1
|
Liu SS, Fang X, Wen X, Liu JS, Alip M, Sun T, Wang YY, Chen HW. How mesenchymal stem cells transform into adipocytes: Overview of the current understanding of adipogenic differentiation. World J Stem Cells 2024; 16:245-256. [PMID: 38577237 PMCID: PMC10989283 DOI: 10.4252/wjsc.v16.i3.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 03/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts, chondrocytes and adipocytes. The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes, in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes. Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis. However, the mechanism underlying the adipogenic differentiation of MSCs is not fully understood. Here, the current knowledge of adipogenic differentiation in MSCs is reviewed, focusing on signaling pathways, noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation. Finally, the relationship between maladipogenic differentiation and diseases is briefly discussed. We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiang Fang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xin Wen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Ji-Shan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Miribangvl Alip
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Tian Sun
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yuan-Yuan Wang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hong-Wei Chen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
2
|
Park SW, Nhieu J, Persaud SD, Miller MC, Xia Y, Lin YW, Lin YL, Kagechika H, Mayo KH, Wei LN. A new regulatory mechanism for Raf kinase activation, retinoic acid-bound Crabp1. Sci Rep 2019; 9:10929. [PMID: 31358819 PMCID: PMC6662813 DOI: 10.1038/s41598-019-47354-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/30/2019] [Indexed: 12/31/2022] Open
Abstract
The rapidly accelerated fibrosarcoma (Raf) kinase is canonically activated by growth factors that regulate multiple cellular processes. In this kinase cascade Raf activation ultimately results in extracellular regulated kinase 1/2 (Erk1/2) activation, which requires Ras binding to the Ras binding domain (RBD) of Raf. We recently reported that all-trans retinoic acid (atRA) rapidly (within minutes) activates Erk1/2 to modulate cell cycle progression in stem cells, which is mediated by cellular retinoic acid binding protein 1 (Crabp1). But how atRA-bound Crabp1 regulated Erk1/2 activity remained unclear. We now report Raf kinase as the direct target of atRA-Crabp1. Molecularly, Crabp1 acts as a novel atRA-inducible scaffold protein for Raf/Mek/Erk in cells without growth factor stimulation. However, Crabp1 can also compete with Ras for direct interaction with the RBD of Raf, thereby negatively modulating growth factor-stimulated Raf activation, which can be enhanced by atRA binding to Crabp1. NMR heteronuclear single quantum coherence (HSQC) analyses reveal the 6-strand β-sheet face of Crabp1 as its Raf-interaction surface. We identify a new atRA-mimicking and Crabp1-selective compound, C3, that can also elicit such an activity. This study uncovers a new signal crosstalk between endocrine (atRA-Crabp1) and growth factor (Ras-Raf) pathways, providing evidence for atRA-Crabp1 as a novel modulator of cell growth. The study also suggests a new therapeutic strategy by employing Crabp1-selective compounds to dampen growth factor stimulation while circumventing RAR-mediated retinoid toxicity.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shawna D Persaud
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Youlin Xia
- Minnesota NMR Center, University of Minnesota, Twin Cities, Minneapolis, Minnesota, 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hiroyuki Kagechika
- Tokyo Medical and Dental University, Institute of Biomaterials and Bioengineering, Tokyo, Japan
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Lin YL, Persaud SD, Nhieu J, Wei LN. Cellular Retinoic Acid-Binding Protein 1 Modulates Stem Cell Proliferation to Affect Learning and Memory in Male Mice. Endocrinology 2017; 158:3004-3014. [PMID: 28911165 PMCID: PMC5659671 DOI: 10.1210/en.2017-00353] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/14/2017] [Indexed: 01/05/2023]
Abstract
Retinoic acid (RA) is the active ingredient of vitamin A. It exerts its canonical activity by binding to nuclear RA receptors (RARs) to regulate gene expression. Increasingly, RA is also known to elicit nongenomic RAR-independent activities, most widely detected in activating extracellular regulated kinase (ERK)1/2. This study validated the functional role of cellular retinoic acid-binding protein 1 (Crabp1) in mediating nongenomic activity in RA, specifically activating ERK1/2 to rapidly augment the cell cycle by expanding the growth 1 phase and slowing down embryonic stem cell and neural stem cell (NSC) proliferation. The study further uncovered the physiological activity of Crabp1 in modulating NSC proliferation and animal behavior. In the Crabp1 knockout mouse hippocampus, where Crabp1 is otherwise detected in the subgranular zone, neurogenesis and NSC proliferation increased and hippocampus-dependent brain functions such as learning and memory correspondingly improved. This study established the physiological role of Crabp1 in modulating stem cell proliferation and hippocampus-dependent brain activities such as learning and memory.
Collapse
Affiliation(s)
- Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Shawna D. Persaud
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
4
|
Antagonistic Interactions between Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and Retinoic Acid Receptor Signaling in Colorectal Cancer Cells. Mol Cell Biol 2017; 37:MCB.00012-17. [PMID: 28483913 DOI: 10.1128/mcb.00012-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
Deregulated activation of RAS/extracellular signal-regulated kinase (ERK) signaling and defects in retinoic acid receptor (RAR) signaling are both implicated in many types of cancers. However, interrelationships between these alterations in regulating cancer cell fates have not been fully elucidated. Here, we show that RAS/ERK and RAR signaling pathways antagonistically interact with each other to regulate colorectal cancer (CRC) cell fates. We show that RAR signaling activation promotes spontaneous differentiation of CRC cells, while ERK activation suppresses it. Our microarray analyses identify genes whose expression levels are upregulated by RAR signaling. Notably, one of these genes, MKP4, encoding a member of dual-specificity phosphatases for mitogen-activated protein (MAP) kinases, mediates ERK inactivation upon RAR activation, thereby promoting the differentiation of CRC cells. Moreover, our results also show that RA induction of RAR target genes is suppressed by the ERK pathway activation. This suppression results from the inhibition of RAR transcriptional activity, which is shown to be mediated through an RIP140/histone deacetylase (HDAC)-mediated mechanism. These results identify antagonistic interactions between RAS/ERK and RAR signaling in the cell fate decision of CRC cells and define their underlying molecular mechanisms.
