1
|
Luo Y, Woodie LN, Graff EC, Zhang J, Fowler S, Wang X, Wang X, O'Neill AM, Greene MW. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat Western diet model of NAFLD. J Nutr Biochem 2023; 112:109174. [PMID: 36280127 DOI: 10.1016/j.jnutbio.2022.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.
Collapse
Affiliation(s)
| | | | - Emily C Graff
- Department of Pathobiology; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | | | | | | | - Xu Wang
- Department of Pathobiology; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Michael W Greene
- Department of Nutritional Sciences; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
2
|
Shu S, Wang H, Zhu J, Fu Y, Cai J, Chen A, Tang C, Dong Z. Endoplasmic reticulum stress contributes to cisplatin-induced chronic kidney disease via the PERK-PKCδ pathway. Cell Mol Life Sci 2022; 79:452. [PMID: 35895146 PMCID: PMC11072288 DOI: 10.1007/s00018-022-04480-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cisplatin is an effective chemotherapeutic drug, but it may induce both acute and chronic kidney problems. The pathogenesis of chronic kidney disease (CKD) associated with cisplatin chemotherapy remains largely unclear. METHODS Mice and renal tubular cells were subjected to repeated low-dose cisplatin (RLDC) treatment to induce CKD and related pathological changes. The roles of endoplasmic reticulum (ER) stress, PERK, and protein kinase C-δ (PKCδ) were determined using pharmacological inhibitors and genetic manipulation. RESULTS ER stress was induced by RLDC in kidney tubular cells in both in vivo and in vitro models. ER stress inhibitors given immediately after RLDC attenuated kidney dysfunction, tubular atrophy, kidney fibrosis, and inflammation in mice. In cultured renal proximal tubular cells, inhibitors of ER stress or its signaling kinase PERK also suppressed RLDC-induced fibrotic changes and the expression of inflammatory cytokines. Interestingly, RLDC-induced PKCδ activation, which was blocked by ER stress or PERK inhibitors, suggesting PKCδ may act downstream of PERK. Indeed, suppression of PKCδ with a kinase-dead PKCδ (PKCδ-KD) or Pkcδ-shRNA attenuated RLDC-induced fibrotic and inflammatory changes. Moreover, the expression of active PKCδ-catalytic fragment (PKCδ-CF) diminished the beneficial effects of PERK inhibitor in RLDC-treated cells. Co-immunoprecipitation assay further suggested PERK binding to PKCδ. CONCLUSION These results indicate that ER stress contributes to chronic kidney pathologies following cisplatin chemotherapy via the PERK-PKCδ pathway.
Collapse
Affiliation(s)
- Shaoqun Shu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiefu Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Fu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Juan Cai
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Anqun Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chengyuan Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
3
|
Insulin Signal Transduction Perturbations in Insulin Resistance. Int J Mol Sci 2021; 22:ijms22168590. [PMID: 34445300 PMCID: PMC8395322 DOI: 10.3390/ijms22168590] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic β-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to β-cell decline through the IAPP-RAGE induced β-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.
Collapse
|
4
|
Guzmán-Ruiz MA, Jiménez A, Cárdenas-Rivera A, Guerrero-Vargas NN, Organista-Juárez D, Guevara-Guzmán R. Regulation of Metabolic Health by an "Olfactory-Hypothalamic Axis" and Its Possible Implications for the Development of Therapeutic Approaches for Obesity and T2D. Cell Mol Neurobiol 2021; 42:1727-1743. [PMID: 33813677 DOI: 10.1007/s10571-021-01080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The olfactory system is responsible for the reception, integration and interpretation of odors. However, in the last years, it has been discovered that the olfactory perception of food can rapidly modulate the activity of hypothalamic neurons involved in the regulation of energy balance. Conversely, the hormonal signals derived from changes in the metabolic status of the body can also change the sensitivity of the olfactory system, suggesting that the bidirectional relationship established between the olfactory and the hypothalamic systems is key for the maintenance of metabolic homeostasis. In the first part of this review, we describe the possible mechanisms and anatomical pathways involved in the modulation of energy balance regulated by the olfactory system. Hence, we propose a model to explain its implication in the maintenance of the metabolic homeostasis of the organism. In the second part, we discuss how the olfactory system could be involved in the development of metabolic diseases such as obesity and type two diabetes and, finally, we propose the use of intranasal therapies aimed to regulate and improve the activity of the olfactory system that in turn will be able to control the neuronal activity of hypothalamic centers to prevent or ameliorate metabolic diseases.
Collapse
Affiliation(s)
- Mara Alaide Guzmán-Ruiz
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| | - Adriana Jiménez
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Alfredo Cárdenas-Rivera
- Centro de Investigación en Bioingeniería, Universidad de Ingeniería y Tecnología, Lima, Perú
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - Diana Organista-Juárez
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Rosalinda Guevara-Guzmán
- Laboratorio Sensorial, Departamento de Fisiología, Facultad de Medicina, Edificio A, 4º piso, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
5
|
Liu L, Li X. Downregulation of miR-320 Alleviates Endoplasmic Reticulum Stress and Inflammatory Response in 3T3-L1 Adipocytes. Exp Clin Endocrinol Diabetes 2019; 129:131-137. [PMID: 31634961 DOI: 10.1055/a-1012-8420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE MicroRNAs serve important roles in the regulation of endoplasmic reticulum stress (ERs). This study aimed to investigate the role of microRNA-320 (miR-320) in the development of ERs and the inflammatory response in 3T3-L1 adipocytes. MATERIALS AND METHODS The adipose tissue expression levels of miR-320 and ERs markers (GRP78, GRP94, Derlin-1 and CHOP) and the serum concentration of inflammatory cytokines (TNF-α, NF-κB and IL-6) in obese patients were evaluated using quantitative real-time RT-PCR or enzyme-linked immunosorbent assay. The correlation of miR-320 with genes involved in ERs and inflammation was analyzed. The effects of miR-320 on ERs and inflammation were explored using mature 3T3-L1 adipocytes, which were pretreated with palmitic acid (PA). RESULTS ERs markers and inflammatory cytokines were all upregulated in obese patients. Adipose tissue miR-320 expression was also increased in obese patients, and had positive correlations with the levels of ERs markers and inflammatory cytokines. After PA treatment, the levels of ERs markers and inflammatory cytokines were elevated significantly in 3T3-L1 adipocytes. Moreover, miR-320 expression was increased in the cells under ERs status. The upregulation of miR-320 could enhance the expression of ERs markers and inflammatory cytokines, but the downregulation of miR-320 resulted in the opposite results. CONCLUSION The data of this study indicate that miR-320 expression is upregulated in ERs status, and the downregulation of miR-320 ameliorates ERs and the inflammatory response in 3T3-L1 adipocytes. We consider that the approaches to decrease miR-320 expression may be novel therapeutic strategies for the treatment of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| |
