaped the sequence and structure of the Rem2 protein, we gain a stronger understanding of its biological and functional constraints.
Collapse
Affiliation(s)
- Alexander G Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Weill Cornell Medicine, The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, United States
| | - William E Brew
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Jason Lamanna
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, United States
| | - Avery Selberg
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Vincenzo Carnevale
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, United States
| | - Anna R Moore
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Royer L, Herzog JJ, Kenny K, Tzvetkova B, Cochrane JC, Marr MT, Paradis S. The Ras-like GTPase Rem2 is a potent inhibitor of calcium/calmodulin-dependent kinase II activity. J Biol Chem 2018; 293:14798-14811. [PMID: 30072381 DOI: 10.1074/jbc.ra118.003560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Indexed: 02/05/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a well-characterized, abundant protein kinase that regulates a diverse set of functions in a tissue-specific manner. For example, in heart muscle, CaMKII regulates Ca2+ homeostasis, whereas in neurons, CaMKII regulates activity-dependent dendritic remodeling and long-term potentiation (LTP), a neurobiological correlate of learning and memory. Previously, we identified the GTPase Rem2 as a critical regulator of dendrite branching and homeostatic plasticity in the vertebrate nervous system. Here, we report that Rem2 directly interacts with CaMKII and potently inhibits the activity of the intact holoenzyme, a previously unknown Rem2 function. Our results suggest that Rem2 inhibition involves interaction with both the CaMKII hub domain and substrate recognition domain. Moreover, we found that Rem2-mediated inhibition of CaMKII regulates dendritic branching in cultured hippocampal neurons. Lastly, we report that substitution of two key amino acid residues in the Rem2 N terminus (Arg-79 and Arg-80) completely abolishes its ability to inhibit CaMKII. We propose that our biochemical findings will enable further studies unraveling the functional significance of Rem2 inhibition of CaMKII in cells.
Collapse
Affiliation(s)
| | | | | | | | - Jesse C Cochrane
- Department of Molecular Biology and Genetics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Michael T Marr
- From the Department of Biology, .,Rosenstiel Basic Medical Sciences Research Center
| | - Suzanne Paradis
- From the Department of Biology, .,Volen Center for Complex Systems, and.,National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454 and
| |
Collapse
|
4
|
Manning JR, Chelvarajan L, Levitan BM, Withers CN, Nagareddy PR, Haggerty CM, Fornwalt BK, Gao E, Tripathi H, Abdel-Latif A, Andres DA, Satin J. Rad GTPase deletion attenuates post-ischemic cardiac dysfunction and remodeling. ACTA ACUST UNITED AC 2018; 3:83-96. [PMID: 29732439 PMCID: PMC5931223 DOI: 10.1016/j.jacbts.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rad-GTPase is an LTCC component that functions to govern calcium current in the myocardium. Deletion of Rad increases myocardial contractility secondary to increased trigger calcium entry. AMI induces heart failure, including reduced calcium homeostasis, but deletion of Rad prevents AMI myocardial calcium alterations. Rad deletion prevents post-MI scar spread by attenuating the inflammatory response. Future studies will explore whether Rad deletion is an effective therapeutic direction for providing combined safe, stable inotropic support to the failing heart in concert with protection against inflammatory signaling.