Collapse
|
5
|
Nautiyal J. Transcriptional coregulator RIP140: an essential regulator of physiology. J Mol Endocrinol 2017; 58:R147-R158. [PMID: 28073818 DOI: 10.1530/jme-16-0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
Transcriptional coregulators drive gene regulatory decisions in the transcriptional space. Although transcription factors including all nuclear receptors provide a docking platform for coregulators to bind, these proteins bring enzymatic capabilities to the gene regulatory sites. RIP140 is a transcriptional coregulator essential for several physiological processes, and aberrations in its function may lead to diseased states. Unlike several other coregulators that are known either for their coactivating or corepressing roles, in gene regulation, RIP140 is capable of acting both as a coactivator and a corepressor. The role of RIP140 in female reproductive axis and recent findings of its role in carcinogenesis and adipose biology have been summarised.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental BiologyFaculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
6
|
Persaud SD, Park SW, Ishigami-Yuasa M, Koyano-Nakagawa N, Kagechika H, Wei LN. All trans-retinoic acid analogs promote cancer cell apoptosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation. Sci Rep 2016; 6:22396. [PMID: 26935534 PMCID: PMC4776112 DOI: 10.1038/srep22396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/11/2016] [Indexed: 12/16/2022] Open
Abstract
All trans retinoic acid (atRA) is one of the most potent therapeutic agents, but extensive toxicity caused by nuclear RA receptors (RARs) limits its clinical application in treating cancer. AtRA also exerts non-genomic activities for which the mechanism remains poorly understood. We determine that cellular retinoic acid binding protein 1 (Crabp1) mediates the non-genomic activity of atRA, and identify two compounds as the ligands of Crabp1 to rapidly and RAR-independently activate extracellular signal regulated kinase 1/2 (ERK1/2). Non-canonically activated ERK activates protein phosphatase 2A (PP2A) and lengthens cell cycle duration in embryonic stem cells (ESC). This is abolished in Crabp1-null ESCs. Re-expressing Crabp1 in Crabp1-negative cancer cells also sensitizes their apoptotic induction by atRA. This study reveals a physiological relevance of the non-genomic action of atRA, mediated by Crabp1, in modulating cell cycle progression and apoptosis induction, and provides a new cancer therapeutic strategy whereby compounds specifically targeting Crabp1 can modulate cell cycle and cancer cell apoptosis in a RAR-independent fashion, thereby avoiding atRA’s toxicity caused by its genomic effects.
Collapse
Affiliation(s)
- Shawna D Persaud
- Department of Pharmacology University of Minnesota, Minneapolis, MN 55455, USA
| | - Sung Wook Park
- Department of Pharmacology University of Minnesota, Minneapolis, MN 55455, USA
| | - Mari Ishigami-Yuasa
- Tokyo Medical and Dental University (TMDU), Institute of Biomaterials and Bioengineering, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, JAPAN
| | | | - Hiroyuki Kagechika
- Tokyo Medical and Dental University (TMDU), Institute of Biomaterials and Bioengineering, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, JAPAN
| | - Li-Na Wei
- Department of Pharmacology University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
RIP140 as a novel therapeutic target in the treatment of atherosclerosis. J Mol Cell Cardiol 2015; 81:136-8. [PMID: 25701715 DOI: 10.1016/j.yjmcc.2015.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
|
8
|
Lin YW, Liu PS, Adhikari N, Hall JL, Wei LN. RIP140 contributes to foam cell formation and atherosclerosis by regulating cholesterol homeostasis in macrophages. J Mol Cell Cardiol 2015; 79:287-94. [PMID: 25528964 PMCID: PMC4302032 DOI: 10.1016/j.yjmcc.2014.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022]
Abstract
Atherosclerosis, a syndrome with abnormal arterial walls, is one of the major causes that lead to the development of various cardiovascular diseases. The key initiator of atherosclerosis is cholesterol accumulation. The uncontrolled cholesterol deposition, mainly involving low-density lipoprotein (LDL), causes atheroma plaque formation, which initiates chronic inflammation due to the recruitment of inflammatory cells such as macrophages. Macrophages scavenge excess peripheral cholesterol and transport intracellular cholesterol to high-density lipoprotein (HDL) for excretion or storage. Cholesterol-laden macrophage-derived foam cell formation is the main cause of atherogenesis. It is critical to understand the regulatory mechanism of cholesterol homeostasis in the macrophage in order to prevent foam cells formation and further develop novel therapeutic strategies against atherosclerosis. Here we identified a protein, RIP140 (receptor interacting protein 140), which enhances macrophage-derived foam cell formation by reducing expression of reverse cholesterol transport genes, A TP-binding membrane cassette transporter A-1 (ABCA1) and ATP-binding membrane cassette transporter G-1 (ABCG1). In animal models, we found that reducing RIP140 levels by crossing macrophage-specific RIP140 knockdown (MϕRIP140KD) mice with ApoE null mice effectively ameliorates high-cholesterol diet-induced atherosclerosis. Our data suggest that reducing RIP140 levels in macrophages significantly inhibits atherosclerosis, along with markers of inflammation and the number of macrophages in a western diet fed ApoE null mouse. This study provides a proof-of-concept for RIP140 as a risk biomarker of, and a therapeutic target for, atherosclerosis.