Collapse
|
6
|
miR-26a Potentially Contributes to the Regulation of Fatty Acid and Sterol Metabolism In Vitro Human HepG2 Cell Model of Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8515343. [PMID: 30402207 PMCID: PMC6196797 DOI: 10.1155/2018/8515343] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic-related disorder ranging from steatosis to steatohepatitis, which may progress to cirrhosis and hepatocellular carcinoma (HCC). This study aimed at assessing the regulatory and protective role of miR-26a on lipid metabolism and progression of NAFLD in human HepG2 cells loaded with free fatty acids (FFA). Lentivirus expressing miR-26a or negative control miR was used to transduce HepG2 cells and to establish stable cell lines. Gain or loss of function using an miR-26a inhibitor was used to compare triglyceride content (TG), total cholesterol level (CL), total antioxidant capacity (TAC), malondialdehyde (MDA) and the level of apoptosis. In addition, quantitative reverse transcription polymerase chain reaction (qPCR) was used to assess the mRNA levels of lipogenesis, TG synthesis, storage genes, inflammatory and fibrogenic markers, and autophagic besides endoplasmic reticulum (ER) stress markers after gaining or losing the function of miR-26a. miR-26a levels decreased in response to FFA in human HepG2 cells. After the establishment of a stable cell line, the upregulation of miR-26a resulted in the downregulation of TG, CL, and MDA levels, through regulating mRNA levels of genes involved in lipid homeostasis, ER stress marker, inflammatory and fibrogenic markers. Nevertheless, there was a marked increment in the mRNA expression of autophagic marker genes. Moreover, miR-26a overexpression protects the cells from apoptosis, whereas inhibition of miR-26a, using an anti-miR-26a oligonucleotide, decreased the expression of miR-26a which potentially contributes to altered lipid metabolism in HepG2 cells loaded with FFA. In conclusion, these findings suggested that miR-26a has a crucial role in regulating fatty acid and cholesterol homeostasis in HepG2 cells, along with the offered protection against the progression of NAFLD in vitro. Hence, miRNAs could receive growing attention as useful noninvasive diagnostic markers to follow the progression of NAFLD and to identify novel therapeutic targets.
Collapse
|
7
|
Sun S, Wu Q, Song J, Sun S. Protein kinase C δ-dependent regulation of Ubiquitin-proteasome system function in breast cancer. Cancer Biomark 2018; 21:1-9. [PMID: 29036789 DOI: 10.3233/cbm-170451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Besides the crucial role of hyperinsulinemia in the development of breast cancer with Type 2 diabetes mellitus (T2DM), it has been shown that hyperglycemia could contribute to promote cancer progression. A remarkable association within hyperglycemia, PKCδ and Ubiquitin-proteasome system (UPS) has been reported, suggesting that PKCδ may mediate high glucose-induced UPS activation in breast cancer cells. Although the independent effects of PKCδ or UPS on breast cancer and T2DM are increasingly supported by experimental evidence, the complex interactional link between PKCδ and UPS is still unclear. Hence, we focus on the relationship between PKCδ and UPS in breast cancer with T2DM. We hypothesize that PKCδ may have the function to regulate the activity of UPS. Further, we speculate that PKCδ combine with proteasome α2 promoter, that indicate PKCδ regulate the function of UPS by change the composition of proteasome. Therefore, we surmise that PKCδ mediated high glucose-induced UPS activation in breast cancer cells, and specific PKCδ inhibitor rottlerin significantly suppressed elevated glucose induced the activity of UPS. We hope that our paper will stimulate further studies the relationship between PKCδ and UPS, and a new targeted therapy and early medical intervention for PKCδ could be a useful option for breast cancer cases complicated with T2DM or hyperglycemia.
Collapse
Affiliation(s)
- Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Schmitz-Peiffer C. Anarchy in the UPR: A Ca 2+-insensitive PKC inhibits SERCA activity to promote ER stress. Biosci Rep 2018; 38:BSR20170966. [PMID: 29439143 PMCID: PMC5857902 DOI: 10.1042/bsr20170966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in Western countries, and is linked to the development of liver cancer and Type 2 diabetes (T2D). It is strongly associated with obesity, but the dysregulation of liver lipid storage is not fully understood. Fatty acid oversupply to hepatocytes can establish a vicious cycle involving diminished protein folding, endoplasmic reticulum (ER) stress, insulin resistance and further lipogenesis. This commentary discusses the recent findings of Lai et al. published in Bioscience Reports, that implicate protein kinase C delta (PKCδ) activation by fatty acids in the inhibition of the SERCA Ca2+ pump, resulting in reduced ER Ca2+ loading and protein misfolding. PKCδ therefore represents a target for the treatment of both steatosis and insulin resistance, key to the prevention of NAFLD and T2D.
Collapse
Affiliation(s)
- Carsten Schmitz-Peiffer
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, and St Vincents Clinical School, University of New South Wales, Darlinghurst, Sydney, 2010, Australia
| |
Collapse
|
9
|
Hu S, Wang J, Wang J, Xue C, Wang Y. Long-chain bases from sea cucumber mitigate endoplasmic reticulum stress and inflammation in obesity mice. J Food Drug Anal 2016; 25:628-636. [PMID: 28911649 PMCID: PMC9328807 DOI: 10.1016/j.jfda.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and inflammation can induce hyperglycemia. Long-chain bases (LCBs) from sea cucumber exhibit antihyperglycemic activities. However, their effects on ER stress and inflammation are unknown. We investigated the effects of LCBs on ER stress and inflammatory response in high-fat, fructose diet-induced obesity mice. Reactive oxygen species and free fatty acids were measured. Inflammatory cytokines in serum and their mRNA expressions in epididymal adipose tissues were investigated. Hepatic ER stress-related key genes were detected. c-Jun NH2-terminal kinase and nuclear factor κB inflammatory pathways were also evaluated in the liver. Results showed that LCBs reduced serum and hepatic reactive oxygen species and free fatty acids concentrations. LCBs decreased serum proinflammatory cytokines levels, namely interleukin (IL)-1β, tumor necrosis factor-α, IL-6, macrophage inflammatory protein 1, and c-reactive protein, and increased anti-inflammatory cytokine IL-10 concentration. The mRNA and protein expressions of these cytokines in epididymal adipose tissues were regulated by LCBs as similar to their circulatory contents. LCBs inhibited phosphorylated c-Jun NH2-terminal kinase and inhibitor κ kinase β, and nuclear factor κB nuclear translocation. LCBs also inhibited mRNA expression of ER stress markers glucose regulated protein, activating transcription factor 6, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase, and X-box binding protein 1, and phosphorylation of eukaryotic initiation factor-α and inositol requiring enzyme 1α. These results indicate that LCBs can alleviate ER stress and inflammatory response. Nutritional supplementation with LCBs may offer an adjunctive therapy for RE stress-associated inflammation.