The protein Rad interacts with the L-type calcium channel complex to modulate trigger Ca2+ and hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction. Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad and testing the efficacy of Rad deletion in cardioprotection relative to the time of onset of acute myocardial infarction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Physiology, University of Kentucky, Lexington KY.,Department of Biochemistry, University of Kentucky, Lexington KY
| | - Lakshman Chelvarajan
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY
| | - Bryana M Levitan
- Department of Physiology, University of Kentucky, Lexington KY.,Gill Heart and Vascular Institute, University of Kentucky, Lexington KY
| | | | | | - Christopher M Haggerty
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Department of Imaging Science and Innovation, Geisinger, Danville PA
| | - Brandon K Fornwalt
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Department of Imaging Science and Innovation, Geisinger, Danville PA
| | - Erhe Gao
- Department of Physiology, University of Kentucky, Lexington KY.,Center for Translational Medicine, Temple University School of Medicine, Philadelphia PA
| | - Himi Tripathi
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, Department of Medicine, University of Kentucky, Lexington, KY.,Gill Heart and Vascular Institute, University of Kentucky, Lexington KY
| | - Douglas A Andres
- Department of Biochemistry, University of Kentucky, Lexington KY
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington KY
| |
Collapse
|
5
|
Kenny K, Royer L, Moore AR, Chen X, Marr MT, Paradis S. Rem2 signaling affects neuronal structure and function in part by regulation of gene expression. Mol Cell Neurosci 2017; 85:190-201. [PMID: 29066292 DOI: 10.1016/j.mcn.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The central nervous system has the remarkable ability to convert changes in the environment in the form of sensory experience into long-term alterations in synaptic connections and dendritic arborization, in part through changes in gene expression. Surprisingly, the molecular mechanisms that translate neuronal activity into changes in neuronal connectivity and morphology remain elusive. Rem2, a member of the Rad/Rem/Rem2/Gem/Kir (RGK) subfamily of small Ras-like GTPases, is a positive regulator of synapse formation and negative regulator of dendritic arborization. Here we identify that one output of Rem2 signaling is the regulation of gene expression. Specifically, we demonstrate that Rem2 signaling modulates the expression of genes required for a variety of cellular processes from neurite extension to synapse formation and synaptic function. Our results highlight Rem2 as a unique molecule that transduces changes in neuronal activity detected at the cell membrane to morphologically relevant changes in gene expression in the nucleus.
Collapse
Affiliation(s)
- Katelyn Kenny
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Leandro Royer
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Anna R Moore
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Xiao Chen
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
6
|
Agbu SO, Liang Y, Liu A, Anderson KV. The small GTPase RSG1 controls a final step in primary cilia initiation. J Cell Biol 2017; 217:413-427. [PMID: 29038301 PMCID: PMC5748968 DOI: 10.1083/jcb.201604048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Primary cilia are essential for normal development and tissue homeostasis, but the mechanisms that remodel the centriole to promote cilia initiation are not well understood. Agbu et al. report that mouse RSG1, a small GTPase, regulates a late step in cilia initiation, downstream of TTBK2 and the CPLANE protein INTU. Primary cilia, which are essential for normal development and tissue homeostasis, are extensions of the mother centriole, but the mechanisms that remodel the centriole to promote cilia initiation are poorly understood. Here we show that mouse embryos that lack the small guanosine triphosphatase RSG1 die at embryonic day 12.5, with developmental abnormalities characteristic of decreased cilia-dependent Hedgehog signaling. Rsg1 mutant embryos have fewer primary cilia than wild-type embryos, but the cilia that form are of normal length and traffic Hedgehog pathway proteins within the cilium correctly. Rsg1 mother centrioles recruit proteins required for cilia initiation and dock onto ciliary vesicles, but axonemal microtubules fail to elongate normally. RSG1 localizes to the mother centriole in a process that depends on tau tubulin kinase 2 (TTBK2), the CPLANE complex protein Inturned (INTU), and its own GTPase activity. The data suggest a specific role for RSG1 in the final maturation of the mother centriole and ciliary vesicle that allows extension of the ciliary axoneme.