Collapse
Affiliation(s)
- Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Pu-Ste Liu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Neeta Adhikari
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L Hall
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Zhang D, Wang Y, Dai Y, Wang J, Suo T, Pan H, Liu H, Shen S, Liu H. Downregulation of RIP140 in hepatocellular carcinoma promoted the growth and migration of the cancer cells. Tumour Biol 2014; 36:2077-85. [PMID: 25391428 DOI: 10.1007/s13277-014-2815-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with a poor response to chemotherapy. It is very important to identify novel diagnosis biomarkers and therapeutic targets. RIP140, a regulator of estrogen receptor, recently has been found to be involved in the tumorigenesis. However, its function in the progression of HCC remains poorly understood. Here, we found that the expression of RIP140 was downregulated in the HCC tissues. Moreover, overexpression of RIP140 in HCC cells inhibited cell proliferation and migration, while downregulation of RIP140 promoted the tumorigenicity of HCC cells in vitro and in vivo. Mechanistically, RIP140 interacted with beta-catenin and negatively regulated beta-catenin/TCF signaling. Taken together, our study suggests the suppressive roles of RIP140 in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Dexiang Zhang
- General Surgery Department, Zhongshan Hospital, General Surgery Institute, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Feng X, Krogh KA, Wu CY, Lin YW, Tsai HC, Thayer SA, Wei LN. Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun 2014; 5:4487. [PMID: 25066731 PMCID: PMC4200015 DOI: 10.1038/ncomms5487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca(2+) release from the endoplasmic reticulum (ER) triggers many physiological responses in neurons, and when uncontrolled can cause ER stress that contributes to neurological disease. Here we show that the unfolded protein response (UPR) in neurons induces rapid translocation of nuclear receptor-interacting protein 140 (RIP140) to the cytoplasm. In the cytoplasm, RIP140 localizes to the ER by binding to the IP3R. The carboxyl-terminal RD4 domain of RIP140 interacts with the carboxyl-terminal gate-keeping domain of the IP3R. This molecular interaction disrupts the IP3R's 'head-tail' interaction, thereby suppressing channel opening and attenuating IP3R-mediated Ca(2+) release. This contributes to a rapid suppression of the ER stress response and provides protection from apoptosis in both hippocampal neurons in vitro and in an animal model of ER stress. Thus, RIP140 translocation to the cytoplasm is an early response to ER stress and provides protection against neuronal death.
Collapse
Affiliation(s)
- Xudong Feng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly A. Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, R.O.C
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Parker BL, Shepherd NE, Trefely S, Hoffman NJ, White MY, Engholm-Keller K, Hambly BD, Larsen MR, James DE, Cordwell SJ. Structural basis for phosphorylation and lysine acetylation cross-talk in a kinase motif associated with myocardial ischemia and cardioprotection. J Biol Chem 2014; 289:25890-906. [PMID: 25008320 DOI: 10.1074/jbc.m114.556035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility.
Collapse
Affiliation(s)
- Benjamin L Parker
- From the Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney 2006, Australia, the Diabetes and Obesity Program, Biological Mass Spectrometry Unit, Garvan Institute of Medical Research, 2010 Australia
| | | | | | - Nolan J Hoffman
- the Diabetes and Obesity Program, Biological Mass Spectrometry Unit, Garvan Institute of Medical Research, 2010 Australia
| | - Melanie Y White
- the School of Molecular Bioscience and the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| | | | - Brett D Hambly
- From the Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney 2006, Australia, the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| | - Martin R Larsen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - David E James
- the Diabetes and Obesity Program, Biological Mass Spectrometry Unit, Garvan Institute of Medical Research, 2010 Australia, the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| | - Stuart J Cordwell
- From the Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney 2006, Australia, the School of Molecular Bioscience and the Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and
| |
Collapse
|
12
|
Huang Q, Chang J, Cheung MK, Nong W, Li L, Lee MT, Kwan HS. Human proteins with target sites of multiple post-translational modification types are more prone to be involved in disease. J Proteome Res 2014; 13:2735-48. [PMID: 24754740 DOI: 10.1021/pr401019d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many proteins can be modified by multiple types of post-translational modifications (Mtp-proteins). Although some post-translational modifications (PTMs) have recently been found to be associated with life-threatening diseases like cancers and neurodegenerative disorders, the underlying mechanisms remain enigmatic to date. In this study, we examined the relationship of human Mtp-proteins and disease and systematically characterized features of these proteins. Our results indicated that Mtp-proteins are significantly more inclined to participate in disease than proteins carrying no known PTM sites. Mtp-proteins were found significantly enriched in protein complexes, having more protein partners and preferred to act as hubs/superhubs in protein-protein interaction (PPI) networks. They possess a distinct functional focus, such as chromatin assembly or disassembly, and reside in biased, multiple subcellular localizations. Moreover, most Mtp-proteins harbor more intrinsically disordered regions than the others. Mtp-proteins carrying PTM types biased toward locating in the ordered regions were mainly related to protein-DNA complex assembly. Examination of the energetic effects of PTMs on the stability of PPI revealed that only a small fraction of single PTM events influence the binding energy of >2 kcal/mol, whereas the binding energy can change dramatically by combinations of multiple PTM types. Our work not only expands the understanding of Mtp-proteins but also discloses the potential ability of Mtp-proteins to act as key elements in disease development.