Collapse
Affiliation(s)
- Shiwei Hu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jinhui Wang
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Li H, Zhou B, Liu J, Li F, Li Y, Kang X, Sun H, Wu S. Administration of progranulin (PGRN) triggers ER stress and impairs insulin sensitivity via PERK-eIF2α-dependent manner. Cell Cycle 2016; 14:1893-907. [PMID: 26039714 DOI: 10.1080/15384101.2015.1041686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Progranulin (PGRN) has recently emerged as an important regulator for glucose metabolism and insulin sensitivity. However, the direct effects of PGRN in vivo and the underlying mechanisms between PGRN and impaired insulin sensitivity are not fully understood. In this study, mice treated with PGRN for 21 d exhibited the impaired glucose tolerance and insulin sensitivity, remarkable ER stress as well as attenuated insulin signaling in liver and adipose tissue but not in skeletal muscle. Furthermore, treatment of mice with phenyl butyric acid (PBA), a chemical chaperone alleviating ER stress, resulted in a significant restoration of systemic insulin sensitivity and recovery of insulin signaling induced by PGRN. Consistent with these findings in vivo, we also observed that PGRN treatment induced ER stress, impaired insulin signaling in cultured hepatocytes and adipocytes, with such effects being partially nullified by blockade of PERK. Whereas PGRN-deficient hepatocytes and adipocytes were more refractory to palmitate-induced insulin resistance, indicating the causative role of the PERK-eIF2α axis of the ER stress response in action of PGRN. Collectively, our findings supported the notion that PGRN is a key regulator of insulin resistance and that PGRN may mediate its effects, at least in part, by inducing ER stress via the PERK-eIF2α dependent pathway.
Collapse
Affiliation(s)
- Huixia Li
- a First Affiliated Hospital; Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education; Medical School of Xi'an Jiaotong University ; Xi'an , Shaanxi , China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Li S, Jiang W, Hu S, Song W, Ji L, Wang Y, Cai L. Fucosylated chondroitin sulphate from Cusumaria frondosa mitigates hepatic endoplasmic reticulum stress and inflammation in insulin resistant mice. Food Funct 2016; 6:1547-56. [PMID: 25825143 DOI: 10.1039/c4fo01153h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endoplasmic reticulum (ER) stress-associated inflammation positively contributes to insulin resistance. It is also known that fucosylated chondroitin sulphate from Cusumaria frondosa (Cf-CHS) can mitigate insulin resistance; however, its effects on ER stress and inflammation are not well understood. Therefore, we investigated whether Cf-CHS-influenced ER stress, inflammatory response and signaling in insulin-resistant mice. Our results showed that Cf-CHS lowered serum and hepatic ROS, NO, and FFA levels. Furthermore, Cf-CHS decreased serum proinflammatory cytokines TNF-α, CRP, MIP-1, IL-1β and IL-6 concentrations as well as their hepatic mRNA expression, and increased the anti-inflammatory cytokine IL-10 levels. Moreover, Cf-CHS reduced the ER stress markers Bip, ATF6, PERK, and XBP1 mRNA or protein expression, and PERK, eIF2α, and IRE1α phosphorylation. These reductions were accompanied by a reduced activation of JNK1 and IKKβ, NFκB nuclear translocation, and IR/IRS-2 serine phosphorylation in Cf-CHS-treated mice. These findings suggested that the Cf-CHS supplementary-induced alleviation of RE stress-associated inflammation could be the mechanism responsible for its beneficial effects against insulin resistance.
Collapse
Affiliation(s)
- Shijie Li
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kim MS, Kang JW, Jeon JS, Kim JK, Kim JW, Hong J, Yoon DY. IL-32θ gene expression in acute myeloid leukemia suppresses TNF-α production. Oncotarget 2015; 6:40747-61. [PMID: 26516703 PMCID: PMC4747366 DOI: 10.18632/oncotarget.5688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
The proinflammatory cytokine TNF-α is highly expressed in patients with acute myeloid leukemia (AML) and has been demonstrated to induce rapid proliferation of leukemic blasts. Thus suppressing the production of TNF-α is important because TNF-α can auto-regulate own expression through activation of NF-κB and p38 mitogen-activated protein kinase (MAPK). In this study, we focused on the inhibitory effect of IL-32θ on TNF-α production in acute myeloid leukemia. Approximately 38% of patients with AML express endogenous IL-32θ, which is not expressed in healthy individuals. Furthermore, plasma samples were classified into groups with or without IL-32θ; then, we measured proinflammatory cytokine TNF-α, IL-1β, and IL-6 levels. TNF-α production was not increased in patients with IL-32θ expression than that in the no-IL-32θ group. Using an IL-32θ stable expression system in leukemia cell lines, we found that IL-32θ attenuated phorbol 12-myristate 13-acetate (PMA)-induced TNF-α production. IL-32θ inhibited phosphorylation of p38 MAPK, inhibitor of κB (IκB), and nuclear factor κB (NF-κB), which are key positive regulators of TNF-α expression, and inhibited nuclear translocation of NF-κB. Moreover, the presence of IL-32θ attenuated TNF-α promoter activity and the binding of NF-κB with the TNF-α promoter. In addition, IL-32γ-induced TNF-α production has no correlation with inhibition of TNF-α via IL-32θ expression. Thus, IL-32θ may serve as a potent inhibitor of TNF-α in patients with AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Blotting, Western
- Case-Control Studies
- Chromatin Immunoprecipitation
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Interleukins/genetics
- Interleukins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phosphorylation
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Young Adult
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Man Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Woo Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
- Current address: Seegene Inc., Seoul, Korea
| | - Jae-Sik Jeon
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Jae Kyung Kim
- Dankook University College of Health Sciences, Department of Biomedical Laboratory Science, Cheonan, Korea
| | - Jong Wan Kim
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Jintae Hong
- College of Pharmacy, Medical Research Center, Chungbuk National University, Chungbuk, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Hu S, Jiang W, Li S, Song W, Ji L, Cai L, Liu X. Fucosylated chondroitin sulphate from sea cucumber reduces hepatic endoplasmic reticulum stress-associated inflammation in obesity mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Non-receptor tyrosine kinase inhibitors enhances β-cell survival by suppressing the PKCδ signal transduction pathway in streptozotocin – induced β-cell apoptosis. Cell Signal 2015; 27:1066-74. [DOI: 10.1016/j.cellsig.2015.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
|
15
|
Zhang J, Burrington CM, Davenport SK, Johnson AK, Horsman MJ, Chowdhry S, Greene MW. PKCδ regulates hepatic triglyceride accumulation and insulin signaling in Lepr(db/db) mice. Biochem Biophys Res Commun 2014; 450:1619-25. [PMID: 25035929 DOI: 10.1016/j.bbrc.2014.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/09/2014] [Indexed: 01/08/2023]
Abstract