Collapse
Affiliation(s)
- Stephanie O Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY
| | - Yinwen Liang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aimin Liu
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
7
|
Manning JR, Withers CN, Levitan B, Smith JD, Andres DA, Satin J. Loss of Rad-GTPase produces a novel adaptive cardiac phenotype resistant to systolic decline with aging. Am J Physiol Heart Circ Physiol 2015; 309:H1336-45. [PMID: 26371164 DOI: 10.1152/ajpheart.00389.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022]
Abstract
Rad-GTPase is a regulator of L-type calcium current (LTCC), with increased calcium current observed in Rad knockout models. While mouse models that result in elevated LTCC have been associated with heart failure, our laboratory and others observe a hypercontractile phenotype with enhanced calcium homeostasis in Rad(-/-). It is currently unclear whether this observation represents an early time point in a decompensatory progression towards heart failure or whether Rad loss drives a novel phenotype with stable enhanced function. We test the hypothesis that Rad(-/-) drives a stable nonfailing hypercontractile phenotype in adult hearts, and we examine compensatory regulation of sarcoplasmic reticulum (SR) loading and protein changes. Heart function was measured in vivo with echocardiography. In vivo heart function was significantly improved in adult Rad(-/-) hearts compared with wild type. Heart wall dimensions were significantly increased, while heart size was decreased, and cardiac output was not changed. Cardiac function was maintained through 18 mo of age with no decompensation. SR releasable Ca(2+) was increased in isolated Rad(-/-) ventricular myocytes. Higher Ca(2+) load was accompanied by sarco/endoplasmic reticulum Ca(2+) ATPase 2a (SERCA2a) protein elevation as determined by immunoblotting and a rightward shift in the thapsigargan inhibitor-response curve. Rad(-/-) promotes morphological changes accompanied by a stable increase in contractility with aging and preserved cardiac output. The Rad(-/-) phenotype is marked by enhanced systolic and diastolic function with increased SR uptake, which is consistent with a model that does not progress into heart failure.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Physiology, University of Kentucky, Lexington, Kentucky; Department of Biochemistry, University of Kentucky, Lexington, Kentucky; and
| | - Catherine N Withers
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky; and
| | - Bryana Levitan
- Gill Heart Institute, University of Kentucky, Lexington, Kentucky
| | - Jeffrey D Smith
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky; and
| | - Douglas A Andres
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky; and
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington, Kentucky;
| |
Collapse
|
8
|
Puhl HL, Lu VB, Won YJ, Sasson Y, Hirsch JA, Ono F, Ikeda SR. Ancient origins of RGK protein function: modulation of voltage-gated calcium channels preceded the protostome and deuterostome split. PLoS One 2014; 9:e100694. [PMID: 24992013 PMCID: PMC4081519 DOI: 10.1371/journal.pone.0100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022] Open
Abstract
RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel β subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein–Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein – Cavβ subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago.
Collapse
Affiliation(s)
- Henry L. Puhl
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Van B. Lu
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yu-Jin Won
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yehezkel Sasson
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Joel A. Hirsch
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Fumihito Ono
- Laboratory of Molecular Physiology, Section on Model Synaptic Systems, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen R. Ikeda
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P. L-type Ca 2+ channels in heart and brain. ACTA ACUST UNITED AC 2014; 3:15-38. [PMID: 24683526 PMCID: PMC3968275 DOI: 10.1002/wmts.102] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
L-type calcium channels (Cav1) represent one of the three major classes (Cav1–3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known α1 subunits (Cav1.1–Cav1.4) form the pore of L-type calcium channels (LTCCs) and contain the high-affinity drug-binding sites for dihydropyridines and other chemical classes of organic CCBs. In essentially all electrically excitable cells one or more of these LTCC isoforms is expressed, and therefore it is not surprising that many body functions including muscle, brain, endocrine, and sensory function depend on proper LTCC activity. Gene knockouts and inherited human diseases have allowed detailed insight into the physiological and pathophysiological role of these channels. Genome-wide association studies and analysis of human genomes are currently providing even more hints that even small changes of channel expression or activity may be associated with disease, such as psychiatric disease or cardiac arrhythmias. Therefore, it is important to understand the structure–function relationship of LTCC isoforms, their differential contribution to physiological function, as well as their fine-tuning by modulatory cellular processes.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gurjot Kaur
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gabriella Bock
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Moore AR, Ghiretti AE, Paradis S. A loss-of-function analysis reveals that endogenous Rem2 promotes functional glutamatergic synapse formation and restricts dendritic complexity. PLoS One 2013; 8:e74751. [PMID: 23991227 PMCID: PMC3753333 DOI: 10.1371/journal.pone.0074751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/06/2013] [Indexed: 12/28/2022] Open
Abstract
Rem2 is a member of the RGK family of small Ras-like GTPases whose expression and function is regulated by neuronal activity in the brain. A number of questions still remain as to the endogenous functions of Rem2 in neurons. RNAi-mediated Rem2 knockdown leads to an increase in dendritic complexity and a decrease in functional excitatory synapses, though a recent report challenged the specificity of Rem2-targeted RNAi reagents. In addition, overexpression in a number of cell types has shown that Rem2 can inhibit voltage-gated calcium channel (VGCC) function, while studies employing RNAi-mediated knockdown of Rem2 have failed to observe a corresponding enhancement of VGCC function. To further investigate these discrepancies and determine the endogenous function of Rem2, we took a comprehensive, loss-of-function approach utilizing two independent, validated Rem2-targeted shRNAs to analyze Rem2 function. We sought to investigate the consequence of endogenous Rem2 knockdown by focusing on the three reported functions of Rem2 in neurons: regulation of synapse formation, dendritic morphology, and voltage-gated calcium channels. We conclude that endogenous Rem2 is a positive regulator of functional, excitatory synapse development and a negative regulator of dendritic complexity. In addition, while we are unable to reach a definitive conclusion as to whether the regulation of VGCCs is an endogenous function of Rem2, our study reports important data regarding RNAi reagents for use in future investigation of this issue.