Collapse
Affiliation(s)
- Qianli Huang
- School of Life Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong SAR 852000, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Wu CY, Feng X, Wei LN. Coordinated repressive chromatin-remodeling of Oct4 and Nanog genes in RA-induced differentiation of embryonic stem cells involves RIP140. Nucleic Acids Res 2014; 42:4306-17. [PMID: 24489122 PMCID: PMC3985664 DOI: 10.1093/nar/gku092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintaining pluripotency and indefinite self-renewal of embryonic stem cells requires a tight control of the expression of several key stemness factors, particularly Nanog and Oct4 transcription factors. The mammalian SWItch/Sucrose NonFermentable (SWI/SNF) complex contains Brg1 or Brm as its core subunit, along with Brg1-associated factors. Our previous studies have addressed chromatin-remodeling of the Oct4 gene locus in retinoic acid (RA)-treated embryonal carcinoma cell line P19, which involves receptor-interacting protein 140 (RIP140) for heterochromatinization on the proximal promoter region of this gene locus. However, the mechanism of RIP140 action in RA-triggered repressive chromatin-remodeling is unclear. The current study examines RA repression of the Nanog gene and compares the results with RA repression of the Oct4 gene on the chromatin level. The results show a loose nucleosome array on the Nanog gene promoter in undifferentiated embryonic stem cells. On RA treatment, the Nanog gene locus remodels specifically in the CR1 region of its proximal promoter, with the insertion of a nucleosome and compaction of this region. Further, RA induces coordinated chromatin-remodeling of both Nanog and Oct4 gene loci, which requires RA receptor-α, RIP140 and Brm. Finally, in these RA-triggered repressive chromatin-remodeling processes, lysine acetylation of RIP140 is critical for its recruiting Brm.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
14
|
Ho PC, Wei LN. Biological activities of receptor-interacting protein 140 in adipocytes and metabolic diseases. Curr Diabetes Rev 2012; 8:452-7. [PMID: 22934550 PMCID: PMC5560868 DOI: 10.2174/157339912803529922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
Abstract
Receptor-interacting protein 140 (RIP140) is best known for its functional role as a wide-spectrum transcriptional co-regulator. It is highly expressed in metabolic tissues including mature adipocyte. In the past decade, molecular biological and biochemical studies revealed extensive and sequential post-translational modifications (PTMs) of RIP140. Some of these PTMs affect RIP140's sub-cellular distribution and biological activities that contribute to the development and progression of metabolic diseases. The biological activity of RIP140 that translocates to the cytoplasm in adipocytes is to regulate glucose uptake, adiponectin secretion and lipolysis. Accumulation of RIP140 in the cytoplasm promotes adipocyte dysfunctions, and provides a biomarker of early stages of metabolic diseases. Administering compounds that reduce cytoplasmic accumulation of RIP140 in high fat diet-fed animals can ameliorate metabolic dysfunctions, manifested in improving insulin sensitivity and adiponectin secretion, and reducing incidences of hepatic steatosis. This review summarizes studies demonstrating RIP140's PTMs and biological activities in the cytoplasm of adipocyte, signaling pathways stimulating these PTMs, and a proof-of-concept that targeting cytoplasmic RIP140 can be an effective strategy in managing metabolic diseases.
Collapse
Affiliation(s)
| | - Li-Na Wei
- Address correspondence to this author at the Department of Pharmacology, University of Minnesota Medical School 6-120 Jackson Hall 321 Church Street SE Minneapolis, MN 55455-0217, USA; Tel: 612-625-9402; Fax: 612-625-8408;
| |
Collapse
|
15
|
Persaud SD, Lin YW, Wu CY, Kagechika H, Wei LN. Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal 2012; 25:19-25. [PMID: 22982089 DOI: 10.1016/j.cellsig.2012.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/01/2012] [Indexed: 12/19/2022]
Abstract
All-trans retinoic acid (atRA), one of the active ingredients of vitamin A, exerts canonical activities to regulate gene expression mediated by nuclear RA receptors (RARs). AtRA could also elicit certain non-canonical activities including, mostly, rapid activation of extracellular signal regulated kinase 1/2 (ERK1/2); but the mechanism was unclear. In this study, we have found that cellular retinoic acid binding protein I (CRABPI) mediates the non-canonical, RAR- and membrane signal-independent activation of ERK1/2 by atRA in various cellular backgrounds. In the context of embryonic stem cells (ESCs), atRA/CRABPI-dependent ERK1/2 activation rapidly affects ESC cell cycle, specifically to expand the G1 phase. This is mediated by ERK stimulation resulting in dephosphorylation of nuclear p27, which elevates nuclear p27 protein levels to block G1 progression to S phase. This is the first study to identify CRABPI as the mediator for non-canonical activation of ERK1/2 by atRA, and demonstrate a new functional role for CRABPI in modulating ESC cell cycle progression.
Collapse
Affiliation(s)
- Shawna D Persaud
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
16
|
Zassadowski F, Rochette-Egly C, Chomienne C, Cassinat B. Regulation of the transcriptional activity of nuclear receptors by the MEK/ERK1/2 pathway. Cell Signal 2012; 24:2369-77. [PMID: 22906493 DOI: 10.1016/j.cellsig.2012.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Cells undergo continuous and simultaneous external influences regulating their behavior. As an example, during differentiation, they go through different stages of maturation and gene expression is regulated by several simultaneous signaling pathways. We often tend at separating the nuclear pathways from the signaling ones initiated at membrane receptors. However, it is essential to keep in mind that all these pathways are interconnected to achieve a fine regulation of cell functions. The regulation of transcription by nuclear receptors has been thoroughly studied, but it now appears that a critical level of this regulation involves the action of several kinases that target the nuclear receptors themselves as well as their partners. The purpose of this review is to highlight the importance of one family of the mitogen-activated protein kinase (MAPK) superfamily, the MEK/ERK1/2 pathway, in the transcriptional activity of nuclear receptors.