PKCδ has been linked to key pathophysiological features of non-alcoholic fatty liver disease (NAFLD). Yet, our knowledge of PKCδ's role in NAFLD development and progression in obese models is limited. PKCδ(-/-)/Lepr(db)(/)(db) mice were generated to evaluate key pathophysiological features of NAFLD in mice. Hepatic histology, oxidative stress, apoptosis, gene expression, insulin signaling, and serum parameters were analyzed in Lepr(db)(/)(db) and PKCδ(-/-)/Lepr(db)(/)(db) mice. The absence of PKCδ did not abrogate the development of obesity in Lepr(db)(/)(db) mice. In contrast, serum triglyceride levels and epididymal white adipose tissue weight normalized to body weight were reduced in PKCδ(-/-)/Lepr(db)(/)(db) mice compared Lepr(db)(/)(db) mice. Analysis of insulin signaling in mice revealed that hepatic Akt and GSK3β phosphorylation were strongly stimulated by insulin in PKCδ(-/-)/Lepr(db)(/)(db) compared Lepr(db)(/)(db) mice. PKCδ may be involved in the development of obesity-associated NAFLD by regulating hepatic lipid metabolism and insulin signaling.
Collapse
Affiliation(s)
- Jian Zhang
- Boshell Diabetes and Metabolic Disease Research Program, Auburn University, Auburn, AL 36849, United States; College of Human Sciences, Auburn University, Auburn, AL 36849, United States
| | - Christine M Burrington
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Samantha K Davenport
- Department of Pathology, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Andrew K Johnson
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Melissa J Horsman
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Saleem Chowdhry
- Department of Internal Medicine, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States
| | - Michael W Greene
- Boshell Diabetes and Metabolic Disease Research Program, Auburn University, Auburn, AL 36849, United States; College of Human Sciences, Auburn University, Auburn, AL 36849, United States; Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY 13326, United States.
| |
Collapse
|
16
|
Greene MW, Burrington CM, Lynch DT, Davenport SK, Johnson AK, Horsman MJ, Chowdhry S, Zhang J, Sparks JD, Tirrell PC. Lipid metabolism, oxidative stress and cell death are regulated by PKC delta in a dietary model of nonalcoholic steatohepatitis. PLoS One 2014; 9:e85848. [PMID: 24454937 PMCID: PMC3893275 DOI: 10.1371/journal.pone.0085848] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/03/2013] [Indexed: 12/31/2022] Open
Abstract
Steatosis, oxidative stress, and apoptosis underlie the development of nonalcoholic steatohepatitis (NASH). Protein kinase C delta (PKCδ) has been implicated in fatty liver disease and is activated in the methionine and choline-deficient (MCD) diet model of NASH, yet its pathophysiological importance towards steatohepatitis progression is uncertain. We therefore addressed the role of PKCδ in the development of steatosis, inflammation, oxidative stress, apoptosis, and fibrosis in an animal model of NASH. We fed PKCδ−/− mice and wildtype littermates a control or MCD diet. PKCδ−/− primary hepatocytes were used to evaluate the direct effects of fatty acids on hepatocyte lipid metabolism gene expression. A reduction in hepatic steatosis and triglyceride levels were observed between wildtype and PKCδ−/− mice fed the MCD diet. The hepatic expression of key regulators of β-oxidation and plasma triglyceride metabolism was significantly reduced in PKCδ−/− mice and changes in serum triglyceride were blocked in PKCδ−/− mice. MCD diet-induced hepatic oxidative stress and hepatocyte apoptosis were reduced in PKCδ−/− mice. MCD diet-induced NADPH oxidase activity and p47phox membrane translocation were blunted and blocked, respectively, in PKCδ−/− mice. Expression of pro-apoptotic genes and caspase 3 and 9 cleavage in the liver of MCD diet fed PKCδ−/− mice were blunted and blocked, respectively. Surprisingly, no differences in MCD diet-induced fibrosis or pro-fibrotic gene expression were observed in 8 week MCD diet fed PKCδ−/− mice. Our results suggest that PKCδ plays a role in key pathological features of fatty liver disease but not ultimately in fibrosis in the MCD diet model of NASH.
Collapse
Affiliation(s)
- Michael W. Greene
- Boshell Diabetes and Metabolic Disease Research Program, Auburn University, Auburn, Alabama, United States of America
- College of Human Sciences, Auburn University, Auburn, Alabama, United States of America
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
- * E-mail:
| | - Christine M. Burrington
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Darin T. Lynch
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Samantha K. Davenport
- Department of Pathology, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Andrew K. Johnson
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Melissa J. Horsman
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Saleem Chowdhry
- Department of Internal Medicine, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Jian Zhang
- College of Human Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Janet D. Sparks
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Paul C. Tirrell
- Department of Internal Medicine, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| |
Collapse
|
17
|
Greene MW, Burrington CM, Luo Y, Ruhoff MS, Lynch DT, Chaithongdi N. PKCδ is activated in the liver of obese Zucker rats and mediates diet-induced whole body insulin resistance and hepatocyte cellular insulin resistance. J Nutr Biochem 2013; 25:281-8. [PMID: 24524901 DOI: 10.1016/j.jnutbio.2013.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023]
Abstract
Insulin resistance can arise when pathological levels of free fatty acids (FFAs) and proinflammatory cytokines disrupt insulin signaling. Protein kinase C delta (PKCδ) is a FFA- and a proinflammatory cytokine-regulated protein kinase that is associated with inhibition of insulin signaling and action. To gain insight into the role of PKCδ in insulin resistance, PKCδ activation was studied in a genetic model of obesity-linked insulin resistance. PKCδ was found to be activated in the liver of obese insulin-resistant Zucker rats and in isolated cultured hepatocytes. PKCδ was further studied in PKCδ-null mice and their wild-type littermates fed a high-fat or control diet for 10 weeks. PKCδ-null mice on a high-fat diet had improved insulin sensitivity and hepatic insulin signaling compared to wild-type littermates. Additionally, the deleterious effect of a high-fat diet on glucose tolerance in wild-type mice was completely blocked in PKCδ-null mice. To directly test the role of PKCδ in cellular insulin resistance, primary hepatocytes from the high-fat diet mice were isolated and stimulated with insulin. Primary hepatocytes from PKCδ-null mice had improved insulin-stimulated Akt and FOXO phosphorylation compared to hepatocytes from wild-type littermates. Consistent with this result, tumor necrosis factor alpha-mediated inhibition of insulin signaling was blocked in PKCδ knockdown primary hepatocytes. These results indicate that PKCδ plays a role in insulin resistance and is consistent with the hypothesis that PKCδ is a negative regulator of insulin signaling and thus may be a therapeutic target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Michael W Greene
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA; College of Human Sciences, Auburn University, Auburn, AL 36849, USA; Bassett Research Institute, Bassett Healthcare Network, Cooperstown, NY, USA.