Collapse
Affiliation(s)
- Anna R. Moore
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Amy E. Ghiretti
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yang T, Colecraft HM. Regulation of voltage-dependent calcium channels by RGK proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1644-54. [PMID: 23063948 DOI: 10.1016/j.bbamem.2012.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/28/2022]
Abstract
RGK proteins belong to the Ras superfamily of monomeric G-proteins, and currently include four members - Rad, Rem, Rem2, and Gem/Kir. RGK proteins are broadly expressed, and are the most potent known intracellular inhibitors of high-voltage-activated Ca²⁺ (Ca(V)1 and Ca(V)2) channels. Here, we review and discuss the evidence in the literature regarding the functional mechanisms, structural determinants, physiological role, and potential practical applications of RGK-mediated inhibition of Ca(V)1/Ca(V)2 channels. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
12
|
Activity-dependent subcellular cotrafficking of the small GTPase Rem2 and Ca2+/CaM-dependent protein kinase IIα. PLoS One 2012; 7:e41185. [PMID: 22815963 PMCID: PMC3399833 DOI: 10.1371/journal.pone.0041185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022] Open
Abstract
Background Rem2 is a small monomeric GTP-binding protein of the RGK family, whose known functions are modulation of calcium channel currents and alterations of cytoskeletal architecture. Rem2 is the only RGK protein found predominantly in the brain, where it has been linked to synaptic development. We wished to determine the effect of neuronal activity on the subcellular distribution of Rem2 and its interacting partners. Results We show that Rem2 undergoes activity-and N-Methyl-D-Aspartate Receptor (NMDAR)-dependent translocation in rat hippocampal neurons. This redistribution of Rem2, from a diffuse pattern to one that is highly punctate, is dependent on Ca2+ influx, on binding to calmodulin (CaM), and also involves an auto-inhibitory domain within the Rem2 distal C-terminus region. We found that Rem2 can bind to Ca2+/CaM-dependent protein kinase IIα (CaMKII) a in Ca2+/CaM-dependent manner. Furthermore, our data reveal a spatial and temporal correlation between NMDAR-dependent clustering of Rem2 and CaMKII in neurons, indicating co-assembly and co-trafficking in neurons. Finally, we show that inhibiting CaMKII aggregation in neurons and HEK cells reduces Rem2 clustering, and that Rem2 affects the baseline distribution of CaMKII in HEK cells. Conclusions Our data suggest a novel function for Rem2 in co-trafficking with CaMKII, and thus potentially expose a role in neuronal plasticity.