Collapse
|
17
|
Ho PC, Tsui YC, Lin YW, Persaud SD, Wei LN. Endothelin-1 promotes cytoplasmic accumulation of RIP140 through a ET(A)-PLCβ-PKCε pathway. Mol Cell Endocrinol 2012; 351:176-83. [PMID: 22209746 PMCID: PMC3288750 DOI: 10.1016/j.mce.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/15/2011] [Accepted: 12/02/2011] [Indexed: 01/14/2023]
Abstract
The physiological signal activating cytoplasmic accumulation of nuclear receptor interacting protein 140 (RIP140) in adipocytes was unclear. We uncover that endothelin-1 (ET-1) promotes cytoplasmic accumulation of RIP140 in 3T3-L1 adipocytes. We determine ET-1's signal transduction pathway in adipocytes, which is by activating ET(A) receptor-PLCβ-nuclear PKCε. Blocking this pathway in 3T3-L1 adipocyte cultures, by treating cells with an ET(A) antagonist, inhibiting PLCβ, or silencing PKCε, reduces ET-1-stimulated cytoplasmic accumulation of RIP140. In a HFD-fed obese mouse model, administration of a selective ET(A) antagonist, ambrisentan, effectively dampens cytoplasmic accumulation of RIP140 in the epididymal adipose tissue and reduces HFD-caused adipocyte dysfunctions. Importantly, ambrisentan improves blood glucose control and reduces the severity of hepatic steatosis in HFD-fed mice. This study reports a physiological signal that stimulates nuclear export of RIP140 in adipocytes and provides evidence for a strategy using selective ET(A) antagonist to treat obesity-induced insulin resistance and, possibly, other metabolic disorders.
Collapse
Affiliation(s)
- Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455-0217, USA
| | | | | | | | | |
Collapse
|
18
|
Ho PC, Tsui YC, Feng X, Greaves DR, Wei LN. NF-κB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance. Nat Immunol 2012; 13:379-86. [PMID: 22388040 PMCID: PMC3309172 DOI: 10.1038/ni.2238] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/13/2012] [Indexed: 12/12/2022]
Abstract
Endotoxin tolerance (ET) triggered by prior exposure to Toll-like receptor (TLR) ligands provides a mechanism to dampen inflammatory cytokines. Receptor-interacting protein 140 (RIP140) interacts with NF-κB to regulate the expression of proinflammatory cytokine genes. We identify lipopolysaccharide (LPS) stimulation of Syk-mediated tyrosine phosphorylation on RIP140 and RelA interaction with RIP140. These events increase recruitment of SOCS1-Rbx1 (SCF) E3 ligase to tyrosine-phosphorylated RIP140, thereby degrading RIP140 to inactivate inflammatory cytokine genes. Macrophages expressing a non-degradable RIP140 were resistant to the establishment of ET for specific genes. The results reveal RelA as an adaptor for SCF ubiquitin ligase to fine-tune NF-κB target genes by targeting co-activator RIP140, and an unexpected role for RIP140 protein degradation in resolving inflammation and ET.
Collapse
Affiliation(s)
- Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
19
|
Kovacic P. Novel electrostatic mechanism for mode of action by N-acetylated proteins: cell signaling and phosphorylation. J Recept Signal Transduct Res 2011; 31:193-8. [PMID: 21619447 DOI: 10.3109/10799893.2011.577784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although extensive literature exists for N-acetylated proteins, scant knowledge is available concerning resultant mode of action. This review presents a novel mechanism based on electrostatics and cell signaling. There is substantial increase in the amide dipole and electrostatic field (EF) in contrast with the primary amino of the lysine precursor. The EF might serve as a bridge in electron transfer and cell signaling or energetics may play a role. The relationship between N-acetylation and phosphorylation is addressed. EFs may be important in the case of phosphates. Involvement of cell signaling is addressed including mechanistic aspects. As is the case for many aspects of bioaction, an integrated approach involving electrochemistry and cell signaling seems reasonable.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
20
|
Madak-Erdogan Z, Katzenellenbogen BS. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol Sci 2011; 125:401-11. [PMID: 22071320 DOI: 10.1093/toxsci/kfr300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although crosstalk between aryl hydrocarbon receptor (AhR) and estrogen receptor α (ERα) is well established, the mechanistic basis and involvement of other proteins in this process are not known. Because we observed an enrichment of AhR-binding motifs in ERα-binding sites of many estradiol (E2)-regulated genes, we investigated how AhR might modulate ERα-mediated gene transcription in breast cancer cells. Gene regulations were categorized based on their pattern of stimulation by E2 and/or dioxin and were denoted E2-responsive, dioxin-responsive, or responsive to either ligand. ERα, AhR, aryl hydrocarbon receptor translocator, and receptor interacting protein 140 (RIP140) were recruited to gene regulatory regions in a gene-specific and E2/dioxin ligand-specific manner. Knockdown of AhR markedly increased the expression of ERα-mediated genes upon E2 treatment. This was not attributable to a change in ERα level, or recruitment of ERα, phosphoSer5-RNA Pol II, or several coregulators but rather was associated with greatly diminished recruitment of the coregulator RIP140 to gene regulatory sites. Changing the cellular level of RIP140 revealed coactivator or corepressor roles for this coregulator in E2- and dioxin-mediated gene regulation, the choice of which was determined by the presence or absence of ERα at gene regulatory sites. Coimmunoprecipitation and chromatin immunoprecipitation (ChIP)-reChIP studies documented that E2- or dioxin-promoted formation of a multimeric complex of ERα, AhR, and RIP140 at ERα-binding sites of genes regulated by either E2 or dioxin. Our findings highlight the importance of cross-regulation between AhR and ERα and a novel mechanism by which AhR controls, through modulating the recruitment of RIP140 to ERα-binding sites, the kinetics and magnitude of ERα-mediated gene stimulation.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