| | | | - Yuwen Luo
- College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Mary S Ruhoff
- Bassett Research Institute, Bassett Healthcare Network, Cooperstown, NY, USA
| | - Darin T Lynch
- Bassett Research Institute, Bassett Healthcare Network, Cooperstown, NY, USA
| | - Niyutchai Chaithongdi
- Department of Internal Medicine, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, NY, USA
| |
Collapse
|
18
|
Zhu XY, Urbieta-Caceres V, Krier JD, Textor SC, Lerman A, Lerman LO. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells 2013; 31:117-25. [PMID: 23097349 DOI: 10.1002/stem.1263] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/07/2012] [Accepted: 09/23/2012] [Indexed: 12/28/2022]
Abstract
Endothelial progenitor cells (EPC) and mesenchymal stem cells (MSC) augment tissue repair but possess slightly different properties. How the cellular phenotype affects the efficacy of this approach in renovascular disease is incompletely understood. This study tested the hypothesis that EPC and MSC protect the poststenotic kidney by blunting different disease pathways. Peripheral blood EPC and adipose-derived MSC were expanded and characterized by cell surface markers (e.g., CD34/kinase insert domain receptor, or CD44/CD90). Single-kidney hemodynamics and function were assessed in pigs after 10 weeks of renal artery stenosis (RAS) treated 4 weeks earlier with an intrarenal infusion of vehicle (n = 7), EPC (RAS+EPC) or MSC (RAS+MSC) (both 10 × 10(6), n = 6), and normal controls (n = 7). Kidney disease mechanisms were evaluated ex vivo. The ability of EPC and MSC to attenuate endoplasmic reticulum (ER) stress was also studied in isolated ER and in tubular cells cocultured with EPC and MSC. Glomerular filtration rate in RAS was lower than controls, increased in RAS+EPC, and further improved in RAS+MSC, although both improved renal blood flow similarly. EPC prominently enhanced renal growth factor expression and decreased oxidative stress, while MSC more significantly attenuated renal inflammation, ER stress, and apoptosis. Furthermore, MSC induced a greater decrease in caspase-3 and CHOP expression in cultured tubular cells through mechanisms involving cell contact. EPC and MSC achieve a comparable decrease of kidney injury in RAS by different mechanisms, although MSC elicited slightly superior improvement of renal function. These results support development of cell-based approaches for management of renovascular disease and suggest cell selection based on the underlying pathophysiology of kidney injury.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
19
|
Larroque-Cardoso P, Swiader A, Ingueneau C, Nègre-Salvayre A, Elbaz M, Reyland ME, Salvayre R, Vindis C. Role of protein kinase C δ in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells. Cell Death Dis 2013; 4:e520. [PMID: 23449456 PMCID: PMC3734829 DOI: 10.1038/cddis.2013.47] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During atherogenesis, excess amounts of low-density lipoproteins (LDL) accumulate in the subendothelial space where they undergo oxidative modifications. Oxidized LDL (oxLDL) alter the fragile balance between survival and death of vascular smooth muscle cells (VSMC) thereby leading to plaque instability and finally to atherothrombotic events. As protein kinase C δ (PKCδ) is pro-apoptotic in many cell types, we investigated its potential role in the regulation of VSMC apoptosis induced by oxLDL. We found that human VSMC silenced for PKCδ exhibited a protection towards oxLDL-induced apoptosis. OxLDL triggered the activation of PKCδ as shown by its phosphorylation and nuclear translocation. PKCδ activation was dependent on the reactive oxygen species generated by oxLDL. Moreover, we demonstrated that PKCδ participates in oxLDL-induced endoplasmic reticulum (ER) stress-dependent apoptotic signaling mainly through the IRE1α/JNK pathway. Finally, the role of PKCδ in the development of atherosclerosis was supported by immunohistological analyses showing the colocalization of activated PKCδ with ER stress and lipid peroxidation markers in human atherosclerotic lesions. These findings highlight a role for PKCδ as a key regulator of oxLDL-induced ER stress-mediated apoptosis in VSMC, which may contribute to atherosclerotic plaque instability and rupture.
Collapse
|
20
|
Yang CW, Lee YZ, Hsu HY, Wu CM, Chang HY, Chao YS, Lee SJ. c-Jun-mediated anticancer mechanisms of tylophorine. Carcinogenesis 2013; 34:1304-14. [PMID: 23385061 DOI: 10.1093/carcin/bgt039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tylophorine, a phenanthroindolizidine alkaloid, is the major medicinal constituent of herb Tylophora indica. Tylophorine treatment increased the accumulation of c-Jun protein, a component of activator protein 1 (AP1), in carcinoma cells. An in vitro kinase assay revealed that the resultant c-Jun phosphorylation was primarily mediated via activated c-Jun N-terminal protein kinase (JNK). Moreover, flow cytometry indicated that ectopically overexpressed c-Jun in conjunction with tylophorine significantly increased the number of carcinoma cells that were arrested at the G1 phase. The tylophorine-mediated downregulation of cyclin A2 protein levels is known to be involved in the primary G1 arrest. Chromatin immunoprecipitation and reporter assays revealed that tylophorine enhanced the c-Jun downregulation of the cyclin A2 promoter activity upon increased binding of c-Jun to the deregulation AP1 site and decreased binding to the upregulation activating transcription factor (ATF) site in the cyclin A2 promoter, thereby reducing cyclin A2 expression. Further, biochemical studies using pharmacological inhibitors and RNA silencing approaches demonstrated that tylophorine-mediated elevation of the c-Jun protein level occurs primarily via two discrete prolonged signaling pathways: (i) the NF-κB/PKCδ_(MKK4)_JNK cascade, which phosphorylates c-Jun and increases its stability by slowing its ubiquitination, and (ii) the PI3K_PDK1_PP2A_eEF2 cascade, which sustains eukaryotic elongation factor 2 (eEF2) activity and thus c-Jun protein translation. To the best of our knowledge, this report is the first to demonstrate the involvement of c-Jun in the anticancer activity of tylophorine and the release of c-Jun translation from a global translational blockade via the PI3K_PDK1_eEF2 signaling cascade.