Collapse
|
13
|
Fan M, Zhang WK, Buraei Z, Yang J. Molecular determinants of Gem protein inhibition of P/Q-type Ca2+ channels. J Biol Chem 2012; 287:22749-58. [PMID: 22589533 DOI: 10.1074/jbc.m111.291872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
14
|
Yang T, Puckerin A, Colecraft HM. Distinct RGK GTPases differentially use α1- and auxiliary β-binding-dependent mechanisms to inhibit CaV1.2/CaV2.2 channels. PLoS One 2012; 7:e37079. [PMID: 22590648 PMCID: PMC3349659 DOI: 10.1371/journal.pone.0037079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/13/2012] [Indexed: 11/30/2022] Open
Abstract
CaV1/CaV2 channels, comprised of pore-forming α1 and auxiliary (β,α2δ) subunits, control diverse biological responses in excitable cells. Molecules blocking CaV1/CaV2 channel currents (ICa) profoundly regulate physiology and have many therapeutic applications. Rad/Rem/Rem2/Gem GTPases (RGKs) strongly inhibit CaV1/CaV2 channels. Understanding how RGKs block ICa is critical for insights into their physiological function, and may provide design principles for developing novel CaV1/CaV2 channel inhibitors. The RGK binding sites within CaV1/CaV2 channel complexes responsible for ICa inhibition are ambiguous, and it is unclear whether there are mechanistic differences among distinct RGKs. All RGKs bind β subunits, but it is unknown if and how this interaction contributes to ICa inhibition. We investigated the role of RGK/β interaction in Rem inhibition of recombinant CaV1.2 channels, using a mutated β (β2aTM) selectively lacking RGK binding. Rem blocked β2aTM-reconstituted channels (74% inhibition) less potently than channels containing wild-type β2a (96% inhibition), suggesting the prevalence of both β-binding-dependent and independent modes of inhibition. Two mechanistic signatures of Rem inhibition of CaV1.2 channels (decreased channel surface density and open probability), but not a third (reduced maximal gating charge), depended on Rem binding to β. We identified a novel Rem binding site in CaV1.2 α1C N-terminus that mediated β-binding-independent inhibition. The CaV2.2 α1B subunit lacks the Rem binding site in the N-terminus and displays a solely β-binding-dependent form of channel inhibition. Finally, we discovered an unexpected functional dichotomy amongst distinct RGKs— while Rem and Rad use both β-binding-dependent and independent mechanisms, Gem and Rem2 use only a β-binding-dependent method to inhibit CaV1.2 channels. The results provide new mechanistic perspectives, and reveal unexpected variations in determinants, underlying inhibition of CaV1.2/CaV2.2 channels by distinct RGK GTPases.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail: (HMC); (TY)
| | - Akil Puckerin
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail: (HMC); (TY)
| |
Collapse
|
15
|
Ghiretti AE, Paradis S. The GTPase Rem2 regulates synapse development and dendritic morphology. Dev Neurobiol 2011; 71:374-89. [PMID: 21485012 DOI: 10.1002/dneu.20868] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rem2 is a member of the Rad/Rem/Rem2/Gem/Kir subfamily of small Ras-like GTPases that was identified as an important mediator of synapse development. We performed a comprehensive, loss- of-function analysis of Rem2 function in cultured hippocampal neurons using RNAi to substantially decrease Rem2 protein levels. We found that knockdown of Rem2 decreases the density and maturity of dendritic spines, the primary site of excitatory synapses onto pyramidal neurons in the hippocampus. Knockdown of Rem2 also alters the gross morphology of dendritic arborizations, increasing the number of dendritic branches without altering total neurite length. Thus, Rem2 functions to inhibit dendritic branching and promote the development of dendritic spines and excitatory synapses. Interestingly, binding to the calcium-binding protein calmodulin is required for the Rem2 regulation of dendritic branching. However, this interaction is completely dispensable for synapse development. Overall, our results suggest that Rem2 regulates dendritic branching and synapse development via distinct and overlapping signal transduction pathways.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
16
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
17
|