21
|
Persaud SD, Huang WH, Park SW, Wei LN. Gene repressive activity of RIP140 through direct interaction with CDK8. Mol Endocrinol 2011; 25:1689-98. [PMID: 21868449 DOI: 10.1210/me.2011-1072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Receptor interacting protein 140 (RIP140) is a coregulator for numerous nuclear receptors and transcription factors and primarily exerts gene-repressive activities on various target genes. We previously identified a spectrum of posttranslational modifications on RIP140 that augment its property and biological activity. In T(3)-triggered biphasic regulation of cellular retinoic acid binding protein 1 (Crabp1) gene along the course of fibroblast-adipocyte differentiation, we found TRAP220(MED1) critical for T(3)-activated chromatin remodeling whereas RIP140 essential for T(3)-repressive chromatin remodeling of this gene promoter. In this current study, we aim to examine whether and how RIP140 replaces TRAP220(MED1) on the CrabpI promoter in differentiating adipocyte cultures. We find increasing recruitment of RIP140 to this promoter, with corresponding reduction in TRAP220(MED1) recruitment during the T(3)-repressive phase. We also uncover direct interaction of RIP140 with cyclin-dependent kinase (CDK)8 through the amino terminus of RIP140, which is stimulated by lysine acetylation on RIP140. We further validate the biological activity of lysine acetylation-mimetic RIP140, which elicits a stronger repressive effect and more efficiently recruits CDK8 and confirm CDK8's function in recruiting repressive components, such as G9a, to the RIP140 complex on this promoter. This underlies the T(3)-triggered repression of CrabpI gene. This study illustrates a new gene-repressive mechanism of RIP140 that can affect the transcription machinery by directly interacting with CDK8.
Collapse
Affiliation(s)
- Shawna D Persaud
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
22
|
Negative regulation of adiponectin secretion by receptor interacting protein 140 (RIP140). Cell Signal 2011; 24:71-6. [PMID: 21872658 DOI: 10.1016/j.cellsig.2011.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 07/24/2011] [Accepted: 07/26/2011] [Indexed: 01/14/2023]
Abstract
RIP140 (receptor-interacting protein 140) is highly expressed in mature adipocytes and functions as a co-repressor for gene expression involved in lipid and glucose metabolism. In adipocytes, activated PKCε (Protein kinase C epsilon) phosphorylates nuclear RIP140 which is then subsequently arginine methylated and exported to the cytoplasm. In the cytoplasm, RI140 can elicit additional activities. Here we report a new functional role for cytoplasmic RIP140 in adipocyte in regulating adiponectin secretion. Targeting cytoplasmic RIP140 by knocking down RIP140 itself or its nuclear export trigger, PKCε, promotes the secretion of adiponectin without affecting the production or oligomerization of adiponectin. Consequentially, conditioned media from either RIP140- or PKCε-silenced adipocytes, which contain higher levels of adiponectin, enhance glucose uptake in C2C12 cells and reduce gluconeogenesis in HepG2 cells. Further, these effects can be inhibited by an adiponectin-neutralizing antibody. The effect of cytoplasmic RIP140 in regulating adiponectin secretion is via interacting with AS160, a known RIP140-interacting protein. This study reveals a new functional role for cytoplasmic RIP140 in modulating adiponectin vesicle secretion, and suggests that targeting cytoplasmic RIP140 may be a potentially effective therapeutic strategy to improve adiponectin secretion and possibly to manage metabolic disorders.
Collapse
|
23
|
Ho PC, Chuang YS, Hung CH, Wei LN. Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. Cell Signal 2011; 23:1396-403. [PMID: 21504789 DOI: 10.1016/j.cellsig.2011.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/14/2023]
Abstract
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.
Collapse
Affiliation(s)
- Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
24
|
Ho PC, Chang KC, Chuang YS, Wei LN. Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production. FASEB J 2011; 25:1758-66. [PMID: 21285396 DOI: 10.1096/fj.10-179267] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Receptor interacting protein 140 (RIP140) is a nuclear receptor coregulator that affects a wide spectrum of biological processes. It is unclear whether and how the expression level of RIP140 can be modulated and whether RIP140 is involved in inflammatory diseases. Here, we examine how intracellular cholesterol regulates RIP140 expression, and we evaluate the effect of RIP140 expression on macrophage proinflammatory potential. Macrophages treated with modified low-density lipoprotein express higher RIP140 mRNA and protein levels. Consistently, simvastatin reduces RIP140 levels, which can be reversed by mevalonate. Moreover, a high-fat diet elevates RIP140 but lowers miR-33 levels in peritoneal macrophages, and increases the production of IL-1β and TNF-α in macrophages. Mechanistically, miR-33 targets RIP140 mRNA by recognizing its target located in a highly conserved sequence of the 3'-untranslated region (3'-UTR) of RIP140 mRNA. Consequentially, miR-33 reduces RIP140 coactivator activity for NF-κB, which is supported by the reduction in NF-κB reporter activity and the inflammatory potential in macrophages. This study uncovers a cholesterol-miR-33-RIP140 regulatory pathway that modulates the proinflammatory potential in macrophages in response to an alteration in the intracellular cholesterol status, and identifies RIP140 as a direct target of miR-33 that mediates simvastatin-triggered anti-inflammation.