Collapse
Affiliation(s)
- Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu L, Su L, Liu X. PKCδ regulates death receptor 5 expression induced by PS-341 through ATF4-ATF3/CHOP axis in human lung cancer cells. Mol Cancer Ther 2012; 11:2174-82. [PMID: 22848091 DOI: 10.1158/1535-7163.mct-12-0602] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PS-341 (bortezomib), a proteasome inhibitor, has been approved for the treatment of multiple myeloma. Our previous work has shown that PS-341 induces death receptor 5 (DR5)-dependent apoptosis and enhances the TNF-related apoptosis-inducing ligand-induced apoptosis in human non-small cell lung cancer cells. However, the definite mechanism remains undefined. In the present study, we reveal that PKCδ and RSK2 mediate PS-341-induced DR5 upregulation, involving coactivation of endoplasmic reticulum (ER) stress. We discovered that PS-341 activated ER stress through elevating the expression of BiP, p-eIF2α, IRE1α, ATF4, ATF3, and CCAAT/enhancer-binding protein homologous protein (CHOP). Further study showed that DR5 upregulation was dependent on ATF4, ATF3, and CHOP expression. Silencing either one of the ATF4, ATF3, and CHOP expression decreased DR5 upregulation and subsequent apoptosis. We determined that ATF4 regulated ATF3 and CHOP expression. Thereafter, ATF3 and CHOP formed a complex and regulated DR5 expression. In addition, we discovered that the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and RSK2 were elevated after PS-341 treatment and inhibition of their phosphorylation using MAP-ERK kinase 1/2 inhibitor decreased the DR5 level, indicating that ERK/RSK2 signaling is involved in DR5 upregulation. Furthermore, we detected the cleavage of PKCδ, and the blockage of PKCδ expression cut down DR5 upregulation and apoptosis. Importantly, knockdown of PKCδ expression decreased the induction of ER stress and the phosphorylation of ERK1/2 and RSK2, suggesting that PKCδ regulates DR5 expression through ERK/RSK2 signaling and ATF4-CHOP/ATF3 axis. Collectively, we show that PS-341 induces PKCδ-dependent DR5 expression through activation of ERK/RSK2 and ER stress signaling pathway.
Collapse
Affiliation(s)
- Linyan Xu
- Shandong University School of Life Sciences, Room 103, South Building, 27 Shanda South Road, Jinan, Shandong 250100, China
| | | | | |
Collapse
|
22
|
Grinnell K, Duong H, Newton J, Rounds S, Choudhary G, Harrington EO. Heterogeneity in apoptotic responses of microvascular endothelial cells to oxidative stress. J Cell Physiol 2012; 227:1899-910. [PMID: 21732361 DOI: 10.1002/jcp.22918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oxidative stress contributes to disease and can alter endothelial cell (EC) function. EC from different vascular beds are heterogeneous in structure and function, thus we assessed the apoptotic responses of EC from lung and heart to oxidative stress. Since protein kinase Cδ (PKCδ) is activated by oxidative stress and is an important modulator of apoptosis, experiments assessed the level of apoptosis in fixed lung and heart sections of PKCδ wild-type (PKCδ(+/+)) and null (PKCδ(-/-)) mice housed under normoxia (21% O(2)) or hyperoxia (~95% O(2)). We noted a significantly greater number of TUNEL-positive cells in lungs of hyperoxic PKCδ(+/+) mice, compared to matched hearts or normoxic organs. We found that 33% of apoptotic cells identified in hyperoxic lungs of PKCδ(+/+) mice were EC, compared to 7% EC in hyperoxic hearts. We further noted that EC apoptosis was significantly reduced in lungs of PKCδ(-/-) hyperoxic mice, compared to lungs of PKCδ(+/+) hyperoxic mice. In vitro, both hyperoxia and H(2)O(2) promoted apoptosis in EC isolated from microvasculature of lung (LMVEC), but not from the heart (HMVEC). H(2)O(2) treatment significantly increased p38 activity in LMVEC, but not in HMVEC. Inhibition of p38 attenuated H(2)O(2)-induced LMVEC apoptosis. Baseline expression of total PKCδ protein, as well as the caspase-mediated, catalytically active PKCδ cleavage fragment, was higher in LMVEC, compared to HMVEC. PKCδ inhibition significantly attenuated H(2)O(2)-induced LMVEC p38 activation. Conversely, overexpression of wild-type PKCδ or the catalytically active PKCδ cleavage product greatly increased H(2)O(2)-induced HMVEC caspase and p38 activation. We propose that enhanced susceptibility of lung EC to oxidant-induced apoptosis is due to increased PKCδ→p38 signaling, and we describe a PKCδ-centric pathway which dictates the differential response of EC from distinct vascular beds to oxidative stress.