Direct inhibition of P/Q-type voltage-gated Ca2+ channels by Gem does not require a direct Gem/Cavbeta interaction. Proc Natl Acad Sci U S A 2010; 107:14887-92. [PMID: 20679232 DOI: 10.1073/pnas.1007543107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rem, Rem2, Rad, and Gem/Kir (RGK) family of small GTP-binding proteins potently inhibits high voltage-activated (HVA) Ca(2+) channels, providing a powerful means of modulating neural, endocrine, and muscle functions. The molecular mechanisms of this inhibition are controversial and remain largely unclear. RGK proteins associate directly with Ca(2+) channel beta subunits (Ca(v)beta), and this interaction is widely thought to be essential for their inhibitory action. In this study, we investigate the molecular underpinnings of Gem inhibition of P/Q-type Ca(2+) channels. We find that a purified Gem protein markedly and acutely suppresses P/Q channel activity in inside-out membrane patches, that this action requires Ca(v)beta but not the Gem/Ca(v)beta interaction, and that Gem coimmunoprecipitates with the P/Q channel alpha(1) subunit (Ca(v)alpha(1)) in a Ca(v)beta-independent manner. By constructing chimeras between P/Q channels and Gem-insensitive low voltage-activated T-type channels, we identify a region encompassing transmembrane segments S1, S2, and S3 in the second homologous repeat of Ca(v)alpha(1) critical for Gem inhibition. Exchanging this region between P/Q and T channel Ca(v)alpha(1) abolishes Gem inhibition of P/Q channels and confers Ca(v)beta-dependent Gem inhibition to a chimeric T channel that also carries the P/Q I-II loop (a cytoplasmic region of Ca(v)alpha(1) that binds Ca(v)beta). Our results challenge the prevailing view regarding the role of Ca(v)beta in RGK inhibition of high voltage-activated Ca(2+) channels and prompt a paradigm in which Gem directly binds and inhibits Ca(v)beta-primed Ca(v)alpha(1) on the plasma membrane.
Collapse
|
18
|
Pang C, Crump SM, Jin L, Correll RN, Finlin BS, Satin J, Andres DA. Rem GTPase interacts with the proximal CaV1.2 C-terminus and modulates calcium-dependent channel inactivation. Channels (Austin) 2010; 4:192-202. [PMID: 20458179 DOI: 10.4161/chan.4.3.11867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Rem, Rem2, Rad, and Gem/Kir (RGK) GTPases, comprise a subfamily of small Ras-related GTP-binding proteins, and have been shown to potently inhibit high voltage-activated Ca(2+) channel current following overexpression. Although the molecular mechanisms underlying RGK-mediated Ca(2+) channel regulation remains controversial, recent studies suggest that RGK proteins inhibit Ca(2+) channel currents at the plasma membrane in part by interactions with accessory channel β subunits. In this paper, we extend our understanding of the molecular determinants required for RGK-mediated channel regulation by demonstrating a direct interaction between Rem and the proximal C-terminus of Ca(V)1.2 (PCT), including the CB/IQ domain known to contribute to Ca(2+)/calmodulin (CaM)-mediated channel regulation. The Rem2 and Rad GTPases display similar patterns of PCT binding, suggesting that the Ca(V)1.2 C-terminus represents a common binding partner for all RGK proteins. In vitro Rem:PCT binding is disrupted by Ca(2+)/CaM, and this effect is not due to Ca(2+)/CaM binding to the Rem C-terminus. In addition, co-overexpression of CaM partially relieves Rem-mediated L-type Ca(2+) channel inhibition and slows the kinetics of Ca(2+)-dependent channel inactivation. Taken together, these results suggest that the association of Rem with the PCT represents a crucial molecular determinant in RGK-mediated Ca(2+) channel regulation and that the physiological function of the RGK GTPases must be re-evaluated. Rather than serving as endogenous inhibitors of Ca(2+) channel activity, these studies indicate that RGK proteins may play a more nuanced role, regulating Ca(2+) currents via modulation of Ca(2+)/CaM-mediated channel inactivation kinetics.
Collapse
Affiliation(s)
- Chunyan Pang
- Department of Molecular and Cellular Biochemistry and Physiology, University of Kentucky College of Medicine, Lexington, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Flynn R, Chen L, Hameed S, Spafford JD, Zamponi GW. Molecular determinants of Rem2 regulation of N-type calcium channels. Biochem Biophys Res Commun 2008; 368:827-31. [DOI: 10.1016/j.bbrc.2008.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/02/2008] [Indexed: 11/15/2022]
|