Collapse
Affiliation(s)
- Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, 55455-0217, USA
| | | | | | | |
Collapse
|
25
|
Rosell M, Jones MC, Parker MG. Role of nuclear receptor corepressor RIP140 in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2010; 1812:919-28. [PMID: 21193034 PMCID: PMC3117993 DOI: 10.1016/j.bbadis.2010.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 01/04/2023]
Abstract
Obesity and its associated complications, which can lead to the development of metabolic syndrome, are a worldwide major public health concern especially in developed countries where they have a very high prevalence. RIP140 is a nuclear coregulator with a pivotal role in controlling lipid and glucose metabolism. Genetically manipulated mice devoid of RIP140 are lean with increased oxygen consumption and are resistant to high-fat diet-induced obesity and hepatic steatosis with improved insulin sensitivity. Moreover, white adipocytes with targeted disruption of RIP140 express genes characteristic of brown fat including CIDEA and UCP1 while skeletal muscles show a shift in fibre type composition enriched in more oxidative fibres. Thus, RIP140 is a potential therapeutic target in metabolic disorders. In this article we will review the role of RIP140 in tissues relevant to the appearance and progression of the metabolic syndrome and discuss how the manipulation of RIP140 levels or activity might represent a therapeutic approach to combat obesity and associated metabolic disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Meritxell Rosell
- Institute of Reproductive and Developmental Biology, Imperial College London, Faculty of Medicine, Hammersmith Campus 158 Du Cane Road, W12 0NN, UK.
| | | | | |
Collapse
|
26
|
Egorova KS, Olenkina OM, Olenina LV. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. BIOCHEMISTRY (MOSCOW) 2010; 75:535-48. [PMID: 20632931 DOI: 10.1134/s0006297910050019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to the dramatically expanding investigations of lysine methylation on nonhistone proteins and its functional importance. Posttranslational covalent modifications of proteins provide living organisms with ability to rapidly change protein activity and function in response to various stimuli. Enzymatic protein methylation at different lysine residues was evaluated in histones as a part of the "histone code". Histone methyltransferases methylate not only histones, but also many nuclear and cytoplasmic proteins. Recent data show that the regulatory role of lysine methylation on proteins is not restricted to the "histone code". This modification modulates activation, stabilization, and degradation of nonhistone proteins, thus influencing numerous cell processes. In this review we particularly focused on methylation of transcription factors and other nuclear nonhistone proteins. The methylated lysine residues serve as markers attracting nuclear "reader" proteins that possess different chromatin-modifying activities.
Collapse
Affiliation(s)
- K S Egorova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | |
Collapse
|
27
|
Genomic collaboration of estrogen receptor alpha and extracellular signal-regulated kinase 2 in regulating gene and proliferation programs. Mol Cell Biol 2010; 31:226-36. [PMID: 20956553 DOI: 10.1128/mcb.00821-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear hormone receptor, estrogen receptor α (ERα), and mitogen-activated protein kinases (MAPKs) play key roles in hormone-dependent cancers, and yet their interplay and the integration of their signaling inputs remain poorly understood. In these studies, we document that estrogen-occupied ERα activates and interacts with extracellular signal-regulated kinase 2 (ERK2), a downstream effector in the MAPK pathway, resulting in ERK2 and ERα colocalization at chromatin binding sites across the genome of breast cancer cells. This genomic colocalization, predominantly at conserved distal enhancer sites, requires the activation of both ERα and ERK2 and enables ERK2 modulation of estrogen-dependent gene expression and proliferation programs. The ERK2 substrate CREB1 was also activated and recruited to ERK2-bound chromatin following estrogen treatment and found to cooperate with ERα/ERK2 in regulating gene transcription and cell cycle progression. Our study reveals a novel paradigm with convergence of ERK2 and ERα at the chromatin level that positions this kinase to support nuclear receptor activities in crucial and direct ways, a mode of collaboration likely to underlie MAPK regulation of gene expression by other nuclear receptors as well.