Collapse
Affiliation(s)
- Katie Grinnell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI 02908, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ihara E, Chappellaz M, Turner SR, MacDonald JA. The contribution of protein kinase C and CPI-17 signaling pathways to hypercontractility in murine experimental colitis. Neurogastroenterol Motil 2012; 24:e15-26. [PMID: 22093175 DOI: 10.1111/j.1365-2982.2011.01821.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Colonic smooth muscle contractility is altered in colitis, and several protein kinase pathways can mediate colonic smooth muscle contraction. In the present study, we investigated whether protein kinase C (PKC) pathways also play a role in colonic hypercontractility observed during T(H) 2 colitis in BALB/c mice. METHODS Colitis was induced in BALB/c mice by provision of 5% dextran sodium sulfate (DSS) for 7 days. Changes in smooth muscle contractility were examined using dissected circular smooth muscle preparations from the distal colon. The contribution of conventional and novel PKC isozymes to the hypercontractile response was examined with pharmacological PKC inhibitors. Western blot analyses were used to examine protein expression and phosphorylation changes. KEY RESULTS Colonic smooth muscle was associated with inflammation-induced hypercontractility and altered PKC expression. Carbachol-induced peak (phasic) and sustained (tonic) contractions were increased. Chelerythrine was the most effective PKC inhibitor of both phasic and tonic contractions. There was no general difference in the percent contribution of conventional and novel PKC isozymes toward the DSS-induced hypercontractility, but inhibition of sustained force with GF109203x was higher for inflamed muscle. The CPI-17 phosphorylation was equally suppressed in both normal and DSS conditions by Gö6976 and chelerythrine, but only for the phasic component of contraction. CONCLUSIONS & INFERENCES The outcomes suggest that both conventional and novel PKC isozymes contribute to the phasic and tonic contractile components of BALB/c colonic circular smooth muscle under normal conditions, with novel PKC isozymes having a greater contribution to the tonic contraction. However, no effect of inflammation was observed on the relative contribution of PKC and CPI-17 toward the observed hypercontractility.
Collapse
Affiliation(s)
- E Ihara
- Smooth Muscle and Gastrointestinal Research Groups, Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
24
|
The unfolded protein response is a major mechanism by which LRP1 regulates Schwann cell survival after injury. J Neurosci 2011; 31:13376-85. [PMID: 21940431 DOI: 10.1523/jneurosci.2850-11.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In peripheral nerve injury, Schwann cells (SCs) must survive to exert a continuing and essential role in successful nerve regeneration. Herein, we show that peripheral nerve injury is associated with activation of endoplasmic reticulum (ER) stress and the adaptive unfolded protein response (UPR). The UPR culminates in expression of C/EBP homology protein (CHOP), a proapoptotic transcription factor in SCs, unless counteracted by LDL receptor-related protein-1 (LRP1), which serves as a major activator of phosphatidylinositol 3-kinase (PI3K). Sciatic nerve crush injury in rats induced expression of the ER chaperone GRP78/BIP, reflecting an early, corrective phase of the UPR. However, when LRP1 signaling was inhibited with receptor-associated protein, PI3K activity was decreased and CHOP protein expression increased, particularly in myelinating SCs. In cultured SCs, the PKR-like ER kinase target eIF2α was phosphorylated and CHOP was induced by (1) inhibiting PI3K, (2) treating the cells with tumor necrosis factor-α (TNF-α), or (3) genetic silencing of LRP1. CHOP gene deletion in SCs decreased cell death in response to TNF-α. Furthermore, the effects of TNF-α on phosphorylated eIF2α, CHOP, and SC death were blocked by adding LRP1 ligands that augment LRP1-dependent cell signaling to PI3K. Collectively, our results support a model in which UPR-activated signaling pathways represent a major challenge to SC survival in nerve injury. LRP1 functions as a potent activator of PI3K in SCs and, by this mechanism, limits SC apoptosis resulting from increased CHOP expression in nerve injury.
Collapse
|
25
|
Chen CJ, Ou YC, Chang CY, Pan HC, Liao SL, Chen SY, Raung SL, Lai CY. Glutamate released by Japanese encephalitis virus-infected microglia involves TNF-α signaling and contributes to neuronal death. Glia 2011; 60:487-501. [PMID: 22144112 DOI: 10.1002/glia.22282] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/18/2011] [Indexed: 01/19/2023]
Abstract
The substantial activation of microglia in Japanese encephalitis virus (JEV)-induced Japanese encephalitis found in numerous studies demonstrates that the disease pathogenesis involves bystander damage caused by microglia-released mediators. Previously, we reported that microglia synthesized and secreted bioactive mediators with neurotoxic potential into the cultured supernatants in response to JEV infection. In this study, we found that the supernatants of JEV-infected microglia caused MK801-inhibitable neuronal damage in cultured neurons, indicating a potential excitotoxic mechanism. Infection with JEV was found to elicit the extracellular glutamate accumulation from microglia but not from neuron and astrocyte cultures. The glutaminase inhibitor 6-diazo-5-oxo-L-norleucine, cystine/glutamate antiporter inhibitor α-aminoadipic acid, and the gap junction inhibitor carbenoxolone reduced JEV infection-induced microglial glutamate release and neurotoxicity. We further demonstrated that tumor necrosis factor-alpha (TNF-α) was a key cytokine which stimulated extensive microglial glutamate release by up-regulating glutaminase expression via signals involving protein kinase C, cAMP responsive element-binding protein, and CAAT-enhancer-binding protein-beta. Although the elevated expression of excitatory amino acid transporter 1 and 2 was observed in JEV-infected cells, the glutamate uptake activity was significantly inhibited by TNF-α. The JEV infection-induced alterations, such as the extracellular glutamate release and glutamate-mediated excitoneurotoxicity, also occurred in neuron/glia cultures. Our findings support a potential link between neuroinflammation and the development of excitotoxic neuronal injury in Japanese encephalitis. The link between neuroinflammation and excitotoxic death may involve a mechanism in which TNF-α released by microglia plays a facilitory role in glutamate excitoneurotoxicity via up-regulation of glutamate synthesis and down-regulation of glutamate uptake.
Collapse
Affiliation(s)
- Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rosa SC, Rufino AT, Judas F, Tenreiro C, Lopes MC, Mendes AF. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis Cartilage 2011; 19:719-27. [PMID: 21324373 DOI: 10.1016/j.joca.2011.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocytes respond to insulin, but the presence and role of the specific high affinity insulin receptor (InsR) has never been demonstrated. This study determined whether human chondrocytes express the InsR and compared its abundance and function in normal and osteoarthritis (OA) human chondrocytes. DESIGN Cartilage sections were immunostained for detection of the InsR. Non-proliferating chondrocyte cultures from normal and OA human cartilage were treated with 1nM or 10nM insulin for various periods. InsR, insulin-like growth factor receptor (IGFR), aggrecan and collagen II mRNA levels were assessed by real time RT-PCR. InsR, glucose transporter (GLUT)-1, phospho-InsRbeta and phospho-Akt were evaluated by western blot and immunofluorescence. Glucose transport was measured as the uptake of [3H]-2-Deoxy-d-Glucose (2-DG). RESULTS Chondrocytes staining positively for the InsR were scattered throughout the articular cartilage. The mRNA and protein levels of the InsR in OA chondrocytes were approximately 33% and 45%, respectively, of those found in normal chondrocytes. Insulin induced the phosphorylation of the InsRbeta subunit. Akt phosphorylation and 2-DG uptake increased more intensely in normal than OA chondrocytes. Collagen II mRNA expression increased similarly in normal and OA chondrocytes while aggrecan expression remained unchanged. The Phosphoinositol-3 Kinase (PI3K)/Akt pathway was required for both basal and insulin-induced collagen II expression. CONCLUSIONS Human chondrocytes express functional InsR that respond to physiologic insulin concentrations. The InsR seems to be more abundant in normal than in OA chondrocytes, but these still respond to physiologic insulin concentrations, although some responses are impaired while others appear fully activated. Understanding the mechanisms that regulate the expression and function of the InsR in normal and OA chondrocytes can disclose new targets for the development of innovative therapies for OA.
Collapse
Affiliation(s)
- S C Rosa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Bezy O, Tran TT, Pihlajamäki J, Suzuki R, Emanuelli B, Winnay J, Mori MA, Haas J, Biddinger SB, Leitges M, Goldfine AB, Patti ME, King GL, Kahn CR. PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. J Clin Invest 2011; 121:2504-17. [PMID: 21576825 DOI: 10.1172/jci46045] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/30/2011] [Indexed: 12/27/2022] Open
Abstract
C57BL/6J and 129S6/Sv (B6 and 129) mice differ dramatically in their susceptibility to developing diabetes in response to diet- or genetically induced insulin resistance. A major locus contributing to this difference has been mapped to a region on mouse chromosome 14 that contains the gene encoding PKCδ. Here, we found that PKCδ expression in liver was 2-fold higher in B6 versus 129 mice from birth and was further increased in B6 but not 129 mice in response to a high-fat diet. PRKCD gene expression was also elevated in obese humans and was positively correlated with fasting glucose and circulating triglycerides. Mice with global or liver-specific inactivation of the Prkcd gene displayed increased hepatic insulin signaling and reduced expression of gluconeogenic and lipogenic enzymes. This resulted in increased insulin-induced suppression of hepatic gluconeogenesis, improved glucose tolerance, and reduced hepatosteatosis with aging. Conversely, mice with liver-specific overexpression of PKCδ developed hepatic insulin resistance characterized by decreased insulin signaling, enhanced lipogenic gene expression, and hepatosteatosis. Therefore, changes in the expression and regulation of PKCδ between strains of mice and in obese humans play an important role in the genetic risk of hepatic insulin resistance, glucose intolerance, and hepatosteatosis; and thus PKCδ may be a potential target in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Olivier Bezy
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Campo GM, Avenoso A, Micali A, Nastasi G, Squadrito F, Altavilla D, Bitto A, Polito F, Rinaldi MG, Calatroni A, D'Ascola A, Campo S. High-molecular weight hyaluronan reduced renal PKC activation in genetically diabetic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1118-30. [PMID: 20713153 DOI: 10.1016/j.bbadis.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/04/2010] [Accepted: 08/10/2010] [Indexed: 02/07/2023]
Abstract
The cluster determinant (CD44) seems to play a key role in tissues injured by diabetes type 2. CD44 stimulation activates the protein kinase C (PKC) family which in turn activates the transcriptional nuclear factor kappa B (NF-κB) responsible for the expression of the inflammation mediators such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18), inducible nitric oxide synthase (iNOS), and matrix metalloproteinases (MMPs). Regulation of CD44 interaction with its ligands depends greatly upon PKC. We investigated the effect of the treatment with high-molecular weight hyaluronan (HA) on diabetic nephropathy in genetically diabetic mice. BKS.Cg-m+/+Lepr(db) mice had elevated plasma insulin from 15 days of age and high blood sugar levels at 4 weeks. The severe nephropathy that developed was characterized by a marked increased in CD44 receptors, protein kinase C betaI, betaII, and epsilon (PKC(βI), PKC(βII), and PKCε) mRNA expression and the related protein products in kidney tissue. High levels of mRNA and related protein levels were also detected in the damaged kidney for NF-κB, TNF-α, IL-6, IL-18, MMP-7, and iNOS. Chronic daily administration of high-molecular mass HA for 2 weeks significantly reduced CD44, PKC(βI), PKC(βII), and PKCα gene expression and the related protein production in kidney tissue and TNF-α, IL-6, IL-18, MMP-7, and iNOS expression and levels also decreased. Histological analysis confirmed the biochemical data. However, blood parameters of diabetes were unchanged. These results suggest that the CD44 and PKC play an important role in diabetes and interaction of high-molecular weight HA with these proteins may reduce inflammation and secondary pathologies due to this disease.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Greene MW, Burrington CM, Ruhoff MS, Johnson AK, Chongkrairatanakul T, Kangwanpornsiri A. PKC{delta} is activated in a dietary model of steatohepatitis and regulates endoplasmic reticulum stress and cell death. J Biol Chem 2010; 285:42115-29. [PMID: 20971848 DOI: 10.1074/jbc.m110.168575] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hepatic steatosis can progress to the clinical condition of non-alcoholic steatohepatitis (NASH), which is a precursor of more serious liver diseases. The novel PKC isoforms δ and ε are activated by lipid metabolites and have been implicated in lipid-induced hepatic disease. Using a methionine- and choline-deficient (MCD) dietary model of NASH, we addressed the question of whether hepatic PKCδ and PKCε are activated. With progression from steatosis to steatohepatitis, there was activation and increased PKCδ protein content coincident with hepatic endoplasmic reticulum (ER) stress parameters. To examine whether similar changes could be induced in vitro, McA-RH 7777 (McA) hepatoma cells were used. We observed that McA cells stored triglyceride and released alanine aminotransferase (ALT) when treated with MCD medium in the presence of fatty acids. Further, MCD medium with palmitic acid, but not oleic or linoleic acids, maximally activated PKCδ and stimulated ER stress. In PKCδ knockdown McA cells, MCD/fatty acid medium-induced ALT release and ER stress induction were completely blocked, but triglyceride storage was not. In addition, a reduction in the uptake of propidium iodide and the number of apoptotic nuclei and a significant increase in cell viability and DNA content were observed in PKCδ knockdown McA cells incubated in MCD medium with palmitic acid. Our studies show that PKCδ activation and protein levels are elevated in an animal model of steatohepatitis, which was recapitulated in a cell model, supporting the conclusion that PKCδ plays a role in ALT release, the ER stress signal, and cell death.
Collapse
Affiliation(s)
- Michael W Greene
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York 13326, USA.
| | | | | | | | | | | |
Collapse
|