Collapse
|
28
|
Park SW, Huang WH, Persaud SD, Wei LN. RIP140 in thyroid hormone-repression and chromatin remodeling of Crabp1 gene during adipocyte differentiation. Nucleic Acids Res 2010; 37:7085-94. [PMID: 19778926 PMCID: PMC2790899 DOI: 10.1093/nar/gkp780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular retinoic acid binding protein 1 (Crabp1) gene is biphasically (proliferation versus differentiation) regulated by thyroid hormone (T3) in 3T3-L1 cells. This study examines T3-repression of Crabp1 gene during adipocyte differentiation. T3 repression of Crabp1 requires receptor interacting protein 140 (RIP140). During differentiation, the juxtaposed chromatin configuration of Crabp1 promoter with its upstream region is maintained, but the 6-nucleosomes spanning thyroid hormone response element to transcription initiation site slide bi-directionally, with the third nucleosome remaining at the same position throughout differentiation. On the basal promoter, RIP140 replaces coactivators GRIP1 and PCAF and forms a repressive complex with CtBP1, HDAC3 and G9a. Initially active chromatin marks on this promoter, histone modifications H3-Ac and H3K4-me3, are weakened whereas repressive chromatin marks, H3K9-me3 and H3K27-me3 modification and recruitment of G9a, HP1α, HP1γ and H1, are intensified. This is the first study to examine chromatin remodeling, during the phase of hormone repression, of a bi-directionally regulated hormone target gene, and provides evidence for a functional role of RIP140 in chromatin remodeling to repress hormone target gene expression.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
29
|
MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 2009; 424:411-8. [DOI: 10.1042/bj20090915] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RIP140 (receptor-interacting protein 140) is a transcriptional co-repressor that regulates diverse genes such as those responsive to hormones and involved in metabolic processes. The expression of RIP140 is regulated by multiple hormonal activities in adipose tissue and cancer cell lines. However, it is unclear whether and how RIP140 is regulated post-transcriptionally. Using 5′RACE (rapid amplification of 5′ cDNA ends), we have identified a novel 5′ splice variant of RIP140 mRNA in mouse brain and P19 cells. A target sequence for miRNA (microRNA) mir-346 was found in the 5′UTR (5′-untranslated region) of RIP140 mRNA; this miRNA is also expressed endogenously in mouse brain and P19 cells. Gain- and loss-of-function studies demonstrated that mir-346 elevates RIP140 protein levels by facilitating association of its mRNA with the polysome fraction. Furthermore, the activity of mir346 does not require Ago-2 (Argonaute 2). The expression of mir-346 enhances the gene repressive activity of RIP140. This is the first report demonstrating post-transcriptional regulation of RIP140 mRNA, involving the enhancing effect of a specific miRNA that targets RIP140's 5′UTR.
Collapse
|
30
|
A negative regulatory pathway of GLUT4 trafficking in adipocyte: new function of RIP140 in the cytoplasm via AS160. Cell Metab 2009; 10:516-23. [PMID: 19945409 PMCID: PMC2787476 DOI: 10.1016/j.cmet.2009.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 07/15/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023]
Abstract
Receptor-interacting protein 140 (RIP140), a nuclear receptor corepressor, is important for lipid and glucose metabolism. In adipocytes, RIP140 can be phosphorylated by protein kinase C epsilon (PKCvarepsilon), followed by arginine methylation, and exported to the cytoplasm. This study demonstrates for the first time a cytoplasmic function for RIP140: to counteract insulin-stimulated glucose transporter 4 (GLUT4) membrane partitioning and glucose uptake in adipocytes. Cytoplasmic RIP140 interacts with the Akt substrate AS160, thereby impeding AS160 phosphorylation by Akt; this in turn reduces GLUT4 trafficking. This signal transduction pathway can be recapitulated in the epididymal adipocytes of diet-induced obese mice: nuclear PKCvarepsilon is activated, cytoplasmic RIP140 increases, and GLUT4 trafficking and glucose uptake are reduced. The data reveal a new, cytoplasmic function for RIP140 as a negative regulator of GLUT4 trafficking and glucose uptake, and shed insight into the regulation of basal and insulin-stimulated glucose disposal by a nuclear-initiated counteracting mechanism.
Collapse
|
31
|
Abstract
Mitochondria play central roles in energy homeostasis, metabolism, signaling, and apoptosis. Accordingly, the abundance, morphology, and functional properties of mitochondria are finely tuned to meet cell-specific energetic, metabolic, and signaling demands. This tuning is largely achieved at the level of transcriptional regulation. A highly interconnected network of transcription factors regulates a broad set of nuclear genes encoding mitochondrial proteins, including those that control replication and transcription of the mitochondrial genome. The same transcriptional network senses cues relaying cellular energy status, nutrient availability, and the physiological state of the organism and enables short- and long-term adaptive responses, resulting in adjustments to mitochondrial function and mitochondrial biogenesis. Mitochondrial dysfunction is associated with many human diseases. Characterization of the transcriptional mechanisms that regulate mitochondrial biogenesis and function can offer insights into possible therapeutic interventions aimed at modulating mitochondrial function.
Collapse
Affiliation(s)
- M Benjamin Hock
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
32
|
Huq MDM, Ha SG, Barcelona H, Wei LN. Lysine methylation of nuclear co-repressor receptor interacting protein 140. J Proteome Res 2009; 8:1156-67. [PMID: 19216533 DOI: 10.1021/pr800569c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Receptor interacting protein 140 (RIP140) undergoes extensive post-translational modifications (PTMs), including phosphorylation, acetylation, arginine methylation, and pyridoxylation. PTMs affect its subcellular distribution, protein-protein interaction, and biological activity in adipocyte differentiation. Arginine methylation on Arg(240), Arg(650), and Arg(948) suppresses the repressive activity of RIP140. Here, we find that endogenous RIP140 in differentiated 3T3-L1 cells is also modified by lysine methylation. Three lysine residues, Lys(591), Lys(653), and Lys(757), are mapped as potential methylation sites by mass spectrometry. Site-directed mutagenesis study shows that lysine methylation enhances its gene repressive activity. Mutation of lysine methylation sites enhances arginine methylation, while mutation on arginine methylation sites has little effect on its lysine methylation, suggesting a relationship between lysine methylation and arginine methylation. Kinetic analysis of PTMs of endogenous RIP140 in differentiated 3T3-L1 cells demonstrates sequential modifications on RIP140, initiated from constitutive lysine methylation, followed by increased arginine methylation later in differentiation. This study reveals a potential hierarchy of modifications, at least for lysine and arginine methylation, which bidirectionally regulate the functionality of a nonhistone protein.
Collapse
Affiliation(s)
- M D Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
33
|
|